浅谈常微分方程的数值解法及其应用[文献综述]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文文献综述
信息与计算科学
浅谈常微分方程的数值解法及其应用
一、前言部分
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解.
后来瑞士数学家雅各布•贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型等.因而微分方程的研究是与人类社会密切相关的. [1]
“常微分方程”是理学院数学系所有专业学生的重要专业基础课之一,也是工科、经济等专业必学内容之一.其重要性在于它是各种精确自然科学、社会科学中表述基本定律和各种问题的根本工具之一,换句话说,只要根据实际背景,列出了相应的微分方程,并且能(数值地或定性地)求出这种方程的解,人们就可以预见到,在已知条件下这种或那种“运动”过程将怎样进行,或者为了实现人们所希望的某种“运动”应该怎样设计必要的装置和条件等等.例如,我们要设计人造卫星轨道,首先,根据力学原理,建立卫星运动的微分方程,列出初始条件,然后求出解,即卫星运行轨道.随着物理科学所研究的现象在广度和深度两方面的扩展,微分方程的应用范围更广泛. [2]从数学自身的角度看,微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展.从这个角度说,微分方程变成了数学的中心. [3]总之,微分方程从它诞生起即日益成为人类认识并进而改造自然、社会的有力工具,成为数学科学联系实际的主要途径之一.文章就常微分的数值解法以及应用展开简单的论述。
二、主体部分
2.1微分方程概念介绍
2.1.1 微分方程概况
由一元函数得到的方程.即:称含有自变量,未知函数及其导数的关系式
22(,,,,...,)0n n dy d y d y F x y dx dx dx
=. (1) 为常微分方程.其中出现的最高阶导数的阶数,叫做常微分方程的阶.例如 dy dx
=x ,dy y dx = ,是一阶常微分方程. 22sin 0d g dt p
θθ+=是二阶常微分方程.设)(x y ϕ=定义于 区间J 上,有直到n 阶的导数,将它代入(1),使(1)变成关于x 的恒等式,即
()()(,(),,...,)0,n n d x d x F x x x J dx dx
ϕϕϕ=∈. 就称y =()x ϕ为(1)的一个定义于J 上的解,并称J 为该解的定义区间. [4]
如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程.
2.2微分方程产生的历史背景
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布•贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。
微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具. [5]
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量.
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会
科学的问题亦导致微分方程,如人口发展模型、交通流模型等.因而微分方程的研究是与人类社会密切相关的. [6]
2.3 微分方程发展现状及其基本功能
在数学学科内部的许多分支中,微分方程是常用的重要工具之一,微分方程进一步发展的需要,有推动着其它数学分支的发展;相反,微分方程每一步进展都离不开其他数学分支的支援.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对微分方程的发展产生了深刻的影响.当前计算机的发展更是为微分方程的应用及理论研究提供了非常有力的工具.时至今日,可以说微分方程在所有自然科学领域和众多社会科学领域都有着广泛的应用,如自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等.只要能够列出相应的微分方程,有了解方程的方法,利用它就可以精确地表述事物变化所遵循的基本规律.从微积分理论形成以来,人们一直用微分方程来描述、解释或预见各种自然现象,不断的取得了显著的成效.
[7] 2.4常微分方程的数值求解方法
2.4.1 Euler 法
Euler 法是最简单的数值方法,[,]a b 为求解良态初值问题'(,)y f t y =,0()y a y =的区间。实际上,下面的过程不是要找到满足该初值问题的可微函数,而是要生成点集{(,)}k k t y ,并且将这些点作为近似解,即()k k y t y ≈。如何构造“近似满足微方程”的“点集”呢?首先为这些点选择横坐标,为方便起见,将区间[,]a b 划分为M 个等距子区间,并选择网络点
k t a kh =+, k=0,1,……,M 其中b a h M
-=
(1) 值h 称为步长。然后近似解
'(,)y f t y = 在0[,]M t t 上, 00()y t y = (2) 设()y t ,'()y t 和''()y t 连续,;;利用泰勒定理将()y t 在0t t =处展开,对每个值t ,存在一个0t 和t 之间的值1c ,使得 ''2
'
10000()()()()()()2y c t t y t y t y t t t -=+-+ (3) 将'00()(,())y t f t y t =和10h t t =-代人等式(3),得到1()y t 的表示: