完整word版,《信号与系统》综合复习资料
信号与系统_复习总结(完整资料).doc
【最新整理,下载后即可编辑】第一章知识要点重难点一第A章A1.1本章重难点总结知识点一1)知识点定义2)背景或地位3)性质、作用4)相关知识点链接5)常见错误分析操作说明:当专业课学习到冲刺阶段后,考生学习会及时转移到直接考查概率高、考查难度大的重难点,即需要考生掌握和应用的重点、难点。
按照学科的内在逻辑、顺序呈现,并表现在ppt中。
1.2冲刺练习题及解析第二章重难点1.信号的概念与分类按所具有的时间特性划分:确定信号和随机信号;连续信号和离散信号;周期信号和非周期信号;能量信号与功率信号;因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。
其周期为各个周期的最小公倍数。
①连续正弦信号一定是周期信号。
②两连续周期信号之和不一定是周期信号。
周期信号是功率信号。
除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。
1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号:sin ()t Sa t t=奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点。
(2) 单位冲激信号单位冲激信号的性质: (1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰相乘性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1()at t aδδ=(4)微积分性质 d ()()d u t t tδ= ; ()d ()tu t δττ-∞=⎰(5)冲激偶()()(0)()(0)()f t t f t f t δδδ'''=-;()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激(0)t <(0)t >()1t dt δ∞-∞=⎰ ()0t δ=(当0t ≠时)函数的强度。
(完整版)信号与系统复习知识点
第一章
1.信号的运算:时移、反褶、尺度变换、微分、积分等;
2.LTI系统的基本性质:叠加性、时不变特性、微分特性、因果性、可分解线性;
3.阶跃型号与冲激信号及其特性。
单位冲激信号的性质:
1.
2.
3.
4.
5.
6.
7.
例、求下列积分
例、已知信号 的波形如下图1所示,试画出下列各信号的波形
抽样信号的拉氏变换
求半波整流和全波整流周期信号的拉氏变换
(1)
(2)
4-29求下列波形的拉氏变换
(1)
解题思路:单对称方波 ——周期方波——乘
—— ——
(2)
第一周期:
周期信号的拉氏变换:
第五章
1.频域系统函数 ,理想低通滤波器频谱特性;
2.无失真传输条件:幅频特性为常数,相频特性是过原点的直线;
3.系统的物理可实现性判断(1)佩利-维纳准则;(2)系统可实现性的本质是因果性。
被理想抽样信号的傅立叶变换:
被非理想抽样信号傅立叶变换:
第四章
1.典型信号的拉氏变换及拉氏变换的基本性质;
2.S域元件模型、系统函数、系统函数与激励信号极点分布与电响应的关系、系统函数与输入输出方程的关系(利用拉氏变换求解电系统响应);
3.线性系统的稳定性分析。
周期信号的拉氏变换
为信号第一个周期 的拉氏变换;整个周期信号 的拉氏变换为:
第七章
1.离散系统和信号的描述方法、基本性质
2.差分方程的经典解法
3.卷积和定义及其求解方法
第八章
1. z变换的定义、收敛域和基本性质,常用序列的z变换
2.逆z变换的求解方法
3. 的定义、零极点分布与信号/系统性质的关系
【信号与系统综合经典复习资料】
信号与系统综合复习资料一、简答题: 1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态, 为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案:]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else-==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
完整版)信号与系统知识点整理
完整版)信号与系统知识点整理第一章信号是信息的表现形式,是传递和处理信息的载体,可以传达某种物理现象的特性。
系统是由若干相互作用和相互依赖的事物组合而成的整体,具有特定的功能。
信号作用于系统会产生反应,系统对信号有选择做出的反应。
通常把信号分为五种类型:连续信号与离散信号、偶信号和奇信号、周期信号与非周期信号、确定信号与随机信号、能量信号与功率信号。
连续信号在所有的时刻或位置都有定义,而离散信号只在某些离散的时刻或位置才有定义。
确定信号任何时候都有确定值,而随机信号出现之前具有不确定性。
能量信号的平均功率为零,功率信号的能量为无穷大,因此信号只能在能量信号与功率信号间取其一。
自变量线性变换的顺序应该先时间平移,后时间变换做缩放。
需要注意的是,对离散信号做自变量线性变换会产生信息的丢失。
系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能力,也称为开关效应。
单位冲激信号是持续时间极短、幅度极大的实际信号的数学近似。
对于储能状态为零的系统,系统在单位冲激信号作用下产生的零状态响应,可以揭示系统的有关特性,例如测试电路的瞬态响应。
冲激偶是单位冲激信号的一阶导数,包含一对冲激信号,一个位于t=0-处,强度正无穷大,另一个位于t=0+处,强度负无穷大。
要求冲激偶作为对时间积分的被积函数中一个因子,其他因子在冲激偶出现处存在时间的连续导数。
斜升信号是单位阶跃信号对时间的积分,即为单位斜率的斜升信号。
系统具有六个方面的特性,包括稳定性、记忆性、因果性、可逆性、时变性与非时变性、线性性。
对于任意有界的输入都只产生有界的输出的系统称为有界输入有界输出(BIBO)意义下的稳定系统。
记忆系统的输出取决于过去或将来的输入,而非记忆系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。
信号与系统期末复习材料
信号与系统期末复习材料信号与系统期末复习一、基础知识点:1.信号的频带宽度(带宽)与信号的脉冲宽度成反比,信号的脉冲宽度越宽,频带越窄;反之,信号脉冲宽度越窄,其频带越宽。
2. 系统对信号进行无失真传输时应满足的条件:①系统的幅频特性在整个频率范围(∞<<∞-ω)内应为常量。
②系统的相频特性在整个频率范围内应与ω成正比,比例系数为-0t3.矩形脉冲信号的周期与频谱线的间隔存在着倒数的关系。
4.零输入响应(ZIR )从观察的初始时刻(例如t=0)起不再施加输入信号(即零输入),仅由该时刻系统本身具有的初始状态引起的响应称为零输入响应,或称为储能响应。
5.零状态响应(ZSR )在初始状态为零的条件下,系统由外加输入(激励)信号引起的响应称为零状态响应,或称为受迫响应。
6.系统的完全响应也可分为:完全响应=零输入响应+零状态响应7.阶跃序列可以用不同位移的单位阶跃序列之和来表示。
8.离散信号)(n f 指的是:信号的取值仅在一些离散的时间点上才有定义。
9.信号的三大分析方法:①时域分析法②频域分析法③复频域分析法10.信号三大解题方法⑴傅里叶:①研究的领域:频域②分析的方法:频域分析法⑵拉普拉斯:①研究的领域:复频域②分析的方法:复频域分析法⑶Z 变换:主要针对离散系统,可以将差分方程变为代数方程,使得离散系统的分析简化。
11.采样定理(又称为奈奎斯特采样频率)如果)(t f 为带宽有限的连续信号,其频谱)(ωF 的最高频率为m f ,则以采样间隔ms f T 21≤对信号)(t f 进行等间隔采样所得的采样信号)(t f s 将包含原信号)(t f 的全部信息,因而可()()()zi zs y t y t y t =+利用)(t f s 完全恢复出原信号。
12.设脉冲宽度为1ms ,频带宽度为KHz ms111=,如果时间压缩一半,频带扩大2倍。
13.在Z 变换中,收敛域的概念:对于给定的任意有界序列)(n f ,使上式收敛的所有z 值的集合称为z 变化的收敛域。
(完整版)信号与系统知识要点.doc
信号与系统知识要点第一章信号与系统, t 01,t 0(t )0, t 0单位阶跃信号(t) u(t )0 单位冲激信号0,t(t ) 1d (t ) (t )dtt( )d (t )(t ) 的性质:f (t ) (t ) f (0) (t )f (t ) (t t 0 )f (t 0 ) (t t 0 )f (t ) (t)dtf (0)f (t ) (t t 0 )dt f (t 0 )(t ) ( t )(tt 0 ) [ (t t 0 )]1 (t)(at )a(at t 0 )1 (t t)aa 单位冲激偶信号(t)(t )d (t )dt(t ) ( t)(t t 0 )[ (t t 0 )](t )dt 0t( )d (t )f (t ) (t)f (0) (t) f (0) (t)f (t ) (t t 0 )f (t 0 ) (t t 0 ) f (t 0 ) (t t 0 )f (t ) (t) dt f (0)f (t ) (t t 0 ) dtf (t 0 )符号函数 sgn(t )1,tsgn(t )0, t 0 或 sgn(t ) u(t ) u( t ) 2u(t ) 11,t单位斜坡信号r (t)0, t 0 tdr (t) r (t ) tu(t)r (t )u( )du(t)t,tdt门函数 g (t )g (t)1, t2 0, 其他取样函数 Sa(t ) sin ttsin t lim Sa(t)Sa(0) lim 1tt 0t 0当 t k(k1, 2,ggg)时, Sa(t ) 0Sa(t)dtsin t dt lim sin t 0ttt第二章连续时间信号与系统的时域分析1 、基本信号的时域描述( 1 )普通信号普通信号可以用一个复指数信号统一概括,即f (t ) Ke st ,t 式中 sj , K 一般为实数,也可以为复数。
根据与 的不同情况, f (t ) 可表示下列几种常见的普通信号。
(完整word版)信号与系统(郑君里)复习要点(良心出品必属精品)
信号与系统复习书中最重要的三大变换几乎都有。
第一章信号与系统1、信号的分类①连续信号和离散信号②周期信号和非周期信号连续周期信号f(t)满足f(t) = f(t + mT),离散周期信号f(k)满足f(k) = f(k + mN),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
③能量信号和功率信号④因果信号和反因果信号2、信号的基本运算(+ - ×÷)2.1信号的(+ - ×÷)2.2信号的时间变换运算(反转、平移和尺度变换)3、奇异信号3.1 单位冲激函数的性质f(t) δ(t) = f(0) δ(t) , f(t) δ(t –a) = f(a) δ(t –a)例:3.2序列δ(k)和ε(k)f(k)δ(k) = f(0)δ(k) f(k)δ(k –k0) = f(k0)δ(k –k0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质T [af (·)] = a T [ f (·)](齐次性)T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性) ②当动态系统满足下列三个条件时该系统为线性系统:y (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x(0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t) + f 2(t) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性))0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n ft t f t -=⎰∞∞-δ4)2(2])2[(d dd )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t aa at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00at t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δT[{0},{ax 1(0) +bx 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t - t d )] = y f (t - t d )(时不变性质) 直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。
信号与系统期末总复习
为求和变量 ; 2. 反褶:将h(k)变为h(- k); 3. 平移:将h(- k)平移n,变为h[-(k-n)]; 4. 相乘: 将x(k)和h(n-k)相乘; 5. 求和:对乘积x(k)h(n-k)取和。
1
4. 奇信号与偶信号:
对实信号而言:x(−t) = x(t) 则称该信号是偶信号。
x(−n) = x(n) (镜像偶对称)
如果有 x(−t) = −x(t) 则称该信号为奇信号
x(−n) = −x(n)
(镜像奇对称)
对复信号而言: x(t) = x∗ (−t) 称该信号为共轭偶信号。 x(n) = x∗(−n)
不要求
谱线特点与T0、T1的关系
5
第4章 连续时间傅立叶变换 本章的主要内容: 1. 连续时间傅立叶变换; 2. 傅立叶级数与傅立叶变换之间的关系; 3. 傅立叶变换的性质; 4. 系统的频率响应及系统的频域分析;
二.LTI系统的性质
1. 记忆性: 无记忆系统的单位脉冲/冲激响应为:
h(n) = kδ (n) h(t) = kδ (t)
2. 因果性: h(n) = 0, n < 0
h(t) = 0, t < 0
3.
稳定性:
∞
∑
h(n)
<∞
n=−∞
∞
∫ h(t) dt < ∞ −∞
第3章 周期信号的傅里叶级数表示
如果一个系统的输出响应不仅与当时的输入有关 ,而且与该时刻以外的其它时刻的输入有关,则系 统是记忆的。
(2) 可逆性与逆系统 如果一个系统对任何不同的输入都能产生不同
《信号与系统》复习提纲
《信号与系统》复习提纲第一章 绪论一、根本容〔1〕信号与波形;〔2〕冲激信号的定义与性质;〔3〕信号的运算与响应波形变换:平移、反褶、尺度变换、相乘、相加、微积分等; 〔4〕信号的分解:奇、偶分量,交、直流分量的求法。
; 〔5〕功率信号、能量信号的定义与其确定方法; 〔6〕函数正交性:最小均方误差;〔7〕线性时不变系统特性:线性、时不变性、因果、稳定判别方法。
二、根本公式〔一〕冲激信号的性质 〔1〕()()(0)f t t dt f δ∞-∞=⎰;00()()()f t t t dt f t δ∞-∞-=⎰;00()()()f t t t dt f t δ∞-∞'-=-'⎰〔2〕()()t t δδ-=;1()()at t aδδ=〔3〕000()()()()f t t t f t t t δδ-=-〔4〕()()du t t dtδ=;()()t d u t δττ-∞=⎰〔5〕()()()f t t f t δ*=〔6〕1212()()()t t t t t t t δδδ-*-=-- 〔二〕线性时不变因果稳定系统特性 假设激励为()e t ,响应()r t 〔1〕线性:叠加性+齐次性 11221122()()()()c e t c e t c r t c r t +→+ 〔2〕时不变性:00()()e t t r t t -→-〔3〕微分特性:()()d de t r t dt dt →〔4〕积分特性:0()()tte d r d ττττ→⎰⎰〔5〕因果性:假设0t t <时,()0e t =,那么0t t <时,()0r t =〔6〕稳定性:()()e t M r t N ≤<∞→≤<∞第二章 连续时间系统的时域分析一、根本容〔1〕微分方程建立与求解:齐次解与特征根关系,特解与特征根关系;〔2〕零输入与零状态响应:二者待定系数确实定条件,与自由响应和强迫响应的关系; 〔3〕起始状态与线性时不变性的关系; 〔4〕冲激响应和阶跃响应; 〔5〕求卷积的方法;〔6〕利用卷积求零状态响应。
信号与系统复习资料
时域积分
系统的方框图表示的积分器 s域微分 z域微分 主要应用:求反变换
初值与终值定理
对于因果序列 ,
基本的s变换对和z变换对
s反变换和z反变换的求解
当X(s) X(z)是有理的,首先用部分分式展开成低次分式之和,结合ROC求各低次分式的反变换的叠加等于x(t)x[n].
由定义式可以看出,X(z)是z的正幂和负幂的一个幂级数, 幂级数的系数就是序列x[n]的值. 可用长除法将X(z)展开为z的正幂和负幂的线性组合,展开时要考虑变换的收敛域(暂定不做考试要求)
分段法计算卷积和的步骤与卷积积分相似
利用卷积性质在某些情况下可以简化卷积计算。
因果LTI系统的数学模型
连续因果LTI系统线性常系数微分方程+初始松弛条件 离散因果LTI系统线性常系数差分方程+初始松弛条件
一个连续时间线性系统,满足因果性的充分必要条件是:对任何t0和任意的输入x(t),若t<t0,x(t)=0,则对应的输出y(t)在t<t0也必定为零.
采样定理
(在保持系统幅频特性不变的情况下,如何改变系统的极点,使之满足因果稳定的条件?由零极点图确定系统的幅频特性)
由零极点图对傅里叶变换进行几何求解
因果LTI系统的方框图表示
(直接型,级联型,并联型)
单边s变换和z变换
(s变换微分性质和z变换时间延迟性质的推导,具有非零初始条件的LTI系统零输入响应和零状态响应的求解)
一个具有有理系统函数的离散时间LTI系统,当且仅当它的系统函数ROC位于最外层极点的外边,且H(z)表示成z的多项式之比时其分子的阶次不能大于分母的阶次,该系统才是因果的。
当且仅当系统函数的ROC包含单位圆时,离散时间LTI系统稳定。
信号与系统复习资料
信号与系统复习资料一、信号与系统的基本概念信号在工程和科学领域中起着重要的作用,它们传输着信息和能量。
信号可以是连续的或离散的,并且可以是模拟的或数字的。
系统是用来处理信号的工具,它们可以是线性的或非线性的,并且可以是时不变的或时变的。
在信号与系统的学习中,我们需要了解信号的性质、系统的特性以及它们之间的相互关系。
二、连续时间信号与离散时间信号连续时间信号是在连续时间域上表示的信号,它们在每个时间点都有定义。
离散时间信号是在离散时间点上采样的信号,它们只在有限的时间点上有定义。
连续时间信号和离散时间信号可以通过采样和保持操作相互转换。
三、信号的分类根据信号的性质,信号可以被分类为周期信号和非周期信号。
周期信号具有重复的模式,并且在无穷远处也保持有界。
非周期信号则没有重复的模式,并且在无穷远处不保持有界。
另外,信号还可以是基带信号或带通信号,基带信号是直接由信息源产生的信号,而带通信号是通过调制技术从基带信号中得到的。
四、连续时间系统与离散时间系统连续时间系统是用连续时间输入信号产生连续时间输出信号的系统,离散时间系统是用离散时间输入信号产生离散时间输出信号的系统。
系统可以是线性的或非线性的。
线性系统遵循叠加原则,输出信号是输入信号的线性组合。
非线性系统则不遵循叠加原则。
五、信号的时域分析时域分析是通过观察信号在时间上的变化来研究信号的性质。
常用的时域分析技术包括时域图、自相关函数、互相关函数等。
时域图是信号在时间轴上的表示,可以直观地观察信号的振幅、频率和相位等特性。
自相关函数衡量信号与自身在不同时间点之间的相似度,互相关函数衡量两个信号之间的相似度。
六、信号的频域分析频域分析是通过观察信号在频率上的变化来分析信号的性质。
傅里叶变换是常用的频域分析工具,它将信号从时域转换到频域。
傅里叶变换可以将信号表示为一系列复指数函数的线性组合,其中每个复指数函数对应一个频率。
功率谱密度函数是衡量信号在不同频率上的能量分布情况和频率成分的重要工具。
(完整word版)信号与系统复习大纲2019_12月
《信号与系统》总复习第一章信号与系统导论1。
信号与系统的应用领域(P4)2。
信号的基本运算(P21)3.单位冲激函数定义、筛选性质、冲激偶(P25)4.信号的冲激分解(P30)公式(1-22)思考题P30,1.7-1,1。
7—2,习题 P33,1-3。
P34,1-14,1—15,1—171.若系统是以线性代数方程,或者是线性微分/积分方程描述的,则该系统就是线性的。
线性系统具有三个特性:微分特性、积分特性、频率保持特性。
频率保持特性是:如果线性系统的输入信号的角频率为ω1,ω2,ω3……ωn,则系统的稳态输出信号角频率也是ω1,ω2,ω3……ωn.也就说,信号通过线性系统后不会产生新的频率分量.2.如果系统的元件参数是给定的,则称其为时不变系统,或叫定常系统.也就说描述该系统的微分方程的各个系数均为常数.时不变系统的一个重要特性是:输出不因输入信号的的接入时间不同而改变。
也就是说,若激励信号f(t)在某个时刻接入引起响应为y(t),当激励延迟t0接入时,它引起的响应也延迟相同的时间t0出现,而变化的规律不发生改变。
话句话说。
输出波形不变。
3.如果在激励信号作用之前,系统不产生响应,这样的系统称为因果系统。
也就是说.当t<0时,y(t)=0。
实际系统的响应不可能在激励之前发生。
因果系统是物理可实现的系统.熟悉常见信号:直流信号、正弦信号、单位阶跃信号、斜坡信号、指数信号、复指数信号、抽样信号、方波信号、门函数。
熟悉基本的信号运算:相加、相乘、翻折(反褶)、延时、压缩、扩展、微分积分。
重点是信号的分解,例如奇数偶说分解(书中没讲,略)、三角级数展开P78、信号的冲激分解P29.单位冲激函数是重点,也是难点。
一定要掌握.单位冲激函数的定义P26,公式(1-12)、(1—13)、(1-14)、(1—15)、(1—16)、(1-17)、(1-18)、(1-19)、(1—20)、(1—21)、(1-21)筛选性质、时移性质。
信号与系统总复习
yt yzi t yzs t
3、冲激响应和阶跃响应
(1)冲激响应
定义:LTI在零状态条件下,由δ(t)作用所产生的零状态响应为单 位冲激响应(冲激响应),h(t)。
(2)阶跃响应
定义:LTI在零状态条件下,由ε(t)引起的响应称为单位阶跃响应 (阶跃响应),g(t)。
22
3、系统的方框图表示与模拟
(1)子系统的三种基本联接方式:级联、并联、反馈
(2)3种运算器:加法器、标量乘法器、初始状态为零的积分器
3含有x的导数的二阶系统的模拟:y a1y a0 y b1x b0x
引入一辅助函数q,使q满足方程:q a1q a0q x,则y满足:y b1q b0q
0
m
bjs jF
s
i0
p0
j0
(2)对拉普拉斯变换方程进行代数运算,求出响应的象函数。
n i1
m
ai si1 p y p 0
bjs j
Y s i0
p0 n
j0 n
F s Yzi s Yzs s
aisi
或
f t
Fne jn0 t
n
Fn
1 2
Ane j n
An与n0的关系图线图 ——幅度频谱振幅与角频率 n与n0的关系图线图 ——相位频谱初相角与角频率
周期信号振幅谱的特点: (1)离散谱:离散的谱线组成,每根谱线代表一个谐波分量; (2)谐波性:谱线只在基频的整数倍频率上出现; (3)收敛性:n→∞,则振幅→无穷小。
时域抽样过程:
3、时域抽样定理 抽样定理(奈奎斯特定理):一个频谱有限的信号f(t),如果其频谱 F(ω)只占据-ωm~+ωm的范围,则信号f(t)可以用等间隔的抽样值来唯 一的表示,而抽样间隔Ts必须不大于1/(2fm)(其中ωm=2πfm),或者 说最低抽样频率为2fm。 最大的抽样间隔Ts=1/(2fm),奈奎斯特间隔;2fm,奈奎斯特频率。
信号系统最新完整复习要点
一、《信号与系统》总复习要点第一章绪论1.信号的分类:模拟信号,数字信号,离散信号,抽样信号2.信号的运算:移位、反褶、尺度、微分、积分、加法和乘法3. δ(t函数 (P18,P22,P23,P264.线性系统的定义:齐次性、叠加性5.描述连续时间系统的数字模型:微分方程描述离散时间系统的数字模型:差分方程6.连续系统的基本运算单元:加法器,乘法器,积分器离散系统的基本运算单元:加法器,乘法器,延时器7.连续系统的分析方法:时域分析方法,S域分析法离散系统的分析方法:时域分析方法,Z域分析方法8.系统模拟图的画法(P309.系统线性、时不变性、因果性的判定第二章连续时间系统的时域分析(经典法的计算步骤)1.微分方程的“齐次解+特解”的求法自由响应+强迫响应2.系统的“零输入响应+零状态响应”求法3.系统的“暂态响应+稳态响应”4.0-→0+跳变量计算:冲激函数匹配法5.单位冲激响应h(t的概念与计算6.卷积的计算公式,零状态响应yzs(t=e(t*h(t=∫∞-∞e(τh(t-τdτ=h(t*e(t7.卷积的性质(P65,P67)8. 理解系统的线性(P57及例题)第三章傅里叶变换t→w1.周期信号FS(P89,P90,P92)频谱是离散谱2.非周期信号FT(P112)频谱是连续密度谱3.傅里叶变换对4.吉布斯现象(P101)5.简单非周期信号的FT(P121,P113,P114)6.FT的性质(P142)7.周期信号的FT(P146图3-468.抽样信号(P154图3-519.抽样定理(P158)第四章拉氏变换、连续时间系统的s域分析t→s1. 拉氏变换对2.典型信号的拉氏变换(P181)3.拉氏变换的性质(P189)4.拉氏逆变换:部分分式展开法(系数求法)5.拉氏分析法求H(s, h(t, yzi(t, yzs(t, y(t6.系统函数H(s与h(t 是拉氏变换对H(s的极点决定h(t的形式H(s的零点影响h(t的幅度和相位7.H(s的极点与响稳定性关系(P241)8.连续系统的频响特性H(jw=H(s│s=jw9.全通网络(P232)和最小相移网络(P236)第七章离散时间系统的时域分析1.典型离散时间信号及信号运算2.离散序列的周期判定:(P82π/w0分三种情况讨论3.离散系统的差分方程,及模拟图的画法4.离散时间系统的时域求解法(迭代、齐次解+特解、零输入+零状态)5.单位冲激响应h(n及其求法6.卷积和计算7.系统的零状态响应yzs(n=x(n*h(n8.离散系统的因果性,稳定性时域:因果性 n<0 ,h(n=0稳定性 h(n绝对可和第八章 Z变换、离散时间系统的Z域分析1.Z平面与S平面的映射关系: z=esT2. Z变换对3.典型序列的Z变换(P45,P46,P47)4.Z变换的收敛域:有限长序列有无0,∞右边序列圆外左边序列圆内双边序列圆环5.逆Z变换部分分式展开法(先除以Z再展)6.Z变换的性质(P73)7.Z域分析法解差分方程(P81)8.系统函数及应用[ H(z与 h(n是 Z变换对]求H(z, h(n, yzs(n, yzi(n, y(n, H(ejw详见书P86:例8-19, P109 8-36 8-379.离散系统的因果性与稳定性时域判断与z域判断10.离散系统的频响特性H(ejw=H(z│z=ejw =│H(ejw│ejψ(w幅度谱:描点作图,2π为周期(相位谱)参见P98,例8-22。
信号与系统复习材料.docx
《信号与系统》期末复习材料一、考核目标和范围通过考核使学生了解和常握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
二、期末复习重难点第1章信号与系统分析导论1.掌握信号的定义及分类。
2.掌握系统的描述、分类及特性。
3.重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.常握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续吋间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章周期信号的频域分析1.常握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.常握离散非周期信号的频域分析。
第6章系统的频域分析1.掌握连续系统频率响应的物理概念与计算。
2.掌握连续系统响应的频域分析,重点掌握虚指数信号通过系统的响应。
3.掌握无失真传输系统与理想模拟滤波器的特性。
4.掌握离散系统频率响应的物理概念。
5.掌握离散系统响应的频域分析,重点掌握虚指数序列通过系统的响应。
6.掌握理想数字低通滤波器的特性。
第7章连续时间信号与系统的复频域分析1.熟练掌握信号单边Laplace变换及其基本性质。
2.常握利用单边Laplace变换求解连续系统的零输入响应和零状态响应。
3. 重点掌握连续时间系统的系统函数与系统特性(时域特性、频率响应、稳定性)的 关系。
4. 掌握连续吋间系统的直接型、级联型和并联型模拟框图。
信与系统综合复习资料
信与系统综合复习资料 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#《信号与系统》综合复习资料一、简答题1、dtt df t f t f x e t y t )()()()0()(+⋅=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的2、已知描述LTI 连续系统的框图如图所示,请写出描述系统的微分方程。
3、若信号)(t f 的最高频率为20KHz ,则信号)3()2()(2t f t f t f +=的最高频率为___________KHz ;若对信号)(2t f 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。
4、设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)()(t f t y zs -=,判断该系统是否是时不变的,并说明理由。
5、已知信号()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=8sin 4cos 2ππk k k f ,判断该信号是否为周期信号,如果是,请求其周期,并说明理由。
6、已知()1k+1 , 0,1,20 , k f k else ==⎧⎨⎩,()2 1 , 0,1,2,30 , k f k else ==⎧⎨⎩设()()()12f k f k f k =*,求()f k 。
7、设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)1(*)()(-=k f k f k y zs ,判断该系统是否是线性的,并说明理由。
8、已知描述LTI 离散系统的框图如图所示,请写出描述系统的差分方程。
9、已知()f t 的频谱函数1,2/()0,2/rad sF j rad sωωω⎧≤⎪=⎨>⎪⎩,对(2)f t 进行均匀抽样的奈奎斯特抽样间隔N T 为:_______________s 。
10、若信号()f t 的最高频率为20KHz ,则信号(2)f t 的最高频率为___________KHz ;若对信号(2)f t 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信号与系统》综合复习资料一、简答题:1、dtt df t f x e t y t)()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的? 。
解答:由于无法区分零输入响应和零状态响应,因而系统为非线性的。
2、4sin()()?6t t dt πδ+∞-∞-⋅=⎰__________________________。
解:根据冲激函数的性质:2)60sin(4)()6sin(4--=-=-⎰∞∞πδπdt t t3、()*(4)?k k εδ-=_答:)4(-k ε_____________________________________________。
4、已知系统的零状态响应和输入之间的关系为:()(1)zs y k f k =-,其中,激励为()f ⋅,零状态响应为()zs y ⋅,试判断此系统是否是时不变的? 。
解:设)()(0k k f k f -=,若系统为时不变的则有:)1())(1()(000k k y k k y k k y zs zs zs +-=--=-根据)1()(k f k y zs -=,则将题设代入,可得:)1()(0k k f k y zs --= 很明显,)()(0k k y k y zs zs -≠ 因而系统为时变的。
5、(2)t δ=___________________________。
答案:)(21)2(t t δδ=6、已知描述系统的微分方程为'()sin ()()y t ty t f t +=其中()()f t y t 为激励,为响应,试判断此系统是否为时不变的? 解:系统是时变的。
7、()?t e t dt δ+∞--∞=⎰____________________________。
解:1 。
8、已知信号3()sin cos 62f k k k ππ=+,则,该信号的周期为? 解:设k k f 6sin )(1π=,其周期为121=T ;设k k f 23sin)(2π=,其周期为342=T ;二者的最小公倍数为12,因而信号为周期信号,其周期为12=T .9、线性是不变系统传输信号不失真的频域条件为:___________________________。
答:)()(0t t K t h -=δ10、 设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)()(t f t y zs -=,判断该系统是否是线性的,并说明理由。
解:若系统为线性的,则应满足齐次性和可加性。
(1)齐次性。
设)()(1t af t f =,且)()(11t y t f zs =-若系统满足齐次性,必有:)()(1t ay t y zs zs =下面看结论是否成立。
根据输入与输出之间的关系可得)()(t f t y zs -=,将题设代入可得到:)()()()(11t ay t af t f t y zs zs =-=-=所以结论成立,从而系统满足齐次性。
(2)可加性。
设)()()(21t f t f t f +=, 其中,)()(11t y t f zs =-,)()(22t y t f zs =-,若系统满足可加性,则必有结论)()()(21t y t y t y zs zs +=。
下面证明这一结论。
根据输入与输出之间的关系可得)()(t f t y zs -=,将题设代入可得到:)()()()()]()([)()(212121t y t y t f t f t f t f t f t y zs zs zs +=-+-=-+-=-=所以系统满足可加性。
综合(1)(2)可得,系统为线性的。
11、已知描述LTI 连续系统的框图如图所示,请写出描述系统的微分方程。
解:由于输入输入之间无直接联系,设中间变量)(t x 如图所示,则各积分器的的输入信号分别如图所示。
由加法器的输入输出列些方程:左边加法器:)(3)(2)()(t x t x t f t x '--='' (1) 右边加法器:)(2)()(t x t x t y '-''= (2) 由(1)式整理得到:)()(2)(3)(t f t x t x t x =+'+'' (3) 消去中间变量)(t x : )](2)([2)(2t x t x t y '-''= (4) )]'(2)([3)(3t x t x t y '-''=' (5)])(2)([)('''-''=''t x t x t y (6)将(4)(5)(6)左右两边同时相加可得:)](2)([2])(2)([3])('2)([)(2)(3)(t x t x t x t x t x t x t y t y t y '-''+''-''+''-''=+'+''整理可得到:)(2)()(2)(3)(t f t f t y t y t y '-''=+'+''12、已知一信号()f k 如图所示,请用单位阶跃序列()k ε及其移位序列表示()f k 。
答案: )4()1()(---=k k k f εε1 ()f kk4 3 2 1 0二、作图题:1、已知信号()f k 的波形如图所示,画出信号(2)(2)f k k ε+⋅--的波形。
解:2⇒左移个单位⋅⋅⋅12310 k()k ε1⋅⋅⋅-4 -3 -2 0 k(2)k ε--2⇒右移个单位1⋅⋅⋅2340 k(2)k ε-⇒翻转再根据信号乘积,可以得到(2)(2)f k k ε+⋅--的波形:2、已知()()12f t f t 、的波形如下图,求()()()12f t f t f t =*(可直接画出图形)解:本题可以利用图解的方法,也可以利用卷积公式法来进行计算。
卷积公式法: 1()()(2)f t t t εε=--2()()(1)f t t t εε=--1212()()*()()()f t f t f t f f t d τττ+∞-∞==-⎰12()()()[()(2)][()(1)]f t f f t d t t d τττετετετεττ+∞+∞-∞-∞=-=--⋅----⎰⎰()()()()(1)(2)()(2)(1)f t t d t d t d t d ετεττετεττετεττετεττ+∞+∞-∞-∞+∞+∞-∞-∞=-------+---⎰⎰⎰⎰利用阶跃函数的性质对上面的式子进行化简:1122()()(1)(1)(2)(2)(3)(3)t t t t f t d d d d t t t t t t t t ττττεεεε--=--+=------+--⎰⎰⎰⎰()[()(1)][(1)(2)](3)[(2)(3)]f t t t t t t t t t εεεεεε=--+--------根据上面的表达式,可以画出图形:3、已知信号()f t 的波形如图所示,画出信号1(1)2f t -的波形。
解:⇒向左移动一个单位⇒翻转4、已知信号)(t f 的波形如图所示,请画出函数)21(t f - 的波形。
解:1向左平移⇒)1(+t f ()t f ⇒横坐标展缩翻转⇒/21压缩到原来的⇒三、综合题目:(请写明步骤,否则不得分)1、某LTI 系统的冲激响应()()2()h t t t δδ'=+,若激励信号为()f t 时,其零状态响应()()t zs y t e t ε-=,求输入信号()f t 。
解:()()2()h t t t δδ'=+转换到s 域,可得:2)(+=s s H零状态响应为:()()tzs y t e t ε-=,转换到s 域可得:11)(+=s s Y zs ,则在s 域输入的象函数为: 2111)2)(1(1211)()()(+-+=++=++==s s s s s s s H s Y s F zs取其拉氏反变换可得:)()()(2t e e t f t t ε---=2、某离散系统的输出()y k 与输入()f k 之间的关系为: 0()2()ii y k f k i ∞==-∑求系统的单位序列响应()h k 。
解:根据单位序列响应的概念可得:∑∞--=0)(2)(i i i k k h δ则:Λ+-+=)1(2)(2)(10k k k h δδ 观察规律可得:)(2)(k k h kε=3、已知因果系统的差分方程为:()3(1)2(2)()y k y k y k f k +-+-=,其中,()2()k f k k ε=。
若已知(0)0,(1)2y y ==,求系统的全响应()y k 。
解:系统的齐次方程为:()3(1)2(2)0y k y k y k +-+-=特征方程为:2320λλ++= 所以特征根分别为:1212λλ=-=-, 所以系统的齐次解可以表示为:()1(1)2(2)kkyh k c c =-+-已知系统的输入为()2()kf k k ε=,则系统的特解可以表示为:()2kyp k p =,将其代入到原差分方程,可得:13p = 所以特解1()23kyp k =所以系统的全解可表示为:1()()()1(1)2(2)23k k k y k yh k yp k c c =+=-+-+将初始条件(0)0,(1)2y y ==代入,可得待定系数:21,213c c ==-所以系统的全响应为:21()(1)(2)(2),033k kk y k k =---+≥4、图示离散系统有三个子系统组成,已知)4cos(2)(1πk k h =, )()(2k a k h k ε=,激励)1()()(--=k a k k f δδ,求:零状态响应()zs y k 。
解:由题意可知,该系统为子系统的串联,则:12()()*()h k h k h k =()()*()zs y k f k h k =所以12()()*[()*()]zs y k f k h k h k = 将已知条件代入有:()[()(1)]*2cos()*()4k zs k y k k a k a k πδδε=-- 整理可得:1()[()(1)]*()*2cos()4[()(1)]*2cos()4k zs k k k y k k a k a k k a k aa k πδδεπεε-=--=--[()(1)]*2cos()4k k a k k πεε=-- ()*2cos()4k k a k πδ= ()*2cos()4k k πδ= 2cos()4k π= 5、已知一个因果LTI 系统的输出()y t 与输入()f t 有下列微分方程来描述: ''()6'()8()2()y t f t y t f t ++= (1)确定系统的冲激响应()h t ;(2)若2()()tf t e t ε-=,求系统的零状态响应)(t y zs 。