空间面板数据计量经济分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间面板数据计量经济分析

空间面板数据计量经济分析

*以上分别介绍了区域创新过程中空间效应(依赖性和异质性)的空间计量检测,以及纳入空间效应的计量模型的估计方法——空间常系数回归模型(空间滞后模型,SLM 和空间误差模型,SEM )和空间变系数回归模型(地理加权回归模型,GWR );同时还介绍和分析了面板数据(Panel Data )计量经济学方法的估计和检验。

*可以看出,目前的空间计量经济学模型使用的数据集主要是截面数据,只考虑了空间单元之间的相关性,而忽略具有时空演变特征的时间尺度之间的相关性,这显然是一个美中不足。

*Anselin (1988)也认识到这一点。当然,大多学者通过将多个时期截面数据变量计算多年平均值的办法来综合消除时间波动的影响和干扰,但是这种做法仍然造成大量具有时间演变特征的创新行为信息的损失,从而无法科学和客观地认识和揭示具有时空二维特征的研发与创新过程的真实机制。*面板数据(Panel Data )计量经济模型作为目前一种前沿的计量经济估计技术,由于其可以综合创新行为变量时间尺度的信息和截面(地域空间)单元的信息,同时集成考虑了时间相关性和空间(截面)相关性,因而能够科学而客观地反映受到时空交互相关性作用的创新行为的特征和规律,是定量揭示研发、知识溢出与区域创新相互作用关系的有效方法。但是,限于在所有时刻对所有个体(空间)均相等的假定(即不考虑空间效应),面板数据计量经济学理论也有其美中不足之处,具有很大的改进余地。

*鉴于空间计量经济学理论方法和面板数据计量经济学理论方法各有所长,把面板数据模型的优点和空间计量经济学模型的特点有机结合起来,构建一个综合考虑了变量时空二维特征和信息的空间面板数据计量经济模型,则是一种新颖的研究思路。以下根据空间计量经济模型和标准的面板数据模型[1]的建模思路,提出空间面板数据(Spatial Panel Data Model ,SPDM )模型的建模思路和过程。

[1]与动态面板数据模型的建模思路类似,只要施加一些假定,引入因变量的滞后项,则为空间动态面板数据模型。

空间滞后面板数据计量分析

*考虑一个标准的面板数据模型:

it it it it it

y αx βμ=++*如果将变量的真实的区域空间自相关性(依赖性)(Anselin &Florax ,1995)考虑到创新行为中来,这种创新行为的空间自相关性可以视为区域创新过程中的一种外部溢出形式,这样则可以设定如下模型:

it it it it it it

y αWy x βμρ=+++*上式为空间滞后面板数据(Spatial Lag Panel Data Model ,SLPDM )计量经济模型。其中,是创新的空间滞后变量,主要度量在地理空间上邻近地区的外部知识溢出,是一个区域在地理上邻近的区域在时期创新行为变量的加权求和。

空间误差面板数据计量分析

*如果在创新行为的空间依赖性存在误差扰动项中来测度邻近地区创新因变量的误差冲击对本地区创新行为的影响程度,则可以通过空间误差模型的空间依赖性原理可得:

it it it it it

y αx βμ=++it it it

W µλµε=+*上式即为空间误差面板数据(Spatial Error Panel Data Model ,SEPDM )计量经济模型。其中,参数衡量了样本观察值的误差项引进的一个区域间溢出成分。

*因为已经在面板数据模型中考虑了创新行为变量的空间依赖性,因此采用一般面板数据模型的估计技术如OLS 或GLS 等将具有良好的估计效果。如果能够综合考虑面板数据模型中的一些假定,如时间加权(Period Weights )或截面加权(Cross-section Weights ),则可获得更加符合创新现实的估计结果。

相关文档
最新文档