行程问题之钟表问题.docx
奥数题钟面行程问题的解决办法讲解.doc
奥数题钟面行程问题的解决办法讲解
【摘要】小学数学的学习至关重要,广大小学生朋友们一定要掌握科学的学习方法,提高数学的学习效率。
以下是小学频道为大家提供的奥数题钟面行程问题的解决办法,供大家复习时使用!
典型例题1
从时钟指向4点开始,再经过多少分钟时针正好与分针重合?
举一反三1
1、从时针指向3点开始,再经过多少分钟时针正好与分针重合?
2、12时整,时针与分针重合,下一次时针与分针重合是几时几分?
3、小明在9点与10点之间开始解一道题。
当时时针与分针正好成一条直线,解完题后两针正好第一次重合。
小明解这道题共用了多少时间?
典型例题2
在7点多8点不到的时候,时针与分针相差10小格,应是什么时间?
举一反三2
1、在6点多7点不到的时候,时针与分针相差12小格,应是什么时刻?
2、在9点多10点不到的时候,时针与分针相差5小格,应是什么时刻?
3、8点到9点时针与分针夹角为60时,应是什么时刻?
典型例题3
钟面上3时过几分,时针与分针离3的距离相等,并且在3的两旁?
举一反三3
1、钟面上4时过几分,时针与分针离4的距离相等,并且在4的两旁?
2、12点过多少分时,时针与分针离12的距离相等,并且在12的两旁?
3、有一天课间休息时,小明看了一下墙上的挂钟,时间是9点多,他发现时针和分针正好处在铅垂线对称位置。
请问:此时是几点几分?
科学的学习方法和合理的复习资料能帮助大家更好的学好数学这门课程。
希望为大家准备的奥数题钟面行程问题的解决办法,对大家有所帮助!。
行程问题之钟表问题之欧阳引擎创编
行程问题之钟表问题欧阳引擎(2021.01.01)钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:(1)研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;(2)研究有关时间误差的问题.在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.1、在10点与11点之间,钟面上时针和分针在什么时刻垂直?2、现在是2点15分,再过几分钟,时针和分针第一次重合?3、在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°?4、小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间?5、一只旧钟的分钟和时针每65分钟(标准时间的65分钟)重合一次.问这只旧钟一天(标准时间24小时)慢或快几分钟?6、在6点和7点之间,两针什么时刻重合?7、现在是2点15分,再过几分钟,时针和分针第一次重合?8、在10点与11点之间,两针在什么时刻成一条直线?9、同学们进行了50米赛跑比赛,平平用了12秒,比小华多用了1秒,小花比平平多用1秒,谁跑得最快?10、小鹏的手表比家里的挂钟每小时慢30秒钟,而这个挂钟比标准时间每小时快30秒钟,这块手表一昼夜与标准时间相差多少秒钟?11、从时针指向4开始,再经过多少分钟,时针正好和分针重合?12、4时与5时之间,什么时刻时钟的分针和时针成一直线?13、有一个挂钟,每小时敲一次钟,几点钟就敲几下,钟敲6下,5秒钟敲完,钟敲12下,几秒钟可敲完?14、当钟面上4时10分时,时针与分针的夹角是多少度?15、求7时与8时之间,时针与分针的夹角是多少度?16、一昼夜快3分的时钟,今天下午4时调拨到几点几分,才能于明天上午8时指向正确的时刻?17、8时到9时之间,在什么时刻时针与分针的夹角是60度?18、张奶奶家的闹钟每小时快2分(准确的钟分针每小时走一圈,而这个钟的分针每小时走一圈多2格)。
小学思维数学:行程问题与钟表问题综合-带详解
时钟问题1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算; 3.时钟的周期问题.时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度 时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
模块一、时针与分针的追及与相遇问题【例 1】 当时钟表示1点45分时,时针和分针所成的钝角是多少度?【考点】行程问题之时钟问题 【难度】1星 【题型】解答 【解析】 142.5度 【答案】142.5度【巩固】 在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度.【考点】行程问题之时钟问题 【难度】1星 【题型】填空 【关键词】希望杯,六年级,一试【解析】 16点的时候夹角为120度,每分钟,分针转6度,时针转0.5度,16:16的时候夹角为120-6×16+0.5×16=32度.【答案】32度例题精讲知识点拨教学目标【例 2】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【考点】行程问题之时钟问题 【难度】2星 【题型】解答 【解析】 在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”. 【答案】65411分钟【巩固】 钟表的时针与分针在4点多少分第一次重合?【考点】行程问题之时钟问题 【难度】2星 【题型】解答 【解析】 此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。
钟面行程问题
什么是钟面行程问题?钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:⑴研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;⑵研究有关时间误差的问题.在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.钟面行程问题基本知识点钟面行程问题例题解析1某人有一块手表和一个闹钟,手表比闹钟每时慢30秒,而闹钟比标准时间每时快30秒.问:这块手表一昼夜比标准时间差多少秒?从时针指向4开始,再经过多少分钟,时针正好和分针重合?解答:钟表问题实际是追及行程,分针1分钟走1格,时针1分钟走1/12,4点整,相差20格,则20÷(1-1/12)=21又9/11答:再经过21又9/11分钟,时针正好和分针重合。
钟面行程问题例题解析24时与5时之间,什么时刻时钟的分针和时针成一直线?解答:分针和时针成一直线,分针比时针多走50格,每分钟多走1-1/12=11/12格,则50÷11/12=54又6/11分答:4点54又6/11分时钟的分针和时针成一直线.钟面行程问题例题解析3当钟面上4时10分时,时针与分针的夹角是多少度?解答:分针每分钟走360÷60=6度,时针每分钟走30度÷60=0.5度,4点整分针与时针相差120度,10分钟分针比时针多走(6-0.5)×10=55度,120度-55度=65度.有关时钟的行程问题解析两个速度单位:分针每分钟走6度,时针每分钟走0.5度时钟问题主要有3大类题型:第一类是追及问题(注意时针分针关系的时候往往有两种情况);第二类是相遇问题(时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时,可以求出路程和);第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系。
【例1】四点到五点之间,时钟的时针与分针在什么时刻成直角?【例2】爷爷在晚上7点多出去散步,出去的时候时针与分针正好在一条直线上,回来的时候时针与分针恰好重合,问爷爷出去散步了多长时间?【例3】一只钟表的时针与分针均指在4和6之间,且钟面上的"5"恰好在时针与分针的正中央,问这是什么时刻?【例4】小亮晚上9点整将手表对准,他在早晨8点到校时,却迟到了10分钟,那么小明的手表每小时慢几分钟?钟面行程问题例题讲解1(指针角度问题)钟面行程问题例题讲解2(指针角度问题)钟面行程问题例题讲解3(时间误差问题)行程问题之钟面行程练习11有一个时钟快20秒,它在3月1日中午12时准确指示时间.下次准确指示时间是什么时候?2,小红晚上9点整时将手表对准,可第二天早晨8点到校迟到了10分钟,那么小红的手表每小时慢几分钟?3,爷爷家的老式钟的时针与分针,每隔66分钟重合一次,这只时钟每昼夜慢多少分钟??钟面行程问题练习题2一昼夜快3分的时钟,今天下午4时调拨到几点几分,才能于明天上午8时指向正确的时刻?8时到9时之间,在什么时刻时针与分针的夹角是60度?张奶奶家的闹钟每小时快2分(准确的钟分针每小时走一圈,而这个钟的分针每小时走一圈多2格)。
小学奥数 钟面行程问题 完整版 带解析答案
8、一个时钟现在显示的时间是3点整,请问:
(1)多少分钟后,时针与分针第一次重合?
(2)再经过多少分钟后,时针与分针第一次张开成一条直线?
解答:
(1)3点整时,分针落后时针90°,第一次重合时,分针追上了时针,夹角是0°,所以在整个过程中,追及路程是90-0=90°,速度差为:6-0.5=5.5°,所以追及时间:
钟面行程问题
钟表问题是一类特殊的行程问题,掌握钟表问题的相关知识,学会将角度问题转化为环形追及问题或相遇问题,学会用比例分析两个速度不同的钟表之间的时间对比关系.
钟面上,分针每分钟转( 6 )度,时针每分钟转( 0.5 )度。
例题讲解:
1、有一座时钟现在显示上午10点整,问:
(1)多少分钟后,分针与时针第一次重合?
(90-0)÷(6-0.5)= (分)
(2)重合时,分针和时针夹角时0°,当时针与分针第一次张开成一条直线时,分针领先180°,所以在整个过程中,追及路程是180-0=180°,速度差为:6-0.5=5.5°,所以追及时间:(180-0)÷(6-0.5)= (分)
9、在9点23分时,时针和分针的夹角是多少度?从这一时刻开始,经过多少分钟,时针和分针第一次垂直?
360÷(6-0.5)= (分)
2、小悦早上6点半起床,赶到学校时发现手表上的时针和分针恰好第一次张开成一条直线,那么小悦到达学校的时间是几点几分?
解答:
6点半时,分针落后时针:15°当时针和分针第一次张开成一条直线时,分针超过时针180°,所以整个过程的追及路程为:180+15=195°,所以追及时间为:
4、下午6点多时冬冬吃完晚饭开始看动画片,动画片开始时他看手表,发现时针和分针的夹角为110°.在新闻联播前动画片放完了,冬冬又看手表,发现时针和分针的夹角仍是110°.那么动画片一共放了多少分钟?
奥数行程问题中的钟表问题
奥数行程问题中的钟表问题
关于奥数行程问题中的钟表问题
行程问题的题型变化多样,形成10多种题型(比如相遇、追及问题,火车过桥,流水行船,钟表问题,发车问题,扶梯问题等等),都有各自相对独特的解题公式和方法。
接下来徐丽老师将会对钟表问题进行解析,希望对大家有所帮助!
一、问题简介
时钟问题是研究钟面上的时针和分针关系的问题,可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解。
二、常见解题方法
基本解题思路:追及问题里面的路程差思路,即格或角(分针)=格或角(时针)+格或角(差)
三、经典例题
例1、在3点与4点之间,时针和分针在什么时刻位于一条直线上?
四、巩固练习
1、小明做作业的.时间不足1小时,他发现结束时手表上的时针、分针的位置正好与开始时时针分针的位置交换了一下,问小明做作业用了多长时间?。
第六讲-行程问题8-时钟问题
第六讲行程问题(8)——时钟问题【知识精要】同学们有没有注意过墙上挂的大钟或者手上的手表,以大钟为例子,钟上面有三根针:时针分针和秒针,有的时候,这些指针会形成独特的图形,比如12点整的时候,三根针会重合12点的那个地方,而6点整的时候,时针和分针会成一条直线,其中时针指6,分针指12。
如果形象地去想象,12点的时候,就好像三根针在同一起跑线上开始出发,秒针跑得最快,很快就走过了一圈又一圈,分针慢一些,一步一步挪着步子,而时针就像一个年迈的老人,老半天才能走一格,这样的赛跑每天每时每刻都在进行,这一讲,我们就来探讨时针分针秒针他们赛跑的问题,这也可以看作一类行程问题,我们就来看看其中的奥妙。
既然我们把这类问题看做行程问题,就会遇到行程问题一个一贯的问题:路程,速度与时间之间的关系,可是既然是在时钟上做文章,时间肯定不成问题,时针分针秒针自己的运动就代表着时间的标准,但是路程和速度如何计算呢?同学们肯定能想到,整个钟面就像一个环形跑道,那么时钟问题也一定和环形跑道有着千丝万缕的联系,再想得深刻一点,我们可以发现,时针分针秒针都是沿着同样的方向,就是我们平时所说的“顺时针”方向在移动,既然不存在相向和相背的运动,这类问题就只剩下追及问题了,所以时钟问题抽象出来,实质就是环形跑道上的追及问题。
可是上面的问题还没有解决,如何来衡量路程和速度,不同的钟面大小不一样,钟楼顶层的大钟,半径可能有好几米,而我们平时手上戴的手表,半径才1厘米左右,这样,我们的速度和路程也就变得非常复杂,有没有什么可以简单计算的方法呢?我们知道,生活常识告诉我们,秒针每分钟走一圈,分针每小时走一圈,而时针呢,要12小时才能走一圈,如果我们把钟面按照刻度划分成12个格子的话,就相当于时针每小时走1格,分针每小时走12格,如此等等,如果再仔细想一想,如果我们把钟面看作一个普通的圆,刻度就是在圆周上的12等分,把等分点和圆心相连,就得到12个30度的圆心角,而三根时针正是在“跑”这样的圆心角,一圈的路程就是360度,而每一格就相当于30度,这样形容速度,所有的钟面就都很清楚了,时针每小时走一格就是60分钟走30度,相当于每分钟0.5度,分针每小时走一圈就是60分钟走360度,相当于每分钟6度,而秒针每分钟就能走一圈,也就是每分钟360度,这样他们的速度也就能表示出来了,当然,我们还可以用小时或者秒来作为时间的单位,之间的换算关系如下表所示:既然速度用角度作为计量,同样的,路程也应该用角度作为计量,这样钟面这样一个“环形跑道”,它的路程就是一圈360度,而我们的题目,也往往就是用两个针之间所成的角度来衡量他们之间的“距离”的,解决的思路和普通行程问题里的追及问题没有两样,我们将在题目中具体讲述。
行程问题之钟表问题
行程问题之钟表问题集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)行程问题之钟表问题钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:(1)研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;(2)研究有关时间误差的问题.在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.1、在10点与11点之间,钟面上时针和分针在什么时刻垂直?2、现在是2点15分,再过几分钟,时针和分针第一次重合?3、在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°?4、小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间?5、一只旧钟的分钟和时针每65分钟(标准时间的65分钟)重合一次.问这只旧钟一天(标准时间24小时)慢或快几分钟?6、在6点和7点之间,两针什么时刻重合?7、现在是2点15分,再过几分钟,时针和分针第一次重合?8、在10点与11点之间,两针在什么时刻成一条直线?9、同学们进行了50米赛跑比赛,平平用了12秒,比小华多用了1秒,小花比平平多用1秒,谁跑得最快?10、小鹏的手表比家里的挂钟每小时慢30秒钟,而这个挂钟比标准时间每小时快30秒钟,这块手表一昼夜与标准时间相差多少秒钟?11、从时针指向4开始,再经过多少分钟,时针正好和分针重合?12、4时与5时之间,什么时刻时钟的分针和时针成一直线?13、有一个挂钟,每小时敲一次钟,几点钟就敲几下,钟敲6下,5秒钟敲完,钟敲12下,几秒钟可敲完?14、当钟面上4时10分时,时针与分针的夹角是多少度?15、求7时与8时之间,时针与分针的夹角是多少度?16、一昼夜快3分的时钟,今天下午4时调拨到几点几分,才能于明天上午8时指向正确的时刻?17、8时到9时之间,在什么时刻时针与分针的夹角是60度?18、张奶奶家的闹钟每小时快2分(准确的钟分针每小时走一圈,而这个钟的分针每小时走一圈多2格)。
第四讲 行程之多人行程与钟面问题
第四讲行程之多人行程与钟面问题1.回顾基本相遇、追及问题与变速问题;2.精讲:一、钟面问题:钟面追及、钟面相遇、时钟校准。
二、多人行程:其本质是从两两关系中推出结论。
可以看作是多个两者运动关系在某一等量联系下的变化。
相遇与追及【例1】★★(第三届“走进美妙的数学花园”解题技能展示大赛)猎狗发现北边200米处有一点兔子正要逃跑,拔腿就追。
兔子的洞穴在兔子的北边480米,若兔子每秒跑13米,猎狗每秒跑18米,可怜的兔子能逃过这一劫吗?(判断“能”还是“不能”,并说明理由)【例2】★★(2006浙江省小学数学活动课夏令营)甲、乙两人的速度之比是5:4,乙先从B地出发行往A地,当走到离B地336米的地方时,甲从A地出发行往B地。
结果两人相遇的地方离A、B两地距离之比是3:4,那么A,B两地的距离是米。
【例3】★★★(2006年“我爱数学杯”数学竞赛)甲、乙两车同时从A地出发开往B地,甲车的速度为每小时45千米,乙车的速度为每小时50千米。
乙车到达B地后立即返回,在距B地5千米处与甲车相遇,那么A,B两地相距千米。
变速问题【例4】★★★(《华罗庚金杯少年数学邀请赛》决赛模拟题)一个圆周长70厘米,甲、乙两只爬虫从同一点同时出发,同向爬行,甲以4厘米/秒的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇。
则乙爬虫原来的速度是。
【例5】★★★(2006年北京市“数学解题能力展示”读者评选活动高年级组初赛)甲、乙两地相距100千米,张山骑摩托车从甲地出发,1小时后李强驾驶汽车也从甲地出发,二人同时到达乙地。
已知摩托车开始的速度是每小时50千米,中途减为每小时40千米;汽车的速度是每小时80千米并在途中停留10分钟。
那么,张山骑摩托车在出发分钟后减速。
多人行程:【例1】★★★甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米。
甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
第4讲 行程问题(钟表).含答案.5年级数学.提高班.寒假.教师版
钟表问题&自动扶梯本讲内容时针分针的相遇追及时针分针的夹角扶梯与人的相遇追及行程问题一直都是在研究时间、速度和路程三者之间的关系,之前我们已经学习过一般相遇追及问题,流水行船问题,火车过桥问题以及环形跑道上的多人相遇追及问题,这里我们将继续学习相遇追及问题里面另外两部分:钟表上的相遇追及问题和自动扶梯上的行程问题。
钟表上的相遇追及问题:分针绕钟面一圈需要的时间是60分钟,所以分针每分钟走360606÷=;时针绕钟面一圈需要的时间是12小时,所以时针每分钟走36012600.5÷÷=;分针与时针的速度差是每分钟60.5 5.5-=。
【例1】 【基础】三点钟的时候时针和分针夹角是多少度?【分析】 因为三点钟的时候时针指向正“3”,分针指向正“12”,它们之间间隔是三大格,所以夹角是33090⨯=度。
【提高】八点钟的时候时针和分针夹角是多少度?【分析】 因为八点钟的时候时针指向正“8”,分针指向正“12”,它们之间的间隔是四大格,所以夹角是430120⨯=度。
【尖子】两点钟的时候时针和分针夹角是多少度?【分析】 因为两点钟的时候时针指向正“2”,分针指向正“12”,它们之间间隔是两大格,所以夹角是23060⨯=度。
第4讲行程问题—钟表【例2】 【基础】钟面上6点1分时,时针与分针的夹角是多少度?【分析】 我们注意到6点时,时针与分针夹角是180,1分钟以后,分针比时针多走了1 5.5 5.5⨯=,所以此时两针夹角是180 5.5174.5-=。
即钟面上6点10分时,时针与分针的夹角是174.5。
【提高】钟面上6点10分时,时针与分针的夹角是多少度?【分析】 我们注意到6点时,时针与分针夹角是180,10分钟以后,分针比时针多走了10 5.555⨯=,所以此时两针夹角是18055125-=。
即钟面上6点10分时,时针与分针的夹角是125。
【尖子】钟面上6点20分时,时针与分针的夹角是多少度?【分析】 我们注意到6点时,时针与分针夹角是180,20分钟以后,分针比时针多走了20 5.5110⨯=,所以此时两针夹角是18011070-=。
应用题板块-行程问题之时钟问题(小学奥数四年级)
应用题板块-行程问题之时钟问题(小学奥数四年级)行程问题中有一类问题比较特殊,他是研究时间运行而产生的。
一个钟面上通常都有时针和分针,分针每时每刻都在追赶时针,追上后又开启下一次追赶,周而复始。
今天分享的时钟问题,梳理了典型的题目类型和相关知识点,助力同学掌握答题技巧。
【一、题型要领】常见的时钟问题有两类,一类是计算时针和分针在特定时刻形成的角度,另一类是某个时钟和标准时钟存在误差。
1. 时分角度问题【基本概念】钟面上,时针和分针都沿顺时针方向转动,但因速度不同总是分针追赶时针,两者会形成一定角度,包括重合,成一直线,成直角或成特定的角度。
如下图,3点整,时针和分针成90度;3点15分到3点20分之间的某一时刻,时针和分针重合;3点45分到3点50分之间的某一时刻,时针和分针成直线。
【基本公式】特定角度问题需求出当前的精确时间,这类问题可以转化为分针追及时针来解决,运用基本公式“时针和分针的距离差= (分针的速度 - 时针的速度)* 追赶时间”就可以。
这里有几个基本数据需要牢记在心(1)钟面1圈是360度,分为12个大格,60个小格(2)时针12个小时走1圈,1小时走1个大格或者5个小格(30度),1分钟走1/12个小格(0.5度)(3)分针1个小时走1圈,1小时走12个大格或者60个小格(360度),1分钟走1个小格(6度)2. 时钟误差问题【基本概念】一个特定的时钟和标准时钟存在误差,表现为每小时快/慢了几分钟,在某一时刻该时钟和标准时钟完成对时后,要求出当这个特定的时钟走了一段时间后,对应的标准时间是多少【基本公式】可以利用特定时钟和标准时钟行走速度的比例关系来计算。
特定时钟运行距离:标准时钟运行距离 = 特定时钟的运行速度:标准时钟的运行速度【二、重点例题】例题1【题目】小强家有一个闹钟,每时比标准时间快3分。
有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【分析】小强家的闹钟比标准时间走的快,因此需要定闹钟时需要多设置一些。
钟面上的行程问题
必须使时针领先分针15格,或分针领先时针15格。因此,在相同 时间内,分针将比 时针多走(20-15)格或(20+15)格。
(20-15)/(1-1/12)=60/11,即4点5又5/11分
(20+15)/(1-1/12)=38又2/11分,即4点38又2/11分
5.9点过多少分时,时针和分针离“9”的距离相等,并且在“9”
900, 15小格,需要时间:154-(1-1/12)=十六又^一分之四(分儿
从9时整开始,到时针与分针完全重合,分针最少要比时针要多转,
45小格,需要时间J454-(1 — 1/12)=四十九又—分之一(分)。
因为不超过20分钟,所以电台报时的时刻是下午3时整(或15时整)。
【题目】:
李叔叔下午3点钟要到工厂上班,他估计快到上班时间了,到屋里看 钟,可是钟早在12.10就停了。他上足发条忘了拨针,匆匆离家,
基础练习题:
1.现在是下午3点,从现在起时针和分针什么时候第一次重合?
2.分针和时针每隔多少时间重合一次? 一个钟面上分针和时针一昼 夜重合几次?
3.钟面上5点零8分时,时针与分针的夹角是多少度?
4.在4点与5点之间,时针与分针什么时候成直角?
5.9点过多少分时,时针和分针离“9”的距离相等,并且在“9”
9时一10分=8时50分
李叔叔在上班路上耽搁时间为:(8时50分一8时10分)4-2=20(分)
⑵钟面一圈按“分”分为60小格,分针每分钟走1小格,每小时走
60小格;时针每小时走0小格,每分钟走(54-60=)1 / 12小格。
⑶钟表上分针、时针、秒针的转速各不相同,但各自的转速是固定的:
分针每小时转动360度;
时钟及追及问题
在一点到二点之间,分针什么时候与时针构成直角?解:当时针分针重合,即分针追上时针时,需要时间30/(11/2)=60/11,此后,当路程差为90度时,构成直角,90/(11/2)=180/11;当路程差为270度时,构成直角,270/(11/2)=540/11.因此,共需要60/11+180/11=240/11分钟,或60/11+540/11=600/11分钟。
2.现在是10点整,请问再过多长时间,时针与分针将第一次在一条直线上?解:分针一分钟走6度,时针一分钟走1/2度,则分针时针的速度差为11/2,10点时分针时针路程差为60度,当分针时针第一次在一条直线上时分针时针的路程差为180度。
即在运动过程中,时针分针的路程差又增加120度,因此,用时120/(11/2)=240/113.在钟面上,如果知道X时Y分,输入一个公式就能得出此时时针与分针夹角的度数。
请问这个公式怎么得来?钟面上分12大格60小格。
每1大格均为360除以12等于30度。
每过一分钟分针走6度,时针走0.5度,能追5.5度。
公式可这样得来:X时时,夹角为30X度。
Y分,也就是分针追了时针5.5Y度。
可用:整点时的度数30X减去追了的度数5.5Y。
如果减得的差是负数,则取绝对值,也就是直接把负号去掉,因为度数为非负数。
因为时针与分针一般有两个夹角,一个小于180度,一个大于180度,(180度时只有一个夹角)因此公式可表示为:|30X-5.5Y|或360-|30X -5.5Y|度。
||为绝对值符号。
如1:40分,可代入得:30×1-5.5×40=-190则为190度,另一个小于180度的夹角为:1 70度。
如:2:10,可代入得:60-55=5度。
大于180度的角为:355度。
如:11:20,330-110=220度,小于180的角:360-220=140度。
4.时钟现在表示的时间是18点整,那么分针旋转1990圈后是()点钟?解;分针走一圈,时针走一小时=分针走24圈,时针走24小时,即此时时间还是18点=1990/24=82余22=时间为18点再过22小时,即16点。
行程问题 时钟问题
时钟问题基本思路:封闭曲线上的追及问题。
关键问题:①确定分针与时针的初始位置;②确定分针与时针的路程差;基本方法:①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。
分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走 1/12分格。
时针每小时行一大格,分针每小时行12大格,可看出分钟速度是时针速度的12倍。
②度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转360/60度,即6°,时针每分钟转360/(12*60)度,即1/2 度。
周角是360度,钟面上有12个大格,每个大格是360÷12=30度,有60个小格,每个小格是360÷60=6度。
时针每小时走一个大格(30度),所以时针每分钟走30÷60=0.5度;分针每小时走60个小格子,所以分针每分钟走360÷60=6度例题1 从时针指向4开始,再经过多少分钟,时针正好和分针重合?分析 :看做追及问题,当4点整时,时针和分钟之间的角度是120度,当时针与分钟重合时候,分钟比时针多走120度的角度,则有:解答: 120÷(6-0.5)= 分钟11921答:。
例题2 4时与5时之间,什么时刻时钟的分针和时针成一直线?分析: 时针跟分针成一条直线的时候有两种情况,一种是重合,另一种是成180度角。
当两针重合时候:120÷(6-0.5)= 分钟11921 当两针成180度角时候,看做追及问题,当4点整时,时针和分钟之间的角度是120度,当时针与分钟成180度角时,分钟比时针多走300度的角度,则有:300÷(6-0.5)=分钟11654所以当4点成一条直线。
分钟的时候时针和分钟点分钟或者11654411921解答:120÷(6-0.5)=分钟11921 300÷(6-0.5)= 分钟11654答:。
行程问题之钟表问题
例6 小明做作业的时间不足1时,他发现结束时手表上 时针、分针的位置正好与开始时时针、分针的位置交
换了一下。小明做作业用了多少时间?
分析与解:从左上图我们可以看出, 时针从A走到B,分针从B走到A, 两针一共走了一圈。换一个角度, 问题可以化为:时针、分针同时从B出发, 反向而行,它们在A点相遇。两针所行的
总结
例1~例4都是利用追及问题的解法,先找 出时针与分针所行的路程差是多少格,再除 以它们的速度差求出准确时间。
但是,有些时钟问题不太容易求出路程差, 因此不能用追及问题的方法求解。如果将追 及问题变为相遇问题,那么有时反而更容易。
例5 3点过多少分时,时针和分针离“3”的距离 相等,并且在“3”的两边?
抓住起始和终止两个时刻算出分针走了多少分钟, 由上述表格算出时针和分针各转了多少度,再在钟 面上比较,求出结果.现举例说明.
时钟问题知识点说明
时钟问题可以看做是一个特殊的圆形轨道上2人追 及或相遇问题,不过这里的两个“人”分别是时钟 的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟 问题,其中包括时钟的快慢,时钟的周期,时钟上 时针与分针所成的角度等等。
所以:夹角为120 °+22.5°=142.5°
6、小红傍晚6点钟去商场买本,走进商场看 到钟表上的时针和分针的夹角是120°,买 完本后,走出商场看到钟表上的时针和分针 的夹角又是120°,但已近晚上7点钟了,问 小红买本用了多长时间?
一、整点时刻两针的夹角
例1 求下午4时,时针与分针之间的夹角. 分析: 下午4时,时针指在4上,分针指在12上,于是可求
行程问题之钟表问题教学提纲
行程问题之钟表问题行程问题之钟表问题钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:(1)研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;(2)研究有关时间误差的问题.在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.1、在10点与11点之间,钟面上时针和分针在什么时刻垂直?2、现在是2点15分,再过几分钟,时针和分针第一次重合?3、在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°?4、小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间?5、一只旧钟的分钟和时针每65分钟(标准时间的65分钟)重合一次.问这只旧钟一天(标准时间24小时)慢或快几分钟?6、在6点和7点之间,两针什么时刻重合?7、现在是2点15分,再过几分钟,时针和分针第一次重合?8、在10点与11点之间,两针在什么时刻成一条直线?9、同学们进行了50米赛跑比赛,平平用了12秒,比小华多用了1秒,小花比平平多用1秒,谁跑得最快?10、小鹏的手表比家里的挂钟每小时慢30秒钟,而这个挂钟比标准时间每小时快30秒钟,这块手表一昼夜与标准时间相差多少秒钟?11、从时针指向4开始,再经过多少分钟,时针正好和分针重合?12、4时与5时之间,什么时刻时钟的分针和时针成一直线?13、有一个挂钟,每小时敲一次钟,几点钟就敲几下,钟敲6下,5秒钟敲完,钟敲12下,几秒钟可敲完?14、当钟面上4时10分时,时针与分针的夹角是多少度?15、求7时与8时之间,时针与分针的夹角是多少度?16、一昼夜快3分的时钟,今天下午4时调拨到几点几分,才能于明天上午8时指向正确的时刻?17、8时到9时之间,在什么时刻时针与分针的夹角是60度?18、张奶奶家的闹钟每小时快2分(准确的钟分针每小时走一圈,而这个钟的分针每小时走一圈多2格)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程冋题之钟表冋题
钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:
(1)研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;
(2)研究有关时间误差的问题.
在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解•
在*悔上,各针转动的Jt窿是礴定的,分针的遠度是时针的遠度的12倍.
RBrni I .
单i±∙ Φa⅛⅛+Ef∣⅛<⅞⅛Λ⅛Φι恪.时计怖底是歸钟护∣Sdfl-
m);如臬以度沖单位'因⅜⅛φffi± 36D≡共純搐所以1格相当于6虧故分计的5⅛度是每分1中&度,时针的it度是每分1中心度•
∖^m∖]
⑴周角足≡r r特面上有12个大瓶毎个大格足開『÷ 12-30i t有60J MM(L ⅜tΦft 是360a ÷60-
e tt・
⑵时针毎中时定一个大用(30'),所以时甘毎分钟走专(T ÷6H.fi4 :分针每小Bt走肌个
⑶用大格来掩述:
mt⅛f时行1大魁⅛⅞tw+时打∣2大格。
可看illihOS⅛时計速艮的12倍.
W用小格来描述*
分针每分钟打1小瓶时野毎賢钟行小格,
<5)用度来描述:
分针亂分钟行360处则i>ft⅛⅛ttfi 6度,吋計輛分⅛MT[J,5rL
1、在10点与11点之间,钟面上时针和分针在什么时刻垂直?
2、现在是2点15分,再过几分钟,时针和分针第一次重合?
3、在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°?
4、小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线, 解
完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间?
5、一只旧钟的分钟和时针每65分钟(标准时间的65分钟)重合一次.问这只旧钟一天(标准时间24小时)慢或快几分钟?
&在6点和7点之间,两针什么时刻重合?
7、现在是2点15分,再过几分钟,时针和分针第一次重合?
8、在10点与11点之间,两针在什么时刻成一条直线?
9、同学们进行了50米赛跑比赛,平平用了12秒,比小华多用了1秒,小花比平平多用1秒,谁跑得最快?
10、小鹏的手表比家里的挂钟每小时慢30秒钟,而这个挂钟比标准时间每小时快30秒钟,这块手表一昼夜与标准时间相差多少秒钟?
11、从时针指向4开始,再经过多少分钟,时针正好和分针重合?
12、4时与5时之间,什么时刻时钟的分针和时针成一直线?
13、有一个挂钟,每小时敲一次钟,几点钟就敲几下,钟敲6下,5秒钟敲完,钟敲12下,几秒钟可敲完?
14、当钟面上4时10分时,时针与分针的夹角是多少度?
15、求7时与8时之间,时针与分针的夹角是多少度?
16、一昼夜快3分的时钟,今天下午4时调拨到几点几分,才能于明天上午8时指向正确的时刻?
17、8时到9时之间,在什么时刻时针与分针的夹角是60度?
18、张奶奶家的闹钟每小时快2分(准确的钟分针每小时走一圈,而这个钟的分针每小时走一圈多2格)。
昨晚21:00,她把闹钟与北京时间对准了,同时把钟拨到今天早晨6:00闹铃,张姐姐听到闹铃声响比北京时间今天早晨6:00提前了多少小时?
19、在7时和8时之间,什么时刻与分针成直角?
20、某人有一只手表,比家里闹钟时间每小时快30秒,而闹钟却比标准时间每小时慢30秒。
此人手表一昼夜与标准时间相差多少秒?
21、5时以后的什么时刻,时针和分针在“ 4”字两边并且与“ 4”字等距
离?
22、一只钟的时针和分针每65分钟重合一次,这只针一天慢或快几分?
23、有甲乙两只钟表,甲表8时15分时,乙表8时31分。
甲表比标准时间每9小时快3分,乙表比标准时间每7小时慢5分。
至少要经过几小时,两种表的指针指在同一时刻?
24、某种表在7月29日零点比标准时间慢4分半,它一直走到8月5号上午7时,比标准时间快3分。
那么,这只钟所指的正确的时刻是几月几日几时?
25、3时以后的某一时刻,时针与分针的位置,恰好与6时以后(不超过7 时)的某一时针的位置相互交换。
这6时后的某一时刻是多少?
26、现在是3时整,再过多少时间,分针第一次在时针和“ 12”字之间并与它们等距离?
27、小芳和小明一起在外做游戏。
下午5时多,小芳的妈妈喊小芳回家,小芳发现手表上两针的夹角刚好是900 (两人回家时间都没有超过6时)。
算算,小明比小芳晚回家多长时间?
28、下午放学回家,小明做作业,开始时看见钟面上分针略超过时针,完成作业时发现分针和时针恰好互换了位置,小明做作业用了多少分钟?
29、某科学家设计了一只时钟,这只时钟昼夜走10小时,每小时100分钟(如图)。
当这只钟显示5时时,实际上是中午12时;当这只钟显示6时75分时,实际上是下午几时几分?
30、甲乙丙丁约定中午12时在公园门口集合。
见面后,甲说:“我提前6分钟到,乙是正点到的。
”乙说:“我提前4分钟到,丙比我晚到2分钟。
” 丙说:“我提前3分钟到,丁是提前2分钟到的。
” 丁说:我以为我迟到1分钟,其实我到后1分钟才听到收音机报北京时间12时整。
”
根据他们的谈话,请你推算,他们4个人的手表各快(或慢)几分钟?实际上他们各是几时到公园门口的?公园门口有个大挂钟走得很准确,他们4人,谁到达公园时,大挂钟的时针与分针与时针所构成的角度最大,是甲、乙、丙,还是丁?
31、某人有一块手表和一个闹钟,手表比闹钟每时慢30秒,而闹钟比标准时间每时快30秒。
问:这块手表一昼夜比标准时间差多少秒?
32、一节课40分,从8点30分上课应当到几点几分下课?
33、王老师上午7: 30到校上班,11: 30下班,上午在校的时间是多少?
34、贝贝做家庭作业用了50分,正好在晚上8: 00做完,贝贝是晚上几时
几分开始做作业的?
35、做一个零件从上午7:40分开始做,上午9:20分完成,做这个零件用了多长时间?
36、小玲家的钟停了,电台广播2点时,奶奶跟电台对时,由于年老眼花,
把时针与分针颠倒了,小玲放学回家时见钟才2点整,大吃一惊,,请你帮助想一想,现在应该是几点钟?
37、小王骑自行车去A地,上午8时出发,在途中因有事停留了15分钟, 到中午12时才到达A地,小王骑自行车行了多少时间?
38、钟面上有12个数,你能画两条线将钟面分成三部分,使每部分的数相加的和相等吗?
39、小奇从家到学校跑步去和回要8分钟,如果去时步行,回来时跑步共需要10分,那么小奇来回都是步行要几分钟?
40、冬冬做作业,写语文作业用去规定时间的一半,写数学作业用去剩下
时间的一半,最后5分钟读书,冬冬完成全部作业作去了多长时间?
41、一只蜗牛从20厘米深的沟底往上爬,每爬4厘米要2分钟,然后停1 分,问蜗牛从沟底爬到沟沿上要用多长时间?
42、明明家的台钟,一点钟响铃一下,两点钟响铃两下,三点钟响铃三下, 八点钟响铃八下,有一次明明听见台钟响铃一下,没多久又响响了一下,后来又响了一下,你知道最后一响是几点钟吗?。