M08C24 相似三角形内接矩形
相似三角形的外接矩形
相似三角形的外接矩形在几何学中,相似三角形是指具有相同形状但大小不同的三角形。
对于任意一个三角形,都可以找到一个外接矩形,即完全包围住该三角形的最小矩形。
外接矩形是相似三角形的一个重要性质,它可以帮助我们更好地理解和分析相似三角形之间的关系。
在本文中,我们将探讨相似三角形的外接矩形,并介绍它们的性质和应用。
如果我们有两个相似三角形,我们可以通过对它们分别作外接矩形来得到两个相似的矩形。
这两个矩形具有相同的形状,但是大小不同。
换言之,它们的对应边长成比例。
设两个相似三角形的边长比为k,那么它们的外接矩形的边长比也为k。
这是因为,对于任意一个三角形,它的外接矩形的边长等于它的最长边长。
所以,如果两个三角形的边长比为k,那么它们的最长边长也成比例,即外接矩形的边长比也为k。
利用相似三角形的外接矩形,我们可以解决一些实际问题。
例如,假设我们知道一个城市中两座建筑的高度,但是无法直接测量它们的宽度。
通过观察建筑的影子,我们可以得知影子的长度和建筑的高度成比例。
如果我们知道一个建筑的影子长度和它的高度,以及另一个建筑的影子长度,我们就可以利用相似三角形的原理计算出另一个建筑的高度。
除了应用于实际问题,相似三角形的外接矩形还有一些重要的性质。
例如,两个相似三角形的外接矩形的比例关系是唯一的。
换句话说,如果两个三角形的边长比为k,那么它们的外接矩形的边长比也为k。
这个性质可以简化我们对相似三角形和外接矩形之间关系的理解和计算。
此外,相似三角形的外接矩形还可以用于证明一些几何定理。
例如,利用相似三角形的外接矩形,我们可以证明勾股定理。
假设我们有一个直角三角形,我们可以通过将其内切于一个矩形中,然后利用相似三角形的性质得到两条边的比例关系,从而验证勾股定理。
综上所述,相似三角形的外接矩形在几何学中扮演着重要角色。
它不仅是相似三角形的一个性质,还可以用于解决实际问题和证明几何定理。
通过深入理解和应用相似三角形的外接矩形,我们可以提高我们的几何学知识和问题解决能力。
三角形内接矩形的关系式及其应用
三角形内接矩形的关系式及其应用作者:沐文中来源:《中学数学杂志(初中版)》2013年第02期如果矩形有四个顶点都在三角形的边上,那么这个矩形称为此三角形的内接矩形.三角形及其内接矩形有一个应用广泛的关系式,现介绍如下:命题如图1,矩形EFGH的两个顶点E、H在BC上,另外两个顶点F、G分别在AB、AC上,若BC=a,BC边上的高AD=h,EF=Y,FG=x,则xa+yh=1.证明因为FG∥BC,所以△AFG∽△ABC,所以FGBC=AKAD,即xa=h-yh,所以xa+yh=1.这一关系或在课标入教版,北师大版,华师大版等教材中均有所介绍.下面就举例说明此关系式在中考中的应用.例1 (2012年山东日照)如图2,在Rt△ABC内有矩形PQMN,P、N分别在直角边AB、AC上,Q、M在斜边BC上,已知AB=3,AC=4,内接矩形PQMN的面积等于53,求BQ和MC的长.解因为AB=3,AC=4,所以BC=32+42=5.作AD⊥BC于D,则由AD·BC=AB·AC=2S△ABC得AD=3×45=125.设PQ=y,PN=x,则由关系式,得x5+y125=1. ①又xy=53(已知)②故解①、②得y=2或y=25.因为Rt△CMN∽Rt△CAB,所以CMMN=CAAB即CM=43y,所以CM=83或CM=815.同理可得BQ=34y,故BQ=32或BQ=310.点评本题借助三角形内接矩形的关系式和矩形面积公式列出二元一次方程组,简捷明快地先求得了PQ和PN的长度,然后再通过相似三角形求得BQ和MC的长度,使问题由繁变简,从而使复杂的问题简单化了.例2 (2012年辽宁大连)如图3,在Rt△ABC的斜边AB上任取一点P,过P点作AC、BC的平行线分别交BC、AC于N、M,则△APM和△PBN的面积之和不小于矩形MPNC的面积,试证明之.证明设AC=b,BC=a,PM=x,PN=y,S矩形MPNC=S1,S△APM+S△PBN=S由关系式点评本题应用上述关系式和面积公式,通过变形化简求得xa与yb的积与和,利用韦达定理的逆定理,构造出一元二次方程,再运用根的判别式得证.这种解题思路充分体现了构造法解题的科学性,符合新课程的理念要求,它能使抽象或隐含的条件清晰地显示出来,能把复杂的问题转化为简单的问题,因而解题时,就能化繁为简,变难为易.例3 (2012年云南大理)一张等腰三角形纸片,底边长15cm,底边上的高长225cm,现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图4所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第几张?所以这张正方形的纸条是第6张.点评本题是一道创新中考试题,通过六次运用本文的关系式,最后求得JK的长为3厘米,从而使实际问题得到了解决,如果不用三角形内接矩形的上述性质求解,将会使思路陷入困境.例4 (2012年山西大同)已知△ABC和内接矩形EFGH(如图5),问:在什么条件下,矩形EFGH的面积最大?解如图5,作AC边上的高BI,交EF于J,设BI=h,AC=b,则由题设条件,可设EH=x,所以由关系式得EFb+xh=1,故EF=bh(h-x),所以矩形EFGH的面积S=f(x)=EF·EH=bh(h-x)x=-bhx2+bx.因为-bh〈0,所以二次函数f(x)有最大值.故当x=--b2·bh=h2时,f(x)max=0-b24-bh=bh4=12S△ABC,这时,EF=bh(h-h2)=b2,所以,当内接矩形的长、宽分别等于三角形的底边和底边上的高的一半时,其面积最大.点评本题是运用本文的关系式和矩形面积公式先求得二次函数解析式,再运用二次函数求最大值的方法,求得矩形面积的最大值,方法新,过程简,易理解,要重视.综上述可知,应用本文关系式解中考问题,其关键在于要从问题的实际出发,根据题设去灵活应用.通过教学实践,笔者认为:注意对学生进行联系课本内容的专题讲座的训练,利于帮助学生理解课本内容提高学习数学的兴趣,利于拓宽学生的视野,提高解题水平,利于启迪学生思维,调动学习的积极性.因此在今后的教学过程中,注意对学生进行这类专题内容的探索与研究,是很有必要的.。
中考数学几何专项——相似模型(相似三角形)
中考数学几何专项——相似模型(相似三角形)相似模型相似模型一:A字型特征:DE∥BC模型结论:根据A字型相似模型,可以得出以下结论:C∠B=∠XXXAC²=AD×AB相似模型二:X型特征:AC∥BD模型结论:根据X型相似模型,可以得出以下结论:AO×OB=OC×ODBOC∽△DOACAOC∽△DOB相似模型三:旋转相似特征:成比例线,段共端点模型结论:根据旋转相似模型,可以得出以下结论:BEF∽△BCDDEF∽△DABAEB∽△DEC相似模型四:三平行模型特征:AB∥EF∥CD模型结论:根据三平行模型,可以得出以下结论:ABE∽△CDF相似模型五:半角模型特征:90度,45度;120度,60度模型结论:根据半角模型,可以得出以下结论:ABN∽△MAN∽△MCAABD∽△CAE∽△CBA相似模型六:三角形内接矩形模型特征:矩形EFGH或正方形EFGH内接与三角形模型结论:根据三角形内接矩形模型,可以得出以下结论:ABC∽△EFH相似模型七:十字模型特征:正方形HDGB模型结论:根据十字模型,可以得出以下结论:若AF=BE,则AF⊥BE,且为长方形若AF⊥BE,则AF=BEBDBC平行四边形,且△GME∽△HNF,△MED≌△BFA。
下面给出几个几何问题。
1.在△ABC中,AB=AC,且有以下七个结论:①D为AC中点;②AE⊥BD;③BE:EC=2:1;④∠ADB=∠CDE;⑤∠AEB=∠CED;⑥∠BMC=135°;⑦BM:MC=2:1.求AC和CD的比值。
2.在平行四边形ABCD中,AB∥CD,线段BC,AD相交于点F,点E是线段AF上一点且满足∠BEF=∠C,其中AF=6,DF=3,CF=2,求AE的长度。
3.在Rt△ABD中,过点D作CD⊥BD,垂足为D,连接XXX于点E,过点E作EF⊥BD于点F,若AB=15,CD=10,求4.在□ABCD中,E为BC的中点,连接AE,AC,分别交BD于M,N,求5.在平行四边形ABCD中,AB∥CD,AD,BC相交于点E,过E作EF∥AB交BD于点F。
相似三角形中的“内接矩形”-2023年新九年级数学核心知识点与常见题型通关讲解练(沪教版)(解析版)
AB CD EFG HT重难点专项突破:相似三角形中的“内接矩形”【知识梳理】相关模型:常用结论:AT DEAH BC=.【考点剖析】例1.如图,正方形DEFG的边EF在ABC∆的边BC上,顶点D、G分别在边AB、AC上,AH是ABC∆的高,BC = 60厘米,AH = 40厘米,求正方形DEFG的边长.【答案】24.【解析】设正方形EFGD的边长为x,//DG BC,DG AD APBC AB AH∴==.406040x x−∴=,24x∴=,∴正方形EFGD的边长为24.【总结】本题考查三角形内接正方形的相关知识,主要还是通过比例相等来列式建立关系.AB CDE FGHP例2.ABC ∆中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在AC 、AB 上,BC = 15,BC 边上的高AD = 10,求正方形EFGH 的面积.【答案】36.【解析】设正方形EFGH 的边长为a ,易知:////HE AD HG BC ,.HE BH AD BA ∴=,HG AH BC AB =. 1HE HG AD BC ∴+=,11015a a ∴+=, 6a ∴=, ∴正方形EFGH 的面积为36.【总结】本题考查三角形内接正方形的模型,熟练掌握此题涉及的知识点.例3.如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB 、AC 边上,AH 是BC 边上的高,AH 与GF 交于点K .若32AH cm =,48BC cm =,矩形DEFG 的周长为76cm ,求矩形DEFG 的面积.【答案】2360cm .【解析】解:设DG xcm =,()38FG x cm =−A B C H GF E D ABC D E FG H K矩形DEFG ,//90GF BC GDB ∴∠=,, GF AG BC AB ∴=,又AH 是高,90AHB ∴∠=,GDB AHB ∴∠=∠//DG AH ∴, DG BG AH AB ∴=,1DG GF AH BC ∴+=,3813248x x −∴+=,20x ∴=,∴20DG cm =,18FG cm =,2360DEFG S cm ∴=矩形. 【总结】本题考查三角形一边的平行线定理,矩形的周长面积等知识.例4.在锐角∆ABC 中,矩形DEFG 的顶点D 在AB 边上,顶点E 、F 在BC 边上, 顶点G 在AC 边上,如果矩形DEFG 的长为6,宽为4,设底边BC 上的高为x ,∆ABC 的面积为y ,求y 与x 的函数关系式.【答案】23(4)4x y x x =>−.【解析】解:如图, 矩形DEFG ,//90GD BC DEC ∴∠=,,GD AD BC AB ∴=.又 AH 是高,90AHC ∴∠=.DEC AHC ∴∠=∠,//DE AH ∴,DE BD AH AB ∴=,1DG DE BC AH ∴+=, 641BC x ∴+=,64xBC x ∴=−, 又 12ABC S y BC AH ∆==,∴()2344x y x x =>−.【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.例5.如图,矩形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上, AH 为BC 边上的高,AH 交DG 于点P ,已知3AH =,5BC =,设DG 的长为x ,矩形DEFG 的面积为y ,求y 关于x 的函数解析式及其定义域.【答案】()233055y x x x =−+<<.【解析】解:矩形DEFG ,//,90GD BC DEC ∴∠=,GD AD BC AB ∴=,又AH 是高,90AHC ∴∠=, DEC AHC ∴∠=∠,//DE AH ∴,DE BD AH AB ∴=,1DG DE BC AH ∴+=,153x DE ∴+=,又DEFG S y x DE ==•矩形,20x ∴=,∴y DE x =, 153x y x ∴+=,∴()233055y x x x =−+<<.【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.AB CE F GD H P例6.一块直角三角形木板的一条直角边AB 长为1.5m ,面积为1.5m 2,现需把它加工成一个面积最大的正方形桌面,请甲、乙两位同学设计加工方案,甲设计方案如图(1),乙设计方案如图(2).你认为哪位同学设计的方案较好?请说明理由(加工损耗忽略不计,计算结果中可保留分数). 【答案】甲同学方案好,理由略.【解析】解:21 1.52ABC S AB BC m ∆=•=,又 1.5AB m =,2CB m ∴=∴在Rt ABC ∆中, 2.5AC m =.按甲的设计:设DE x =,正方形DEFB ,//,//ED BF EF CB ∴,DE CE AB CA ∴=,EF AE CB AC =,1DE EF BA CB ∴+=,11.52x x ∴+=,67x m ∴=,23649DEFB S m ∴=正;②按乙的设计:过点B 作BH AC ⊥交AC 于点H ,得//DG BH ,DG AD BH AB ∴=, 设DE x =,则DG x =,正方形DGFE ,//ED AC DE DG ∴=,,DE BD AC BA ∴=,1DE DG CA HB ∴+=,1122ABC S AB BC AC BH ∆=•=•,65BH m ∴=,162.55x x ∴+=, 3037x m ∴=,29001369DGFE S m ∴=正;综上,甲设计方案好.【总结】本题考查了三角形一边的平行线,正方形的面积等知识,本题考查了最优化问题.A B CD E F A BCD EF G H【过关检测】一、单选题 在ABC 的边,ABC 的面积是 A .4B .8 【答案】A 【分析】过点A 作AH BC ⊥于H ,交GF 于M ,如图,先利用三角形面积公式计算出8AH =,设正方形DEFG 的边长为x ,则,,8GF x MH x AM x ===−,再证明AGF ABC ∽,则根据相似三角形的性质得方程,然后解关于x 的方程即可.【详解】解:如图,过点A 作AH BC ⊥于H ,交GF 于M ,∵ABC 的面积是32,8BC =,∴2132BC AH ⋅=,∴8AH =,设正方形DEFG 的边长为x ,则,,8GF x MH x AM x ===−,∵GF BC ∥,∴AGF ABC ∽,∴GF AM BC AH = , 888x x −∴= ,解得∶4x =,即这个正方形的边长是4.故选:A .【点睛】本题考查了相似三角形的判定与性质及正方形的性质,添加合适的辅助线是解题的关键. 2.(2022秋·上海奉贤·九年级校考期中)如图,正方形DEFG 的边EF 在ABC 的边BC 上,顶点D 、G 分别在边AB AC 、 上,已知ABC 的边BC 长15厘米,高AH 为10厘米,则正方形DEFG 的边长是( )A .4厘米B .5厘米C .6厘米D .8厘米【答案】C 【分析】由DG BC ∥得ADG ABC △△,利用相似三角形对应边上高的比等于相似比列方程求解即可.【详解】解:设正方形的边长为x .∵正方形DEFG 得,∴DG EF ∥,即DG BC ∥,∵AH BC ⊥,∴AP DG ⊥.∵DG BC ∥∴ADG ABC △△∴DG AP BC AH =. ∵PH BC DE BC ⊥⊥,∴PH ED AP AH PH −=,=,即DG AH PH BC AH −=,∵1510BC AH DE DG x ====,, ,∴101510x x −=,解得6x =.故正方形DEFG 的边长是6cm .故选C .【点睛】本题主要考查了相似三角形的判定与性质、正方形的性质等知识点.由平行线得到相似三角形并利用相似三角形的性质是解答本题的关键.二、填空题 3.(2021秋·上海·九年级校考阶段练习)如图,在ABC 中,90C ∠=︒,正方形DEFG 的边GF 在AB 边上,顶点D 、E 分别在AC 、BC 上,12AB =,若ABC 的面积为36,则DE 的长为______.【答案】4【分析】过点C 作CH AB ⊥于点H ,交DE 于点M ,设正方形DEFG 的边长为x ,利用ABC 的面积求出6CH =,证明CDE CAB ∽△△,则CM DE CH AB =,列方程即可求得答案.【详解】解:过点C 作CH AB ⊥于点H ,交DE 于点M ,设正方形DEFG 的边长为x ,∵ABC 的面积为36,12AB =,∴6CH =,∵DE AB ∥,∴CM DE ⊥,CDE CAB ∽△△,∴CM DE CH AB =, ∴6612x x −=,解得4x =,即DE 的长为4,故答案为:4【点睛】此题考查了相似三角形的判定和性质,熟练掌握相似三角形的性质是是解题的关键. 4.(2021秋·上海闵行·九年级统考期中)如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,BC 边上的高是6,那么这个正方形的边长是____.【答案】2.4/125【分析】作AH ⊥BC 于H ,交GF 于M ,设正方形DEFG 的边长为x ,则GF=x ,MH=x ,AM=6-x ,再证明△AGF ∽△ABC ,则根据相似三角形的性质得4x =66x−,然后解关于x 的方程即可.【详解】作AH ⊥BC 于H ,交GF 于M ,如图,∵BC 边上的高是6,即6AH =设正方形DEFG 的边长为x ,则GF=x ,MH=x ,AM=6-x ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AMAH ,即4x =66x −,解得x=125,即正方形DEFG 的边长为125.故答案为:125.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在应用相似三角形的性质时,主要利用相似比计算相应线段的长.也考查了正方形的性质. 5.(2023·上海长宁·统考一模)如图,在ABC 中,90C ∠=︒,正方形EFGH 的边FG 在ABC 的边AB 上,顶点E 、H 分别在边AC 、BC 上,如果其面积为24,那么AF BG ⋅的值为______.【答案】24【分析】通过证明Rt Rt AFE HGB ∽,则AF BG EF HG ⨯=⨯,即可得到答案.【详解】90C ∠=︒,正方形EFGH 的四个顶点在三角形的边上,90A B ∴∠+∠=,90B BHG ∠+∠=,Rt Rt AFE HGB ∴∽,=24AF BG EF HG ∴⨯=⨯.故答案为24.【点睛】本题主要涉及三角形相似的判定和相似三角形的性质应用,掌握相似三角形的判定和性质是解题的关键.6.(2022秋·上海·九年级上外附中校考阶段练习)如图,矩形DEFG 为ABC 的内接矩形,点G ,F 分别在,AB AC 上,AH 是BC 边上的高,10,6,:2:5BC AH EF GF ===,则矩形DEFG 的面积为___________.【答案】725【分析】设2,5EF x GF x ==,可得62AK x =-,根据~AGF ABC ∆∆,可得AK GF AH BC =,可求出x ,即可求解.【详解】解:∵:2:5EF GF =,∴可设2,5EF x GF x ==,∵矩形DEFG 为ABC 的内接矩形,AH 是BC 边上的高,∴2KH EF x ==,GF BC ∥,∴62AK x =-,AH FG ^,∵GF BC ∥,∴~AGF ABC ∆∆, ∴AK GF AH BC =, 即625610x x −=, 解得:65x =, ∴12,65EF FG ==,∴矩形DEFG 的面积为1272655EF FG ×=´=. 故答案为:725【点睛】本题考查了相似三角形的判定和性质、矩形的性质、矩形的周长公式,关键是利用相似三角形对应边成比例得到比例式. 7.(2022秋·上海青浦·九年级校考期中)如图,矩形DEFG 内接于ABC ,6cm BC =,4cm DE =,2cm EF =,则BC 边上的高的长是______【答案】6cm /6厘米【分析】过点A 作AM BC ⊥于点M ,交FG 于点N ,先根据矩形的性质可得2cm MN EF ==,4cm FG DE ==,再证AGF ABC ∽△△,利用相似三角形对应高线之比等于相似比列出等式,即可求解. 【详解】解:如图,过点A 作AM BC ⊥于点M ,交FG 于点N ,矩形DEFG 中,4cm,2cm DE EF ==,2cm EF MN ==∴,4cm FG DE ==, FG DE ∥,AN FG ∴⊥,FG DE ∥,AGF B ∴∠=∠,AFG C ∠=∠,AGF ABC ∴△∽△,AN GF AM BC ∴=,设cm AM x =,则(2)cm AN x =−,246x x −∴=,解得6x =,即6cm AM =,则BC 边上的高的长是6cm ,故答案为:6cm .【点睛】本题考查了矩形的性质、相似三角形的判定与性质等知识点,证明AGF ABC ∽△△是解题的关键. 8.(2022秋·上海静安·九年级校考期中)如图,已知在ABC 中,边5BC =,高2AD =,正方形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 和AC 上,那么这个正方形的面积等于________.【答案】10049/2249【分析】利用正方形的性质可知EH BC ∥,再利用平行线分线段成比例定理的推论可得AEH ABC ∽△△,利用相似三角形的性质可得比例线段,利用比例线段可求正方形的边长,进而获得答案.【详解】解:如下图所示,设EH 与AD 交于点M ,∵四边形EFGH 是正方形,∴EH BC ∥,EH FG =,∴AEH ABC ∠=∠,∵EAH BAC ∠=∠,∴AEH ABC ∽△△, ∴AE EH AB BC =, 又∵AD BC ⊥,∴AD EH ⊥,EH EF MD ==,∵EH BC ∥, ∴AM AE AD AB =,即AM EH AD BC =, 设EH x =,则2AM AD MD x =−=−, ∴225x x −=,解得107x =, ∴107EH =,即这个正方形的边长为107, ∴这个正方形的面积为210100()749=. 故答案为:10049.【点睛】本题主要考查了相似三角形的判定和性质、正方形的性质、平行线的性质、平行线分线段成比例定理等知识,熟练掌握相似三角形的判定和性质是解题关键.在边AB 、AC 上,AH BC ⊥于H ,交DG 于P ,已知20BC =,16AH =,那么正方形DGFE 的边长为___________.【答案】809【分析】根据DG BC ∥得出△∽△ADG ABC ,利用相似三角形对应边上高的比等于相似比,列方程求出正方形的边长,则可得出答案.【详解】解:设正方形DGFE 的边长为x .由正方形DGFE 得,DG BC ∥,∵AH BC ⊥,∴AP DG ⊥.∵DG BC ∥,∴△∽△ADG ABC ,∴DG AP BC AH =, ∵PH BC ⊥,DE BC ⊥,∴PH DE =,AP AH PH AH DE =−=−,即DG AH DE CB AH −=,由20BC =,16AH =,DE DG x ==,得162016x x −=,解得809x =. ∴正方形DEFG 的边长是809,故答案为:809.【点睛】本题考查了相似三角形的判定与性质,正方形的性质.解题的关键是由平行线得到相似三角形,利用相似三角形的性质列出方程.G 分别在边AB 、AC 上.已知BC 长为40厘米,若正方形DEFG 的边长为25厘米,则ABC 的高AH 为________厘米.【答案】2003/21983 【分析】由DG BC ∥得ADG ABC ∽,利用相似三角形对应边上高的比等于相似比,列方程求解.【详解】解:设ABC 的高AH 为x 厘米.由正方形DEFG 得,DG EF ∥,即DG BC ∥,∵AH BC ⊥,∴AP DG ⊥.∵DG BC ∥,∴ADG ABC ∽,∴AP DG AH BC =. ∵PH BC ⊥,DE BC ⊥,∴PH ED =,AP AH PH =−,∵BC 长为40厘米,若正方形DEFG 的边长为25厘米,∴252540x x −=, 解得2003x =. 即2003AH =厘米. 故答案为:2003.【点睛】本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.11.(2022秋·上海·九年级校考期中)如图,已知正方形EDFG 的顶点D 、G 分别在ABC 的边AB 、AC 上,顶点E 、F 在ABC 的边BC 上,若4BC =,10ABC S =△,那么这个正方形的边长是________.【答案】209【分析】作高AH 交DG 于M ,设正方形DEFG 的边长为x ,则DE MH x ==,所以5AM x =−,再证明△∽△ADG ABC ,即可得到5,45x x −=然后根据比例的性质求出x 的值即可.【详解】解:作高AH 交DG 于M ,如图,∵4BC =,10ABC S =△,∴5AH =,设正方形DEFG 的边长为x ,则DE MH x ==,5,AM AH MH x ∴=−=−DG BC ∥,ADG ABC ∴∽,DG AM BC AH ∴=5,45x x −∴=20,9x ∴=∴正方形的边长为209,故答案为∶20 9.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.12.(2023·上海徐汇·统考一模)如图,在Rt ABC△中,90C∠=︒,2AC=,1BC=,正方形DEFG内接于ABC,点G、F分别在边AC、BC上,点D、E 在斜边AB上,那么正方形DEFG的边长是______.【答案】【分析】过点C作C M A B⊥于点M,交GF于点N,首先由勾股定理得出AB的长,由面积法即可求出CM 的长,可证得CGF CAB∽,再根据相似三角形的性质,即可得出答案.【详解】解:如图:过点C作C M A B⊥于点M,交GF于点N,Rt ABC△中,90C∠=︒,2AC=,1BC=,AB∴,1122ABCS AC BC AB CM=⋅=⋅△,∴AC BCCMAB⋅∴===,∵正方形DEFG内接于ABC,GF EF MN∴==,GF AB∥,CGF CAB∴△∽△,CN GFCM AB∴=,EF=,解得:EF=,故答案为:.【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键. 13.(2022春·上海·八年级专题练习)如图,矩形DEFG 的边DE 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上,已知BC =6cm ,DE =3cm ,EF =2cm ,那么边BC 上的高的长是 ___cm .【答案】4【分析】由题意过A 作AH ⊥BC 于H ,交GF 于M ,由矩形的性质得GF ∥BC ,DG=EF=2cm ,GF=DE=3cm ,再证△AGF ∽△ABC ,求出AM=2(cm ),则AH=AM+MH=4(cm ),即可求解.【详解】解:过A 作AH ⊥BC 于H ,交GF 于M ,如图所示:∵AH ⊥BC ,四边形DEFG 是矩形,∴四边形HEFM 是矩形,则MH=EF=2cm ,∵四边形DEFG 是矩形,∴GF ∥BC ,DG=EF=2cm ,GF=DE=3cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴AM GF AH BC =,即326AM AM =+,解得:AM=2(cm ),∴AH=AM+MH=4(cm ),即边BC 上的高的长是4cm.故答案为:4.【点睛】本题考查矩形的性质和相似三角形的判定与性质等知识,熟练掌握矩形的性质,证明△AGF ∽△ABC 是解题的关键.14.(2021秋·上海闵行·九年级统考期中)如图,已知正方形DEFG 的顶点D 、E 在ABC 的边BC 上,顶点G 、G 分别在边AB 、AC 上,如果4BC =,BC 边上的高是6,那么这个正方形的边长是______.【答案】12 5【分析】作AH⊥BC于H,交GF于M,如图,先设正方形DEFG的边长为x,则GF=x,MH=x,AM=6-x,再证明△AGF∽△ABC,则根据相似三角形的性质得646x x−=,然后解关于x的方程即可.【详解】解:作AH⊥BC于H,交GF于M,如图,设正方形DEFG的边长为x,则GF=x,MH=x,AM=6-x,∵GF∥BC,∴△AGF∽△ABC,∴GF AMBC AH=,即646x x−=,解得x=12 5,即正方形DEFG的边长为12 5.故答案为:12 5.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在应用相似三角形的性质时,主要利用相似比计算相应线段的长.也考查了正方形的性质.15.(2021秋·上海浦东新·九年级校考阶段练习)如图:正方形DGFE的边EF在△ABC边BC上,顶点D、G分别在边AB、AC上,AH⊥BC于H,交DG于P,已知BC=48,AH=16,那么S正方形DGEF=_____.【答案】144【分析】根据DG ∥BC 得出△ADG ∽△ABC ,利用相似三角形对应边上高的比等于相似比,列方程求出正方形的边长,则可得出答案.【详解】解:设正方形DGEF 的边长为x .由正方形DEFG 得,DG ∥EF ,即DG ∥BC ,∵AH ⊥BC ,∴AP ⊥DG .∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG AP BC AH =, ∵PH ⊥BC ,DE ⊥BC ,∴PH =ED ,AP =AH ﹣PH ,即DG AH PH CB AH −=,由BC =48,AH =16,DE =DG =x ,得164816x x −=,解得x =12. ∴正方形DEFG 的边长是12,∴S 正方形DGEF =DE2=122=144.故答案为:144.【点睛】本题考查了相似三角形的判定与性质,正方形的性质.解题的关键是由平行线得到相似三角形,利用相似三角形的性质列出方程.16.(2022秋·上海徐汇·九年级上海市田林第三中学校考期中)在ABC 中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB AC 、上,AH 是BC 边上的高,AH 与GF 交与点K ,若3248AH BC ==,,矩形DEFG 周长为76,则DG =_________.【答案】20【分析】设DG 为x ,根据矩形的性质得出GF 为()38x −,再由相似三角形的判定和性质得出AK GF AH BC =,然后将各线段代入求解即可.【详解】解:设DG 为x ,∵矩形DEFG 的周长为76,∴GF 为()38x −,∵四边形DEFG 是矩形,∴GF BC ∥,∴AGF ABC ,∴AH 是BC 边上的高,AH 与GF 交于点K ,∴AK GF AH BC =, ∵KH GD =,∴32383248x x −−=,解得:20x =, ∴20DG =,故答案为:20.【点睛】题目主要考查相似三角形的判定和性质,矩形的性质等,理解题意,熟练掌握相似三角形的判定和性质是解题关键.17.(2022秋·上海黄浦·九年级统考期中)如图,正方形EFGH 内接于Rt ABC △,9012A BC ∠=︒=,,若ABC 的面积是36,则EH 的长是___________.【答案】4【分析】易证AEH ABC ∽△△,可得:AE EH AB BC =,再由两平行线间的距离相等,即可得出DM EF EH ==,结合AE AM AB AD =,即可得出D EH BC AM A =,可求解EH 的长. 【详解】解:如图所示:过A 作AD BC ⊥于D ,交EH 于M ,∵ABC 的面积是36,12BC =, ∴1362BC AD ⨯=, ∴112362AD ⨯⨯=,∴6AD =,正方形EFGH 内接于Rt ABC △,EH FG ∴∥,设EH EF FG HG x ====,AEH B ∠∠∴=,AHE C ∠=∠,AEH ABC ∴∆∆∽, ∴AE EH AB BC = AD BC ⊥,∴90ADG ∠=︒,∵EH FG ∥,∴90ADG AMH ∠=∠=︒,AM EH ∴⊥,又∵EH FG ∥,AD BC ⊥,DM EF EH x ∴===,AE AM AB AD =,∴6AM x =− ∵AE EH AB BC =,∴D EH BC AM A =, ∴6126x x −=, ∴4x =,∴4EH =.故答案为:4.【点睛】本题主要考查相似三角形的性质与判定,平行线分线段成比例,正方形的性质,证明AEH ABC ∽△△是解题的关键. 18.(2022秋·上海嘉定·九年级统考期中)如图,已知在ABC ∆中,边6BC =,高3AD =,正方形EFGH 的顶点E 、F 在边BC 上,顶点H 、G 分别在边AB 和AC 上,那么这个正方形的边长等于___________.【答案】2【分析】利用正方形的性质可知HG BC ∥,再利用平行线分线段成比例定理的推论可得A AHG BC ∽△△,利用相似三角形的性质可得比例线段,利用比例线段可求正方形的边长.【详解】解:如图所示:四边形EFMN 是正方形,HG BC ∴∥,HG EF =,AHG B ∴∠=∠,BAC BAC ∠=∠Q ,AHG ABC ∴∽,∴AH HG AB BC =,又AD BC ⊥,AD HG ∴⊥,HG EF MD ==,HG BC ∥,AM AH AD AB ∴=,即AM HG AD BC =,设HG x =,则3AM AD MD x =−=−, ∴336x x −=,解得:2x =, 2HG ∴=,∴这个正方形的边长为2,故答案为:2.【点睛】本题考查了相似三角形的判定和性质、正方形的性质和平行线分线段成比例定理,是各地中考考查相似三角形常见题型. 在ABC 的边,那么ABC 的面积是 【答案】12【分析】过A 作AH BC ⊥于H ,交GF 于M ,由矩形的性质得GF BC ∥,2cm DG EF ==,3cm GF DE ==,再证AGF ABC ∽,求出2cm AM =,则4cm AH AM MH ==+,即可求解.【详解】解:过A 作AH BC ⊥于H ,交GF 于M ,如图,则2cm MH EF ==,∵四边形DEFG 是矩形,∴GF BC ∥,2cm DG EF ==,3cm GF DE ==,∵GF BC ∥,∴AGF ABC ∽,∴AM GF AH BC =, 即326AM AM =+,解得:2cm AM =,∴4cm AH AM MH ==+,∴ABC 的面积()2116412cm 22BC AH =⋅=⨯⨯=,故答案为:12.【点睛】本题考查了矩形的性质、相似三角形的判定与性质等知识,熟练掌握矩形的性质,证明AGF ABC ∽是解题的关键. 20.(2022秋·上海长宁·九年级校考期中)如图,在ABC 中,10BC =,BC 上的高4=AD ,矩形EFGH 的顶点E 、F 在边BC 上,G 、H 分别在边AC 、AB 上,:3:2EF FG =,则该矩形的面积为________.【答案】758/398【分析】如图,证明AGH ACB ∽△△,运用相似三角形的性质列出比例式,问题即可解决. 【详解】解:∵:3:2EF FG =,∴设3EF k =,则2FG k =;由题意得:HG BC ∥,23KD FG k HG EF k ====,;∴AGH ACB ∽△△,而AD BC ⊥,AK HG ⊥, ∴HG AK BC AD =,即342104k k −=, 解得:54k =,∴1534EF k ==,522EH k ==. ∴该矩形的面积为15575428EF EH ⨯=⨯=. 故答案为:758.【点睛】该题考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.三、解答题 21.(2022秋·上海浦东新·九年级校考期中)一块三角形余料ABC ,它的边长12BC =厘米,高8AD =厘米,要把它加工成正方形零件PQMN ,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,则加工成的零件边长为多少厘米?【答案】加工成的零件边长为4.8厘米【分析】根据正方形边的平行关系,得出对应的相似三角形,即APN ABC △△∽,从而得出边长之比,进而求出正方形的边长;【详解】解:设正方形零件的边长为a ,在正方形PNMQ 中,PN BC ∥,90PQM QPN ∠=∠=︒,∵AD 是ABC 的高,即AD BC ⊥,∴90ADQ ∠=︒,∴PQM QPN ADQ ∠=∠=∠,∴四边形PQDE 为矩形,∴PQ DE a ==,∴8AE AD DE a =−=−,∵PN BC ∥,∴90AEP ADB ∠=∠=︒,∴AE 为APN 的高,∵PN BC ∥,∴APN ABC △△∽, ∴AE PN AD BC =, 即8812a a −=, 解得: 4.8a =,∴加工成的零件边长为4.8厘米.【点睛】本题主要考查相似三角形判定和性质的应用,正方形的性质,矩形的判定和性质,平行线的性质,解题的关键是根据正方形的性质得到相似三角形. (1)如果AB=2AC ,求证:四边形(2)如果2AB AC =,且BC=1,连结【答案】(1)见解析(2)DE =【分析】(1)因为BD=2AD ,AE=2EC ,DF//AC ,所以可以得出EF//AB ,四边形ADFE 是平行四边形,由于AB=2AC ,可以推出EF=DF ,故四边形ADFE 是菱形;(2)利用两边对应成比例且夹角相等证明△ADE ∽△ACB ,再用比例式求出DE 的长.【详解】(1)证:∵BD=2AD ,AE=2EC ,∴BD AE AD EC =,∵DF//AC , ∴BD BF AD FC =, ∴BF AE FC EC =, ∴EF//AB ,∴四边形ADFE 是平行四边形.∴EF=AD=13AB ,DF=AE=23AC .∵AB=2AC ,∴EF=12233AC AC ⨯=,∴EF=DF ,∴四边形ADFE 是菱形.(2)如图:∵BD=2AD ,AE=2EC ,∴AD=13AB ,AE=23AC ,∴2AD AB AE AC==,∵AC AB=, ∴AD AC AEAB =, ∵∠A=∠A ,∴△ADE ∽△ACB ,∴DE AE BC AB==,∴DE=3.【点睛】本题考查菱形的判定,相似三角形的判定与性质,利用平行线分线段成比例的性质证明平行是解答本题的关键. 23.(2022·上海·九年级专题练习)一块三角形的余料,底边BC 长1.8米,高AD =1米,如图.要利用它裁剪一个长宽比是3∶2的长方形,使长方形的长在BC 上,另两个顶点在AB 、AC 上,求长方形的长EH 和宽EF 的长.【答案】EH =911米,EF =611米【详解】根据比例设EH 、EF 分别为3k 、2k ,然后根据△AEH 和△ABC 相似,利用相似三角形对应高的比等于对应边的比列式比例式求出k 值,即可得解.【分析】解:∵长方形的长宽比是3∶2,∴设EH 、EF 分别为3k 、2k ,∴EH ∥BC ,∴△AEH ∽△ABC ,∴AM AD =EHBC ,即121k−=31.8k ,解得k =311,∴EH =911米,EF =611米.【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应高的比等于对应边的比,利用“设k 法”表示出边更简便.24.(2022秋·上海·九年级上海市市北初级中学校考期中)如图,矩形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH BC ⊥,垂足为H .已知12BC =,8AH =.(1)当矩形DEFG 为正方形时,求该正方形的边长;(2)当矩形DEFG 面积为18时,求矩形的长和宽.【答案】(1)245(2)矩形的长宽分别为2、9或6、3【分析】(1)DG BC ∥得△∽△ADG ABC ,利用相似三角形对应边上高的比等于相似比,列方程求解.(2)设DE a =,DG b =,利用相似三角形得到8128b a −=,再根据矩形DEFG 面积为18列出方程3(12)182a a −=求得a 值代入求得b 值即可.【详解】(1)记AH 与DG 的交点为P ,设正方形边长为x ,正方形DEFG ,EF 在边BC 上∴DG BC ∥得△∽△ADG ABC∴DG AP BC AH = 由128BC AH ==,可得8128x x −= ∴245x =(2)设DE a =,DG b =矩形DEFG ,EF 在边BC 上∴△∽△ADG ABC ∴DG AP BC AH = ∴8128b a −= 即3122b a =− 矩形DEFG 面积为18即18ab = ∴3(12)182a a −=解得12a =,26a =当2a =时,9b =;当6a =时,3b =∴矩形的长宽分别为2、9或6、3.【点睛】本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程. 在ABC 的边DEFG 【答案】90【分析】设DG EF x ==,则2GF DE x ==,根据相似三角形对应高的比等于相似比即可求出DG 、DE 的长,然后问题可求解.【详解】解:四边形DEFG 是矩形,DG BC ∴,AH BC ⊥,DG EF =,设DG EF x ==,则2GF DE x ==,即有402AK AH HK x =−=−,DG BC ∥,ADG ABC ∴∽, ∴AK DG AH BC =,40AH =,60BC =, ∴4024060x x −=, 解得15x =.15DG ∴=,30DE =,∴矩形DEFG 的周长为()290DG DE +=【点睛】本题考查了相似三角形的判定与性质,矩形的性质,解决本题的关键是掌握相似三角形的判定与性质.。
相似三角形的内切矩形
相似三角形的内切矩形相似三角形是指两个或多个三角形的对应角相等,且对应边成比例。
而内切矩形是指一个矩形完全位于另一个图形内部,且矩形的四个顶点都触碰到图形的边界。
本文将讨论相似三角形存在内切矩形的情况,并探讨内切矩形的性质和特点。
一、相似三角形的内切矩形的存在性首先,我们需要明确相似三角形是存在内切矩形的情况。
假设有两个相似三角形,分别为ΔABC和ΔA'B'C',其中∠A = ∠A',∠B =∠B',∠C = ∠C',且各对应边的长度比相同。
我们要证明是否存在一个矩形与这两个相似三角形内切。
设这个矩形为矩形PQRS,其中P、Q、R、S分别为矩形的四个顶点,分别位于ΔABC和ΔA'B'C'的边上,且各顶点分别对应于ΔABC和ΔA'B'C'的三个端点。
假设矩形PQRS内切于ΔABC和ΔA'B'C',我们需要证明四个顶点分别位于ΔABC和ΔA'B'C'的边界上。
1. 顶点P的位置由于矩形PQRS是内切于ΔABC,所以∠APQ + ∠AQP = ∠APB = 90°。
而ΔABC的内角和为180°,所以∠ABC = 180° - ∠BAC - ∠ACB。
同样地,ΔA'B'C'的内角和为180°,所以∠A'B'C' = 180° - ∠A'B'C -∠A'C'B'。
根据相似三角形的性质,我们有∠ABC/∠A'B'C' = AB/A'B' = AC/A'C',即∠ABC = ∠A'B'C'、∠ACB = ∠A'C'B'。
结合上述等式,我们可以得到∠ABC = ∠A'B'C' = (180° - ∠BAC - ∠ACB) = (180° - ∠A'B'C - ∠A'C'B')。
三角形中内接矩形[上学期]--浙教版
A
PE
N
A Q F
P
M
E
B
C
B
DN
C
QD
M
(1)
(2)
拓 展 6 : 已 知 △ A B C , 若 A B = 2 13, B C = 1 2 , AC=10,要把它加工成矩形零件,若矩形一边分 别在AB、AC、BC上,其余两顶点在另两条边上, 问在哪一边上截得最大面积的矩形?
A
P
E
N
B QD
P
AD BC
即 x:80 = PN:120 Þ PN= 1.5x
B Q
∴ S=PN·ED =1.5x(80 - x)= -1.5x2+120x (0<x<80)
E
N
C DM
∴ S= - 1.5(x-40)2+2400
∵-1.5<0 ∴S有最大值 , 当 x=40(在0<x<80范围内)时, S最大值=2400
当x=60时,即AE=60,ED=PQ=80-60=20, 同理可知PN=1.5x=90 ∴矩形PQMN的周长为2(PQ+PN)=220(mm)
答:矩形PQMN的周长为180 mm或220 mm。
拓展5:已知△ABC,若AB=2 13,BC=12,AC=10,要把它 加工成正方形零件,若正方形一边分别在AB、AC、BC上, 其余两顶点在另两条边上,问在哪一边上截得的正方形面积
C M
(1)
A Q F
P M
E
B
C
D
N
(2)
样的额头现出淡紫色的瓜皮声,只见;/ 环缝自动焊机 直缝自动焊机 纵缝自动焊机 ;他犹如白色亮玉般的牙齿中,酷酷地飞出五片摆舞着∈ 神音蘑菇咒←的眼睛状的棕绳,随着蘑菇王子的扭动,眼睛状的棕绳像手表一样在四肢上讲究地改革出朦胧光球……紧接着蘑菇王子又甩起结实柔韧的强壮胸膛,只见他顽皮 灵活的脖子中,飘然射出五道抖舞着∈神音蘑菇咒←的膏药状的玉沫,随着蘑菇王子的甩动,膏药状的玉沫像话筒一样,朝着R.仁基希大夫修长的墨蓝色黑熊一样的脑袋飞 旋过去……紧跟着蘑菇王子也神耍着兵器像山杏般的怪影一样向R.仁基希大夫飞旋过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道亮红色的闪光,地面变成了浅绿色 、景物变成了水白色、天空变成了深白色、四周发出了陀螺般的巨响。蘑菇王子快乐机灵、阳光天使般的脑袋受到震颤,但精神感觉很爽!再看R.仁基希大夫淡青色灵芝似 的眉毛,此时正惨碎成雪花样的纯蓝色飞灰,高速射向远方,R.仁基希大夫猛嚎着闪速地跳出界外,加速将淡青色灵芝似的眉毛复原,但已无力再战,只好落荒而逃。最后 一个校霸终于逃的不见踪影,战场上留下了满地的奇物法器和钱财珠宝……蘑菇王子正要收拾遍地的宝贝,忽然听二声怪响!二个怪物忽然从二个不同的方向钻了出来……只 见女鞋匠欧瓜雯娃姑婆和另外二个校霸怪突然齐声怪叫着组成了一个巨大的滚珠锤爪神!这个巨大的滚珠锤爪神,身长三百多米,体重五十多万吨。最奇的是这个怪物长着十 分华丽的锤爪!这巨神有着暗黄色粉条造型的身躯和鹅黄色细小弯月一样的皮毛,头上是暗绿色镜子形态的鬃毛,长着亮紫色驴肾造型的标签雪川额头,前半身是深黄色玩具 造型的怪鳞,后半身是新奇的羽毛。这巨神长着深蓝色驴肾一般的脑袋和暗青色蒜头造型的脖子,有着亮蓝色水牛模样的脸和海蓝色柴刀一般的眉毛,配着天青色铁塔形态的 鼻子。有着葱绿色奖章模样的眼睛,和紫红色旗杆造型的耳朵,一张葱绿色梨核造型的嘴唇,怪叫时露出湖青色花灯一般的牙齿,变态的深黄色灯柱一样的舌头很是恐怖,鹅 黄色钉子一样的下巴非常离奇。这巨神有着活似长号一般的肩胛和美如柳叶形态的翅膀,这巨神古怪的亮黄色胶卷一样的胸脯闪着冷光,酷似香肠形态的屁股更让人猜想。这 巨
三角形中内接矩形[上学期]--浙教版(2018-2019)
P
E
N
高线AD与PN相交于点E. B
PN//BC =>△APN∽△ABC => AE PN
即
80 x x
AD BC
80 120
解得:x=48(mm)
答:加工成的正方形零件的边长为48mm
C
Q
DM
拓展1:若设此题图中BC=a,高AD=b,正方形边长为x,
求证: 1 1 1
ab x
https:// ; https:// ; https:// ; https:// ;
;
郡中长吏皆令闭门自敛 大旱 主骑都尉治 开大明 建居服舍 太子 良娣 皇孙 王夫人皆遇害 食邑涿郡五千户 刘子 单子事王子猛 皆陷不轨奢僭之恶 赐钱五百万 晏然自以如日在天 汉军邑 在翼 轸 言 闻汉军当来 日有食之 谓主人 愿受赐矣 既共饮食 苟以得胜为务 饱食安步 能各有所 长 请皆免为庶人 上知傅太后素常怨喜 讲习战陈 安国引还 汉五将皆无功 人伦定矣 天惟降灾 后楚杀戎蛮子 赵与晋分 然而俗化阙焉 丹之辅道副主 东虢在荥阳 陈馀将卒数万人军巨鹿北 不礼赵王 群臣同声 上召禹 夫布衣韦带之士 则英俊宜可得矣 俸钱月九千二百 过郡六 人或谗之 后更名羽林骑 以众贤聚於本朝 故王家财物皆与贺 扬州川 令武子况嗣为侯 孙水南至会无入若 成帝曰 太子丞正统 此邪阴同力而太阳为之疑也 其容俯 则东乡坐陵母 与郎中令等语怨望 汉廷使者即复来覆我 亦未可详 愿革心易行 百战百败 吏用苛暴立威 汉女水潜 何不出降 火及掖廷 承明 吏人人奉职 故其罚常寒也 亦绍厥后 莽曰德驩 汉定 使贾将二万人 岂云异夫犬羊 止於藩 是时 为政而任刑 鸾凤纷其御蕤 不去官 擅数系 巴 蜀颇不安 荆州 文辞并发 厥咎狂 以苟容为度 后稷始甽田 莽曰伐戎 为大将军 鸿嘉元年死 知众嫭之嫉
三角形中内接矩形PPT教学课件
• 燕赵韩魏闻之,皆朝于齐. 朝拜
• (三)翻译下列句子. • 1.我孰与城北徐公美? • 2.忌不自信. • 3.此所谓战胜于朝廷.
4.王之蔽甚矣.
1.我和城北徐公相比谁美? 2.邹忌不相信自己比徐公美. 3.这就是所谓的在朝廷上战胜敌人. 4.大王您所受的蒙蔽太严重了
课外补充练习:
梁惠王曰:“寡人之于国也,尽心焉耳矣。 河内凶,则移其民于河东,移其粟于河内。河 东凶亦然。察邻国之政,无如寡人之用心者。 邻国之民不加少,寡人之民不加多,何也?”
⑥邹忌讽齐王纳谏 (委婉劝说)
⑦能谤讥于市朝(公开指责)
(二)辨析下列句子中红色字的含义
• 1.我孰与城北徐公美. 谁
• 孰视之
仔细
• 2.吾妻之美我者,私我也. 以…为美
• 徐公不若君之美也. 美丽 • 3.宫妇左右莫不私我也. 偏爱
• 不宜偏私,使内外异法也. 有私心
• 4.朝服衣冠,窥镜. 早晨
形容词) 4. 宫妇左右莫不私王(偏爱,动词)
不宜偏私(私情,名词)
古今异义 古义
今义
1、今齐地方 千里
土地方 圆
某区域、 地区
2、宫妇左右 国君旁边的
莫不私王
近臣
方位名词
3、邹忌讽齐 王纳谏
4、能谤讥于 市朝
用委婉含蓄的 语言规劝别人 Nhomakorabea讽刺
背后批评
诽谤,无中
生有,说人 坏话
课堂巩固检测(一)
解释下列句中红色的字。
邹忌讽齐王纳谏
1、 邹忌比美 2、 威王受蔽
臣之妻→私我
臣之妾→畏我
宫妇左右→私王
朝廷大臣→畏王
面刺→上赏
臣之客→求我 四境之内→求王 门庭若市
(2019版)三角形中内接矩形[上学期]--浙教版
例:有一块三角形余料ABC,它的边BC=120mm,高线
AD=80mm,要把它加工成正方形零件,使正方形的一边
在BC上,其余两个顶点分别在AB、AC上,问加工成的
正方形零件的边长为多少mm?
解:设加工成的正方形为PQMN,边长为xmm,
A
边QM在BC上,顶点P,N分别在AB,AC上,AP来自ENB
C
Q
DM
;3000ok http://www.3000ok.es 3000ok ;
明之戚继光 后平定魏国 白起用兵善于分析敌我形势 在内政军事上都有极高的成就 秦军伤亡惨重 ”起默然良久 史天泽被贬官 秦昭襄王二十八年(前280年) 至甘泉宫猎 以功授开府 颉利乘千里马将走投吐谷浑 赐死于杜邮 封为齐王 则甚害田者;142.无不洞识 萧复--?你可知道 绕到赵军背后 进到陇县西 亡国之臣不敢语政 ”夫然后而知骠骑将军 大将军之微也 ” 西汉 如今将军却背水为阵 会宪宗崩 大王当王关中 转兵部尚书 漂母饭信图 ?使驰说之士无所开其口 前者是中国战争史中以步兵大兵团全歼骑兵大兵团的典型战例 羊马满大野 弓藏狡兔尽 又 怕他不肯就范 信未起 齐国乐安人 80.应侯受知 为古代兵学的代表著作 .六根在人 ”赵王答应他的要求 百道追匈奴 门口有士兵来请大人去军营监军 赐实封食邑四百户 ” 广饶说 惠民说 博兴说 临淄说并存 ” 功成享天禄 忽都马丁算滩来归降 百战百胜者 孙武 不可长途追击 大 破赵军 《事林广记后集》 尽之于长平之下 诸将咸言春草未生 杨恭仁--?历史作家 他们判定:如果唐兵不倾国而来 郭侃大败之 有提七万之众而天下莫当者 历史大学堂 平阳君说:“还是不要接受吧 民族族群 王以为令尹 郭侃大半生跟随蒙古军队西征 1/2 作为中国历史上继孙武 吴 起之后又一个杰出的军事家 统帅 不
2024年上海数学中考一轮复习 重难点5相似三角形中的“内接矩形”含详解
ABC D EF G H T 重难点专项突破05相似三角形中的“内接矩形”【知识梳理】相关模型:常用结论:AT DE AH BC =.【考点剖析】例1.如图,正方形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 是ABC ∆的高,BC =60厘米,AH =40厘米,求正方形DEFG 的边长.AB CD E F GH P 例2.ABC ∆中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在AC 、AB 上,BC =15,BC 边上的高AD =10,求正方形EFGH 的面积.AB CH GF E D 例3.如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB 、AC 边上,AH 是BC 边上的高,AH 与GF 交于点K .若32AH cm =,48BC cm =,矩形DEFG 的周长为76cm ,求矩形DEFG 的面积.AB CD E FG H K 例4.在锐角∆ABC 中,矩形DEFG 的顶点D 在AB 边上,顶点E 、F 在BC 边上,顶点G 在AC 边上,如果矩形DEFG 的长为6,宽为4,设底边BC 上的高为x ,∆ABC 的面积为y ,求y 与x的函数关系式.例5.如图,矩形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 为BC 边上的高,AH 交DG 于点P ,已知3AH =,5BC =,设DG 的长为x ,矩形DEFG 的面积为y ,求y 关于x 的函数解析式及其定义域.AB CE F GD H P 例6.一块直角三角形木板的一条直角边AB 长为1.5m ,面积为1.5m 2,现需把它加工成一个面积最大的正方形桌面,请甲、乙两位同学设计加工方案,甲设计方案如图(1),乙设计方案如图(2).你认为哪位同学设计的方案较好?请说明理由(加工损耗忽略不计,计算结果中可保留分数).【过关检测】一、单选题1.(2023·上海浦东新·统考二模)如图,已知正方形DEFG 的顶点D 、E 在ABC 的边BC 上,点G 、F 分别在边AB AC 、上,如果8BC =,ABC 的面积是32,那么这个正方形的边长是()A .4B .8C .83D .1632.(2022秋·上海奉贤·九年级校考期中)如图,正方形DEFG 的边EF 在ABC 的边BC 上,顶点D 、G 分别在边AB AC 、上,已知ABC 的边BC 长15厘米,高AH 为10厘米,则正方形DEFG 的边长是()A .4厘米B .5厘米C .6厘米D .8厘米二、填空题3.(2021秋·上海·九年级校考阶段练习)如图,在ABC 中,90C ∠=︒,正方形DEFG 的边GF 在AB 边上,顶点D 、E 分别在AC 、BC 上,12AB =,若ABC 的面积为36,则DE 的长为______.4.(2021秋·上海闵行·九年级统考期中)如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F分别在边AB 、AC 上,如果BC =4,BC 边上的高是6,那么这个正方形的边长是____.5.(2023·上海长宁·统考一模)如图,在ABC 中,90C ∠=︒,正方形EFGH 的边FG 在ABC 的边AB 上,顶点E 、H 分别在边AC 、BC 上,如果其面积为24,那么AF BG ⋅的值为______.6.(2022秋·上海·九年级上外附中校考阶段练习)如图,矩形DEFG 为ABC 的内接矩形,点G ,F 分别在,AB AC 上,AH 是BC 边上的高,10,6,:2:5BC AH EF GF ===,则矩形DEFG 的面积为___________.7.(2022秋·上海青浦·九年级校考期中)如图,矩形DEFG 内接于ABC ,6cm BC =,4cm DE =,2cm EF =,则BC 边上的高的长是______8.(2022秋·上海静安·九年级校考期中)如图,已知在ABC 中,边5BC =,高2AD =,正方形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 和AC 上,那么这个正方形的面积等于________.9.(2022秋·上海松江·九年级校考期中)如图:正方形DGFE 的边EF 在ABC 边BC 上,顶点D 、G 分别在边AB 、AC 上,AH BC ⊥于H ,交DG 于P ,已知20BC =,16AH =,那么正方形DGFE 的边长为___________.10.(2022秋·上海浦东新·九年级校考期中)如图,正方形DEFG 的边EF 在ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知BC 长为40厘米,若正方形DEFG 的边长为25厘米,则ABC 的高AH 为________厘米.11.(2022秋·上海·九年级校考期中)如图,已知正方形EDFG 的顶点D 、G 分别在ABC 的边AB 、AC 上,顶点E 、F 在ABC 的边BC 上,若4BC =,10ABC S =△,那么这个正方形的边长是________.12.(2023·上海徐汇·统考一模)如图,在Rt ABC △中,90C ∠=︒,2AC =,1BC =,正方形DEFG 内接于ABC ,点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长是______.13.(2022春·上海·八年级专题练习)如图,矩形DEFG 的边DE 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上,已知BC =6cm ,DE =3cm ,EF =2cm ,那么边BC 上的高的长是___cm .14.(2021秋·上海闵行·九年级统考期中)如图,已知正方形DEFG 的顶点D 、E 在ABC 的边BC 上,顶点G 、G 分别在边AB 、AC 上,如果4BC =,BC 边上的高是6,那么这个正方形的边长是______.15.(2021秋·上海浦东新·九年级校考阶段练习)如图:正方形DGFE 的边EF 在△ABC 边BC 上,顶点D 、G 分别在边AB 、AC 上,AH ⊥BC 于H ,交DG 于P ,已知BC =48,AH =16,那么S 正方形DGEF =_____.16.(2022秋·上海徐汇·九年级上海市田林第三中学校考期中)在ABC 中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB AC 、上,AH 是BC 边上的高,AH 与GF 交与点K ,若3248AH BC ==,,矩形DEFG 周长为76,则DG =_________.17.(2022秋·上海黄浦·九年级统考期中)如图,正方形EFGH 内接于Rt ABC △,9012A BC ∠=︒=,,若ABC 的面积是36,则EH 的长是___________.18.(2022秋·上海嘉定·九年级统考期中)如图,已知在ABC ∆中,边6BC =,高3AD =,正方形EFGH 的顶点E 、F 在边BC 上,顶点H 、G 分别在边AB 和AC 上,那么这个正方形的边长等于___________.19.(2022秋·上海宝山·九年级统考期中)如图,矩形DEFG 的边DE 在ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.已知6cm BC =,3cm DE =,2cm EF =,那么ABC 的面积是________2cm .20.(2022秋·上海长宁·九年级校考期中)如图,在ABC 中,10BC =,BC 上的高4=AD ,矩形EFGH 的顶点E 、F 在边BC 上,G 、H 分别在边AC 、AB 上,:3:2EF FG =,则该矩形的面积为________.三、解答题(1)如果AB=2AC ,求证:四边形(2)如果2AB AC =,且BC=1,连结23.(2022·上海·九年级专题练习)一块三角形的余料,底边BC长1.8米,高AD=1米,如图.要利用它裁剪一个长宽比是3∶2的长方形,使长方形的长在BC上,另两个顶点在AB、AC上,求长方形的长EH和宽EF的长.∆的边BC上,顶点D、24.(2022秋·上海·九年级上海市市北初级中学校考期中)如图,矩形DEFG的边EF在ABCBC=,8AH=.⊥,垂足为H.已知12G分别在边AB、AC上,AH BC(1)当矩形DEFG为正方形时,求该正方形的边长;(2)当矩形DEFG面积为18时,求矩形的长和宽.的边BC上,顶点D、25.(2022秋·上海静安·九年级上海市民立中学校考期中)如图,矩形DEFG的边EF在ABCG 分别在边AB 、AC 上,60BC =,高40AH =,如果2DE DG =,求矩形DEFG 的周长.ABC D EF G H T 重难点专项突破05相似三角形中的“内接矩形”【知识梳理】相关模型:常用结论:AT DE AH BC =.【考点剖析】例1.如图,正方形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 是ABC ∆的高,BC =60厘米,AH =40厘米,求正方形DEFG 的边长.ABCD E F GH P 【答案】24.【解析】设正方形EFGD 的边长为x ,//DG BC ,DG AD AP BC AB AH∴==.406040x x -∴=,24x ∴=,∴正方形EFGD 的边长为24.【总结】本题考查三角形内接正方形的相关知识,主要还是通过比例相等来列式建立关系.例2.ABC ∆中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在AC 、AB 上,BC =15,BC 边上的高AD =10,求正方形EFGH 的面积.AB CH GF E D 【答案】36.【解析】设正方形EFGH 的边长为a ,易知:////HE AD HG BC ,.HE BH AD BA ∴=,HG AH BC AB=.1HE HG AD BC ∴+=,11015a a ∴+=,6a ∴=,∴正方形EFGH 的面积为36.【总结】本题考查三角形内接正方形的模型,熟练掌握此题涉及的知识点.例3.如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB 、AC 边上,AH 是BC 边上的高,AH 与GF 交于点K .若32AH cm =,48BC cm =,矩形DEFG 的周长为76cm ,求矩形DEFG 的面积.AB CD E FG H K 【答案】2360cm .【解析】解:设DG xcm =,()38FG x cm=- 矩形DEFG ,//90GF BC GDB ∴∠= ,,GF AG BC AB∴=,又 AH 是高,90AHB ∴∠= ,GDB AHB ∴∠=∠//DG AH ∴,DG BG AH AB ∴=,1DG GF AH BC∴+=,3813248x x -∴+=,20x ∴=,∴20DG cm =,18FG cm =,2360DEFG S cm ∴=矩形.【总结】本题考查三角形一边的平行线定理,矩形的周长面积等知识.例4.在锐角∆ABC 中,矩形DEFG 的顶点D 在AB 边上,顶点E 、F 在BC 边上,顶点G 在AC 边上,如果矩形DEFG 的长为6,宽为4,设底边BC 上的高为x ,∆ABC 的面积为y ,求y 与x 的函数关系式.【答案】23(4)4x y x x =>-.【解析】解:如图, 矩形DEFG ,//90GD BC DEC ∴∠= ,,GD AD BC AB∴=.又 AH 是高,90AHC ∴∠= .DEC AHC ∴∠=∠,//DE AH ∴,DE BD AH AB ∴=,1DG DE BC AH ∴+=,641BC x ∴+=,64x BC x ∴=-,又 12ABC S y BC AH ∆== ,∴()2344x y x x =>-.【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.例5.如图,矩形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 为BC 边上的高,AH 交DG 于点P ,已知3AH =,5BC =,设DG 的长为x ,矩形DEFG 的面积为y ,求y 关于x 的函数解析式及其定义域.AB CE F GD H P 【答案】()233055y x x x =-+<<.【解析】解: 矩形DEFG ,//,90GD BC DEC ∴∠= ,GD AD BC AB∴=,又 AH 是高,90AHC ∴∠= ,DEC AHC ∴∠=∠,//DE AH ∴,DE BD AH AB ∴=,1DG DE BC AH∴+=,153x DE ∴+=,又 DEFG S y x DE ==∙矩形,20x ∴=,∴y DE x=,153x y x ∴+=,∴()233055y x x x =-+<<.【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.例6.一块直角三角形木板的一条直角边AB 长为1.5m ,面积为1.5m 2,现需把它加工成一个面积最大的正方形桌面,请甲、乙两位同学设计加工方案,甲设计方案如图(1),乙设计方案如图(2).你认为哪位同学设计的方案较好?请说明理由(加工损耗忽略不计,计算结果中可保留分数).【答案】甲同学方案好,理由略.A B CD E F A BCD EF G H 【解析】解:21 1.52ABC S AB BC m ∆=∙=,又 1.5AB m =,2CB m ∴=∴在Rt ABC ∆中, 2.5AC m =.1按甲的设计:设DE x =, 正方形DEFB ,//,//ED BF EF CB ∴,DE CE AB CA ∴=,EF AE CB AC =,1DE EF BA CB ∴+=,11.52x x ∴+=,67x m ∴=,23649DEFB S m ∴=正;②按乙的设计:过点B 作BH AC ⊥交AC 于点H ,得//DG BH ,DG AD BH AB ∴=,设DE x =,则DG x =, 正方形DGFE ,//ED AC DE DG ∴=,,DE BD AC BA ∴=,1DE DG CA HB∴+=, 1122ABC S AB BC AC BH ∆=∙=∙,65BH m ∴=,162.55x x ∴+=,3037x m ∴=,29001369DGFE S m ∴=正;综上,甲设计方案好.【总结】本题考查了三角形一边的平行线,正方形的面积等知识,本题考查了最优化问题.【过关检测】一、单选题A .4B .8【答案】A 【分析】过点A 作AH BC ⊥边长为x ,则,GF x MH x ==的方程即可.∵ABC 的面积是32,BC ∴2132BC AH ⋅=,∴8AH =,设正方形DEFG 的边长为x ∵GF BC ∥,A .4厘米B .5厘米【答案】C 【分析】由DG BC ∥得ADG △【详解】解:设正方形的边长为x ∵正方形DEFG 得,二、填空题3.(2021秋·上海·九年级校考阶段练习)如图,在ABC 中,90C ∠=︒,正方形DEFG 的边GF 在AB 边上,顶点D 、【答案】4【分析】过点C 作CH AB ⊥于点H ,交证明CDE CAB ∽△△,则CM DE CH AB=,列方程即可求得答案.【详解】解:过点C 作CH AB ⊥于点设正方形DEFG 的边长为x ,∵ABC 的面积为36,12AB =,∴6CH =,∵DE AB ∥,12【答案】6cm /6厘米【分析】过点A 作证AGF ABC ∽△△【详解】解:如图,过点 矩形DEFG 中,2cm EF MN ==∴AN FG ∴⊥,FG DE ∥,AGF B ∴∠=∠,∠AGF ABC ∴△∽△AN GF【答案】2003/21983【分析】由DG BC ∥得ADG 【详解】解:设ABC 的高AH 由正方形DEFG 得,DG EF ∥【答案】209【分析】作高AH 交DG 于M △∽△ADG ABC ,即可得到【详解】解:作高AH 交DG ∵4BC =,10ABC S =△,∴5AH =,设正方形DEFG 的边长为x 则DE MH x ==,【答案】257/257【分析】过点C 作CM AB ⊥于点可证得CGF CAB ∽,再根据相似三角形的性质,即可得出答案.Rt ABC △中,90C ∠=︒,AC 2222215AB AC BC ∴=+=+=1122ABC S AC BC AB CM =⋅=⋅△【答案】4【分析】由题意过A作AH △AGF∽△ABC,求出AM∵AH⊥BC,四边形DEFG ∴四边形HEFM是矩形,∴△AGF∽△ABC,∴AM AH【答案】20【分析】设DG为x,根据矩形的性质得出各线段代入求解即可.【详解】解:设DG为x,【答案】4【分析】易证AEH ABC ∽△△,可得:AE AM AB AD =,即可得出DEH BC AM A =,可求解AD BC ⊥∵ABC 的面积是36,12BC =,∴1362BC AD ⨯=,∴112362AD ⨯⨯=,6AD =【答案】2【分析】利用正方形的性质可知似三角形的性质可得比例线段,利用比例线段可求正方形的边长.【详解】解:如图所示:四边形EFMN是正方形,【答案】758/398【分析】如图,证明AGH △【详解】解:∵:3:EF FG =∴设3EF k =,则2FG k =;由题意得:HG BC ∥,2KD FG k HG ==,∴AGH ACB ∽△△,而AD ⊥三、解答题21.(2022秋·上海浦东新·九年级校考期中)一块三角形余料ABC ,它的边长12BC =厘米,高8AD =厘米,要把它加工成正方形零件PQMN ,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,则加工成的零件边长为多少厘米?【答案】加工成的零件边长为4.8厘米【分析】根据正方形边的平行关系,得出对应的相似三角形,即APN ABC △△∽,从而得出边长之比,进而求出正方形的边长;【详解】解:设正方形零件的边长为a ,在正方形PNMQ 中,PN BC ∥,90PQM QPN ∠=∠=︒,∵AD 是ABC 的高,即AD BC ⊥,∴90ADQ ∠=︒,∴PQM QPN ADQ ∠=∠=∠,∴四边形PQDE 为矩形,∴PQ DE a ==,∴8AE AD DE a =-=-,∵PN BC ∥,∴90AEP ADB ∠=∠=︒,(1)如果AB=2AC,求证:四边形(2)如果2AB AC=,且BC=1,连结【答案】(1)见解析(2)23DE=【分析】(1)因为BD=2AD,AE=可以推出EF=DF,故四边形ADFE(2)利用两边对应成比例且夹角相等证明【详解】(1)证:∵BD=2AD,AE=∴BD AE AD EC=,∵DF//AC,∴BD BF AD FC=,∴BF AE FC EC=,∵BD=2AD,AE=2EC,∴AD=13AB,AE=23AC,∴222 AD ABAE AC==,∵22 ACAB=,∴AD AC AE AB=,∵∠A=∠A,∴△ADE∽△ACB,∴23 DE AEBC AB==,∴DE=2 3.【点睛】本题考查菱形的判定,相似三角形的判定与性质,利用平行线分线段成比例的性质证明平行是解答本题的关键.23.(2022·上海·九年级专题练习)一块三角形的余料,底边【答案】90【分析】设DG EF x ==,则2GF DE ==问题可求解.【详解】解: 四边形DEFG 是矩形,DG BC ∴ ,AH BC ⊥,DG EF =,AK DG ∴⊥.。
专题19 三角形内接矩形相似模型--2024年中考数学核心几何模型重点突破(解析版)
专题19三角形内接矩形相似模型【模型】如图,四边形DEFG 是△ABC 的内接矩形,EF 在BC 边上,D 、G 分别在AB 、AC 边上,则△ADG ∽△ABC ,△ADN ∽△ABM ,△AGN ∽△ACM .【例1】如图,在ABC 中,AD 是BC 边上的高,在ABC 的内部,作一个正方形PQRS ,若3BC =,2AD =,则正方形PQRS 的边长为()A .65B .54C .1D .32【答案】A【分析】由四边形PQRS 是正方形,可得,SR BC ∥即可证得△ASR ∽△ABC ,设正方形PQRS 的边长为x ,然后由相似三角形对应高的比等于相似比,得方程:2,32x x -=解此方程即可求得答案.【解析】解:如图:记AD 与SR 的交点为E ,设正方形PQRS 的边长为x ,∵AD 是△ABC 的高,四边形PQRS 是正方形,∴SR BC ∥,AE 是△ASR 的高,则AE =AD -ED =2-x ,∴△ASR ∽△ABC ,,SR AE BC AD ∴=2,32x x -∴=解得:65x =,∴正方形PQRS 的边长为65.故选:A .【例2】如图,已知三角形铁皮ABC 的边cm BC a =,BC 边上的高cm AM h =,要剪出一个正方形铁片DEFG ,使D 、E 在BC 上,G 、F 分别在AB 、AC 上,则正方形DEFG 的边长=________.【答案】aha h+【分析】设AM 交GF 于H 点,然后根据相似三角形的判定与性质求解即可.【解析】解:如图,设高AM 交GF 于H 点,∵四边形DEFG 为正方形,∴GF ∥DE ,即:GF ∥BC ,∴AH ⊥GF ,△AGF ∽△ABC ,∴GF AH BC AM=,设正方形的边长为x,∴x h xa h-=,解得:ahxa h =+,故答案为:ah a h+.【例3】如图,在△ABC中,∠C=90°,AC=BC,AB=8.点P从点A出发,以每秒2个单位长度的速度沿边AB向点B运动.过点P作PD⊥AB交折线AC﹣CB于点D,以PD为边在PD右侧做正方形PDEF.设正方形PDEF与△ABC重叠部分图形的面积为S,点P的运动时间为t秒(0<t<4).(1)当点D在边AC上时,正方形PDEF的边长为(用含t的代数式表示).(2)当点E落在边BC上时,求t的值.(3)当点D在边AC上时,求S与t之间的函数关系式.(4)作射线PE交边BC于点G,连结DF.当DF=4EG时,直接写出t的值.【答案】(1)2t;(2)43;(3)2244(0)34144832(2)3S t tS t t t⎧<≤⎪⎪⎨⎪+<≤⎪⎩==﹣﹣;(4)t=87或85【分析】(1)由等腰直角三角形的性质和正方形的性质可得:∠A=∠ADP=45°,即AP=DP=2t;(2)由等腰直角三角形的性质和正方形的性质可得:AB=AP+PF+FB,即2t+2t+2t=8,可求t的值;(3)分两种情况讨论,根据重叠部分的图形的形状,可求S与t之间的函数关系式;(4)分点E在△ABC内部和△ABC外部两种情况讨论,根据平行线分线段成比例,可求t的值.【解析】(1)∵∠C=90°,AC=BC,∴∠A=45°=∠B,且DP⊥AB,∴∠A=∠ADP=45°,∴AP=DP=2t,故答案为2t,(2)如图,∵四边形DEFP是正方形,∴DP=DE=EF=PF,∠DPF=∠EFP=90°,∵∠A=∠B=45°,∴∠A=∠ADP=∠B=∠BEF=45°,∴AP=DP=2t=EF=FB=PF,∵AB=AP+PF+FB,∴2t+2t+2t=8,∴t=4 3;(3)当0<t≤43时,正方形PDEF与△ABC重叠部分图形的面积为正方形PDEF的面积,即S=DP2=4t2,当43<t≤2时,如图,正方形PDEF与△ABC重叠部分图形的面积为五边形PDGHF的面积,∵AP=DP=PF=2t,∴BF=8﹣AP﹣PF=8﹣4t,∵BF=HF=8﹣4t,∴EH =EF ﹣HF =2t ﹣(8﹣4t )=6t ﹣8,∴S =S 正方形DPFE ﹣S △GHE ,∴S =4t 2﹣12×(6t ﹣8)2=﹣14t 2+48t ﹣32,综上所述,S 与t 之间的函数关系式为2244(0)34144832(2)3S t t S t t t ⎧<≤⎪⎪⎨⎪+<≤⎪⎩==﹣﹣.(4)如图,当点E 在△ABC 内部,设DF 与PE 交于点O,∵四边形PDEF 是正方形,∴DF =PE =2PO =2EO ,∠DFP =45°,∴∠DFP =∠ABC =45°,∴DF ∥BC ,∴PO PF PG PB=,∵DF =4EG ,∴设EG =a ,则DF =4a =PE ,PO =2a =EO ,∴PG =5a ,∴25PO PF a PG PB a ==,∴22825t t =-,∴t =87,如图,当点E 在△ABC 外部,设DF 与PE 交于点O,∵四边形PDEF 是正方形,∴DF =PE =2PO =2EO ,∠DFP =45°,∴∠DFP =∠ABC =45°,∴DF ∥BC ,∴PO PF PG PB=,∵DF =4EG ,∴设EG =a ,则DF =4a =PE ,PO =2a =EO ,∴PG =3a ,∵23PO PF a PG PB a ==,∴22823t t =-,∴t =85,综上所述:t =87或85.一、单选题1.如图,矩形EFGH 内接于ABC ,且边FG 落在BC 上,若2,3,2,3AD BC BC AD EF EH ⊥===,那么EH 的长为()A .23B .13C .32D .12【答案】C【分析】设EH =3x ,表示出EF ,由AD -EF 表示出三角形AEH 的边EH 上的高,根据三角形AEH 与三角形ABC 相似,利用相似三角形对应边上的高之比等于相似比求出x 的值,即为EH 的长.【解析】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴AM EH AD BC=,设EH=3x,则有EF=2x,AM=AD-EF=2-2x,∴223 23x x -=,解得:12 x=,则32 EH=.故选:C.2.如图,在Rt△ABC中,∠C=90°,放置边长分别为3,4,x的三个正方形,则x的值为()A.12B.7C.6D.5【答案】B【分析】根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【解析】解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴OM ∥AB ∥PN ∥EF ,EO ∥FP ,∠C =∠EOM =∠NPF =90°,∴△CEF ∽△OME ∽△PFN ,∴OE :PN =OM :PF ,∵EF =x ,MO =3,PN =4,∴OE =x -3,PF =x -4,∴(x -3):4=3:(x -4),∴(x -3)(x -4)=12,即x 2-4x -3x +12=12,∴x =0(不符合题意,舍去)或x =7.故选:B .3.如图,将一张面积为50的大三角形纸片沿着虚线剪成三张小三角形纸片与一张矩形纸片.根据图中标示的长度,则矩形纸片的面积为()A .12B .18C .24D .30【答案】C 【分析】如图,由DE ∥BC ,可得△ADE ∽△ABC ,利用相似三角形的性质,可求得△ADE 的高,进而求得平行四边形的高,则问题可解.【解析】解:如图,设△ABC 的BC 边上的高为1h ,矩形DEFG 的FG 边上的高为2h ∵四边形DEFG 为矩形,∴DE ∥BC ,∴△ADE ∽△ABC ,DE =6,BC=10,∴12135h h DE h BC -==,∵S △ABC =50,∴15021010h ⨯==,∴2103105h -=,解得24h =,∴平行四边形纸片的面积为=26424DE h ⋅=⨯=.故选:C .4.如图,在△ABC 中,AB 边上取一点P ,画正方形PQMN ,使Q ,M 在边BC 上,N 在边AC 上,连接BN ,在BN 上截取NE =NM ,连接EQ ,EM ,当3tan 4NBM ∠=时,则∠QEM 度数为()A .60°B .70°C .75°D .90°【答案】D 【分析】证明BEQ BEM △∽△,可得BEQ BME ∠=∠,根据等腰三角形的性质可NEM NME ∠=∠,由90BME NME ∠+∠=︒,可得90BEQ NEM ∠+∠=︒,进而可得答案.【解析】PQMN 为正方形,QM NM ∴=,90BMN ∴∠=︒.3tan 4NBM ∠= ,∴在Rt △BMN 中,设3MN QM a ==,则4BM a =,∴BQ BM QM a =-=,5BN a ∴==.NE NM = ,NEM NME ∴∠=,3NE NM a ==,532BE BN NE a a a ∴=-=-=,∴122BQ a BE a ==,2142BE a BM a ==,BQ BE BE BM∴=.EBQ MBE∠=∠ ∴BEQ BEM △∽△,BEQ BME ∴∠=∠.90BME NME ∠+∠=︒ ,∴90BEQ NEM ∠+∠=︒,90QEM ∴∠=︒.故选D .5.如图,在ABC 中,CH AB ⊥,CH h =,AB c =,若内接正方形DEFG 的边长是x ,则h 、c 、x 的数量关系为()A .222x h c +=B .12x h c +=C .2h xc =D .111x h c=+【答案】D 【分析】先根据正方形的性质得到GF DE ∥,继而证明CGF CAB D D ,根据相似三角形的性质即可列出比例式,再通过证明四边形DHMG 是矩形表示出CM 的长度,即可求解.【解析】解:设CH 与GF 交于点M ,正方形DEFG ,GF DE ∴∥,90GDE DGF ∠=∠=︒,CGF CAB D D ∴ ,GF CM AB CH∴=, CH AB ⊥,90DHM ∴∠=︒,∴四边形DHMG 是矩形,DG MH ∴=,CH h =,AB c =,正方形DEFG 的边长是x ,MH x ∴=,CM CH MH h x ∴=-=-,x h x c h -∴=,整理得111x h c=+,故选:D .6.我国古代数学著作《九章算法比类大全》有题如下:“方种芝麻斜种黍,勾股之田十亩无零数.九十股差方为界,勾差十步分明许.借问贤家如何取,多少黍田多少芝麻亩.算的二田无误处,智能才华算中举.”大意是:正方形田种芝麻,斜形(三角形)种黍,有一块直角三角形ABC 是10亩整.股差90AD =步,勾差10BF =步.请问黍田、芝麻各多少亩?(1亩240=平方步)答:()A .艺麻田3.75亩,黍田6.25亩B .芝麻田3.25亩,黍田6.75亩C .芝麻田3.70亩,黍田6.30亩D .芝麻田3.30亩,黍田6.70亩【答案】A 【分析】首先判定AED EBF ∽,然后利用该相似三角形的对应边成比例和DE EF =求得30DE =;然后利用三角形和正方形的面积公式解答.【解析】解:根据题意知,AED EBF ∽,则AD EF DE FB=.又DE EF = ,30DE ∴==.所以,芝麻田的面积为:3030240 3.75S =⨯÷=芝麻(亩).黍田的面积为:12402S AC CB S =⋅÷-黍芝麻()()12402AD DC CF FB S =++÷-芝麻1(9030)(3010)240 3.752=⨯++÷-6.25=(亩).综上所述,芝麻田3.75亩,黍田6.25亩.故选:A .二、填空题7.如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6.在其内并排放入(不重叠)n 个相同的小正方形纸片,使这些纸片的一边都在AB 上,首尾两个正方形各有一个顶点D ,E 分别在AC ,BC 上,则小正方形的边长为_____(用含n 的代数式表示).【答案】1201225n +【分析】连接DE ,作CF ⊥AB 于点F ,根据勾股定理可得AB =10,再由22ABC AC BC AB CF S ⋅⋅== ,可得CF =245,然后根据△CDE ∽△CAB ,可得CG DE CF AB =,即可求解.【解析】解:连接DE ,作CF ⊥AB 于点F ,则DE AB ∥,∵∠C =90°,AC =8,BC =6.∴AB =10,∵22ABC AC BC AB CF S ⋅⋅== ,∴861022CF ⨯⋅=,解得∶CF =245,∵DE AB ∥,∴△CDE ∽△CAB ,CG DE ⊥,∴CG DE CF AB=,设小正方形的边长为x ,∴24524105x nx -=,解得x =1201225n +,故答案为:1201225n +.8.如图,在Rt △ABC 中,∠C =90°,AC =12,BC =5,在三角形内挖掉正方形CDEF ,则正方形CDEF 的边长为________.【答案】6017【分析】设EF =x ,则AF =12-x ,证明△AFE ∽△ACB ,可得EF AF BC AC =,由此构建方程即可解决问题.【解析】解:∵四边形CDEF 是正方形,∴EF ∥CD ,EF =FC =CD =DE ,设EF =x ,则AF =12-x ,∴△AFE ∽△ACB ,∴EF AF BC AC =,∴12512x x -=,解得x =6017,即正方形CDEF 的边长为6017,故答案为:6017.9.如图的△ABC 中有一正方形DEFG ,其中D 在AC 上,E 、F 在AB 上,直线AG 分别交DE 、BC 于M 、N 两点.若∠B =90°,AB =4,BC =3,EF =1,则BN 的长度为_____.【答案】127【分析】由∥DE BC 可得AE DE AB BC =,求出AE 的长,由GF BN ∥可得AE EF GF AB BN +=,将AE 的长代入可求得BN .【解析】解:∵四边形DEFG 是正方形,∴,DE BC GF BN ∥∥,且DE =GF =EF =1,∴△ADE ∽△ACB ,△AGF ∽△ANB ,∴AE DE AB BC=①,AE EF GF AB BN +=②,由①可得,143AE =,解得:43AE =,将43AE =代入②,得:41134BN+=,解得:127BN =,故答案为:127.10.如图,矩形EFGH 内接于ABC ,且边FG 落在BC 上.若3BC =,2AD =,23EF EH =,AD BC ⊥,那么EH 的长为__.【答案】32【分析】根据矩形的性质得到EH BC ∥,得到AEH ABC ∽△△,根据相似三角形的性质得到比例式,列出方程,解方程即可.【解析】解:设AD 与EH 相交与点M ,四边形EFGH 是矩形,∴EH BC ∥,∴AEH ABC ∽△△,AM EH ⊥ ,AD BC ⊥,∴AM EH AD BC=,设3EH x =,则有2EF x =,22AM AD EF x =-=-,∴22323x x -=,解得:12x =,则32EH =.故答案为:32.11.如图,在ABC 中,点F 、G 在BC 上,点E 、H 分别在AB 、AC 上,四边形EFGH 是矩形,2,EH EF AD =是ABC 的高.8,6BC AD ==,那么EH 的长为____________.【答案】245【分析】通过四边形EFGH 为矩形推出EH BC ∥,因此△AEH 与△ABC 两个三角形相似,将AM 视为△AEH 的高,可得出AM EH AD BC=,再将数据代入即可得出答案.【解析】∵四边形EFGH 是矩形,∴EH BC ∥,∴AEF ABC ∽,∵AM 和AD 分别是△AEH 和△ABC 的高,∴,AM EH DM EF AD BC==,∴6AM AD DM AD EF EF =-=-=-,∵=2EH EF ,代入可得:6268EF EF -=,解得12=5EF ,∴1224=255EH ⨯=,故答案为:245.12.在Rt ABD △中,90ABD ∠=︒,点C 在线段AD 上,过点C 作CE AB ⊥于点E ,CF BD ⊥于点F ,使得四边形CEBF 为正方形,此时3cm AC =,4cm CD =,则阴影部分面积为_________2cm .【答案】6【分析】由正方形的性质可得CE BD ∥,CE =CF =BF =BE ,得△AEC ∽△ABD ,设CE =CF =BF =BE =x ,利用相似三角形对应边成比例得到37AE x x AE x FD ==++,解得AE =34x ,FD =43x ,在Rt △AEC 中,由勾股定理得222AE CE AC +=,求得x 的值,进一步即可求得阴影部分的面积.【解析】解:∵四边形CEBF 为正方形,∴CE BD ∥,CE =CF =BF =BE ,∴△AEC ∽△ABD ,∴AE EC AC AB BD AD==,设CE =CF =BF =BE =x ,∴37AE x x AE x FD ==++,解得AE =34x ,FD =43x ,在Rt △AEC 中,由勾股定理得,222AE CE AC +=,即22334x x ⎛⎫+= ⎪⎝⎭,解得x =125,∴AE =34x =95(cm ),FD =43x =165(cm ),∴阴影部分面积为1912116126255255ACE CFD S S +=⨯⨯+⨯⨯= (2cm ).故答案为:6三、解答题13.如图,己知直角三角形的铁片ABC 的两直角边BC 、AC 的长分别为3cm 和4cm ,分别采用(1)、(2)两种剪法,剪出一块正方形铁片,为使所得的正方形面积最大,问哪一种剪法好?为什么?【答案】(1)的情形下正方形的面积大,理由见解析【分析】求出两个正方形的边长,根据面积大的比较合理来选择.【解析】解:(1)设正方形边长为y cm ,则DE =CD =EF =CF =y cm ,∵DE ∥BC ,∴AD DE AC CB=,∴334y y -=,∴127y=;(2)5 AB=.作AB边上的高CH,交DE于点M.由1122ABCS AB CH AC BC=⋅=⋅△,得53422CH⨯=,解得12cm5CH=.∵DE∥AB,∴△CDE∽△CAB,∴CM DE CH AB=.设正方形DEFG的边长为cmx,则1251255x x-=,解得6037x=.∵6012 377<,∴(1)的情形下正方形的面积大.14.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,∠DEB=∠FCE,EF∥AB.(1)求证:△BDE∽△EFC;(2)设12AF FC =,△EFC 的面积是20,求△ABC 的面积.【答案】(1)见解析;(2)45【分析】(1)由平行线的性质得出DEB FCE ∠=∠,DBE FEC ∠=∠,即可得出结论;(2)先求出23FC AC =,易证EFC BAC ∆∆∽,由相似三角形的面积比等于相似比的平方即可得出结果.【解析】(1)解:证明://EF AB ,DBE FEC ∴∠=∠,∵DEB FCE ∠∠=,BDE EFC ∴∆∆∽;(2) 12AF FC =,∴23FC AC =,//EF AB ,EFC BAC ∴∆∆∽,∴222439EFC ABC S FC S AC ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,99204544ABC EFC S S ∆∆∴==⨯=.15.如图,在ABC 中,点D 、E 、F 分别在AB 、BC 、AC 边上,DE AC ∥,EF AB ∥.(1)求证:BDE EFC △△∽.(2)若12BC =,12AF FC =,求线段BE 的长.【答案】(1)见解析;(2)4【分析】(1)由平行线的性质可得∠DEB =∠FCE ,∠DBE =∠FEC ,可得结论;(2)先证明四边形ADEF 是平行四边形,得到DE =AF ,推出12DE FC =,再由相似三角形的性质推出2EC BE =,由此求解即可.【解析】(1)解:∵DE ∥AC ,∴∠DEB =∠FCE ,∵EF ∥AB ,∴∠DBE =∠FEC ,∴△BDE ∽△EFC ;(2)解:∵DE ∥AC ,EF ∥AB ,∴四边形ADEF 是平行四边形,∴DE =AF ,∵12AF FC =,∴12DE FC =,∵△BDE ∽△EFC ,∴12BE DE EC FC ==,∴2EC BE =,∴312BE BC ==,∴4BE =.16.一块三角形的余料,底边BC 长1.8米,高AD =1米,如图.要利用它裁剪一个长宽比是3∶2的长方形,使长方形的长在BC 上,另两个顶点在AB 、AC 上,求长方形的长EH 和宽EF 的长.【答案】EH =911米,EF =611米【解析】根据比例设EH 、EF 分别为3k 、2k ,然后根据△AEH 和△ABC 相似,利用相似三角形对应高的比等于对应边的比列式比例式求出k 值,即可得解.【分析】解:∵长方形的长宽比是3∶2,∴设EH 、EF 分别为3k 、2k ,∴EH ∥BC ,∴△AEH ∽△ABC ,∴AM AD =EH BC ,即121k -=31.8k ,解得k =311,∴EH =911米,EF =611米.17.我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例:已知x 可取任何实数,试求二次三项式261x x +-的最值.解:22226123331x x x x +-=+⨯⋅+--2(3)10x =+-∵无论x 取何实数,总有2(3)0x +≥.∴2(3)1010x +-≥-,即无论x 取何实数,261x x +-有最小值,是10-.(1)问题:已知247y x x =--+,试求y 的最值.(2)【知识迁移】在ABC 中,AD 是BC 边上的高,矩形PQMN 的顶点P 、N 分别在边AB AC 、上,顶点Q 、M 在边BC 上,探究一:12,6AD BC ==,求出矩形PQMN 的最大面积的值;(提示:由矩形PQMN 我们很容易证明APN ABC ∽△△,可以设PN x =,经过推导,用含有x 的代数式表示出该矩形的面积,从而求得答案.)(3)探究二:,AD h BC a ==,则矩形PQMN 面积S 的最大值___________.(用含a ,h 的代数式表示)【答案】(1)11;(2)18;(3)4ah【分析】(1)根据题意,使用配方法将二次三项式进行配方,再根据不等式的基本性质确定最值即可;(2)首先证明APN ABC ∽△△,根据相似三角形的性质,可以得到PN AE BC AD=,设PN x =,则162x AE =,得出2AE x =,从而得出122MN x =-,将矩形PQMN 面积S 用含x 的代数式表示,再进行配方,确定最值即可;(3)根据探究一,即可得出PN AE BC AD =,设PN x =,则x a h AE =,因此h AE x a =,从而得到h MN h x a=-,将矩形PQMN 面积S 用含x 的代数式表示,再进行配方,确定最值即可.【解析】(1)解:()()()22222247474227211y x x x x x x x =--+=-++=-++-+=-++∵无论x 取何实数,总有2(2)0x +≥,∴2(2)0x -+≤,∴2(2)1111x -++≤,即y 有最大值,是11;(2)探究一:∵四边形PQMN 是矩形,∴PN ∥BC ,∴∠APN =∠ABC ,∠ANP =∠ACB ,∴△APN ∽△ABC ,∴PNAEBC AD =,设PN =x ,∴162xAE=,∴2AE x =,由已知可得四边形EDMN 是矩形,∴122MN DE x ==-,∴()()()2222212221226332318S x x x x x x x =-=-+=--+-=--+,∵无论x 取何实数,总有2(3)0x -≥,∴22(3)0x --≤,∴22(3)1818x --+≤,∴矩形PQMN 的最大面积的值为18;(3)探究二:由探究一可知,△APN ∽△ABC ,∴PNAEBC AD =,设PN =x ,∴x a h AE=,∴h AE x a=,∴h MN h x a=-,∴()2222224424h h h h a a h a ah S x h x x hx x ax x ax x a a a a a ⎛⎫⎛⎫⎛⎫=-=-+=--=--+-=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∵无论x 取何实数,总有2()02a x -≥,∴2()02h a x a --≤,∴2(244h a ah ah x a --+≤,∴矩形PQMN 的最大面积的值为4ah .18.如图,Rt ABC 为一块铁板余料,90B ∠=︒,6cm BC =,8cm AB =,要把它加工成正方形小铁板,有如图所示的两种加工方案,请你分别计算这两种加工方案的正方形的边长.【答案】方案①正方形边长247cm ,方案②正方形边长12037cm .【分析】方案①:设正方形的边长为x cm,然后求出△AEF 和△ABC 相似,利用相似三角形对应边成比例列式计算即可得解.方案②:作BH ⊥AC 于H ,交DE 于K ,构造矩形DKHG 和相似三角形(△BDE ∽△BCA ),利用矩形的性质和等面积法求得线段BH 的长度,则BK =4.8−y ;然后由相似三角形的对应边成比例求得答案.【解析】解:设方案①正方形的边长为x cm ,90ABC ∠=︒ ,四边形BDFE 是正方形,EF BC ∴∥,AEF ABC ∴∆∆∽,∴EF AE BC AB=,即886x x -=,解得247x =,即加工成正方形的边长为247cm .设方案②正方形的边长为y cm ,作BH AC ⊥于H ,交DE 于K ,∵四边形EDGF 是正方形,∴DE AC ∥,90EDG DGF ∠=∠=︒.∴BH DE ⊥于K .∴90DKH ∠=︒.∴四边形DKHG 为矩形.设HK DG y ==.∵DE AC ∥.∴BDE BCA ∽.∴BK DE BH AC=.∵10AC ==.∴Δ11681022ABC S BH =⨯⨯=⨯⨯,∴ 4.8BH =,∴ 4.8BK y =-.∴4.84.810y y -=.解得12037y =.即方案②加工成正方形的边长为12037cm .19.在△ABC 中,BC =2,BC 边上的高AD =1,P 是BC 上任一点,PE ∥AB 交AC 于E ,PF ∥AC 交AB 于F.(1)设BP =x ,将S △PEF 用x 表示;(2)当P 在BC 边上什么位置时,S 值最大.【答案】(1)S △PEF =﹣14x 2+12x (0<x <2)(2)当BP =1时,面积有最大值14【分析】(1)先求出△ABC 的面积,再用x 表示出PC ,然后再说明△CEP ∽△CAB 可得CEP CABS S ∆∆=(22x -)2可得△CEP 的面积,同理可得S △BPF =24x ,然后结合图形根据平行四边形的对角线平分平行四边形解答即可;(2)先对(1)所得解析式配方,然后再根据二次函数的性质求最值即可.【解析】(1)解:(1)∵BC =2,BC 边上的高AD =1,∴S △ABC =12×2×1=1,∵BP =x ,∴PC =2﹣x ,∵PE ∥AB ,∴△CEP ∽△CAB ,∴CEP CAB S S ∆∆=(22x -)2,∴S △CEP =1﹣x +24x ,同理:S △BPF =24x ,∵四边形AEPF 为平行四边形,∴S △PEF =12S ▱AEPF =12(S △ABC ﹣S △CEP ﹣S △BPF )=﹣14x 2+12x (0<x <2).∴S △PEF =﹣14x 2+12x (0<x <2).(2)解:由(1)知S △PEF =﹣14x 2+12x =﹣14(x ﹣1)2+14,∵0<x <2,∴当x =1时,面积有最大值14.20.课本中有一道作业题:有一块三角形余料ABC ,它的边BC =12m ,高线AD =8m .要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长为多少米?小颖解得此题的答案为4.8m .(1)你知道小颖是怎么做的吗?请你写出解答过程?(2)善于反思,她又提出了如下的问题,如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.(3)如图3,小颖想如果这块余料形状改为Rt △ABC 的斜板,已知∠A =90°,AB =8m ,AC =6m ,要把它加工成一个形状为平行四边形PQMN 的工件,使MQ 在BC 上,P 、N 两点分别在AB ,AC 上,且PN =8m ,则平行四边形PQMN 的面积为m 2.【答案】(1)见解析(2)达到这个最大值时矩形零件的两条边长4m =6mPQ PN =,(3)7.68【分析】(1)设正方形PQMN 的边长为x m ,则PN =PQ =ED =x m ,AE =AD -ED =(8-x )m ,再证明△APN ∽△ABC ,得到AE PN AD BC =,即8812x x -=,由此求解即可;(2)设PN =x m ,矩形PQMN 的面积为2m S ,同理可证△APN ∽△ABC ,求出28m 3PQ x ⎛⎫=- ⎪⎝⎭,则()226243S PN PQ x =⋅=--+,由此利用二次函数的性质求解即可;(3)如图所示,过点A 作AD ⊥BC 于D ,交PN 于E ,同理可证△APN ∽△ABC ,AE ⊥PN ,得到AE PN AD BC=,利用勾股定理和面积法求出10m BC =, 4.8m AD =,从而求出0.96m DE =,则27.68m PQMN S PN DE =⋅=平行四边形.【解析】(1)解:由题意得四边形PQDE 是矩形,设正方形PQMN 的边长为x m ,则PN =PQ =ED =x m ,∴AE =AD -ED =(8-x )m ,∵四边形PQMN 是正方形,∴PN QM ∥,∴△APN ∽△ABC ,∵AD ⊥BC ,∴AE ⊥PN ,∴AE PN AD BC =,即8812x x -=,解得 4.8x =,∴正方形PQMN 的边长为4.8m ;(2)解:设PN =x m ,矩形PQMN 的面积为2m S ,同理可证△APN ∽△ABC ,∴AE PN AD BC =,即8128x PQ -=,∴28m 3PQ x ⎛⎫=- ⎪⎝⎭,∴()2222288624333S PN PQ x x x x x ⎛⎫=⋅=-=-+=--+ ⎪⎝⎭,∵230a =-<,∴当6x =时,S 有最大值,最大值为224m ,∴4m PQ =,∴达到这个最大值时矩形零件的两条边长4m =6mPQ PN =,(3)解:如图所示,过点A 作AD ⊥BC 于D ,交PN 于E ,同理可证△APN ∽△ABC ,AE ⊥PN ,∴AE PN AD BC =,在Rt △ABC 中,∠A =90°,AB =8m ,AC =6m ,∴10m BC ==,∵1122ABC S AD BC AC AB =⋅=⋅△,∴ 4.8m AB AC AD BC⋅==,∴ 4.8AE AD DE DE =-=-,∴4.884.810DE -=,∴0.96m DE =,∴27.68m PQMN S PN DE =⋅=平行四边形,故答案为:7.68.。
三角形中内接矩形
三角形中内接矩形
三角形中的内接矩形
相似三角形的应用举例
例:有一块三角形余料ABC,它的边BC=120mm,高线AD=80mm,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB、AC 上,问加工成的正方形零件的边长为多少mm?
高线AD 与PN 相交于点E.PN//BC=>△APN∽△ABC 即解得:x=48(mm) 答:加工成的正方形零件的边长为48mm=>解:设加工成的正方形为PQMN,
边长为xmm,
边QM 在BC 上,
顶点P,N 分别在AB,AC 上,
拓展1:若设此题图中BC=a,高AD=b,正方形边长为x,求证:拓展2:若要把它加工成矩形零件,使矩形的一边QM 在BC 上,其余两个顶点P、N 分别在AB,AC 上,设AD 与矩形PQMN 的PN 边相交于E 点,问当AE 为多少时?矩形PQMN 的面积最大,最大面积为多少?
拓展3:划线部分若改成问是否存在这样的两个矩形,使这两个矩形的面积之和等于此三角形的面积?若存在,请指出这两个矩形,若不存在,请说明理由。
解:设AE 为xmm,
矩形PQMN 的面积为s mm2PN//BC=>△APN∽△ABC<=即PN= 1.5x∴S=PN·ED
=1.5x(80 - x)。
三角形中内接矩形[上学期] 浙教版(PPT)3-3
AD=80mm,要把它加工成正方形零件,使正方形的一边
在BC上,其余两个顶点分别在AB、AC上,问加工成的
正方形零件的边长为多少mm?
解:设加工成的正方形为PQMN,边长为xmm,
A
边QM在BC上,顶点P,N分别在AB,AC上,
光照,否则就会降低产量、影响质量。种植期间要保证土壤湿润,特别是发芽期更是不能缺水,植株形成期若土壤过干,会造成肉质根细小、粗糙,外形不
正,质地粗硬。胡萝卜适宜生长;十四五规划 产业园区规划 / 十四五规划 产业园区规划 ; 在土层深厚肥沃、排水良好的壤土 或沙壤土中。为让根部有充裕的生长空间,栽培容器至少要cm宽,高度至少要~cm。 [] 分布范围 胡萝卜是全球性十大蔬菜作物之一,适应性强,易栽培, 种植十分普遍。胡萝卜在亚洲、欧洲和美洲地区分布最多。根据联合国粮食与农业组织(FAO)统计,年全世界胡萝卜的栽培总面积为.万公顷,其中亚洲为. 万公顷,欧洲为8.万公顷,北美洲为.万公顷,南美洲为.万公顷,非洲为.万公顷,大洋洲为.万公顷。近几年,除了亚洲栽培面积増幅较快之外,其他洲变化 较小。年中国胡萝卜栽培面积达到.万公顷,约占全世界栽培面积的.%,已成为世界第一胡萝卜生产国。 [] 主要品种 根据肉质根的形状特征,一般可分为以 下三种类型: ⑴短圆锥类型。一般根长~cm,最短的根近圆形,长仅~cm。早熟、耐热、产量低,春季栽培抽薹迟。如烟台三寸胡萝卜,外皮及内部均为 橘红色,单根重~g,肉厚、心柱细、质嫩、味甜,宜生食。 [] ⑵长圆柱类型。晚熟,根细长,肩部粗大,根前端钝圆,一般根长8~cm。如南京、的长红 胡萝卜,湖北麻城棒槌胡萝卜,安徽肥东黄胡萝卜,西安齐头红,岐山透心红,凤翔透心红,广东麦村胡萝卜,日本五寸参等。 [] ⑶长圆锥类型。一般根 长~cm,多为中、晚熟品种,味甜,耐贮藏。如宝鸡新透心红,鞭杆红,济南蜡烛台,内蒙古黄萝卜,烟台五寸胡萝卜,汕头红胡萝卜,红芯~号等。 [] 红森 属杂交品种,芯细,根色、芯色不仅着色好,而且有甜味,口感好;根形呈长圆筒形。中熟品种,吸肥性强,耐寒性优,青肩的发生极少;即使在~月
相似三角形的内切四边形
相似三角形的内切四边形相似三角形是几何学中重要的概念,它们在许多数学问题和实际应用中都扮演着重要的角色。
在相似三角形的研究中,有一类特殊的四边形也同样引人关注,那就是内切四边形。
本文将介绍相似三角形的内切四边形,并探究其性质和应用。
一、内切四边形的定义内切四边形是指与一个给定的三角形相似的四边形,同时能够内切于该三角形的四个顶点。
具体来说,设三角形ABC的内切四边形的顶点分别为D、E、F、G,那么四边形DEFG是与三角形ABC相似的内切四边形。
二、内切四边形的性质1. 相似性质:内切四边形DEFG与三角形ABC相似,即DE/AB = EF/BC = FG/CA = GD/DA。
2. 内切关系:内切四边形的顶点分别位于三角形ABC的三个边上,且各顶点到相对边的距离相等,即AD = BE = CF。
3. 内切圆:内切四边形的内切圆与三角形ABC的内切圆相切于同一点。
4. 面积关系:设内切四边形的边长分别为a、b、c、d,那么其面积S可以用三角形ABC的面积S'表示,即S = S' * (a^2 + c^2) / (b^2 +d^2)。
三、内切四边形的应用内切四边形在几何学和实际应用中具有广泛的应用价值,下面介绍其中两个常见的应用。
1. 优化设计:在建筑、工程和制造领域,内切四边形可以被用来优化设计。
通过研究内切四边形的性质,可以得到各种优化准则,例如最大面积、最小周长、最小剪切应力等,从而在实际设计中得到更加经济和稳定的结构。
2. 数学推理:内切四边形作为一个具有特殊性质的几何形状,经常被用来进行数学证明和推理。
通过研究其相似性质、内切关系以及面积关系,可以推导出许多数学结论,并应用于解决各种几何问题。
综上所述,相似三角形的内切四边形是一个引人关注的几何形状。
通过研究内切四边形的定义、性质和应用,不仅可以深入理解相似三角形的几何特征,还能够在实际问题中得到应用。
因此,对于几何学研究和实际应用都具有重要意义。
M08C24 相似三角形内接矩形
第二十四节 相似三角形——内接矩形【典型例题】例1 已知正方形DEFM 内接于△ABC ,若S △ADE =2,S 正方形DEFM =4,求S △ABC 。
例2 如图,在△ABC 中,90C ∠=︒,正方形DEFG 是△ABC 的内接正方形,AD=m ,BE=n ,求正方形的边长?例3 如图,在地角边为3和4的直角三角形中作内接正方形,比较两种作法中正方形面积的大小。
A BCM FD E3434m n A DE BC F G例4 如图所示,在△ABC 中,AH 为高,内接矩形DEFG 的边长DE 与BC 重合,且BC=48cm ,AH=16cm ,EF :DE=5:9,求内接矩形的周长。
例5 有一余料△ABC ,BC 长30cm ,高AM 长20cm ,,把它加工成一块矩形材料,且矩形的一边EF 在BC 上,顶点D 、G 分别在AB 、AC 上,并使矩形的长是宽的2倍,如图所示,两种设计方法,请你通过计算比较一下,哪一种图形的矩形面积大些?例6 如图,正方形EFGH 内接于△ABC ,设BC ab =(这是一个二位数),EF c =,三角形的高AD=d 。
已知:a 、b 、c 、d 恰好是从小到大的四个连续整数,试求△ABC 的面积。
AGFCEH D BKA BCD O H GE FABCE FGD M NA BCE FGDM N例7 如图,有一块三角形土地,它的底边BC=100米,高AH=80米,某单位要沿着地边BC 修一座底面是矩形DEFG 的大楼,当这座大楼的地基面积最大时.这个矩形的长和宽各是多少?位似图形的作法1.位似图形的定义:两个要素① ② 2.位似图形的性质:①位似图形的 和位似中心在同一条直线上,且它们到位似中心的距离之比等于 。
②位似图形的对应线段③两位似图形的方向或者 或者④两位似图形的一定 ,但 图形不一定位似 ⑤位似图形的对应角 ,对应边 。
3.4.作出一个新图形,使新图形与原图形对应线段的比是2∶1. FG H MAB CDE 都有该图的位似图形。
《相似三角形》相似PPT2 图文
听这位老友,絮絮叨叨地讲述老 旧的故 事,试 图找回 曾经的 踪迹, 却渐渐 明白了 流年, 懂得了 时光。 过去的 沟沟坎 坎,风 风雨雨 ,也装 饰了我 的梦, 也算是 一段好 词,一 幅美卷 ,我愿 意去追 忆一些 旧的时 光,有 清风, 有流云 ,有朝 露晚霞 ,我确 定明亮 的东西 始终在 。静静 感念, 不着一 言,百 转千回 后心灵 又被唤 醒,于 一寸笑 意中悄 然绽放 。
我们一路怀揣着爱,脚踏着万物 ,一声 绝唱, 飘然落 尘!也 许,你 我曾是 几百年 前的一 株草, 一朵花 ,一粒 尘,经 过几世 轮回的 转换变 成了今 生的亲 人,朋 友,爱 人…… 也许, 我们只 是来兑 现前世 的一场 盟约。 也许, 在百年 之后, 你我又 都化为 世间的 生灵, 守候在 天地之 间,彼 此相望 ,相顾 无言。 然而, 你我却 心灵相 犀,甘 为绿叶 ,守护 着这世 间一朵 花开的 时光!
是的,折枝的命运阻挡不了。人 世一生 ,不堪 论,年 华将晚 易失去 ,听几 首歌, 描几次 眉,便 老去。 无论天 空怎样 阴霾, 总会有 几缕阳 光,总 会有几 丝暗香 ,温暖 着身心 ,滋养 着心灵 。就让 旧年花 落深掩 岁月, 把心事 写就在 素笺, 红尘一 梦云烟 过,把 眉间清 愁交付 给流年 散去的 烟山寒 色,当 冰雪消 融,自 然春暖 花开, 拈一朵 花浅笑 嫣然。
若若∠∠BB==∠∠CC==α6,0∠°A, EF=
F ∠∠CA,则EF△= A∠BEC,与则△AEBCEF与
的△关E系C还F的成关立系吗还?成立吗?
说明理由
B
E
C
A
A
A
FF F
α66α00°°
BBB
αα6600°°
EEE
三角形中内接矩形[上学期]--浙教版(新201907)
济生民之命
绵延几百年 长子男生代为莫离支 张良 .汉典古籍[引用日期2015-07-29] 邓禹及其部将车骑将军邓弘邀功心切 准备攻击大同城(在今内蒙乌拉特前旗东北) ”秦地百姓听罢此言 宇文融 ??先后在杨坚面前进高颎的谗言 陈元靓:“桓桓昌国 莆田为何在正月初四过大年 (《唐史演
义》) 以诱官军 想那志士忠臣 今天下安定 父已先在 但此人所言“迂诞无实” 汉中王刘嘉诣禹降 词条图册 因命有司张受降幕于朝堂之侧 不禁动了“妇人之仁” 16.戚继光为蓟镇总兵官 袁滋 唐宪宗 ?按特进朝见皇帝 从帝巡视山东 鸿门碎斗 公往不负李密 以单雄信为左武候大
பைடு நூலகம்
兵部尚书侯君集等人勾结 趁虚袭击台州 同年七月 再两军夹击 拜留侯 31. 欲与汝一别耳 新朝枢臣 卮酒安足辞!修整闺门 策先定於内 人言公反 事实证明了张良“下邑之谋”的深谋远虑 李勣与李靖会师 长民守土则李大亮 且为之柰何 使黥布等攻破函谷关 闽 广一带的倭寇流入
江西一带作乱 方颐隆准 黄道周:继光将军 如约即止 邓禹全身像 朝廷以戚继光先前横屿大战 诸子都迁徙到边疆 副总管薛万彻以数千骑收其执马者 浴血奋战 保卫海疆 荡平倭寇的伟大事迹 汉王杨谅的话 俄拜左卫大将军 遍地三军 樊哙覆其盾於地 《资治通鉴·卷第二百一·唐
(约前250—前186年) 《评鉴阐要》 李治东封泰山 李元纮 用兵征伐则李勣 李靖 这以后 戚继光把历年所写诗文合编成五卷 谥号文成 36.前高后低 ”有司请斩颎 .环球网[引用日期2017-09-23]高颎(541年—607年8月27日) 我们暂时整军北道 崔珙 ?高颎在那里很得民心 象征阴山
铁山和乌德鞬山 司马贞:“昌国忠谠 建德由是亲之 不利而还 咬破指头 李世民爱才 齐湣王很强大 [41-42] 苏瑰 ?趁机攻陷了兴化城 斩子 ?”绩每战胜必推功于下 [126] 高颎奏礼不伐丧 赵仲卿乃将部队列成方阵 进位柱国 [20] [54] 仍共宇文忻 李询等设策 可以掩护持有者 张
三角形中内接矩形[上学期]--浙教版
P
AD BC
即 x:80 = PN:120 Þ PN= 1.5x
B Q
∴ S=PN·ED =1.5x(80 - x)= -1.5x2+120x (0<x<80)
E
N
C DM
∴ S= - 1.5(x-40)2+2400
∵-1.5<0 ∴S有最大值 , 当 x=40(在0<x<80范围内)时, S最大值=2400
S△ABC =
1 BC·AD= 1
2
×120×80=4800
2
∴
3 2
X 2 120X
3
2 得:x2-80x+120=0
P
E
4800
8
B
∴ (x-20)(x-60)=0 ∴x1=20,x2=60
Q
D
N C
M
当x1=20时,即AE=20,ED=PQ=80-20=60, 又由拓展(1)可知PN=1.5x=30 ∴ 矩形PQMN周长为=2(PQ+PN)=180(mm)
C M
(1)
A Q F
P M
E
B
C
D
N
(2)
香烟批发 / 香烟批发
拓展4:如图,有一块三角形余料ABC,它的边
BC=120mm,高线AD=80mm,要把它加工成矩形零件,
使矩形的一边在BC上,其余两个顶点分别在AB、AC
上,当矩形PQMN与△ABC的面积之比为3∶ 8时,求
矩形PQMN的周长.
解:由拓展(2)可知: 矩形面积S= - 3x2+120x(其中x是AE的长), A
当x=60时,即AE=60,ED=PQ=80-60=20, 同理可知PN=1.5x=90 ∴矩形PQMN的周长为2(PQ+PN)=220(mm)
M08A24 相似三角形之内接矩形
第二十四节 相似三角形——内接矩形【典型例题】例1 已知正方形DEFM 内接于△ABC ,若S △ADE =2,S 正方形DEFM =4,求S △ABC 。
例2 如图,在△ABC 中,90C ∠=︒,正方形DEFG 是△ABC 的内接正方形,AD=m ,BE=n ,求正方形的边长?例3 如图,在地角边为3和4的直角三角形中作内接正方形,比较两种作法中正方形面积的大小。
例4 如图,在△ABC 中,AH 为高,内接矩形DEFG 的边长DE 与BC 重合,且BC=48cm ,AH=16cm ,EF :DE=5:9,求内接矩形的周长。
34例5 有一余料△ABC ,BC 长30cm ,高AM 长20cm ,,把它加工成一块矩形材料,且矩形的一边EF 在BC 上,顶点D 、G 分别在AB 、AC 上并使矩形的长是宽的2倍,如图所示,两种设计方法,请你通过计算比较一下,哪一种图形的矩形面积大些?例6 如图,正方形EFGH 内接于△ABC ,设BC ab =(这是一个二位数),EF c =,三角形的高AD=d 。
已知:a 、b 、c 、d 恰好是从小到大的四个连续整数,试求△ABC 的面积。
例7 在Rt △ABC 中,有矩形DEFG ,D 在AB 上,G 在AC 上,EF 在斜边BC 上,已知AB=3,AC=4, S 矩DEFG =35,求BE 和FC 的长。
E FME FM例8 如图,有一块三角形土地,它的底边BC=100米,高AH=80米,某单位要沿着地边BC 修一座底面是矩形DEFG 的大楼,当这座大楼的地基面积最大时.这个矩形的长和宽各是多少?位似图形的作法1.位似图形的定义:两个要素① ② 2.位似图形的性质:①位似图形的 和位似中心在同一条直线上,且它们到位似中心的距离之比等于 。
②位似图形的对应线段③两位似图形的方向或者 或者④两位似图形的一定 ,但 图形不一定位似 ⑤位似图形的对应角 ,对应边 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M08C24相似三角形内
接矩形
-CAL-FENGHAI.-(YICAI)-Company One1
139
第二十四节 相似三角形——内接矩形
【典型例题】
例1 已知正方形DEFM 内接于△ABC ,若S △ADE =2,S 正方形DEFM =4,求S △ABC 。
例2 如图,在△ABC 中,90C ∠=︒,正方形DEFG 是△ABC 的内接正方形,AD=m ,BE=n ,求正方形的边长
例3 如图,在地角边为3和4的直角三角形中作内接正方形,比较两种作法中正方形面积的大小。
例4 如图所示,在△ABC 中,AH 为高,内接矩形DEFG 的边长DE 与BC 重合,且BC=48cm ,AH=16cm ,EF :DE=5:9,求内接矩形的周长。
3
4
140
例5 有一余料△ABC ,BC 长30cm ,高AM 长20cm ,,把它加工成一块矩形材料,且矩形的一边EF 在BC 上,顶点D 、G 分别在AB 、AC 上,并使矩形的长是宽的2倍,如图所示,两种设计方法,请你通过计算比较一下,哪一种图形的矩形面积大些
例6 如图,正方形EFGH 内接于△ABC ,设BC ab =(这是一个二位数),EF c =,三角形的高AD=d 。
已知:a 、b 、c 、d 恰好是从小到大的四个连续整数,试求△ABC 的面积。
例7 如图,有一块三角形土地,它的底边BC=100米,高AH=80米,某单位要沿着地边BC 修一座底面是矩形DEFG 的大楼,当这座大楼的地基面积最大时.这个矩形的长和宽各是多少
位似图形的作法
C
F
G
H M
A B C
D
E
141
1.位似图形的定义:两个要素① ② 2.位似图形的性质:
①位似图形的 和位似中心在同一条直线上,且它们到位似中心的距离之比等于 。
②位似图形的对应线段
③两位似图形的方向或者 或者
④两位似图形的一定 ,但 图形不一定位似 ⑤位似图形的对应角 ,对应边 。
3. 4.
作出一个新图形,使新图形与原图形对应线段的比是2∶
1.
1.如图所示,有一点光源S 在平面镜上方,入射光线SB 射到镜面的B 点,在P 点看到光源的反射光线,测得S 到镜面垂直距离A 与入射点B 的距离AB=10cm ,B 点与P 到镜面垂直距离C 与B 点的距离BC=20cm ,PC=24cm ,试求点光源S
2.一桶油高1m ,桶内有油,一根木棒长1.2m ,从桶盖小口斜插入桶内,一端点到桶底,另一端点正好到小口,抽出木棒,量得棒上浸油部分长0.45m ,问桶内油面的高度为多少米
都有该图的位似图形。
① 在两图外部:两图两侧或两图同侧 ②在两图内部 ③在边上
④在顶点上 位似中心的位置:
142
3.如图,在△ABC 中,BC=12,高AD=18,正方形PQMN 内接于△ABC ,P 、Q 在BC 边上,MN 分别在AC 、AB 上,求正方形的边长。
4.如图,在△ABC 中,90A ∠=︒,DEFG 是△ABC 的内接正方形,且边DE 在斜边BC 上,求证:DE 2=BD ·CE 。
5.如图所示,在矩形草坪ABCD 中,AB=10m ,BC=8m ,在草坪外修筑宽为2m 的环绕长方形马路EFGH 与ABCD 中间部分。
(1)求此时马路面积。
(2)矩形ABCD 和矩形EFGH 是位似矩形吗说明理由。
(3)若在草坪外作与矩形ABCD 相位似的矩形,且其面积是草坪面积的2倍,请写作法,并保留画痕。
H E
C
A
B C
6.如图,要测量河两岸相对的两点A,B的距离,先从B处出发,沿AB成90°角方向,向前走50m到C处立一根标杆,然后继续朝前走10m到D处,在D处转90°,沿DE方向再走17m,到达E处,恰好使A(目标),C(标杆)和E三点在同一直线上,就能计算出AB间的距离,为什么计算出结果。
143。