《材料力学》第9章压杆稳定习题解-精选.pdf

合集下载

材料力学简明教程(景荣春)课后答案第九章

材料力学简明教程(景荣春)课后答案第九章

解 设各杆与铅垂线夹角为 θ ,则由平衡的各杆的受力
130
3FN cosθ = F , FN =
设钢管材料为 Q235,则
F F 2 .5 5 F = ⋅ = = 0.417 F 3 cos θ 3 2 12
= 269 > λp D2 + d 2 30 2 + 22 2 × 10 −3 π 2 EI π 3 E (D 4 − d 4 ) π 3 × 210 × 10 9 × (30 2 − 22 2 )× 10 −12 Fcr = = = = 9.37 kN 2 64 × 2.5 2 (μl )2 64(μl ) Fcr F 1 1 9.37 × 10 3 [F ] = = × = × = 7.49 kN 0.417 0.417 [n]st 0.417 3 i = =
2
127
比值差不多时较有利。 9-8 从稳定性的角度考虑,一般压杆截面的周边取圆形较为合理,但可以是空心或实 心的。如规定压杆横截面面积相同,则: (1) 从强度方面看,它们有无区别?为什么? (2) 从稳定性方面看,哪一种截面形式较为合理?为什么? (3) 如果空心圆形截面较合理的话,是否其内、外半径越大越好? 答 (1) 从强度方面看,它们无区别。因为 σ = F / A 。 (2) 从稳定性方面看,空心截面形式较为合理,因空心截面惯性矩较大。 (3) 如果空心圆形截面较合理的话,其内、外半径不是越大越好,因为在面积一定的情 况下,内、外半径太大了会造成薄壁失稳。 9-9 如何进行压杆的合理设计? 答 (1) 选择合理的截面形状; (2) 改变压杆的约束条件; (3)合理选择材料。 9-10 满足强度条件的等截面压杆是否满足稳定性条件?满足稳定性条件的压杆是否 满足强度条件?为什么? 答 (1) 因为强度条件是 σ < [σ ] =

材料力学-第9章压杆的稳定问题

材料力学-第9章压杆的稳定问题

0 1 0 sinkl coskl
sinkl 0
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI 由此得到临界载荷
2
kl nπ, n 1, 2 ,,
FPcr
π 2 n 2 EI l2
最小临界载荷
FPcr π 2 EI 2 l
第9章 压杆的稳定问题
FPcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上 正弦半波的长度,称为有效长度(effective length); 为反映不同 支承影响的系数,称为长度系数(coefficient of 1ength),可由屈 曲后的正弦半波长度与两端铰支压杆初始屈曲时的正弦半波长度 的比值确定。
d2w M ( x) - EI 2 dx
d2w 2 k w0 2 dx
k2 FP EI
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
d2w 2 k w0 2 dx
k2
FP EI
微分方程的解
w =Asinkx + Bcoskx
边界条件
w ( 0 ) = 0 , w( l ) = 0
第9章 压杆的稳定问题
临界应力与临界应力总图
对于某一压杆,当分叉载荷 FP 尚未算出时,不 能判断压杆横截面上的应力是否处于弹性范围;当 分叉载荷算出后,如果压杆横截面上的应力超过弹 性范围,则还需采用超过比例极限的分叉载荷计算 公式。这些都会给计算带来不便。 能否在计算分叉载荷之前,预先判断哪一类压 杆将发生弹性屈曲?哪一类压杆将发生超过比例极 限的非弹性屈曲?哪一类不发生屈曲而只有强度问 题?回答当然是肯定的。为了说明这一问题,需要 引进长细比(slenderness)的概念。

第九章压杆稳定答案

第九章压杆稳定答案

i - . D 2 d 2 / 4 = 52 2 442 / 4mm = 0.017mm第九章压杆稳定1、图示铰接杆系ABC 由两根具有相同截面和同样材料的细长杆所组成。

若由于杆件在平面ABC 内失稳而引起破坏,试确定荷载 F 为最大时的二角(假设0 —岂㊁)。

解:由平衡条件二 Fy = 0, F NAB = F COSd二 F x - 0, F NBC - F sin T 使F 为最大值条件使杆AB 、BC 的内力同 时达到各自的临界荷载。

设 AC 间的距离为I , AB 、BC 杆的临界荷载分别为H 2EI 兀 2EI F NAB= 7T = 7S —5 F NBC 二 2EI 二 2EI由以上两式得2、一承受轴向压力的两端铰支的空心圆管,外径 D 二52mm ,内径 d 二 44mm ,I 二 950mm 。

材料的二 1600MPa ,二 p 二1200MPa ,E = 210GPa 。

试求此杆的临界压力和临界应力。

支承可视为两端铰支,故 J =1,BC (I cos 。

f二 41.6 解:2 9 ■: 210 10 \ 1200 106回转半径为44斜撑杆得柔度■ - l. i =1 0.95/0.017 =55.9因■ ■ !,为大柔度杆,故可用欧拉公式计算临界荷载,临界压力为F cr 和临界 应力二cr 分别为:29 : .•4 4 _.2 二2 210 109 0.0524 -0.0444F cr ' -3 64 2 N =402KN(H ) (1x0.95) ”-心 匹=666 MPaA3、蒸汽机车的连杆如图所示,截面为工字型,材料为 Q235钢,连 杆所受最大轴向压力为465kN 。

连杆在xy 平面内发生弯曲,两端可视 为铰支,在xz 平面内发生弯曲,两端可视为固定。

试确定工作安全系 数。

|3100解连杆横截面的几何特性:2 2 A =[ 14>9.6- (9.6-1.4) >8.5] cm =64.7cm4I y=407 cm *yLI z=1780 cm4i y = |厂A = ,407 64.7 = 2.51cmi z = l z A = .1780 64.7 = 5.24cmQ235钢的「f%2E 「200 109 200 10—99.3a —0's 304 —240■■■■2 57.1b 1.12 在xy 平面内弯曲时连杆的柔度在xz 平面内弯曲时连杆的柔度y =0.5 3.1/0.0251 =61.8「1所以在计算两个方向上产生弯曲时的临界荷载,都要用经验公式,并且只须计算在柔度较大 的方向上产生弯曲时的临界荷载 F c 「二 a-b y A -丨304-1.12 61.8106 64.7 10*N=1520kN工作安全系数 n = F cr / F = 1520/465 = 3.274、油缸柱塞如图所示。

刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(压杆稳定)【圣才出品】

刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(压杆稳定)【圣才出品】

所示。
表 9-1-2
3 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)关于欧拉公式的讨论 ①相当长度 μl 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当长度 μl,它是各种支承条件下, 细长压杆失稳时,挠曲线中相当于半波正弦曲线的一段长度。 ②横截面对某一形心主惯性轴的惯性矩 I 杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩;杆端 在各个方向的约束情况不同(如柱形铰),应分别计算杆在不同方向失稳时的临界压力,I 为其相应中性轴的惯性矩。 三、欧拉公式的适用范围及临界应力总图 1.相关概念
图 9-1-1
选取坐标系如图 9-1-1 所示,距原点为 x 的任意截面的挠度为 w,则弯矩 M=-Fw。
根据压杆变形后的平衡状态,得到杆的挠曲线近似微分方程
d2w dx2
M EI
2 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台

通过对该方程的求解可得到使压杆保持微小弯曲平衡的最小压力,即两端铰支细长压杆 临界力为
π 2 EI Fcr l 2
上述计算公式称为两端铰支压杆的欧拉公式。
2.欧拉公式的普遍形式
Fcr
π 2 EI
l 2
式中,μl 为相当长度;μ 为长度因数,与压杆的约束情况有关;I 为横截面对某一形心
主惯性轴的惯性矩。
(1)各种支承情况下等截面细长压杆的长度因数及临界压力的欧拉公式,如表 9-1-2
对比项目 平衡状态
应力 平衡方程 极限承载能力
强度问题 直线平衡状态不变
达到限值 变形前的形状、尺寸
实验确定
稳定问题 平衡形式发生变化
可能小于限值 变形后的形状、尺寸

《材料力学》第9章压杆稳定习的题目解

《材料力学》第9章压杆稳定习的题目解

第九章 压杆稳定 习题解[习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式22lEIP cr π=。

试分析当分别取图b,c,d 所示坐标系及挠曲线形状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。

解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。

因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是)("x M EIw -=。

(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。

临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。

因此,以上四种情形的临界力具有相同的公式,即:22l EIP cr π=。

[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)?解:压杆能承受的临界压力为:22).(l EIP cr μπ=。

由这公式可知,对于材料和截面相同的压杆,它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长度系数。

(a )m l 551=⨯=μ (b )m l 9.477.0=⨯=μ (c )m l 5.495.0=⨯=μ(d )m l 422=⨯=μ (e )m l 881=⨯=μ(f )m l 5.357.0=⨯=μ(下段);m l 5.255.0=⨯=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。

[习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。

试问两杆的临界力是否均为2min2).2(l EI P cr π=?为什么?并由此判断压杆长因数μ是否可能大于2。

2020年材料力学习题册答案-第9章 压杆稳定

2020年材料力学习题册答案-第9章 压杆稳定

作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。

在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。

A、弯曲变形消失,恢复直线形状;B、弯曲变形减少,不能恢复直线形状;C、微弯状态不变;D、弯曲变形继续增大。

2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C )A、完全消失B、有所缓和C、保持不变D、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。

A、长度B、横截面尺寸C、临界应力D、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。

A、长度,约束条件,截面尺寸和形状;B、材料,长度和约束条件;C、材料,约束条件,截面尺寸和形状;D、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。

答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。

其柔度为 ( C )A.60;B.66.7;C.80;D.507、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。

8、细长压杆的( A ),则其临界应力σ越大。

A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤、λ≤C 、λ≥π D、λ≥10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。

材料力学习题册答案第章压杆稳定

材料力学习题册答案第章压杆稳定

第 九 章 压 杆 稳 定 【2 】一.选择题1.一幻想平均直杆受轴向压力P=P Q 时处于直线均衡状况.在其受到一渺小横向干扰力后产生渺小曲折变形,若此时解除干扰力,则压杆<A ).A.曲折变形消掉,恢复直线外形; B.曲折变形削减,不能恢复直线外形; C.微弯状况不变;D.曲折变形持续增大.2.一修长压杆当轴向力P=P Q 时产生掉稳而处于微弯均衡状况,此时若解除压力P,则压杆的微弯变形<C )A.完整消掉 B.有所缓和 C.保持不变 D.持续增大3.压杆属于修长杆,中长杆照样短粗杆,是依据压杆的<D )来断定的.A.长度B.横截面尺寸C.临界应力D.柔度 4.压杆的柔度分散地反应了压杆的< A )对临界应力的影响.A .长度,束缚前提,截面尺寸和外形; B.材料,长度和束缚前提;C.材料,束缚前提,截面尺寸和外形;D.材料,长度,截面尺寸和外形; 5.图示四根压杆的材料与横截面均雷同, 试断定哪一根最轻易掉稳.答案:< a )6.两头铰支的圆截面压杆,长1m ,直径50mm .其柔度为 ( C >A.60;B.66.7; C .80; D.507.在横截面积等其它前提均雷同的前提下,压杆采用图<D )所示截面外形,其稳固性最好.8.修长压杆的<A ),则其临界应力σ越大.A.弹性模量E 越大或柔度λ越小;B.弹性模量E 越大或柔度λ越大;C.弹性模量E 越小或柔度λ越大;D.弹性模量E 越小或柔度λ越小; 9.欧拉公式实用的前提是,压杆的柔度<C )A.λ≤PEπσ B.λ≤sEπσC .λ≥λ≥10.在材料雷同的前提下,跟着柔度的增大<C )A.修长杆的临界应力是减小的,中长杆不是;B.中长杆的临界应力是减小的,修长杆不是;C.修长杆和中长杆的临界应力均是减小的;D.修长杆和中长杆的临界应力均不是减小的; 11.两根材料和柔度都雷同的压杆<A )A. 临界应力必定相等,临界压力不必定相等;B. 临界应力不必定相等,临界压力必定相等;C. 临界应力和临界压力必定相等;D. 临界应力和临界压力不必定相等;12.鄙人列有关压杆临界应力σe 的结论中,<D )是准确的.A.修长杆的σe 值与杆的材料无关;B.中长杆的σe 值与杆的柔度无关;C.中长杆的σe 值与杆的材料无关;D.粗短杆的σe 值与杆的柔度无关; 13.修长杆推却轴向压力P 的感化,其临界压力与<C )无关.A.杆的材质B.杆的长度C.杆推却压力的大小D.杆的横截面外形和尺寸二.盘算题1. 有一长l =300 mm,截面宽b =6 mm.高h =10 mm 的压杆.两头铰接,压杆材料为Q235钢,E =200 GPa,试盘算压杆的临界应力和临界力.解:<1)求惯性半径i对于矩形截面,假如掉稳必在刚度较小的平面内产生,故应求最小惯性半径mm732.1126121123minmin ===⨯==b bhhb AI i<2)求柔度λλ=μl /i ,μ=1,故λ=1×300/1.732=519>λp =100 <3)用欧拉公式盘算临界应力()MPa8.652.1731020ππ24222cr =⨯==λσE<4)盘算临界力F cr =σcr ×A =65.8×6×10=3948 N=3.95 kN2.一根两头铰支钢杆,所受最大压力KN P 8.47=.其直径mm d 45=,长度mm l 703=.钢材的E =210GPa,pσ=280MPa,2.432=λ.盘算临界压力的公式有:(a> 欧拉公式;(b>直线公式cr σ=461-2.568λ(MPa>.试 <1)断定此压杆的类型;<2)求此杆的临界压力;解:<1) 1=μ8621==PE σπλ5.624===d lilμμλ因为12λλλ<<,是中柔度杆. <2)cr σ=461-2.568λMPaKNA P cr cr 478==σ3.活塞杆<可算作是一端固定.一端自由),用硅钢制成,其直径d=40mm ,外伸部分的最大长度l =1m ,弹性模量E=210Gpa,1001=λ.试<1)断定此压杆的类型;<2)肯定活塞杆的临界载荷. 解:算作是一端固定.一端自由.此时2=μ,而,所以,.故属于大柔度杆-用大柔度杆临界应力公式盘算.4.托架如图所示,在横杆端点D 处受到P=30kN 的力感化.已知斜撑杆AB 两头柱形束缚<柱形较销钉垂直于托架平面),为空心圆截面,外径D=50mm .内径d=36mm ,材料为A3钢,E=210GPa.pσ=200MPa.s σ=235MPa.a=304MPa.b=1.12MPa .若稳固安全系数n w =2,试校杆AB 的稳固性.1.5m0.5mC ABD第第第第30o解 运用均衡前提可有∑=0A M ,107N 5.05.11040230sin 5.123=⨯⨯⨯==P NBDkN2cm 837.32=A ,4cm 144=y I ,cm 04.2=y i ,4cm 1910=x Icm 64.7=x iA3钢的4.99=P λ,1.57=S λ压杆BA 的柔度Sx x i lλμλ<=⨯==7.220764.030cos 5.11Pyy i lλμλ<=⨯==9.820209.030cos 5.11 因x λ.yλ均小于P λ,所以应该用经验公式盘算临界载荷()[]N109.8212.130400329.0)(6⨯⨯-⨯=-==y cr cr b a A A P λσ695=kN压杆的工作安全系数55.6107695=>==st n nBA 压杆的工作安全系数小于划定的稳固安全系数,故可以安全工作.5. 如图所示的构造中,梁AB 为No.14通俗热轧工字钢,CD 为圆截面直杆,其直径为d =20mm,二者材料均为Q235钢.构造受力如图所示,A.C.D 三处均为球铰束缚.若已知pF=25kN,1l =1.25m,2l =0.55m,s σ=235MPa.强度安全因数s n =1.45,稳固安全因数st []n =1.8.试校核此构造是否安全.解:在给定的构造中共有两个构件:梁AB ,推却拉伸与曲折的组合感化,属于强度问题;杆CD ,推却紧缩荷载,属稳固问题.现分离校核如下.(1> 大梁AB 的强度校核.大梁AB 在截面C 处的弯矩最大,该处横截面为安全截面,其上的弯矩和轴力分离为3max p 1(sin 30)(25100.5) 1.25M F l ==⨯⨯⨯°315.6310(N m)15.63(kN m)=⨯⋅=⋅3N p cos302510cos30F F ==⨯⨯°°321.6510(N)21.65(kN)=⨯= 由型钢表查得14号通俗热轧工字钢的333222102cm 10210mm 21.5cm 21.510mm z W A ==⨯==⨯由此得到33max N max 392415.631021.6510102101021.51010z M F W A σ--⨯⨯=+=+⨯⨯⨯⨯6163.210(Pa)163.2(MPa)=⨯= Q235钢的许用应力为s s 235[]162(MPa)1.45n σσ===max σ略大于[]σ,但max([])100%[]0.7%5%σσσ-⨯=<,工程上仍以为是安全的.(2> 校核压杆CD 的稳固性.由均衡方程求得压杆CD 的轴向压力为 N p p 2sin 3025(kN)CD F F F ===°因为是圆截面杆,故惯性半径为 5(mm)4I di A ===又因为两头为球铰束缚 1.0μ=,所以p 31.00.55110101510liμλλ-⨯===>=⨯这表明,压杆CD 为修长杆,故需采用式(9-7>盘算其临界应力,有222932Pcrcr 2220610(2010)41104Ed F A σλ-πππ⨯⨯π⨯⨯==⨯=⨯352.810(N)52.8(kN)=⨯=于是,压杆的工作安全因数为 cr Pcr w st w N 52.8 2.11[] 1.825CD F n n F σσ====>=这一成果解释,压杆的稳固性是安全的.上述两项盘算成果表明,全部构造的强度和稳固性都是安全的.6.一强度等级为TC13的圆松木,长6m,中径为300mm,其强度许用应力为10MPa.现将圆木用来当作起重机用的扒杆,试盘算圆木所能推却的允许压力值.解:在图示平面内,若扒杆在轴向压力的感化下掉稳,则杆的轴线将弯成半个正弦波,长度系数可取为1μ=.于是,其柔度为168010.34liμλ⨯===⨯依据80λ=,求得木压杆的稳固因数为22110.39880116565ϕλ===⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭从而可得圆木所能推却的允许压力为62[][]0.398(1010)(0.3)281.34F A ϕσπ==⨯⨯⨯⨯=(kN>假如扒杆的上端在垂直于纸面的偏向并无任何束缚,则杆在垂直于纸面的平面内掉稳时,只能视为下端固定而上端自由,即2μ=.于是有2616010.34liμλ⨯===⨯求得22280028000.109160ϕλ===62[][]0.109(1010)(0.3)774F A ϕσπ==⨯⨯⨯⨯=(kN>显然,圆木作为扒杆运用时,所能推却的允许压力应为77 kN,而不是281.3 kN.7. 如图所示,一端固定另一端自由的修长压杆,其杆长l = 2m,截面外形为矩形,b = 20 mm.h = 45 mm,材料的弹性模量 E = 200GPa .试盘算该压杆的临界力.若把截面改为 b = h =30 mm,而保持长度不变,则该压杆的临界力又为多大?解:<一).当b=20mm.h=45mm 时 <1)盘算压杆的柔度22000692.82012liμλ⨯===>123cλ=(所所以大柔度杆,可运用欧拉公式>(2>盘算截面的惯性矩由前述可知,该压杆必在xy 平面内掉稳,故盘算惯性矩4433100.312204512mm hb I y ⨯=⨯==<3)盘算临界力μ = 2,是以临界力为()()kN N l EI Fcr 70.337012210310200289222==⨯⨯⨯⨯⨯==-πμπ<二).当截面改为b = h = 30mm 时 <1)盘算压杆的柔度22000461.93012liμλ⨯===>123cλ=(所所以大柔度杆,可运用欧拉公式>(2>盘算截面的惯性矩44431075.6123012mm bh I I z y ⨯====代入欧拉公式,可得()()Nl EI F cr 8330221075.610200289222=⨯⨯⨯⨯⨯==-πμπ从以上两种情形剖析,其横截面面积相等,支承前提也雷同,但是,盘算得到的临界力后者大于前者.可见在材料用量雷同的前提下,选择适当的截面情势可以进步修长压杆的临界力.8. 图所示为两头铰支的圆形截面受压杆,用Q235钢制成,材料的弹性模量E=200Gpa,屈从点应力σs =240MPa,123c λ=,直径d=40mm,试分离盘算下面二种情形下压杆的临界力:<1)杆长l =1.5m;<2)杆长l =0.5m. 解:<1)盘算杆长l =1.2m 时的临界力 两头铰支是以 μ=1惯性半径42406410444d I d i mm d Aππ=====柔度:1150015010liμλ⨯===>123c λ=(所所以大柔度杆,可运用欧拉公式>225223.1421087.64150cr aE MP πσλ⨯⨯===2233.144087.64110.081011044cr cr cr d F A N KNπσσ⨯==⨯=⨯=⨯≈<2)盘算杆长l =0.5m 时的临界力μ=1,i =10mm柔度:15005010liμλ⨯===<123c λ=压杆为中粗杆,其临界力为222400.006822400.0068250222.95cr aMP σλ=-=-⨯=2233.1440222.95280.021028044cr cr cr d F A N kNπσσ⨯==⨯=⨯=⨯≈感激土木0906班王锦涛.刘元章同窗!声名:所有材料为本人收集整顿,仅限小我进修运用,勿做贸易用处. 声名:所有材料为本人收集整顿,仅限小我进修运用,勿做贸易用处.。

《材料力学》第9章压杆稳定习题解

《材料力学》第9章压杆稳定习题解
把A、B的值代入(a)得:
v
MM
e'kkx
esin
(1coskx)
v
PP
crcr
M
e
边界条件:③xL;v0:0(1coskL)
P
cr
,1coskL0
Mቤተ መጻሕፍቲ ባይዱ
'esin
④x0v0:0kkLsinkL0
P
cr
以上两式均要求:kL2n,(n0,1,3,......)
5
2
L
。故有:
k
2
2
(0.5L)
2
P
cr
EI
其最小解是:kL2,或
Pcr
2
EI
min
2
(2.l)
?为什么?并由此判断压杆长因数是否可能大于2。
2
螺旋千斤顶(图c)的底座对丝杆(起顶杆)的稳定性有无影响?校核丝杆稳定性时,
把它看作下端固定(固定于底座上)、上端自由、长度为l的压杆是否偏于安全?
解:临界力与压杆两端的支承情况有关。因为(a)的下支座不同于(b)的下支座,所以它们的
度系数。
(a)l155m
(b)l0.774.9m
(c)l0.594.5m
(d)l224m
(e)l188m
(f)l0.753.5m(下段);l0.552.5m(上段)
故图e所示杆
F最小,图f所示杆Fcr最大。
cr
[习题9-3]图a,b所示的两细长杆均与基础刚性连接,但第一根杆(图a)的基础放在弹性
地基上,第二根杆(图b)的基础放在刚性地基上。试问两杆的临界力是否均为
失稳时整体在面内弯曲,则1,2两杆组成一组合截面。
(c)两根立柱一起作为下端固定而上端自由的体系在面外失稳

材料力学:第九章 压杆稳定问题

材料力学:第九章 压杆稳定问题
绞),I 应取最小的形心主惯矩,得到直杆的
实际临界力
若杆端在不同方向的约束情况不同, I 应取挠 曲时横截面对其中性轴的惯性矩。即,此时要 综合分析杆在各个方向发生失稳时的临界压力, 得到直杆的实际临界力(最小值)。
求解临界压力的方法:
1. 假设直梁在外载荷作用下有一个初始的弯曲变形
2. 通过受力分析得到梁截面处的弯矩,并带入挠曲线 的微分方程
P
采用挠曲线近似微分方程得
B
到的d —P曲线。
Pcr A
B'
可见,采用挠曲线近
似微分方程得到的d —P曲
线在压杆微弯的平衡形态
d
下,呈现随遇平衡的假象。
大挠度理论、小挠度理论、实际压杆
欧拉公式
在两端绞支等截面细长中心受压直杆
的临界压力公式中
2EI
Pcr l 2
形心主惯矩I的选取准则为
若杆端在各个方向的约束情况相同(如球形
P
压杆稳定性的概念
当P较小时,P
Q
P
当P较大时,
P Q
稳定的平衡态
P
撤去横向力Q 稳定的


P定

P P
临界压力
Pcr


撤去横向力Q 不稳定的
定 的
P

不稳定的平衡态
压杆稳定性的概念
压杆稳定性的工程实例
细长中心受压直杆临界 力的欧拉公式
细长中心受压直杆临界力的欧拉公式
压杆的线(性)弹性稳定性问题
利用边界条件
得 w D,
xl
Dcos kl 0
若解1
D0
表明压杆未发生失稳
w(x) Asin kx B cos kx D

压杆稳定习题及答案

压杆稳定习题及答案

压杆稳定习题及答案【篇一:材料力学习题册答案-第9章压杆稳定】xt>一、选择题1、一理想均匀直杆受轴向压力p=pq时处于直线平衡状态。

在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( a )。

a、弯曲变形消失,恢复直线形状;b、弯曲变形减少,不能恢复直线形状; c、微弯状态不变; d、弯曲变形继续增大。

2、一细长压杆当轴向力p=pq时发生失稳而处于微弯平衡状态,此时若解除压力p,则压杆的微弯变形( c )a、完全消失b、有所缓和c、保持不变d、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( d)来判断的。

a、长度b、横截面尺寸c、临界应力d、柔度 4、压杆的柔度集中地反映了压杆的( a)对临界应力的影响。

a、长度,约束条件,截面尺寸和形状;b、材料,长度和约束条件;c、材料,约束条件,截面尺寸和形状;d、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。

答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。

其柔度为 ( c )a.60;b.66.7;c.80;d.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( d )所示截面形状,其稳定性最好。

≤?≥?- 1 -10、在材料相同的条件下,随着柔度的增大( c)a、细长杆的临界应力是减小的,中长杆不是;b、中长杆的临界应力是减小的,细长杆不是; c、细长杆和中长杆的临界应力均是减小的; d、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( a )a. 临界应力一定相等,临界压力不一定相等;b. 临界应力不一定相等,临界压力一定相等;c. 临界应力和临界压力一定相等;d. 临界应力和临界压力不一定相等;a、杆的材质b、杆的长度c、杆承受压力的大小d、杆的横截面形状和尺寸二、计算题1、有一长l=300 mm,截面宽b=6 mm、高h=10 mm的压杆。

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-压杆稳定(圣才出品)

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-压杆稳定(圣才出品)
表 9-1-3 临界应力、柔度或长细比
2.压杆分类(见表 9-1-4) 表 9-1-4 压杆分类
3.折减弹性模量理论(见表 9-1-5)
3 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台

表 9-1-5 折减弹性模量理论
4.压杆的临界应力总图 压杆临界应力 σcr 与柔度 λ 的关系曲线称为压杆的临界应力总图。当压杆的柔度很小时, 以屈服界限 σs 作为临界应力。临界应力总图的绘制如图 9-1-1 所示。
图 9-1-1 临界应力总图
4 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台

四、实际压杆的稳定因数 实际压杆的稳定许用应力与稳定因数的确定见表 9-1-6。
表 9-1-6 稳定许用应力与稳定因数
五、压杆的稳定计算·压杆的合理截面 1.压杆的稳定计算(见表 9-1-7)
6 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 9-2-1 令 k2=Fcr/EI,可得:w″+k2w=k2Me/Fcr。则该微分方程的通解:w=Asinkx+ Bcoskx+Me/Fcr。 其一阶导为:w′=Akcoskx-Bksinkx,由边界条件 x=0,w=0,w′=0 可确定积分 常数:A=0,B=-Me/Fcr。故方程的通解:w=-Mecoskx/Fcr+Me/Fcr。 又由 x=l,w=0 得:-Mecoskx/Fcr+Me/Fcr=0,即 coskl=1,kl=2nπ(n=1, 2,3…),取其最小解 kl=2π,则压杆的临界力 Fcr 的欧拉公式 Fcr=4π2EI/l2=π2EI/ (0.5l)2。 9-2 长 5m 的 10 号工字钢,在温度为 0℃时安装在两个固定支座之间,这时杆不受 力。已知钢的线膨胀系数 αl=125×10-7(℃)-1,E=210GPa。试问当温度升高至多少 度时,杆将丧失稳定? 解:设温度升高 Δt 时,杆件失稳。

材料力学孙训芳版解答第9章_压杆稳定

材料力学孙训芳版解答第9章_压杆稳定


Q
&
VLQ
NO

&
FRV NO

0 )


0 )
FRV NO

0 )

FRV NO
NO Q
NO
N
O
N
O
) (, O
)
(, O
)FU
(,

O

P

D O u ( *3D
H
D O '7 O
, $L $L u u u u P
,
>,

$
D


u @
D
>
,

, $
u
@


u u
u
G PP E PP Q

&'
%& %&
)&'
)
0%
)
P ) P
$
&
%
G' E
V
0% :
) u u EK
) EK
d
VV Q
)
d
V VEK Q
u u u u u
1 N1
N1
N1

$% $%
7&
>V @ 03D
,,
¦0&
)$% VLQ $ u
u
&
)$% N1
M >V FU @ u >V @ 03D
$
V $%

材料力学 第9章 压杆稳定

材料力学 第9章  压杆稳定
材料力学
第9章 压杆稳定
第9章 压杆稳定
材料力学
第9章 压杆稳定
第9章 压杆稳定
9.1 概述 9.2 细长压杆的临界力 9.3 压杆的临界应力 9.4 压杆的稳定计算 9.5 提高压杆稳定性的措施
小结
材料力学
9.1 概述
第9章 压杆稳定
在绪论中曾经指出,当作用在细长杆上的轴向压力达到或超过一定 限度时,杆件可能突然变弯,即产生失稳现象。杆件失稳往往产生很 大的变形甚至导致系统破坏。因此,对于轴向受压杆件,除应考虑其 强度与刚度问题外,还应考虑其稳定性问题。
(4)临界状态的压力恰好等于临界力,而所处的微弯状态称为屈曲模态, 临界力的大小与屈曲模态有关。
(5)n=2、3所对应的屈曲模态事实上是不能存在的,除非在拐点处增加 支座。这些结论对后面讨论的不同约束情况一样成立。
材料力学
第9章 压杆稳定
9.2 细长压杆的临界力
9.2.2 一端固定、一端自由细长压杆的临界力
w xl
coskl 0
材料力学
9.2 细长压杆的临界力
9.2.2 一端固定、一端自由细长压杆的临界力
coskl 0
kl nπ k nπ
2
2l
Fcr
n 2 π 2EI (2l ) 2
n 1,3,5,
取最小值,可得该压杆临界力Fcr的欧拉公式为:
Fcr
π2EI (2l ) 2
第9章 压杆稳定
材料力学
第9章 压杆稳定
9.2 细长压杆的临界力
计算临界力归结为计算压杆处于微弯状态临界平衡时的平衡方程 及荷载值。 用静力法计算临界力时应按以下的思路来考虑: (1)细长压杆失稳模态是弯曲,所以弯曲变形必须考虑; (2)假设压杆处在线弹性状态; (3)临界平衡时压杆处于微弯状态,即挠度远小于杆长,于是, 梁近似挠曲线的微分方程仍然适用。 (4)压杆存在纵向对称面,且在纵向对称面内弯曲变形。

刘鸿文《材料力学》(第5版)课后习题(压杆稳定)【圣才出品】

刘鸿文《材料力学》(第5版)课后习题(压杆稳定)【圣才出品】

解:根据公式计算得: 挺杆横截面面积: 截面的惯性半径:
1 / 28
圣才电子书

十万种考研考证电子书、题库视频学习平 台
则挺杆柔度:
因此,使用欧拉公式计算挺杆的临界压力
压杆的工作安全因数:
规定的稳定安全因数为 nst 3 ~ 5 ,所以挺杆满足稳定要求。
9.3 图 9-1 所示蒸汽机的活塞杆 AB,所受的压力 F=120 kN,l=180 cm,横截面 为圆形,直径 d=7.5 cm。材料为 Q255 钢,E=210 GPa,σP=240 MPa。规定 nst=8,试校核活塞杆的稳定性。
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 9 章 压杆稳定
9.1 某型柴油机的挺杆长度 l=25.7 cm,圆形横截面的直径 d=8 mm,钢材的 E=210 GPa,σP=240 MPa。挺杆所受最大压力 F=1.76 kN。规定的稳定安全因数 nst=2~5。试校核挺杆的稳定性。
6 / 28
圣才电子书

nst=3,试求许可载荷 F。
十万种考研考证电子书、题库视频学习平 台
图 9-6 解:由于支架的对称性,三根杆所承受的压力相等,即当三根杆同时达到临界值时,
支架开始失稳。任取一根杆进行研究,设其受力为 F ' 。
又该杆的惯性半径:
则其柔度: 由此可知其为大柔度杆,故由欧拉公式计算其临界压力:
其稳定性。
图 9-3
解:对于 Q235 钢, E 200GPa, s 240MPa, p 200MPa ,则有:
4 / 28
圣才电子书

十万种考研考证电子书、题库视频学习平 台

又查表得 a 304MPa,b 1.12MPa ,则

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-压杆稳定(圣才出品)

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-压杆稳定(圣才出品)
(1)各种支承情况下等截面细长压杆临界压力的欧拉公式,如表 9-2 所示。
支 承
两端铰接 情 况 失 稳 时 挠 曲 线 的 形 状 欧 拉 公 式
表 9-2
一端固定一段 铰接
两端固定
一 端 固 定 一 端 两端固定但可沿
自由
横截面相对移动
3 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)柔度或长细比 临界应力可表示为
4 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台

式中,λ 为柔度或长细比,
,集中反应了压杆的长度、约束条件、截面尺寸
和形状等因素对临界应力 σcr 的影响。λ 越大,相应的 σcr 越小,压杆越容易失稳。 注意:若压杆在不同平面内失稳时的支承约束条件不同,应分别计算在各平面内失稳时
杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩;杆端
在各个方向的约束情况不同(如柱形铰),应分别计算杆在不同方向失稳时的临界压力,I 为
其相应中性轴的惯性矩。
三、欧拉公式的适用范围及临界应力总图 1.相关概念 (1)临界应力:与临界压力 Fcr 对应的应力,用 σcr 表示,即
2.提高压杆稳定性的措施
影响压杆稳定的因素包括压杆的截面形状、长度和约束条件、材料的性质等。因而,提
6 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台

高压杆稳定性的措施主要包括以下三个方面: (1)选择合理的截面形状 截面的惯性矩 I 越大,或惯性半径 i 越大,稳定性越好。 ①在截面积相等的情况下,尽可能将材料放在离截面形心较远处,使 I 或 i 较大,如图
应力
达到限值
小于限值

第九章压杆稳定习题_材料力学

第九章压杆稳定习题_材料力学

1. 一倾斜矩形截面梁AB 如图,在其中点C 处作用有铅垂力F =25kN ,试求梁AB 中的最大拉应力和最大压应力。

解:(1)受力分析力F 可分解为 30cos 1F F =和 30sin 2F F =,梁发生弯曲和压缩的组合变形。

最大弯矩发生在C 截面max cos30cos3018750N m 44l F Fl M ⋅=== AC 段轴力为 30sin F F N -=(2)应力计算m a x 2918750P a 7.81M P a 160300106w z M W σ-===⨯⨯ 36s i n 30250.510P a 0.26M P a 16030010N F A σ-⨯⨯===⨯⨯ 故 m a x 7.81M P al σ= max 0.267.818.07MPa y σ=+=2. 悬臂吊车如图,横梁用25a 号工字钢制成(工字钢的截面积和抗弯截面模量分别为:A =48.5cm 2,W z =402cm 3),梁长l =4m , F =24kN ,梁材料的许用应力〔σ〕=100MPa 。

试校核梁的强度。

解 (1)外力计算取横梁AB 为研究对象,当载荷移动到梁的中点时,可近似地认为梁处于危险状态。

此时,由平衡条件得F By =12kN , F Bx =20.8kN又由平衡条件ΣF x =0和ΣF y =0得F Ax =20.8kN , F Ay =12kN(2)内力和应力计算在梁中点截面上的弯矩最大,其值为M max =Fl /4=24000N·m所以最大弯曲应力为σW max =M max /W z =60MPa梁危险截面的上边缘处受最大压应力、下边缘处受最大拉应力作用。

轴力产生的压应力为σy =F N /A =-4.3MPa(3)强度校核数值最大的正应力发生在跨度中央截面的上边缘,是压应力|σ|max =|σy -σW max |=64.3MPa <〔σ〕悬臂吊车的横梁是安全的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临界力计算公式不同。 (b) 为一端固定,一端自由的情况,它的长度因素
2 ,其临界
力为: Pcr
2 EI min ( 2.l ) 2
。但是,
(a)
为一端弹簧支座,一端自由的情况,它的长度因素
2 ,因此,不能用 Pcr
2 EI min ( 2.l ) 2
来计算临界力。
3
为了考察( a)情况下的临界力, 我们不妨设下支座 ( B)的转动刚度 C
把 A、B 的值代入( a)得:
v M e (1 cos kx) v' M e k sin kx
Pcr
Pcr
边界条件:③ x L ; v 0 : 0 M e (1 cos kL) , 1 coskL 0 Pcr
④ x 0 v' 0 : 0 M e k sin kL Pcr
sin kL 0
以上两式均要求: kL 2n , (n 0,1,3,......)
第九章 压杆稳定 习题解
[ 习题 9-1] 在§ 9-2 中已对两端球形铰支的等截面细长压杆, 按图 a 所示坐标系及挠度曲线
形状,导出了临界应力公式 Pcr
2EI l2
。试分析当分别取图
b,c,d
所示坐标系及挠曲线形
状时,压杆在 F cr 作用下的挠曲线微分方程是否与图
是否相同。
a 情况下的相同,由此所得 Fcr 公式又
Pcr
2 EI ( .l ) 2 。由这公式可知, 对于材料和截面相同的压杆,
它们能承受的压力与 原压相的相当长度 l 的平方成反比, 其中, 为与约束情况有关的长
度系数。
(a) l 1 5 5m
(b) l 0.7 7 4.9m
(c) l 0.5 9 4.5m
(d) l 2 2 4m
(e) l 1 8 8m
解: 挠曲线微分方程与坐标系的 y 轴正向规定有关,与挠曲线的位置无关。
因为( b)图与( a)图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是
"
EIw
M ( x) 。( c )、 (d) 的坐标系相同,它们具有相同的挠曲线微分方程:
EIw " M ( x) ,显然,这微分方程与( a)的微分方程不同。
看作下端固定 (固定于底座上) 、上端自由、 长度为 l 的压杆不是偏于安全, 而是偏于危险。
[ 习题 9-4] 试推导两端固定、弯曲刚度为
Pcr 的欧拉公式。
EI ,长度为 l 的等截面中心受压直杆的临界应力
4
[ 解 ] : 设压杆向右弯曲。压杆处于临界状态时,两端的竖向反
力为 Pcr ,水平反力为 0,约束反力偶矩两端相等,用 M e 表示,
上述微分方程的通解为:
v
Asin kx B coskx
Me
……………………………
.(a)
Pcr
v' Ak cos kx Bk sin kx
边界条件:① x 0; v 0 : 0 A sin 0 B cos0 M e ; B Pcr
Me。 Pcr
② x 0 v' 0 : 0 Ak cos0 Bk sin 0 ; A 0 。
M
EI 20

l
且无侧向位移,则:
EIw " M (x) Fcr ( w)
令 Fcr EI
k 2 ,得:
w" k 2 w k 2
微分方程的通解为: w Asin kx B coskx
w ' Ak coskx Bk sin kx
由边界条件: x 0 , w 0, w '
M Fcr ; x l , w CC
弹性支座较合适。这种情况,
2 ,算出来的临界力比“把它看作下端固定(固定于底座
上)、上端自由、 长度为 l 的压杆” 算出来的临界力要小。 譬如,设转动刚度 C M
EI 20

l
则:
Pcr固端 Pcr弹簧
2.12 22
1.1025 , Pcr固端
1.1025 Pcr ,弹簧 。因此,校核丝杆稳定性时,把它
临界力只与压杆的抗弯刚度、 长度与两端的支承情况有关, 与坐标系的选取、 挠曲线的
位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:
2 EI
Pcr
l2 。
1
[ 习题 9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图
f
所示杆在中间支承处不能转动)?
解:压杆能承受的临界压力为:
(f ) l 0.7 5 3.5m (下段); l 0.5 5 2.5m (上段)
故图 e 所示杆 F cr 最小,图 f 所示杆 Fcr 最大。
[ 习题 9-3] 图 a,b 所示的两细长杆均与基础刚性连接, 但第一根杆 (图 a)的基础放在弹性
地基上,第二根杆(图 b)的基础放在刚性地基上。 试问两杆的临界力是否均为 Pcr
下标 e 表示端部 end 的意思。 若取下截离体为研究对象, 则 M e 的
转向为逆转。
M ( x) Pcr v( x) M e
EIv "
M (x) M e Pcr v( x)
EIv " Pcr v( x) M e
"
v
Pcr v(x)
Me
,令
2
k
Pcr ,则 k 2
1
EI
EI
EI
Pcr EI
v" k 2v k旋千斤顶的底座与地面不是刚性连接,即不是固定的。它们之间是靠摩擦力来维持相
对的静止。当轴向压力不是很大,或地面较滑时,底座与地面之间有相对滑动,此时,不能
看作固定端;当轴向压力很大,或地面很粗糙时,底座与地面之间无相对滑动,此时,可以
看作是固定端。 因此,校核丝杆稳定性时,把它看作上端自由,下端为具有一定转动刚度的
5
其最小解是: kL 2 ,或 k
2 。故有: k 2 L
2
(0.5L) 2
Pcr ,因此: EI
2 EI Pcr (0.5L ) 2 。
2 EI min (2.l ) 2
?为什么?并由此判断压杆长因数
是否可能大于 2。
2
螺旋千斤顶(图 c)的底座对丝杆(起顶杆)的稳定性有无影响?校核丝杆稳定性时,
把它看作下端固定(固定于底座上)、上端自由、长度为
l 的压杆是否偏于安全?
解:临界力与压杆两端的支承情况有关。 因为 (a) 的下支座不同于 (b) 的下支座, 所以它们的
解得:
A Fcr , B Ck

F cr sin kl
cos kl
Ck
整理后得到稳定方程: kl tan kl
C
20
EI / l
用试算法得:
kl 1.496
故得到压杆的临界力: Fcr
(1.496)2 EI l
2 EI ( 2.1l )2 。
因此,长度因素
当 C 0 时,
可以大于 2。这与弹性支座的转动刚度 。
相关文档
最新文档