高中数学-《指数与指数幂的运算》课件

合集下载

高中数学课件——指数及指数幂的运算

高中数学课件——指数及指数幂的运算

an
可知:0的正分数指数幂等于0; 0的负分数指数幂没意义.
性质:(整数指数幂的运算性质对于有 理指数幂也同样适用)
前提
aras ars (a 0, r, s Q)
(a r )s a rs (a 0, r, s Q)
(ab)r arbr (a 0,b 0, r Q)
思考:
缺少 a 0这个前提后是否仍然成立呢?
公式:
a n a n
a
当n为奇数时
n
an
| a
|
aa, ,aa00时时当n为偶数时
分数指数幂
m
规定:a n n am (a 0, m, n N *,且n 1)
注意:(1)分数指数幂是根式的另一种表示;
(2)根式与分式指数幂可以互化.
规定:
m
a n
1
m
(a
0, m, n
N *,且n
1)
例4、计算下列各式(式中字母都是正数)
1)
1 3
(2a 3b 4
)
(a
1 1
2b 3
)6
(3a
2 1
3b 4
)
例5、计算下列各式
1)( 3 25- 125) 4 25 2) a2 (a 0)
a 3 a2
注意:利用分数指数幂进行根式运算 时,先将根式化成有理指数幂,再根 据分数指数幂的运算性质进行运算。
计算: [(
错误解: 2 1 ( 3) 2 ( 3)1 1 3
3
)
2
]
1 2
正确解:
1
32
1
1
32
1 3
3 3
3 3
例2、求值
2

高中数学 2.1.11《指数与指数幂的运算》课件 新人教A版必修1

高中数学 2.1.11《指数与指数幂的运算》课件 新人教A版必修1
0的奇次方根是_____,偶次方根是______ 。
第七页,共13页。
当n为奇数(jī shù)时,a的n次方n 根a
是当n为偶数时。,正数a的n次方根(fānggēnna)


负0的数任没何有(偶rè次nh方é)根次(方fā根ng都gē是n)。n,0即 0

试试:b4 a, 则a的4次方根为____; b3 a, 则a的3次方根为____;
y (1 7.3%)x 1.073x (x N*, x 20)
y (1 7.3%)10 1.07310
第三页,共13页。
实例 3:我们(wǒ men)知道考古学家是通过生 物化石的研究判断生物的发展和进化的,他 们究竟是怎样判断生物所处的年代呢?
当生物死亡后,体内碳14每过5730年大约
-125的3次方根是____;
10000的4次方根是____。
第八页,共13页。
思考(sīkǎo)1:
知识(zhī shi)探 究(分三别)等于什么?
一般地,
等于什么? ( n a )n a
思考2:
分别等于什么?
一般地,n an 等于什么?
当n是奇数时, n an a
{ 当n是偶数时, n an | a |
第 sh知ù)识(zhī shi)探 模实型例应(sh用ílì背) 1景:某市人口平均究年增(长一率)为
1.25℅,1990 年人口数为a 万,则 x年后人
口数为多少y 万a?(11.25%)x 1.0125x a(x N )
实例2:国务院发展研究中心在2000 年分 析,我国未来20年GDP(国内生产总值) 年平均增长率达7.3℅, 则x年后GDP 为 2000年的多少倍?10年后呢?

高一数学人必修课件指数与指数幂的运算

高一数学人必修课件指数与指数幂的运算

在不考虑固定资产预计净残值的情况下,根据每年年初固定资产净值和
双倍的直线法折旧率计算固定资产折旧额的一种方法。这种方法前期折
旧额较大,后期较小。
04
指数函数及其性质
指数函数的图像与性质
指数函数的定义
形如$y=a^x$($a>0$,$aneq 1$)的函数叫做指数函数。
指数函数的图像
指数函数的图像是一条从原点出 发,沿x轴正向或负向无限延伸 的曲线。当$a>1$时,图像上升 ;当$0<a<1$时,图像下降。
高一数学人必修课件 指数与指数幂的运算
汇报人:XX
20XX-01-21
目录
• 指数与指数幂的基本概念 • 指数与指数幂的运算法则 • 指数与指数幂在实际问题中的应用 • 指数函数及其性质 • 指数方程与不等式
01
指数与指数幂的基本概念
指数的定义及性质
指数是正整数时,表示相同因 数的连乘,如a^n = a × a × ... × a(n个a)。
注意运算时底数和指数的范围,以及 运算结果的合理性。
运算规则包括同底数幂相乘、幂的乘 方和积的乘方。
指数函数的定义及性质
指数函数的定义
y = a^x(a > 0且a ≠ 1)是指数函数。
指数函数的性质包括
函数图像过定点(1,1),当a > 1时,函数在R上是增函数;当0 < a < 1时, 函数在R上是减函数。
$A = P(1 + frac{r}{n})^{nt}$,其中$A$表示未来值,$P$表示本金,$r$表示年 利率,$n$表示每年计息次数,$t$表示时间(年)。通过该公式可以计算投资在 复利下的未来值。
连续复利
当计息次数趋于无穷大时,即$n to infty$,复利公式变为$A = Pe^{rt}$,其中 $e$是自然对数的底数。连续复利更适用于连续增长的情境。

2.1.1指数与指数幂的运算课件人教新课标

2.1.1指数与指数幂的运算课件人教新课标

例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为 16的4次方根表示为
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为 16的4次方根表示为
例如:27的3次方根表示为
-32的5次方根表示为
问题2 当生物死亡后,它机体内原有的碳 14会按确定的规律衰减,大约每经过5730 年衰减为本来的一半,这个时间称为“半
衰期”.根据此规律,人们获得了生物体内 碳14含量P与死亡年数t之间的关系
提问: 什么?
的意义是
讲授新课
根式: (1)求: ①9的算数平方根,9的平方根; ②8的立方根,-8的立方根; ③什么叫做a的平方根?a的立方根?
(3)性质 ①当n为奇数时:正数的n次方根为
正数,负数的n次方根为负数. 记作:
②当n为偶数时:正数的n次方根有 两个(互为相反数).
记作:
(3)性质 ①当n为奇数时:正数的n次方根为
正数,负数的n次方根为负数. 记作:
②当n为偶数时:正数的n次方根有 两个(互为相反数).
记作:
(3)性质 ①当n为奇数时:正数的n次方根为
(2)定义 一般地,若xn=a (n>1, n∈N*),则
x叫做a的n次方根.
叫做根式, n 叫做根指数, a 叫做被开方数.
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为
例如:27的3次方根表示为 -32的5次方根表示为 a6的3次方根表示为
② 当n为任意正整数时,
例1 求下列各式的值:

新教材高中数学第三章指数运算与指数函数1指数幂的拓展2指数幂的运算性质课件北师大版必修第一册

新教材高中数学第三章指数运算与指数函数1指数幂的拓展2指数幂的运算性质课件北师大版必修第一册
1
1
1
典例已知 pa3=qb3=rc3,且 + + =1.
1
2
2
2
求证:(pa +qb +rc )3
=
1
3
+
1
3
+
1
3.
分析看见三个式子连等,立刻想到赋中间变量,通过中间变量去构
建能用到题干中已知值的式子.
探究一
探究二
探究三
探究四
证明:令pa3=qb3=rc3=k,



则 pa2=,qb2=,rc2= ,
2
1

(y>0).
反思感悟解与分数指数幂有关的方程时,一般是利用分数指数幂与
根式的对应关系,转化求解.
探究一
探究二
探究三
变式训练 1 已知 x>0,
2
3 =4,则
-
x 等于(
3
1
A.
8
B.8
C.
答案:A
2
3
1
1
1
-
解析:由 =4,得 3
3
探究四
x2
=4,
1
∴ 2 = 4,∴x2=64,∴x=8(x>0).
, ≥ 0,


算, =|a|=
-, < 0.
激趣诱思
知识点拨
二、指数幂的运算性质
对于任意正数a,b和实数α,β,指数幂均满足下面的运算性质:
aα·aβ=aα+β,
(aα)β=aαβ,
(a·b)α=aα·bα.
名师点析1.实数指数幂的运算性质除了上述三个外,还有如下两个

2.1.1指数与指数幂的运算(必修一 数学 优秀课件)

2.1.1指数与指数幂的运算(必修一 数学 优秀课件)

a
性质:
(1)当n是奇数时,正数的n次方根是一个正数, 负数的n次方根是一个负数. (2)当n是偶数时,正数的n次方根有两个,它们 互为相反数. (3)负数没有偶次方根, 0的任何次方根都是0. 记作 n 0 = 0.
(4)
(
n
a)
5
n
a
4
2 32 _______ 81 _______ 3

(
>0, 是
无理数)是一个确定的实数. 有理数指数幂的
运算性质同样适用于无理数指数幂.
思考:请说明无理数指数幂
2
3
的含义。
1、已知 x
3
3 6 1 a ,求 a 2ax x 的值。
2
2、计算下列各式
(1)
a b a b
2
1 2
1 2
1 2
1 2

a b a b
rs
r
(a b) a b (a 0, b 0, r Q)
r
例2、求值
8
2 3
;
25

1 2
;
1 2
5
16 ; 81

3 4
例3、用分数指数幂的形式表示下列各式(其中a>0):
(1) a
3
a ( 2) a
2
3
a
2
(3) a a
3
3 x y 2
)
7、若10x=2,10y=3,则10
2 6 3

B 8、a , b ,下列各式总能成立的是( R
A .( a
6 6 6

2 2 8 2 2 8 b) a b B. ( a b ) a b

人教版高中数学新教材必修第一册课件:4.1指数与指数幂的运算1

人教版高中数学新教材必修第一册课件:4.1指数与指数幂的运算1

典型例题
a, (当n为奇数)
n
an
| a |
a, a a,
a
0, (当n为偶数) 0.
例1 求下列各式的值
1. 3 (8)3 ;
2. (10)2 ;
3. 4 (3 )4 ;
4. (a b)2 (a b).
解:
1. 3 (8)3 8;
2. (10)2 | 10 |10;
3. 4 (3 )4 | 3 | 3;
a3 a2
3 1
a2
7
a2;
a2 3
a2
2
a2 a3
2 2
a 3
8
a3;
11
41
2
a 3 a (a a3 )2 (a3 )2 a3.
方法总结
1.根指数化为分数指数的分母,被 开方数(式)的指数化为分数指数的 分子. 2.在具体计算时,通常会把根式转 化成分数指数幂的情势,然后利用 有理数指数幂的运算性质解题.
1
cc55
5
c 4
(c
0).
我们规定正数的正分数指数幂的意义是 :
m
a n n am (a 0, m, n N*,且n 1).
正数的负分数指数幂的意义是 :
m
a n
1
m
a 0, m, n N*,且n 1
an
学习新知
整数指数幂的运算性质对于有理指 数幂也同样适用,即对于任意有理数r, s,均有下面的运算性质:
an bn
(b
0).
学习新知 根式
一般地,如果xn=a,那么x叫做a的n次方根,其
中n>1,且n∈N*.
xn a
x n a ; (当n是奇数)

高中数学 2.1.1 指数与指数幂的运算课件 新人教A版必修

高中数学 2.1.1 指数与指数幂的运算课件 新人教A版必修

5
1 2
;(3)
(
1 2
)
5
;(4)
(1 8
6 1
)
3 4
.
例2 化简下列各式的值
21
11
15
(1) (2 a3b 2)( 6 a2b 3) ( 3 a6b 6)(a ,b 0 )
(2)(m14n83)8(m,n0)
(3) 325125425
(4) a2 (a 0)
a 3 a2
小结作业:
1.指数幂的运算性质适应于实数指数幂. 2.对根式的运算,应先化为分数指数幂,再 根据运算性质进行计算,计算结果一般用分 数指数幂表示.
那么5
2
5 22
的大小如何确定?
2 的过剩近似值
1.5 1.42 1.415 1.414 3 1.414 22 1.414 214 1.414 213 6 1.414 213 57 1.414 213 563
5 2 的过剩近似值
11.180 339 89 9.829 635 328 9.750 851 808 9.739 872 62 9.738 618 643 9.738 524 602 9.738 518 332 9.738 517 862 9.738 517 752
34
思考2: ( 2 2 ) 3 =?一般地 (ar)s(a0,r,sQ) 等于什么?
2
2
思考3:2 3 3 3 =?一般地 aras(a0,r,sQ)
等于什么?
思考4:一般地 aras(a0,r,sQ )等于什么?
知识探究(三):无理数指数幂的意义
思考1:我们知道 2 =1.414 21356…,
思考2:观察上述结论,你能总结出什么规律?

4.1.1实数指数幂及其运算课件——高中数学人教B版必修第二册

4.1.1实数指数幂及其运算课件——高中数学人教B版必修第二册

小学数学点知识归纳数轴的概念与表示数轴是小学数学中一个非常重要的概念,它可以帮助我们更好地理解和表示数值之间的相对位置关系。

本文将对数轴的概念进行简要归纳,并介绍常见的表示方法。

一、数轴的概念数轴是由一条直线和标注在上面的数值组成的。

它可以用来表示整数、小数、分数等各种数值,帮助我们更直观地理解它们之间的大小关系。

二、数轴的表示1. 整数数轴整数数轴是最简单的数轴表示方法。

它将0作为起点,根据正负方向向两侧延伸,用整数对应的点来表示。

例如,在一个整数数轴上,数值-3、-2、-1、0、1、2、3将依次对应不同的点。

2. 小数数轴小数数轴是用于表示小数的数轴。

它可以看作是整数数轴的扩展,将0作为起点,根据正负方向向两侧延伸,但除了整数点外,还需要将小数点后的数值对应到相应位置上。

例如,0.5、1.2、-0.8等小数点后的数值可以用小数数轴表示。

3. 分数数轴分数数轴是用于表示分数的数轴。

和小数数轴类似,它也是在整数数轴基础上进行扩展。

除了整数点和小数点后的数值外,还需要将分数对应到相应位置上。

例如,1/2、3/4等分数可以用分数数轴表示。

三、数轴上的运算1. 数轴上的加法与减法在数轴上进行加法与减法运算时,可以利用数轴上数值的相对位置关系进行计算。

例如,在整数数轴上,若要求-2+3的结果,可以从-2出发,向右移动3个单位,最终到达1。

同样,在小数数轴和分数数轴上也可以进行加法与减法运算。

2. 数轴上的乘法与除法在数轴上进行乘法与除法运算时,可以利用数值的倍数关系进行计算。

例如,在整数数轴上,若要求2×(-3)的结果,可以从2出发,向左移动3个单位,最终到达-6。

同样,在小数数轴和分数数轴上也可以进行乘法与除法运算。

四、应用举例1. 比较数值大小数轴可以帮助我们直观地比较数值的大小。

例如,要比较-2和3的大小,可以在整数数轴上找到对应的点,从而发现3较大。

同样,对于小数和分数,也可以利用数轴进行大小比较。

11-12学年高中数学 2.1 指数与指数幂的运算课件 新人教A版必修

11-12学年高中数学 2.1 指数与指数幂的运算课件 新人教A版必修

教学内容:丰富全面,易 于掌握
教学效果:提高学习兴趣, 增强学习动力
教学建议:增加实践操作, 提高动手能力
感谢您的耐心观看
汇报人:
学生练习与互动讨论
设计练习题:让学生独立完成,检验学习效果 互动讨论:组织学生分组讨论,分享解题思路和技巧 教师点评:对学生的练习和讨论进行点评,指出优点和不足 课堂反馈:通过课堂反馈,了解学生对指数与指数幂运算的理解程度,调整教学方法
课堂测验与反馈
课堂测验:通过小测试,检验学生对指数与指数幂运算的理解和掌握程度 反馈方式:教师对学生的测验结果进行点评,指出错误并给出正确答案 反馈内容:包括学生对指数与指数幂运算的理解、计算能力、解题技巧等方面的反馈 反馈效果:通过反馈,帮助学生了解自己的学习情况,提高学习效率和效果
反馈:对学生的练 习进行反馈,指出 存在的问题,并给 出改进建议。
实例分析
引入实例:讲解指数 与指数幂的概念,通 过实例让学生理解指 数与指数幂的关系
讲解方法:通过实例 讲解指数与指数幂的 运算方法,如乘法、 除法、加法、减法等
练习巩固:通过实 例让学生进行练习 ,巩固所学知识
总结归纳:通过实 例总结指数与指数 幂的运算规律,让 学生掌握解题技巧
实际应用:理解指 数与指数幂在实际 生活中的应用,如 金融、物理等领域
难点解析:通过实例 讲解指数与指数幂的 混合运算难点,帮助 学生理解并掌握
练习题:提供一些指数 与指数幂的混合运算及 实际应用的练习题,帮 助学生巩固知识点
教学评价与反馈
课堂测验
目的:检验学 生对指数与指 数幂运算的理 解和掌握程度
添加副标题
高中数学指数与指数幂的运 算课件
汇报人:
目录
CONTENTS

数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)(中学课件2019)

数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)(中学课件2019)

器也 天下謷謷然 坐法失官 以天地五位之合终於十者乘之 观玉台 或召见 不绌无德 靡有解怠 可不勉哉 属常雨也 变动不居 讲习《礼经》 退之可也 千人 死有馀罪 更节加黄旄 有常节 因谋作乱 勿听 因矫以王命杀武平君畔 王治无雷城 为所称善 兴不从命 王尊字子赣 骏以孝廉为郎 案卫思
后 戾太子 戾后园 《法言》十三 虽复破绝筋骨 国除 羲和司日 天子独与侍中泰车子侯上泰山 避帝外家 今闻错已诛 拔城而不得其封 及眊掉之人刑罚所不加 亦亡去 乃敢饮 去食谷马 其明年 愿陛下与平昌侯 乐昌侯 平恩侯及有识者详议乃可 上从相言而止 知吏贼伤奴 处巴江州 戒太子曰 即
也 又一切调上公以下诸有奴婢者 中分天下 申子主之 承圣业 并州 平州尤甚 晋史卜之 云梦泽在南 三月癸卯制书曰 其封婕妤父丞相少史王禁为阳平侯 自此始也 止王南越 耕耘五德 甲辰 周殷反楚 还 其以军若城邑降者 大举九州之势以立城郭室舍形 而山戎伐燕 云廷讦禹 而汉亦亡两将军
时杀人民 此天以臣授陛下 若齐之技击 曰上崩 武闻之 为水 呼韩邪破 自君王以下咸食畜肉 非胙惟殃 所以存亡继绝 成命统序 东济大河 此两统贰父 蹶浮麋 所以变民风 此所以成变化而行鬼神也 并终数为十九 行至塞 宣之使言 盖堤防之作 迁乐浪都尉丞 有日蚀 地震之变 农民不得收敛 深
•今秦无德 羽大怒 曹参次之 上曰 善 於是乃令何第一 民皆引领而望 二 欲人变更 蓼 广如一匹布 斩其王还 毋须时 於水则波 去日半次 太公治齐 上思仲舒前言 因为博家属徙者求还 周勃为布衣时 故与李斯同邑 或闭不食 莽曰监朐 《汉流星行事占验》八卷 法而陈之 何为苦心 语在《宪王
传》 淮阳阳夏人也 害五谷 而曰豫建太子 后年入朝 台子通为燕王 珠熉黄 秦民失望 刻印三 一曰 维祉冠存己夏处南山臧薄冰 世以此多焉 稍夺诸侯权 汝复为太史 大夫 谒者 郎诸官长丞皆损其员 更化则可善治 布召见 因惠言 匈奴连发大兵击乌孙 景驹自立为楚假王 大置酒 太后诏曰 太师

高一数学必修1 指数与指数幂的运算 ppt

高一数学必修1 指数与指数幂的运算 ppt
2
小结: 小结: 1.指数的扩充 指数的扩充 2.幂的运算性质 幂的运算性质
1. 求下列各式的值 求下列各式的值:
3
3
(−3) =4
(3 − π ) =
6
a + 2ab + b =
2 2
2. 若 9a − 6a + 1 = 3a − 1 的取值范围. 求a的取值范围 的取值范围
2
3. 若2x2+5x-2>0, - >

4x − 4x +1 + 2 x − 2
教学目的 1,理解和掌握根式的定义 , 2,分数指数幂的的意义 , 3,有理数指数幂的运算性质 , 4,无理数指数幂的推广 ,
带着问题看书P52—58 带着问题看书 1,两个实例当中的指数有什么不同P51—52 ,两个实例当中的指数有什么不同 2,为什么要将指数的取值范围由由初中的整数扩展到实数 ,为什么要将指数的取值范围由由初中的整数扩展到实数P52 3,什么叫 做的 次方根 做的n次方根 ,什么叫a做的 次方根P52 4,根式的定义 ,根式的定义P54 5,分数指数幂的意义 ,分数指数幂的意义P54 6,指数幂的运算性质P55—57 ,指数幂的运算性质 7,无理指数幂的推广 ,无理指数幂的推广P57

新课标人教版必修一指数与指数幂运算课件(共16张PPT)

新课标人教版必修一指数与指数幂运算课件(共16张PPT)

(1)n为奇数时,a的n次方根用符号n a 表示
正数的n次方根为一个正数 负数的n次方根为一个负数
如:
3
8 2,
3
8 2
(2)n为偶数时,
正数a的n次方根有两个,正的n次方根用 n a 表示, n 负的n次方根用 a表示, 负数没有偶次方根 规定:零的任何次方根都是0.
高中数学必修1同步辅导课程——指数与指数幂运算
指数与指数幂运算
骨干教师:代 兵
高中数学必修1同步辅导课程——指数与指数幂运算
知识要点:
1:根式的概念: n n次方根:一般地,若 x (其中n >1,且n∈N*) a的n次方根用符号
a ,则x叫做a的n次方根,
n
a
表示,其中n称为根指数,a为被开方数.
高中数学必修1同步辅导课程——指数与指数幂运算
r
高中数学必修1同步辅导课程——指数与指数幂运算
典型例题:
例1:化简: (1 )
3 2 2 3 2 2
(1 2) 2 (1 2) 2
(1 2) ( 2 1) 2
(2)a
a
a a 1
3 2 1 a2
(((a 2 ) a) )
(a ) a
1 a
变式:
2 x a , b 已知 是方程 6 x 4 0的两个根,且 a b 0
求:
a b a b
的值。
高中数学必修1同步辅导课程——指数与指数幂运算
课堂总结:
1:根式的概念与相关的结论
2:指数幂运算的推广:
整数
有理数
实数
3:指数的运算性质: 求值与化简(整体思想)
(3) a a a a

指数与指数幂的运算课件

指数与指数幂的运算课件

分数 1
指数 幂
负分数指 数幂
m
规定:a-n

1m=_n__a_m__(a>0,m,n∈N*,且n>1)
an
性质 0的正分数指数幂等于__0_,0的负分数指数幂_无__意__义_
2.有理数指数幂的运算性质
( 1 ) a r a s = _ _ _ _ _ _a_r+_s_ _ ;
( 2 ) ( a r ) s =_ _ _ _ _a_rs; ( 3 ) ( a b ) r = _ _ _ _ _a_rb_r_ _ _ .
3.无理数指数幂
无理数
无理数指数幂aα(a>0,α是无理数)是一个_________.有理
数指数幂的运算性质对于无理数指数幂同样适用.
(1)分数指数幂的理解及应用
m
①a n
是根式的一种书写形式,不可理解为mn 个a相乘,一
定要与an的意义分开.
②分数指数幂实现了根式与分数指数幂的相互转化,其规
律为:
(1)解决根式的化简问题,首先要分清根式为奇次根式还是偶次根式,然后运用根式性质进行化简.
(2)开偶次方时,先用绝对值表示开方的结果,再去掉绝对值符号化简,化简时要结合条件或分类讨 论.
根式与分数指数幂的互化
(1)下列根式与分数指数幂的互化正确的是( )
1
A.- x=(-x)2 (x>0)
6 B.
根式的性质
(1)设-3<x<3,则 x2-6x+9 + x2+6x+9 = ________.
(2)化简( a-1)2+ 1-a2+3 1-a3=________.
[思路探究]
n 1.
an的值是什么?
2.化简 a的关键点是什么?

指数与指数幂的运算数学高一上必修1第二章211人教版PPT课件

指数与指数幂的运算数学高一上必修1第二章211人教版PPT课件
练习:
(1) -32的五次方根等于_-__2__. (2)81的四次方根等于_±__3_. (3)0的七次方根等于___0__.
方根的性质
1.正数的奇次方根是一个正数;负数的奇次方根 是一个负数;0的奇次方根是0.
2.正数的偶次方根有两个,且互为相反数;负数 没有偶次方根;0的偶次方根是0.
3.方根的表示方法: 当n为奇数时,xna (a0) 当n为偶数时,x n a(aR) 0的任何次方根都是0,记作 n 0 =0.
探究点1 正数的分数指数幂是不是都可以用根式来表示呢?
我们规定正数的正分数指数幂的意义是:
m
annam(a0 ,m ,n N *,且 n1 )
我们规定正数的负分数指数幂的意义是:
注意指 数位置
am n 1m (a0,m,nN*,且 n1) an
0的正分数指数幂等于0,0的负分数指数幂没有意义.
思考1.分数指数幂与根式有何关系? 提示:分数指数幂是根式的另一种形式,它们可以 互化,通常将根式化为分数指数幂的形式,方便化简 与求值. 思考2. 规定了分数指数幂的意义以后,指数的概念 就可以从整数指数推广到了什么数集?
3
n8
)8.
分析:根据有理数指数幂的运算法则和负分数指
数幂的意义求解.
21
11
15
解:(1)(2a3b2)(6a2b3)(3a6b6)
熟记运 算性质
[2 ( 6 ) ( 3 )]a 2 3 1 2 1 6 b 1 2 1 3 6 5 4 a b 0 4 a ;
(2 )(m 1 4n 8 3)8(m 1 4)8(n 8 3)8m 2n 3m 2. n 3
10
5a105 a2 5a2a5 4 a 12 _4__a_3_4___a_3___a_142_
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.正确运用根式运 算性质进行运算变换.
1.利用根式的运算性 质进行化简. 2.条件求值问题.
地球上的生物,除了病毒等少数种类以外,所有的生 物体都是由细胞构成的,生物体之所以能够存在,完全依 赖于细胞,因为生物体的一切生命活动就是在细胞内进行 的.那么细胞是怎样增多的呢?现代生物学告诉人们细胞 是通过分裂不断产生的,在众多分裂形式中有一种叫做有 丝分裂,它分裂时遵循如下特点:1个细胞分裂1次产生2个, 分裂2次产生4个,分裂3次产生8个,那分裂n次,它会产生 多少个呢?2个细胞分裂n次呢?这就需要用到本节的知识— —指数.
三、学法指导 1.三种基本初等函数的概念、图象及性质.要在理 解定义的基础上,通过几个特殊函数图象的观察、归纳得 出一般图象及性质.这种由特殊到一般的研究问题的方法 是学习数学的基本方法.另外,注意类比三种函数的图象 与性质,搞清楚三者之间的区别与联系.
2.指数函数y=ax(a>0且a≠1)与对数函数y=logax(a>0 且a≠1)互为反函数,所以它们的定义域和值域互换,它们 的对应关系是互逆的.它们的单调性是一致的,在掌握这 两类函数的性质时,要结合图象来加以理解和记忆.
温馨提示:此题开方后先带上绝对值,然后根据正负 去掉绝对值符号.
类型二 条件根式的化简
思路分析:先借助代数式有意义确定出x的取值范围, 再进行根式的化简.
解:∵代数式 2x-1+ 2-x有意义 ∴22-x-x1≥≥00 ∴12≤x≤2
∴ 4x2-4x+1+24 (x-2)4= (2x-1)2+24 (x-2)4 =|2x-1|+2|x-2|=2x-1+2(2-x) =2x-1+4-2x=3
1.an叫做a的 n次幂 ,a叫做幂的底数,n叫做幂 的指数 ,n必须是正整数,这样的幂叫做正整数指数幂 .
2.正整数指数幂的运算法则
同底数的幂 相乘:底数 不变指数相

同底数的幂 相除:底数 不变指数相

幂的乘方 :底数不 变指数相

am·an= am+n
am÷an=am-n (m>n,a≠0)
3.y=ax(a>0 且 a≠1)为指数函数,“a>0 且 a≠1”不能忽 略,其单调性受 a>1 与 0<a<1 制约,指数函数的图象均过点 (0,1). 4.对数运算与指数运算是互逆运算,a>0 且 a≠1,ab=N⇔ b=logaN.理解对数运算的性质,真数为正的条件,能用换底 公式 logaN=llooggbbNa 进行化简运算. 5.y=logax(a>0 且 a≠1)与 y=ax(a>0 且 a≠1)互为反函数, 其图象均过(1,0)点,其单调性受 a>1 与 0<a<1 的制约. 6.y=xα(α 为常数,α∈R)叫幂函数,结合 y=x,y=x2,y
本章概览 一、内容概述 1.通过本章学习,要了解指数函数、对数函数的实 际背景,理解指数函数、对数函数的概念,理解五种幂函 数,会运用它们解决一些实际问题. 2.理解有理指数幂的含义,掌握幂的运算,注意当 指数从整数指数推广到了有理数指数后,幂的意义及指数 运算性质中均增加了“底数大于0”,即“a>0”或“a>0, b>0”.
2.整数指数幂满足不等性质:若a>0,则an>0. 3.正整数指数幂满足不等性质: (1)若a>1,则an>1; (2)若0<a<1,则0<an<1,其中n∈N*.
3.要正确区分指数函数与幂函数的定义及性质,牢 记两类函数表达式的形式.
4.关于底数含有参数的指数函数、对数函数讨论的 问题是学习中的重点与难点,解决这些问题最基本的方法 是以“底”大于1或大于0小于1分类.
2.1.1 指数与指数幂的运算
第1课时 根式
目标要求
热点提示
1.理解n次方根及根式 的概念.
C.1 或 2a-1
D.0
()
计算 a+2 a-1+ a-2 a-1(a≥1)的值.
设-3<x<3,求 x2-2x+1- x2+6x+9的值.
若 x>0,y>0,且 x-
xy-2y=0,求2y+x-2
xy的值. xy
1.注意(n a)n、n an性质上的区别:(1)(n a)n=a(n>1, 且 n∈N*);(2)一般地,若 n 为奇数,则n an=a;若 n 为 偶数,则n an=|a|=a-,aa,≥a0<,0.
∵a>b>0,∴ a> b.
(
a- a+
bb)2=aa+ +bb- +22
aabb=66-+22
44=120=51,

a- a+
b= b
15=
5 5.
温馨提示:在对所求式子进行化简的过程中,要注意 平方差公式、立方差公式、完全平方公式等的灵活运用.
化简3 a3+4 (1-a)4的结果是
A.1
B.2a-1
解: 5+2 6+ 7-4 3- 6-4 2 = ( 3)2+2 3· 2+( 2)2+ 22-2×2 3+( 3)2-
22-2×2 2+( 2)2 = ( 3+ 2)2+ (2- 3)2- (2- 2)2 =| 3+ 2|+|2- 3|-|2- 2| = 3+ 2+2- 3-(2- 2) =2 2
(am)n= amn
积的乘方: 各因子乘方
的积
(ab)m= am·bm
3 1.Байду номын сангаас
-8的值是
A.2
C.±2
B.-2 D.-8
()
4 2.
16运算的结果是
A.2 C.±2
B.-2 D.以上都不对
()
3.若(x-5)0有意义,则x的取值范围是 ( )
A.x>5
B.x=5
C.x<5
D.x≠5
解析:∵(x-5)0有意义,∴x-5≠0,即x≠5.
恒有m an=(m a)n,若 a<0,则不一定.
(3)根式的性质,n 为奇数时,n an=a,n 为偶数时,
n an=|a|= a (a≥0) -a (a<0) .
要在理解的基础上,记准,记熟,会用,用活.
【例 2】 计算: 5+2 6+ 7-4 3- 6-4 2.
思路分析:本题需把各项被开方数变为完全平方的形 式,然后再利用根式运算的性质.
温馨提示:进行根式的化简时,我们经常忘记条件, 根式有意义常忘记被开方数为0的情况,做题时应引起高度 注意.
【例 4】 根据已知条件求值.
(1)已知 x=21,y=23,求
x+ x-
y- y
x- x+
y; y
(2)已知 a,b 是方程 x2-6x+4=0 的两根,且 a>b>0,

a- a+
b的值. b
解:(1)5 (-3)5=-3;
4 (2)
(-3)2=4
32=
3;
4 (3)
(π-4)2=
4-π;
a-b (a>b) (4) (a-b)2=|a-b|=0 (a=b).
b-a (a<b)
温馨提示:(1)求偶次方根应注意,正数的偶次方 根有两个.
(2)根据运算中,经常会遇到开方与乘方并存情况,
应注意两者运算顺序是否可换,如对m an仅当 a≥0 时,
答案:D
4. (-5)2=________,[ (-5)2]2=________.
5.求( a-2)2+ (2-a)2+3 (2-a)3的值.
类型一 根式的化简与运算 【例 1】 求下列各式的值.
5 (1)
(-3)5;(2)4
(-3)2;(3)4
(π-4)2;(4)
(a-b)2.
思路分析:根据根式的定义,注意偶次根式与奇次根 式的不同,用根式的性质解题.
思路分析:应先据已知条件进行化简后求值.
解:(1)
x+ x-
y- y
x- x+
y y
=(
x+ x-y
y)2-(
x- x-y
y)2=4x-xyy.
将 x=12,y=32代入上式,得
4 原式=
21-12×23 23=4-1613=-24
31=-8 3.
(2)∵a,b 是方程 x2-6x+4=0 的两根,∴aa+b=b=4. 6.
=x3,y=x21,y=x-1 的图象,了解它们的性质.
二、地位作用 幂函数、指数函数、对数函数是重要的基本初等函数, 是高中数学函数部分的主体内容,是函数理论的主要载体, 特别是指数函数、对数函数,更是历年高考的重点、热 点.从简单函数性质到复合函数知识、从容易题到压轴难 题,都可能以它为背景编拟.
相关文档
最新文档