溴化锂制冷原理
溴化锂制冷机组原理
![溴化锂制冷机组原理](https://img.taocdn.com/s3/m/ee7c2dbaf80f76c66137ee06eff9aef8941e48a3.png)
溴化锂制冷机组原理
溴化锂制冷机组是一种常见的空调制冷设备,通过利用溴化锂在吸湿和脱湿的循环过程中释放热量来实现空调效果。
溴化锂制冷机组的工作原理如下:
1. 吸附过程:溴化锂吸收水分,形成溴化锂水合物。
空气中的湿度高时,溴化锂水合物会吸附更多水分。
这个过程是在吸湿器中进行的。
2. 解吸过程:当空气中湿度降低时,溴化锂水合物会释放吸收的水分。
这个过程是在脱湿器中进行的。
溴化锂会通过加热或减压的方式,将吸附的水分释放出来。
3. 冷凝过程:脱湿后的空气会进入冷凝器,通过冷却的方式使空气温度下降,将热量释放到外界。
4. 蒸发过程:经过冷凝的空气进入蒸发器,通过吹风机吹送到室内,使室内空气温度降低。
5. 再生过程:在脱湿器中释放的湿气通过再生回路送回吸湿器,回收部分吸附剂,再次进行吸湿循环。
通过不断循环上述步骤,溴化锂制冷机组可以不断吸湿和脱湿,使空气温度降低,从而达到制冷的效果。
溴化锂机组工作原理
![溴化锂机组工作原理](https://img.taocdn.com/s3/m/732b54a55ff7ba0d4a7302768e9951e79a896953.png)
溴化锂机组工作原理溴化锂机组是一种常见的吸收式制冷机组,其工作原理是利用溴化锂溶液吸收水蒸气来实现制冷的过程。
下面将从溴化锂机组的原理、工作流程、优点、应用领域和发展趋势等方面进行详细介绍。
一、溴化锂机组的原理1.1 溴化锂机组利用溴化锂溶液对水蒸气的吸收和释放来实现制冷。
1.2 在吸收过程中,水蒸气被溴化锂溶液吸收,形成溴化锂溶液和水的混合物。
1.3 在释放过程中,通过加热溴化锂溶液,使其释放水蒸气,从而实现制冷效果。
二、溴化锂机组的工作流程2.1 蒸发器中的水蒸气被溴化锂溶液吸收,形成溴化锂溶液和水的混合物。
2.2 混合物经过泵送至冷凝器,加热溴化锂溶液,释放水蒸气。
2.3 释放的水蒸气通过冷凝器冷却凝结成液态水,然后返回蒸发器循环。
三、溴化锂机组的优点3.1 高效节能:溴化锂机组具有高效节能的特点,能够有效降低能耗。
3.2 稳定性好:溴化锂机组运行稳定,制冷效果较为可靠。
3.3 适用范围广:溴化锂机组适用于各种规模的制冷系统,应用领域广泛。
四、溴化锂机组的应用领域4.1 工业制冷:溴化锂机组广泛应用于工业制冷领域,如化工、制药等行业。
4.2 商业建筑:溴化锂机组也常用于商业建筑的空调系统中,为建筑提供舒适的环境。
4.3 医疗设备:溴化锂机组在医疗设备的制冷系统中也有一定的应用,确保设备的正常运行。
五、溴化锂机组的发展趋势5.1 环保节能:未来溴化锂机组将更加注重环保节能,采用更加环保的制冷剂和技术。
5.2 智能化:溴化锂机组将向智能化方向发展,提高运行效率和控制精度。
5.3 多功能化:未来的溴化锂机组可能会具备更多的功能,如热回收、热泵等,实现能源的综合利用。
总之,溴化锂机组作为一种高效节能的制冷设备,具有广泛的应用前景和发展空间。
随着技术的不断进步和创新,溴化锂机组将在未来的制冷领域发挥更加重要的作用。
溴化锂机组制冷原理
![溴化锂机组制冷原理](https://img.taocdn.com/s3/m/676ebe2ba31614791711cc7931b765ce05087ad8.png)
溴化锂机组制冷原理
溴化锂机组制冷原理是利用溴化锂的吸湿性和稳定的化学性质来实现制冷。
该机组包括一个溴化锂溶液,一个溴化锂吸湿机和一个冷凝器。
首先,溴化锂溶液被喷洒在一个旋转的薄膜表面上,形成一个薄膜层。
空气通过薄膜层时,由于溴化锂的吸湿性,空气中的水分会被吸附到薄膜层上,进而脱湿。
脱湿后的空气则变得干燥。
接下来,干燥的空气经过冷凝器,冷凝器中的制冷剂会将空气中的水分冷凝成液体并排出。
溴化锂吸湿机将脱湿后的空气重新加湿,使其达到舒适的湿度水平,然后将加湿后的空气进行冷却,提供制冷效果。
整个制冷循环不断重复,以实现持续的制冷效果。
溴化锂机组制冷原理通过吸附-脱附的循环过程,使得空气中的水分得以去除,从而达到制冷的目的。
溴化锂机组工作原理
![溴化锂机组工作原理](https://img.taocdn.com/s3/m/f406301f492fb4daa58da0116c175f0e7cd119c9.png)
溴化锂机组工作原理溴化锂机组是一种常用的空调系统,广泛应用于商业建筑、办公室和住宅等场所。
它采用溴化锂吸附式制冷技术,能够实现高效能的制冷和加热效果。
以下是溴化锂机组的工作原理的详细解释。
一、溴化锂机组的基本原理溴化锂机组是一种利用溴化锂和水的化学反应来实现制冷和加热的系统。
它的工作原理基于溴化锂吸附式制冷技术,该技术利用溴化锂和水之间的吸附和脱附过程来实现制冷和加热。
二、制冷过程1. 吸附过程:在制冷循环的开始,溴化锂溶液(吸附剂)通过吸附器吸附水蒸气,形成溴化锂-水复合物。
吸附过程是一个放热的过程,释放出的热量通过冷却水或其他介质带走。
2. 脱附过程:当吸附器中的溴化锂溶液饱和时,需要对其进行脱附。
通过加热吸附器,溴化锂-水复合物分解,水蒸气被释放出来。
脱附过程是一个吸热的过程,需要提供热源。
三、加热过程1. 吸附过程:在加热循环的开始,溴化锂溶液通过吸附器吸附水蒸气,形成溴化锂-水复合物。
吸附过程是一个放热的过程,释放出的热量通过冷却水或其他介质带走。
2. 脱附过程:当吸附器中的溴化锂溶液饱和时,需要对其进行脱附。
通过加热吸附器,溴化锂-水复合物分解,水蒸气被释放出来。
脱附过程是一个吸热的过程,需要提供热源。
四、制冷和加热循环溴化锂机组通过交替进行制冷和加热循环来实现空调效果。
1. 制冷循环:制冷循环中,制冷剂通过蒸发器吸收室内空气的热量,使室内空气温度下降。
然后,制冷剂进入吸附器,吸附水蒸气,形成溴化锂-水复合物。
接着,制冷剂进入冷凝器,通过冷却水或其他介质散发热量,使溴化锂-水复合物分解,释放出水蒸气。
最后,制冷剂回到蒸发器,循环再次开始。
2. 加热循环:加热循环中,加热剂通过加热器提供热量,使溴化锂-水复合物分解,释放出水蒸气。
然后,水蒸气进入冷凝器,通过冷却水或其他介质散发热量,使水蒸气冷凝成液态水。
接着,水进入吸附器,与溴化锂反应形成溴化锂-水复合物。
最后,液态水回到加热器,循环再次开始。
溴化锂机组工作原理
![溴化锂机组工作原理](https://img.taocdn.com/s3/m/ca0d52ed77eeaeaad1f34693daef5ef7bb0d127f.png)
溴化锂机组工作原理溴化锂机组是一种常用的空调系统,它利用溴化锂吸收式制冷循环原理来实现空调效果。
下面将详细介绍溴化锂机组的工作原理。
1. 溴化锂溶液循环系统溴化锂机组的核心是溴化锂溶液循环系统,它由吸收器、发生器、冷凝器和蒸发器组成。
溴化锂溶液是一种具有吸湿性的化合物,它可以通过吸湿来吸收空气中的水分,从而实现制冷效果。
2. 吸收器吸收器是溴化锂机组中的关键组件之一。
它通常由两个部分组成:溴化锂溶液和吸收器。
吸收器中的溴化锂溶液通过吸湿作用吸收空气中的水分,从而形成含有水分的溴化锂溶液。
3. 发生器发生器是溴化锂机组中的另一个关键组件。
它通过加热溴化锂溶液,使其释放出吸收的水分。
发生器中的溴化锂溶液在加热的作用下,水分逐渐蒸发出来,形成干燥的溴化锂溶液。
4. 冷凝器冷凝器是溴化锂机组中的一个重要组件。
它通过冷却发生器中的蒸汽,使其凝结成液体。
冷凝器中的冷却剂(一般为水)通过与蒸汽接触,将蒸汽冷却下来,从而形成液体。
5. 蒸发器蒸发器是溴化锂机组中的最后一个组件。
它通过蒸发冷却剂,吸收周围空气中的热量,从而降低空气的温度。
蒸发器中的冷却剂在与空气接触的过程中,从液体状态转变为蒸汽状态,吸收热量,从而实现制冷效果。
6. 工作原理溴化锂机组的工作原理可以简单概括为以下几个步骤:- 步骤1:吸收器中的溴化锂溶液通过吸湿作用吸收空气中的水分,形成含有水分的溴化锂溶液。
- 步骤2:含有水分的溴化锂溶液进入发生器,通过加热使其释放出吸收的水分,形成干燥的溴化锂溶液。
- 步骤3:干燥的溴化锂溶液进入冷凝器,与冷却剂接触,蒸汽凝结成液体。
- 步骤4:冷凝后的溴化锂溶液进入蒸发器,与空气接触,吸收空气中的热量,从而降低空气的温度。
- 步骤5:蒸发器中的冷却剂蒸发成蒸汽,再次回到吸收器中,循环往复。
通过这个循环过程,溴化锂机组能够实现制冷效果,从而达到空调的目的。
总结:溴化锂机组利用溴化锂溶液的吸湿性质,通过吸收和释放水分来实现制冷效果。
溴化锂直燃机制冷原理
![溴化锂直燃机制冷原理](https://img.taocdn.com/s3/m/3fb7203126284b73f242336c1eb91a37f11132bb.png)
溴化锂直燃机制冷原理
第一阶段:溴化锂与水反应
在溴化锂直燃机制冷系统中,溴化锂固体与水蒸气进行反应,生成氢
溴酸和水热蒸汽。
反应式如下:
LiBr+H2O→LiOH+HBr↑
反应过程中,溴化锂吸热,将环境的热量吸收并转化为化学能,导致
周围温度下降。
第二阶段:再生
在第一阶段反应结束后,继续加热产生的氢溴酸,使其分解成溴化锂
固体和水蒸气。
反应式如下:
LiOH+HBr→LiBr+H2O↑
通过再生,实现了溴化锂的再生利用,将溴化锂固体从酸中分离出来,以备下一次冷凝反应使用。
第三阶段:制冷
制冷阶段是通过利用制冷机制实现的。
在制冷机制的工作过程中,蒸
发冷却过的空气通过冷凝器冷却,产生冷风,从而达到降低室内温度的效果。
以上便是溴化锂直燃机制冷的基本原理。
由于溴化锂在与水反应时吸
热的特性,使得溴化锂直燃机制冷具有高效、低成本、环保等优点,被广
泛应用于空调、制冷设备等领域。
值得注意的是,溴化锂直燃机制冷过程中,对水的纯度要求较高,需要保证水质的纯净度,以免杂质对溴化锂反应产生干扰。
此外,在溴化锂直燃机制冷过程中,为保证效果,需控制好反应温度、水蒸气和溴化锂的配比等因素。
同时,高温下的溴化锂易分解,需注意温度的控制,以确保系统的稳定性和安全性。
总之,溴化锂直燃机制冷通过溴化锂与水的反应来实现制冷效果,具有高效、低成本等优点,被广泛应用于制冷设备中。
溴化锂制冷机原理
![溴化锂制冷机原理](https://img.taocdn.com/s3/m/ed33a545bb1aa8114431b90d6c85ec3a86c28b61.png)
溴化锂制冷机原理
溴化锂制冷机是一种热泵系统,利用溴化锂吸附和脱附的物理过程,实现制冷效果。
其工作原理如下:
1. 吸附过程:
溴化锂制冷机中的溴化锂溶液被注入到吸附器中,通过加热器加热,使其达到吸附温度。
此时,溴化锂分子中的吸附剂将吸附式冷媒(如水蒸气)从蒸发器中吸附到自身表面。
2. 压缩过程:
吸附剂与冷媒的混合物被泵入压缩器中,压缩器对混合物进行压缩,使其气体质量增加,同时温度也随之升高。
3. 冷凝过程:
压缩后的混合物进入冷凝器中,通过冷却水循环系统的冷凝水对其进行冷却,使其温度下降。
4. 脱附过程:
冷却后的混合物进入脱附器中,通过降温器使其达到脱附温度。
这时,吸附剂会释放出吸附的冷媒,即从溴化锂溶液中脱附出来。
5. 膨胀过程:
脱附的冷媒进入膨胀阀,由于阀门的限制,其流速和压力都会降低。
这样,冷媒的温度也会随之降低。
6. 蒸发过程:
降温后的冷媒经过蒸发器,与需要制冷的物体进行热交换,吸收物体的热量,使其温度下降。
通过循环执行上述吸附、压缩、冷凝、脱附、膨胀和蒸发的过程,溴化锂制冷机实现了制冷效果。
整个过程中,吸附和脱附过程是关键步骤,通过吸附和脱附过程中气体的物理吸附和脱附,实现了制冷效果。
溴化锂空调工作原理
![溴化锂空调工作原理](https://img.taocdn.com/s3/m/0de6675d5e0e7cd184254b35eefdc8d377ee1410.png)
溴化锂空调工作原理
溴化锂空调利用溴化锂在溶液中的吸热和释热过程来实现空调制冷和供暖的功能。
其主要工作原理如下:
1. 吸湿除湿:空气通过空调器中的除湿器,使含水量较高的潮湿空气与溴化锂溶液接触。
溴化锂溶液中的溴化锂会吸收空气中的水分,使空气变得干燥,从而实现除湿效果。
2. 供冷制冷:干燥的空气经过除湿器后,进入制冷器。
在制冷器中,空气与溴化锂溶液发生接触反应。
这个反应会吸收空气中的热量,并使溴化锂溶液发生吸热反应。
这样,制冷器会将热量从空气中吸收出来,使空气变得更加凉爽。
3. 供热加热:在制冷过程中,溴化锂溶液会变得浓缩,并被输送至加热器。
在加热器中,浓缩的溴化锂溶液与空气发生接触,释放热量。
这个过程使空气的温度升高,实现供热的功能。
总的来说,溴化锂空调利用溴化锂在溶液中吸热和释热的特性,通过除湿、制冷和加热的过程,调节空气的湿度和温度,从而实现空调的制冷和供热功能。
溴化锂机组工作原理
![溴化锂机组工作原理](https://img.taocdn.com/s3/m/756f43931b37f111f18583d049649b6648d7097c.png)
溴化锂机组工作原理一、溴化锂制冷机的工作原理溴化锂制冷机是利用溴化锂水溶液在不同温度下吸收和释放水蒸气来实现制冷的。
该循环应利用外部热源来实现制冷。
常见的热源有蒸汽、热水、煤气、燃料油等。
由于溴化锂冰箱具有许多独特的优势,近年来发展非常迅速,尤其是在空调制冷方面。
那么应用溴化锂制冷机是否有利于提高一次能源的利用率,是否可以节能,在什么情况下,冷热源是否选择吸收式制冷机一直是争论的焦点。
溴化锂制冷机在实际中的应用及其使用寿命,直接关系到实际工程的经济效益。
溴化锂制冷机工作原理是什么溴化锂以热能为动力源,以水为制冷剂,以溴化锂溶液为吸收剂制备冷源水,称为溴化锂制冷机。
其热源主要有蒸汽、热水、燃气和燃油,可分为直燃式、蒸汽式和热水式。
蒸汽式机组主要用于可以使用蒸汽的场合,如城市集中供热热网、热电联供冷系统、纺织、化工、冶金等行业;热水机组可利用65℃以上的热水,如地热能、太阳能热能、余热和工业现场加工过程产生的热水,生产冷水。
直燃式机组可以利用燃气为宾馆、医院、写字楼、机场等大型建筑提供空调。
溴化锂冰箱由于采用热量冷却,还可以利用工业余热为工业提供冷水或空调。
溴化锂制冷机在中央空调领域独树一帜,因为它可以使用低品位的热能,所需的电力低,制冷剂是水,溴化锂溶液不会对环境造成破坏。
为满足我国严重缺电时期空调的制冷需求,受到政府和电力部门的鼓励。
20世纪80年代末以来,我国已有100多家溴化锂空调生产企业,其产品制造水平和产量仅次于日本,居世界前列。
二、溴化锂制冷机的保养方法1、溴化锂溶液再生处理溴化锂溶液在设备运行中,随着运行时间的增加其化学成分会发生一定的改变,主要是溴化锂溶液在高温下的质变、与铁板的腐蚀等。
故溴化锂溶液在一定时间运行后需再生处理,这样对设备的使用寿命具有很关键的作用。
同时溴化锂溶液里的辛醇添加,为稳定设备的制冷效果起到积极的作用。
2、传热管的清洗设备在运行中吸收器、冷凝器通过的冷却水系统属开放式系统,故经常会带入沙土、灰层等杂质,同时使用的自来水或深井水,均含一定结垢成分;故在使用一段时间后,设备容易结垢或铜管堵塞,从而影响其热量交换,影响制冷效果。
溴化锂机组工作原理
![溴化锂机组工作原理](https://img.taocdn.com/s3/m/1004120b0a4c2e3f5727a5e9856a561252d32108.png)
溴化锂机组工作原理一、引言溴化锂机组是一种广泛应用于空调系统中的吸附式制冷机组。
它通过吸附剂溴化锂和水之间的化学反应来实现制冷效果。
本文将详细介绍溴化锂机组的工作原理。
二、溴化锂机组的组成溴化锂机组主要由吸附器、发生器、冷凝器、蒸发器和泵组等组件组成。
1. 吸附器:吸附器是溴化锂机组的核心部件,它包含了吸附剂溴化锂和水的混合物。
在吸附器中,溴化锂会吸附水分子,从而形成溴化锂溶液。
2. 发生器:发生器是溴化锂机组中的热源部分,它通过加热溴化锂溶液,使其蒸发,从而释放吸附剂中的水分子。
这个过程需要外部热源的供应,通常是通过蒸汽或燃气加热。
3. 冷凝器:冷凝器是溴化锂机组中的冷源部分,它通过冷却发生器中的蒸汽,使其凝结成液体。
冷凝器通常采用冷却水或冷却剂来进行冷却。
4. 蒸发器:蒸发器是溴化锂机组中的制冷部分,它通过吸附剂溴化锂与水的化学反应,吸收空气中的热量,从而实现制冷效果。
蒸发器通常采用空气或水来进行冷却。
5. 泵组:泵组用于将溴化锂溶液从吸附器中抽出,并将其送往发生器进行蒸发。
泵组通常由循环泵和补充泵组成。
三、溴化锂机组的工作原理溴化锂机组的工作原理可以分为两个循环:制冷循环和再生循环。
1. 制冷循环:制冷循环是溴化锂机组实现制冷效果的循环过程。
具体步骤如下:- 步骤1:吸附器中的溴化锂溶液吸附空气中的水分子,形成溴化锂溶液和干燥的空气。
- 步骤2:吸附器中的溴化锂溶液被抽出,并通过泵组送往发生器。
- 步骤3:发生器中的溴化锂溶液被加热,水分子从中蒸发出来,形成湿蒸汽。
- 步骤4:湿蒸汽进入冷凝器,通过冷却水或冷却剂的作用,凝结成液体。
- 步骤5:液体通过泵组送往蒸发器,与空气进行化学反应,吸收空气中的热量,从而实现制冷效果。
- 步骤6:冷却后的空气被送出,形成冷风。
2. 再生循环:再生循环是溴化锂机组实现再生过程的循环过程。
具体步骤如下:- 步骤1:吸附器中的溴化锂溶液吸附空气中的水分子,形成溴化锂溶液和干燥的空气。
溴化锂吸收式制冷原理及设计介绍
![溴化锂吸收式制冷原理及设计介绍](https://img.taocdn.com/s3/m/4e2dce7b3868011ca300a6c30c2259010202f337.png)
吸收器内部装有溴化锂溶液,通过吸 收蒸发器产生的冷剂蒸汽,将其转回 为溴化锂溶液。
溶液泵和冷剂泵
作用
将溴化锂溶液和冷剂水分别循环输送至各个部件。
描述
溶液泵用于将溴化锂溶液从吸收器输送至发生器,而冷剂泵用于将冷剂水从蒸发器输送至吸收器。
03 溴化锂吸收式制冷系统设 计
系统设计流程
选择制冷剂和吸收剂
采用新型紧凑高效的换热器,减小换 热器体积和重量。
系统可靠性的增强措施
选用高质量的材料和元件
选用耐腐蚀、耐高温、高可靠性的材料和元件,提高系统可靠性。
加强系统维护保养
定期对系统进行维护保养,确保系统正常运行。
完善应急预案
制定完善的应急预案,及时处理系统故障,确保系统安全可靠运行。
05 溴化锂吸收式制冷系统的 应用与案例分析
根据系统性能和环保要求,选择 适合的溴化锂或其他吸收剂。
设计热力系统
根据制冷需求和吸收剂、制冷剂 的热力特性,设计合理的热力循 环系统。
结构设计
根据系统工艺和运行要求,设计 合理的结构布局,包括吸收器、 蒸发器、冷凝器、发生器等部件。
确定制冷需求
根据用户需求和系统规模,确定 制冷量、温度和湿度等参数。
应用案例一:大型商场的空调系统
01
在大型商场的空调系统中,溴化 锂吸收式制冷系统能够提供高效 、稳定的冷源,满足商场内大量 人流的舒适需求。
02
通过合理的系统设计和布局,能 够实现节能减排,降低运行成本 。
应用案例二:工业冷却系统
在工业冷却系统中,溴化锂吸收式制 冷技术能够为工艺流体提供稳定的冷 却效果,保证生产过程的顺利进行。
强化传热传质
采用新型高效传热传质元 件,改善吸收器和冷凝器 内的传热传质过程。
溴化锂制冷工作原理
![溴化锂制冷工作原理](https://img.taocdn.com/s3/m/46625a985122aaea998fcc22bcd126fff6055d47.png)
溴化锂制冷工作原理
溴化锂制冷是一种基于热泵原理的制冷技术。
它利用溴化锂溶液的吸附和脱附作用来实现制冷。
制冷循环中,首先将蒸发器与蒸发器内的溴化锂溶液加热至其沸点,使得溶液中的溴化锂蒸发成气体,并吸收空气中的热量。
蒸发器中的气体被压缩机抽入,经过压缩机的压缩作用,气体温度和压力升高。
压缩后的气体通过冷凝器,与冷凝器中的冷却介质(通常是水)交换热量。
热量传递过程中,气体冷却并凝结成液体。
冷凝器中被冷却的液体通过膨胀阀进入蒸发器,液体在低压状态下迅速蒸发,并吸收周围环境的热量,从而使周围环境降温。
蒸发后的气体再次被压缩机吸入,循环往复。
溴化锂制冷的工作原理可归纳为以下四个步骤:吸附、脱附、冷凝和蒸发。
首先,在吸附器中,溴化锂溶液吸附了水分子,释放出热量。
这一步骤多用于干燥空气。
然后,脱附器中的溴化锂溶液被加热并降低压力,水分子从溶液中脱附出来,形成气态。
这一步骤使得制冷器的温度降低。
接下来,脱附出的水分子通过冷凝器与冷却介质(如水)接触,冷却并凝结成液态。
这一步骤使得冷凝器的温度升高。
最后,低压状态下的液体通过膨胀阀进入蒸发器,在蒸发器内迅速蒸发。
在蒸发的过程中,液体从周围环境吸收热量并蒸发
成气态。
这一步骤使得蒸发器内的温度降低。
通过以上四个步骤的循环,溴化锂制冷系统可以实现空气、水等介质的制冷。
制冷循环中,关键的是利用溴化锂溶液的吸附和脱附作用来进行热量转移和温度调节。
溴化锂制冷机的工作原理
![溴化锂制冷机的工作原理](https://img.taocdn.com/s3/m/3961a1496fdb6f1aff00bed5b9f3f90f76c64dff.png)
如 果 绝 对 压 力 为 6mmHg- 大 气 压 相 当 于 绝 对 压 力 760mmHg 时 水 约 在 4℃ 蒸 发 。 这 时 的 蒸 发 潜 热 为 每 1kg 约 599kcal。
把上述状态的水做为制冷剂可以制造出7℃的冷水。 在内部压力达到为6mmHg的封闭容器内,制冷剂水 在4℃蒸发,吸收容器铜管内通入冷媒水的热量,使冷媒 体温度降低至7℃ ,达到空调用冷水的目的。 把这个容器叫做蒸发器
溴化锂制冷机的工作 原理
Part 01.
制冷原理
单击此处添加正文,文字是您思想的提炼, 请尽量言简意赅的阐述观点。
冷水发生原理
吸收式冷冻机是把水(H2O)作为制冷剂,[溴化锂](LiBr)溶液作为吸收剂的冷温水发生装置。
对物体进行大量冷却一般利用蒸发 潜热。注射的时候如果涂上[酒精],其部 位感觉凉爽是因为酒精蒸发时吸收了蒸发 潜热,夏季在院子里泼水感觉凉爽也是因 为水蒸发时从周围吸收了蒸发潜热。
溶液泵
冷却水从出口处进入冷却塔,在冷却塔风扇的作用下,将其中的热量散发到大气中,温度降 为32℃,再从冷却水入口处进入制冷机。如此循环往复。
冷媒水从制冷机出来后,进入空调器(或风机盘管),将冷量送到所需制冷的位置。
• CLICK HERE TO ADD A TITLE
感谢观看
单击此处添加文字,文字是您思想的提炼
蒸发器铜管
冷剂水
图4-2:蒸发器功能示意图
空调用冷水出口 7 ℃ 空调用冷水入口 12 ℃
真空泵
但因蒸发了的冷剂蒸气使容器内的压力逐渐升高,使得制冷剂在4℃蒸发不了, 蒸发器的铜管中通过的水的出口温度也将逐渐上升。
为了制造出7℃的冷水应该始终保证制冷剂在4℃蒸发,因此容器内的压力应该 维持在6 mmHg。
溴化锂吸收式制冷机的工作原理汇总
![溴化锂吸收式制冷机的工作原理汇总](https://img.taocdn.com/s3/m/2faaec1e4a35eefdc8d376eeaeaad1f3469311e7.png)
溴化锂吸收式制冷机的工作原理汇总溴化锂吸收式制冷机是一种常用的制冷设备,其工作原理基于溴化锂和水之间的化学反应。
它是一种环保、高效的制冷方式,被广泛应用于家用空调、商用空调以及工业冷却等领域。
1. 基本原理溴化锂吸收式制冷机的工作原理基于溴化锂和水的吸收和释放热量的化学反应。
该机器由两个主要部分组成:吸收器和发生器。
吸收器中装有吸收剂溴化锂溶液,而发生器中则装有冷凝剂水。
制冷过程中,溴化锂溶液吸收水蒸气,从而产生吸收热量;而在冷却剂回路中,冷凝剂水释放热量,从而使制冷效果得以实现。
2. 工作流程溴化锂吸收式制冷机的工作流程可以分为四个主要步骤:吸收、冷凝、蒸发和膨胀。
首先,在吸收器中,溴化锂溶液吸收水蒸气。
当水蒸气进入吸收器时,它与溴化锂溶液发生反应,形成溴化锂和水的化合物。
这个过程会释放吸收热量,并将水蒸气转化为液体水。
接下来,液体水被泵送到发生器中。
在发生器中,水被加热至沸腾点,水蒸气逸出,并与冷凝器中的冷凝剂水接触。
在这个过程中,水蒸气会释放热量,并逐渐冷却成液体。
然后,冷凝剂水被泵送到蒸发器中。
在蒸发器中,冷凝剂水与外界空气接触,吸收外界空气的热量,从而蒸发成水蒸气。
这个过程会吸收热量,从而实现制冷效果。
最后,水蒸气通过膨胀阀进入吸收器,重新开始新一轮的循环。
整个过程中,溴化锂溶液和水之间的化学反应不断重复,从而实现制冷效果。
3. 优点和应用溴化锂吸收式制冷机相比于传统的机械式制冷机有着一些明显的优点。
首先,它是一种环保的制冷方式,不会对大气层臭氧层造成破坏。
其次,它具有高效节能的特点,能够在较低的能耗下实现制冷效果。
此外,溴化锂吸收式制冷机还具有噪音低、维护成本低等优点。
溴化锂吸收式制冷机广泛应用于家用空调、商用空调以及工业冷却等领域。
在家用空调中,它能够提供稳定的制冷效果,并且噪音较低,给人们带来舒适的居住环境。
在商用空调中,它能够满足大面积空间的制冷需求,并且能够根据需求进行灵活调节。
溴化锂机组工作原理
![溴化锂机组工作原理](https://img.taocdn.com/s3/m/d6a413584531b90d6c85ec3a87c24028905f8559.png)
溴化锂机组工作原理引言概述:溴化锂机组是一种常用的空调系统,其工作原理基于溴化锂吸附式制冷技术。
本文将详细介绍溴化锂机组的工作原理,包括溴化锂溶液的循环、蒸发、再生和冷却等过程。
一、溴化锂溶液的循环1.1 溴化锂溶液的吸附溴化锂机组中,溴化锂溶液首先通过吸附器吸附空气中的水分,使空气干燥。
溴化锂溶液中的溴化锂盐可以吸附水分,从而降低空气的湿度。
1.2 溴化锂溶液的冷却吸附后的溴化锂溶液进入冷却器,通过冷却器的冷却作用,将溴化锂溶液的温度降低。
冷却后的溴化锂溶液可以更好地吸附空气中的水分。
1.3 溴化锂溶液的循环冷却后的溴化锂溶液再次进入吸附器,循环进行吸附和冷却的过程。
通过循环,溴化锂溶液可以不断地吸附和冷却空气中的水分,达到降低空气湿度的效果。
二、溴化锂溶液的蒸发2.1 溴化锂溶液的加热溴化锂溶液经过循环后,进入蒸发器。
在蒸发器中,溴化锂溶液受到加热,使其温度升高。
2.2 溴化锂溶液的蒸发加热后的溴化锂溶液开始蒸发,蒸发过程中吸收空气中的热量,从而降低空气温度。
蒸发后的溴化锂溶液变成为了气体状态。
2.3 溴化锂溶液的再生蒸发后的溴化锂溶液进入再生器,通过再生器的加热作用,使溴化锂溶液中的水分蒸发,将溴化锂溶液再生为吸附剂。
三、吸附剂的冷却3.1 吸附剂的冷却再生后的吸附剂进入冷却器,通过冷却器的冷却作用,将吸附剂的温度降低。
3.2 吸附剂的循环冷却后的吸附剂再次进入吸附器,循环进行吸附和冷却的过程。
通过循环,吸附剂可以不断地吸附和冷却空气中的水分,实现空调系统的制冷效果。
3.3 吸附剂的再生经过多次循环后,吸附剂中的水分逐渐增多,需要进行再生。
再生过程中,吸附剂中的水分被蒸发出来,将吸附剂再生为溴化锂溶液。
四、制冷循环4.1 冷凝器蒸发后的气体进入冷凝器,通过冷凝器的冷却作用,将气体冷却成液体状态。
4.2 膨胀阀冷凝后的液体通过膨胀阀进入蒸发器,膨胀阀的作用是降低液体的压力,使其蒸发时吸收更多的热量。
溴化锂制冷机的原理
![溴化锂制冷机的原理](https://img.taocdn.com/s3/m/e424d2c2d1d233d4b14e852458fb770bf78a3bab.png)
溴化锂制冷机的原理
溴化锂制冷机是一种常用的制冷装置,其原理是利用锂溴化物和水的吸湿性质,通过吸湿脱湿的循环过程来实现制冷效果。
溴化锂制冷机的工作过程分为两个主要循环:吸湿循环和脱湿循环。
吸湿循环中,溴化锂溶液被喷洒在脱湿器表面,通过吸湿作用使空气中的水分子被锂溴化物吸附。
吸附过程中,锂溴化物会释放出热量,提高脱湿器的温度。
脱湿循环中,含有水分子的溶液进入蒸发器,通过降低压力使溶液沸腾,蒸发产生水蒸气。
蒸汽会带走大量的热量,从而使蒸发器温度降低。
溴化锂溶液中的溴化锂会与水蒸气反应生成氢氧化锂和溴气,溴气会进一步进入吸湿器。
通过吸湿循环和脱湿循环的交替进行,溴化锂制冷机可以实现持续的制冷效果。
溴化锂溶液在吸湿器和脱湿器之间循环流动,实现了水分的吸湿和解湿循环。
溴化锂制冷机具有制冷效果好、制冷速度快、噪音低、可靠性高等优点,广泛应用于空调、冷库等场所。
溴化锂原理
![溴化锂原理](https://img.taocdn.com/s3/m/233ce3063868011ca300a6c30c2259010202f313.png)
溴化锂原理
溴化锂原理是指通过将锂和溴反应生成溴化锂,从而实现空气调节系统中的冷却和加热。
空气调节系统是通过循环制冷剂流体来控制室内的温度和湿度,而溴化锂是常用的制冷剂之一。
溴化锂制冷系统是建立在溴化锂盐可以吸收水蒸气和释放水蒸气这一原理之上的。
在制冷系统中,溴化锂盐通常在吸湿、可逆合成和加热三个过程中来实现水分的吸收和释放。
当空气经过这种盐时,水分被盐吸收,使得空气的湿度下降,从而降低了空气的相对湿度。
而加热逆反应则会将吸收的水分释放出来。
在空气调节系统的冷却循环中,制冷剂将受热的气体带到冷凝器中。
此时,制冷剂从气体中吸收热量,冷却气体后变成液体。
而在加热循环中,加热器中的制冷剂从气态转化为液态时,会释放热量,使得空气加热。
此外,溴化锂制冷系统还具有节约能源、降低环境污染的优点。
相对于其他制冷剂,溴化锂制冷系统采用的是无毒、无污染的溴化锂盐,不会对环境产生负面影响。
同时,制冷系统中的加热器采用的是低温热能,相对节省能源,使得溴化锂制冷系统具有更为出色的经济性和环保性。
总之,溴化锂制冷系统通过利用溴化锂盐的吸湿和释放水分的原理来实现空气的冷却和加热,具有高效、环保、节能等诸多优点,被广泛应用于空气调节系统中。
溴化锂工作原理
![溴化锂工作原理](https://img.taocdn.com/s3/m/81ec7d773868011ca300a6c30c2259010302f373.png)
溴化锂工作原理
溴化锂(LiBr)是一种化学物质,其工作原理主要涉及吸湿和蒸发冷却两个过程。
首先,溴化锂具有很强的吸湿性。
在相对空气湿度较高的环境下,溴化锂可以吸收周围空气中的水分子。
这是因为溴化锂的晶格结构具有缺陷,其中的溴离子(Br-)和锂离子(Li+)之间会形成水合物。
这些水合物会吸附在固体溴化锂表面,使其逐渐形成水合溴化锂(LiBr•3H2O)。
这个过程可以从空气中吸收大量热量,因此吸湿过程有助于降低周围空气的温度。
接下来,经过吸湿的溴化锂会在适当的温度下发生蒸发。
当外部热源提供所需的热量时,水合溴化锂开始脱水,并以水蒸气的形式释放出吸收的热量。
这个过程被称为蒸发冷却。
蒸发冷却作用是因为水蒸气的蒸发需要吸收周围环境中的热量,从而造成温度降低。
溴化锂的工作原理在吸湿和蒸发冷却的循环过程中发挥作用。
通过循环地吸湿和蒸发冷却,溴化锂可以为空调或其他制冷设备提供低温效果。
这一工作原理使得溴化锂成为一种重要的制冷剂,广泛应用于空调、冷却水系统和其他许多领域。
溴化锂机组工作原理
![溴化锂机组工作原理](https://img.taocdn.com/s3/m/c8a9125e53d380eb6294dd88d0d233d4b04e3f5e.png)
溴化锂机组工作原理
在制冷循环中,冷凝器接收高温高压的溶液,通过散热使其冷却成低温低压状态,此时溶液中的溴化锂可以重新吸附水分子,释放出冷能。
这时溶液会进入吸附器,通过与空气或其他介质接触,从中吸附空气中的水分子,水分子进入溴化锂溶液中,使得溶液温度升高。
吸附剂在吸附过程中会发生体积变化,吸附剂的体积变化将带动制冷剂的吸附和解吸。
在再生循环中,溴化锂溶液在吸附器中被热源加热,水分子从吸附剂表面脱附出来,溴化锂溶液恢复到高温高浓度的状态。
这时溶液会进入再生器,并通过冷凝器冷却头部,使其重新成为高温高浓度的溴化锂溶液,以供给制冷循环使用。
整个循环过程实际上是一个吸附和解吸的过程,通过反复循环吸附剂与水分子的接触和分离,实现了热能的转化。
溴化锂机组的主要工况参数有制冷温度、再生温度和冷凝温度三个参数,这些参数对制冷效果有很大的影响。
溴化锂机组的优点在于不需要压缩机和冷凝器,能够利用低温热能实现制冷效果,同时具有良好的环境适应性和可调节性。
但是由于溴化锂机组对温度和湿度要求较高,所以在实际应用中需要注意调节和控制工况参数,以保证机组的正常运行和制冷效果。
总之,溴化锂机组通过溴化锂和水的吸附性质,实现了将低温热能转化为冷能的工作原理。
通过制冷循环和再生循环的配合,将制冷剂吸附和解吸过程中产生的热能和冷能进行有效的传递和转换,实现制冷效果。
溴化锂机组具有环保、高效、可调节等优点,在一些特定场合具有较好的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p
p
0 LiBr
p p
0 H 2O
H 2O p
LiBr p
0 H 2O
H 2O
即氣相中只有水蒸氣。
混合現象
兩種液體混合時容積和溫度的變化
混合現象
混合熱:每生成1kg混合物所需要加入或排出的熱
量,稱為混合物的混合熱
兩種液體混合前的比焓: 混合後的比焓:
。
二元溶液的溫度—濃度圖
壓縮式製冷機的製冷係數 應乘以驅動壓縮機的動力裝置 的熱效率後,才能與吸收式製 冷機的熱力係數進行比較。 可逆吸收式製冷迴圈
第二節
吸收式製冷機的 溶液熱力學基礎
二元溶液的品質分數
兩種互相不起化學作用的物質組成的均勻混合 物稱為二元溶液。 吸收式製冷工質對是一種二元溶液,其品質分數 w是以溶液中溶質的品質百分數表示的。 溴化鋰水溶液的品質百分數:
pA p xA , pB p xB
0 A 0 B
對於二元溶液,總飽和蒸氣壓等於兩組分的蒸 氣壓之和:
p p x p x p x p (1 xA )
0 A A 0 B B 0 A A 0 B
因为y A yB 1 ,x A xB 1 ,因此 ( )
氣液相平衡
對於溴化鋰水溶液,由於溴化鋰的沸點比水高 得多,因此: 0 0 LiBr H 2O
基本原理
吸收式與蒸氣壓縮式製冷迴圈的比較 (a)蒸氣壓縮式製冷迴圈;(b)吸收式製冷迴圈
基本原理
整個系統包括 兩個回路: 製冷劑回路 溶液回路
吸收式製冷是利 用工質對的品質 分數變化,完成 製冷劑的迴圈, 因而被稱為吸收 式製冷。
基本原理
發生器和冷凝器(高 壓側)與蒸發器和吸 收器(低壓側)之間 的壓差通過安裝在相 應管道上的膨脹閥或 其它節流機構來保持。 在溴化鋰吸收式製冷 機中,這一壓差相當 小,一般只有6.5~ 8kPa,因而採用U型 管、節流短管或節流 小孔即可。
我國在吸收製冷設計和製造方面處於國際先進水準, 出現了江蘇雙良,長沙遠大,大連三洋等一系列著名品 牌。
第一節
吸收式製冷的基本原理
基本原理
製冷劑蒸發
吸收熱量製冷
氣體製冷劑回復到液體狀態 (利用吸收方式)
基本原理
吸收式製冷利用溶液在一定條 件下能析出低沸點組分的蒸氣,在 另一種條件下又能吸收低沸點組分 這一特性完成製冷迴圈。 目前吸收式製冷機多用二元溶 液,習慣上稱低沸點組分為制冷劑, 高沸點組分為吸收劑。
露點
泡點
封閉容器內二元溶液的定壓氣化
二元溶液在不同壓力下的溫度-濃度圖
二元溶液在不同壓力 下的溫度-濃度關係
二元溶液的溫度—濃度圖
封閉容器內二元氣態 溶液的定壓冷凝
二元溶液的的特性(小結)
純物質在一定壓力下只有一個飽和溫度,其定壓氣化或冷凝過 程是定溫過程。而二元溶液在一定壓力下的飽和溫度卻與濃度有 關。隨著溶液的氣化,剩餘液體中低沸點物質含量的減少,其溫 度將逐漸升高。所以,二元溶液的定壓氣化過程是升溫過程。同 理,二元氣態溶液的定壓冷凝過程則是降溫過程。 濕蒸氣中飽和液與飽和氣的溫度相同而濃度不同,飽和液的濃 度低於濕蒸氣的濃度,飽和氣的濃度高於濕蒸氣的濃度。 對於一定濃度的二元溶液,其飽和溫度隨壓力的增加而上升。 純物質的飽和液或飽和氣狀態點只需壓力或溫度二者中一個參 數即可確定,而二元溶液的飽和液或飽和氣狀態點必須由壓力、 溫度、濃度中任意兩個參數確定(p-t圖)。
(2)溶液迴圈
發生器中流出的濃溶液降壓後進入吸收器,吸收由蒸發 器產生的冷劑蒸氣,形成稀溶液,用泵將稀溶液輸送至發生 器,重新加熱,形成濃溶液。這些過程的作用相當於蒸氣壓 縮式製冷迴圈中壓縮機所起的作用。
壓縮式與吸收式製冷的異同
共同點
高壓製冷劑蒸氣在冷凝器中冷凝後,經節流元 件節流,溫度和壓力降低,低溫、低壓液體在蒸 發器內汽化,實現製冷。
溴 化 鋰 水 溶 液 的 比 焓
濃 度 圖
氣相區
液相區
比焓-濃度圖 不但可以求得 溶液的狀態參 數,還可以將 溶液的熱力過 程清楚地表示 出來,是進行 吸收式製冷迴 圈的理論分析, 熱力計算和運 行特性分析的 主要圖表。 其用途相當於 蒸氣壓縮製冷 中的壓-焓圖。
溴 化 鋰 水 溶 液 的 比 焓
前言
吸收式製冷目前在日本、中國和韓國得到了較普遍的 應用。隨著我國西氣東輸工程的實施和天然氣的引進或 開採,吸收式製冷正在製冷空調中發揮重要作用。 充分 利用餘熱的冷熱電聯產系統將使得吸收式製冷必不可少; 廣泛的燃氣供應,以及夏季燃氣低谷和用電高峰,可以 使得燃氣直燃式吸收式空調得到更廣泛的應用。
基本原理
發生器 generator 吸收式製冷機中,通 過加熱析出製冷劑的 設備。
吸收器 absorber 吸收式製冷機中,通 過濃溶液吸收劑在其 中噴霧以吸收來自蒸 發器的製冷劑蒸氣的 設備。
基本原理
綜上所述,溴化鋰吸收式製冷機的工作過程可分為兩個 部分:
(1)製冷劑迴圈
發生器中產生的冷劑蒸氣在冷凝器中冷凝成冷劑水,經 U形管進入蒸發器,在低壓下蒸發,產生製冷效應。這些過 程與蒸氣壓縮式製冷迴圈在冷凝器、節流閥和蒸發器中所產 生的過程完全相同;
在一定溫度下,溶液面上水蒸氣飽和分壓力低於純 水的飽和分壓力,而且溶液的濃度越高,液面上水蒸 氣飽和分壓力越低,則溶液的吸水性越強。 相同壓力時,隨著濃度的升高;對應的溶液飽和溫 度上升
溴化鋰水溶液的壓力-飽和溫度圖(P-T)圖
P-T圖除了可以用來確 定溶液的狀態參數外, 還常被用來表示溴化 鋰水溶液熱力狀態的 變化及溴化鋰吸收式 製冷的工作迴圈過程。 A B
溴化鋰水溶液的特性
溴化鋰與水的沸點
一個大氣壓下:
水的沸點 溴化鋰的沸點
100℃ 1265℃
由於溴化鋰的沸點比水高得多,溴化鋰水溶液在發 生器中沸騰時只有水汽化,生成純冷劑水,故不需 要蒸汽精餾設備,系統較為簡單,熱力係數較高。
溴化鋰水溶液的特般金屬(炭鋼、紫銅等)有強腐蝕性, 有空氣(氧氣)存在時腐蝕性更為嚴重。 運行時控制腐蝕方法: 嚴格保持系統內的真空度(真空泵); 在溶液在加緩蝕劑減緩腐蝕。
濃 度 圖
C
B
四個參數: 溫度 濃度 水蒸氣壓 比焓 只要知道任意 2個,就可以 查出另外2個 注意:等壓線 反映的是溶液 所具有的水蒸 氣壓,而不是 溶液的壓力。 只有處於相平 衡時,溶液的 壓力才等於其 水蒸氣壓。
A
第三節
溴化鋰吸收式製冷機
圖5-1 單筒單效蒸汽型溴化鋰冷水機組 1-冷凝器 2-發生器 3-蒸發器 4-吸收器 5-溶液熱交換器 6-溶液泵I 7-冷劑泵 8-溶液泵II
壓縮式與吸收式製冷的異同
不同點
壓縮式製冷 單組分或多組分工質 雙組分工質對 氨-水 製冷劑
工質不同
吸收式製冷
溴化鋰-水 吸收劑
高沸點組分 低沸點組分
吸收劑
對吸收劑的要求:
1) 有強烈吸收製冷劑的能力; 2) 在相同壓力下,它的沸騰溫度應比製冷劑的沸 騰溫度高得多; 3) 不應有爆炸、燃燒的危險,並對人體無毒害; 4) 對金屬材料的腐蝕性小; 5) 價格低,易獲得。 可供考慮使用的製冷劑--吸收劑溶液很多,按溶 液中含有的製冷劑種類區分,可分為水類、氨類、 乙醇類和氟里昂類。
w mLiBr /(mH2O mLiBr ) 100%
二元溶液的摩爾分數
二元溶液的摩爾分數 是以溶液中溶質的摩爾 百分數表示的。 溴化鋰水溶液的摩爾分數:
x nLiBr / nH2O nLiBr 100%
氣液相平衡
拉烏爾定律:在一定溫度下,理想溶液任一組分 的蒸氣分壓等於其純組分的飽和蒸氣壓乘以該組 分在液相中的摩爾分數。
D
C
溴化鋰水溶液的壓力-飽和溫度圖(P-t)圖
A C B D B:溶液在發生器中的等壓加熱濃縮過程,稱為發生過程 D:溶液在吸收器中的等壓冷卻稀釋過程,稱為吸收過程 C:濃溶液在熱交換器中的冷卻過程; A:稀溶液在熱交換器中的加熱過程; 這兩個過程因為沒有發生傳質 現象,因此溶液的濃度不變。
P-T圖由於沒有反映比焓的變化,因此不能用P-T 圖進行吸收式製冷迴圈的熱力計算。為了進行熱力 計算,常用比焓-濃度圖(h- w) 。
(1) 理想溴化鋰製冷迴圈
圖5-2溴化鋰吸收式製冷的h-w圖(右圖為溶液在h-w圖上的迴圈)
qmf qmd
迴圈倍率和放氣範圍
系統中每產生1kg製冷劑所需要的製冷劑吸收劑溶液的kg數,稱為溶液的循環倍率,用 a表示。對發生器進行溶質守恆計算:
圖5-2雙 筒單效 溴化鋰 吸收式 製冷機 的典型 結構
結構型式
單 筒 類 型 雙 筒 類 型
三 筒 類 型
圖5-1為一種單筒型單效溴化鋰冷水機組
理想迴圈在h-w圖上的表示
點2:稀溶液出吸收器的狀態。t2、wa 2-7:稀溶液。t↑ 、w=C 7-5:稀溶液在發生器中的等濃度加熱過程。t7↑—t5 5-4:發生器內蒸汽發生過程。t5↑t4,wa↑wr 點4:發生器出口濃溶液狀態, wr, t4 4-8:濃溶液在熱交換器中的預冷過程,t4↓—t8 , wr=C 8-9’:濃溶液與稀溶液的混合過程。wo,t9 ˊ 9’-9:混合溶液出吸收器噴嘴的閃發過程,wo↑— w9 9-2:噴淋液在吸收器的吸收過程,w,t↓ 3’-3:發生器產生的蒸汽在冷凝器的冷凝過程。壓力pk 3-1’:冷劑水經U形管產生部分閃發(1’),未閃發冷劑水(1)進蒸 發器被吸收器中噴淋的混合溶液吸收。完成一個製冷迴圈。
壓縮式與吸收式製冷的異同
不同點
消耗的能量不同 蒸發壓縮式製冷機消耗機械功,吸收式製冷機消耗的是熱能。 吸收製冷劑蒸氣的方式不同 利用液體蒸發連續不斷地製冷時,需不斷地在蒸發器內產生蒸氣。 蒸氣壓縮式用壓縮機A吸收此蒸氣,吸收式製冷機用吸收劑在吸收 器內吸取製冷劑蒸氣。 將低壓製冷劑蒸氣變為高壓製冷劑蒸氣時採取的方式不同 蒸氣壓縮式製冷機通過原動機驅動壓縮機完成,吸收式製冷機則 是通過吸收器、溶液泵、發生器和節流閥完成。 提供的冷源溫度不同 蒸氣壓縮式製冷可以提供0℃以下的低溫冷源,應用範圍廣泛;而 吸收式製冷一般只能制取0℃以上的冷水,多用於空調系統。