最佳旅游路线设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最佳旅游路线设计 It was last revised on January 2, 2021

最佳旅游路线设计

摘要

本论文主要考虑通过合理的假设将问题简化为图论问题,使用floyed算法得到任意两点间的最短路径后,带入各景点间的距离、时间、门票等信息后,视为0-1线性规划模型用lingo进行求解。

问题一给出了一个月的时间要求,同时需要考虑到最少的花费和前往最多的景点两个规划目标,是一个0-1多目标的线性规划问题。我们通过将其中一个规划目标:“最多的景点”划入约束条件,将多目标问题变成“在前往N(N>=12)个景点的条件下,最少花费”的0-1线性单目标规划问题。使用lingo后求出结果如下:乌鲁木齐—哈密—库尔勒—楼兰—阿克苏—千佛洞—天鹅湖—伊犁—石河子—博乐—克拉玛依—阿勒泰—天池—乌鲁木齐。

问题二要求用两年暑假游遍新疆的所有假期,即使用两个除乌鲁木齐外不想交的圈遍历全图,并使两条线路的总费用最小。显然可得,将所有的顶点以乌鲁木齐为界划分出南北两块,每个区块使用一个圈进行遍历将能节省费用。我们以行驶路程为规划目标,用相应的约束条件建立0-1线性规划模型,使用lingo求解两个区块的的最佳旅行路线。再分析均衡度后调整区块的分布,以求得最佳均衡度的分组。求解得最佳路线规划如下:

问题三与问题二的解答方法相同,根据各景点之间的最短路径画出以乌鲁木齐为根的树形图,然后将地理上在一个区域的景点分为三块。将模型二中的目标函数替换为考察时间最小后,可使用lingo计算出每组的最佳路线,在参考均衡度对分组进行调整后可得到近似的最佳分组和每组的最佳路线。结果如下:

问题四中,通过合理假设,我们认为每个景点只应该出现在一条线路上。据此,我们根据假期时间限制以及游遍所有景点所需时间最少,求得至少要提供4条旅游路线才能满足题意。根据分析,我们发现无法找到这样4条路线均满足要求,因此,我们将所有景点分为5组,通过多次求解调整,最终我们为旅行社提供了5种路线。具体结果在正文中给出。

最后,本文对模型进行了分析与评价。

关键词

最短距离均衡度 0-1线性规划最佳路线

一、问题的重述

王先生夫妇是华东某高校的年轻教师,打算暑假中到新疆旅游。受文学作品的影响,天池、达坂城、吐鲁番、楼兰古城、伊犁都是他们十分向往的地方,新疆的其他地方对他们也有很大的吸引力。

1.请你们为他们设计合适的旅游路线,使他们在今年暑假一个月的时间里花最少的钱游尽可能多的地方,并估算除吃饭之外的费用。

2.如果他们打算今、明两年暑假完成对新疆的旅游,请你们为他们设计合适的旅游路线,使在新疆境内的交通费用尽量地节省。

3.如果华东某高校的少数民族研究所组织对新疆文化考察,考察分三组进行,用于交通的时间和前两种情况相同,但考察时间是旅游观光时间的四倍,请你们为他们设计合适的考察路线,以便尽早完成考察任务。

4.新疆自治区旅游部门为迎接“五一旅游黄金周”(考虑到远途旅游,自治区内游程延长为十二天)准备为自治区外的游客组织多条旅游路线以分散游客,提高接待的质量。在假设参加你们设计的各条路线的游客人数与整条路线的接待能力成比例的条件下,请你们为新疆自治区旅游部门设计合适的、准备向游客推介的全部旅游路线。

下图是新疆主要景点分布图,各旅游点之间的路程、每个景点的最佳逗留时间等信息可以登陆新疆旅游网对题。你也可以目做进一步的完善。

二、问题的分析

由简单的分析可以得出,问题的实质都是要求得出一条满足某一约束条件的旅游路线。我们将景区进行编号,并通过网络查找到各个景点之间的距离,我们就可以将实际地图简化为赋权无向图,所以问题就变成了图论问题。另外我们还需补充路费、最佳逗留时间以及门票费用等其他信息。

问题一的目标是找到一条能在一个月内实现的最佳旅游路线,要求花费最少,景点最多,这是一个多目标线性规划问题。我们可以使用floyd算法求得各个顶点(景区)之间的最短路径,然后我们以花费最少为规划目标,将“景点最多”这一目标放入限制条件中,要求走过的景点数为N(N>=12)。然后再建立时间、景点路线为要求的约束条件,将多目标规划问题转变成单目标0-1规划问题。使用lingo求解可得最佳旅游路线。

问题二需要两条旅游线路,这两条旅游线路可以覆盖新疆的全部景点。同时这两条线路都从乌鲁木齐出发再回到乌鲁木齐,彼此之间无重复的景点,这两组线路所需时间都在一月之内。我们很容易想到,将全部的景点以乌鲁木齐为界分为南北两组比较容易求出满足要求的路线。我们将景点进行分组,并计算均衡度后利用0-1规划求解得到的最佳路线及所需时间,再根据均衡度进行调整,选取均衡度最佳的一组。

问题三是多旅行商问题。解法同问题二,我们将所有景点分为3组,使各组的考察时间尽量相等。由问题一中已经画出的各景点间的最短路径,求出以乌鲁木齐为起点的树,然后按照分类的原则,将景点分为三类,再进行调整即可。确定景点的分组后,同样使用问题二中建立的0-1线性规划模型求解,只需将目标函数换成考察天数最小即可。

问题四与问题三相似,我们首先利用问题一中N=21及游遍所有景点所需的最小花费和时间,再根据五一黄金周时间限制,确定游玩路线至少应分为几条,才可以最大程度上分散景区压力。然后按时间均衡度和花费均衡度都尽可能好的原则将景点进行分类,再按照问题二中的模型求解,即可得所需旅游路线。

三、模型的假设

1.所有景点都正常开放,开放时间没有区别。

2.交通路线全部正常,交通工具匀速。

3.景点的花销仅限于门票支出。

4.住宿费用和交通费用在所有景区都是一样的。

5.景区的先后到达不会有区别(考察和旅游时)。

6.王夫妇对于的景点喜爱程度是一样的。

四、符号的说明

m 总交通费用加门票费用

M 除吃饭外的所有消费(包括住宿费)

1m 总的交通费用 2m 总的门票费用

i c 第i 个景点的门票费用 w 每条路线总的行驶路程

ij c 若ij c =1,则表示从i 景点去j 景点,否则ij c =0

ij r 表示i 景点与j 景点之间的距离 ij t 表示从i 景点到j 景点多需的时间

i t 表示游客在i 景点的最佳逗留时间

五、模型的建立与求解

相关文档
最新文档