数学发展历史
数学的历史介绍数学的历史发展和重要数学家
数学的历史介绍数学的历史发展和重要数学家数学作为一门古老而又深刻的学科,在人类文明的历史长河中扮演着重要的角色。
从古代至今,数学不断发展演变,培育出许多伟大的数学家,他们为数学的进步做出了巨大的贡献。
本文将为大家介绍数学的历史发展并重点介绍一些重要的数学家。
一、古希腊时期数学的发展古希腊是数学史上一个重要的里程碑,许多重要的数学思想和概念都在这个时期诞生。
最为人熟知的是毕达哥拉斯学派提出的一系列数学原理,包括著名的毕达哥拉斯定理。
另外,欧几里得的《几何原本》对后世数学发展起到了巨大的影响,成为许多数学家研究的基础。
二、中世纪数学的低谷与复兴中世纪数学的发展相对较慢,部分原因是欧洲的文化环境受到了战争和政治动荡的影响。
然而,阿拉伯数学家在这个时期对数学的发展做出了重要贡献。
他们将印度和希腊的数学知识引入阿拉伯世界,并进行了整理和发展,为欧洲数学的复兴打下了基础。
著名的《阿拉伯数学传统》成为了数学史上的重要文献之一。
三、文艺复兴时期的数学突破文艺复兴时期是欧洲数学复兴的重要时期,众多数学家在这个时期涌现出来。
其中,意大利数学家斯忒芬诺为代数学的发展做出了杰出贡献,他提出了方程三次及以上的根的求解方法。
另外,日耳曼数学家勒让德也是这个时期的重要人物,他以发展微积分理论而闻名。
四、近代数学的革命近代数学的革命主要发生在17至19世纪,这一时期见证了许多基础性数学理论的诞生。
哥德巴赫猜想、费马大定理等一系列重要的数学难题在这一时期得到了提出。
著名的数学家牛顿和莱布尼茨几乎同时独立发现了微积分学,为后来的物理学和工程学等学科提供了基础。
五、现代数学的拓展与应用20世纪以来,数学已经发展成为一门庞大而复杂的学科体系。
代数学、几何学、概率论、数论等各个分支都有了独立而深入的发展。
许多著名的数学家如高斯、黎曼、庞加莱等在这个时期做出了具有重要影响的贡献。
数学的应用也广泛渗透到自然科学、工程学与经济学等领域,为人类社会的进步做出了重要贡献。
中国的数学历史
中国的数学历史中国是古代文明的重要代表之一,同时也有着光辉的数学历史。
以下是有关中国数学历史的一些重要内容:1.最早的数学发展:约在公元前11世纪,中国的商代就已开始发展数学。
商代的贡献主要包括单位的建立,长度和重量的标准化以及简单的算数。
2.数学家张丘建的贡献:在东汉末年,张丘建发表的《算经》成为了数学史上的重要经典之一。
这部作品包括594个题目,主要涵盖了算术、代数、几何和三角学四个方面的内容。
3.数学家李冶的成就:唐代数学家李冶贡献了许多重要的发现,特别是在解释和应用三角函数方面做出了重要贡献。
他还发明了多种算术方法,并开发了新的几何工具。
4.算学的发展:在宋代,算学成为了学校的主要课程之一,并且开始出现了关于代数学和几何学的研究。
宋代数学家朱世杰发明了一种新的十进制计数方法,并提出若干关于除法和乘方的原则。
5.《数学九章》的出现:明代数学家秦九韶和杨辉共同编写了《数学九章》这部长篇巨著。
这本书详细介绍了代数学、几何学和三角学的各个方面。
它不仅仍然是数学研究的必读之书,而且还影响了欧洲的数学研究。
6.数学教育的革新:在清朝,数学成为了中国的高等教育的重要课程之一。
清末时期的数学家严复通过翻译数学教材的方式,将西方的数学思想引入到中国。
总的来说,中国的数学历史相当悠久而且丰富,其成就在几何、代数以及计算机等领域对现代科学技术的发展做出了积极的贡献。
虽然现代数学已经发生了很大的变化,但中国数学所开创的理性、系统、严密的数学思想仍然有着深远的影响。
数学的发展历史
开创写下了不可磨灭的一章
阿基米德的墓碑上刻的图
此后是千余年的停滞
• 随着希腊科学的终结,在欧洲出现了科学萧条,数学 发展的中心移到了印度、中亚细亚和阿拉伯国 家.在这些地方从5世纪到15世纪的一千年中间, 数学主要由于计算的需要而发展.印度人发明了 现代记数法 后来传到阿拉伯,从发掘出的材料看, 中国是使用十进制最早的国家 ,引进了负数.
的大小关系,平行线理论,三角形和多角形等积 面积相等 的条件,第一卷最 后两个命题是 毕达哥拉斯定理的正逆定理;
第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、 13命题相当于余弦定理。
第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。 第四卷:讨论圆内接和外切多边形的做法和性质; 第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为 是"最重要的数学杰作之一" 第六卷:讲相似多边形理论,并以此阐述了比例的性质。 第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十 卷是篇幅最大的一卷,主要讨论无理量 与给定的量不可通约的量 ,其中第 一命题是极限思想的雏形。 第十一卷、十二、十三卷:最后讲述立体几何的内容.
学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾 股数”及二次方程求解的记录。
莱茵德纸草书 1650 B.C.
莫斯科纸草书 vh(a2 abb2)
3
古巴比伦的“记事泥板”中关于 “整勾股数”的记载”
约公元前1000年
马其顿,1988年
20世纪在两河流域有约50万块泥版文 书出土,其中300多块与数学有关
秦九韶的《数书九章》 卷一“大衍总数术”
“贾宪三角”, 也称“杨辉三角”
数学的起源和发展
一般认为,从远古到现在,数学经历了五个历史阶段:数学萌芽时期(公元6世纪以前)初等数学时期(从公元前5世纪到公元17世纪)变量数学时期(17世纪上半叶-19世纪20年代)近代数学时期(19世纪20年代-20世纪40年代)现代数学时期(20世纪40年代以来)一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算。
他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
二、初等数学时期(从公元前5世纪到公元17世纪)在人类历史上,这是发达的奴隶社会和整个封建社会时期。
这个时期外国数学发展的中心先在古希腊,后在印度和阿拉伯国家,之后又转到西欧诸国。
这时期的中国数学独立发展,在许多方面居世界领先地位。
在数学内容上,2世纪以前是几何优先发展阶段,2世纪以后是代数优先发展阶段。
如果说古希腊的几何证明的较突出,则中国和印度的代数计算可与其媲美。
这个时期的数学发生了本质的变化,数学(主要是几何学)由具体的、实用阶段发展到抽象的、理论阶段;从以实验和观察为依据的经验学科过渡到演绎的科学,并形成了自己的体系,初等几何、算术、初等代数和三角学都已成为独立的学科。
这个时期的研究内容是常量和不变的图形,因此又称为常量数学。
从公元前6世纪到公元前3世纪是希腊数学的古典时期。
数学发展历程简要介绍
数学发展历程简要介绍数学作为一门古老而又充满魅力的学科,经历了漫长的发展过程。
从古代的埃及和巴比伦到现代的计算机时代,数学在人类思维和社会发展中发挥了巨大的作用。
本文将以简要的方式介绍数学的发展历程。
1. 古代数学数学的历史可以追溯到远古时代。
古代的埃及和巴比伦是数学的起源地之一。
埃及人和巴比伦人使用数学来解决土地测量、纳税和商业交易等实际问题。
埃及人还使用几何学来建造金字塔,并开发出了一套复杂的分数系统。
另一个重要的古代数学文化是古希腊。
希腊人在几何学方面取得了重大突破,欧几里德的《几何原本》是古代几何学的经典之作。
希腊人还研究了无理数,并建立了一套严密的逻辑推理。
2. 中世纪和文艺复兴时期的数学中世纪欧洲的数学发展相对较慢,但在文艺复兴时期出现了一系列重要的数学发现。
意大利数学家斯卡拉蔡在13世纪开创了代数学的先河,他提出了使用字母表示未知数的思想,并发展了求解方程的方法。
文艺复兴时期的数学家卡尔丹提出了无穷级数的概念,并解决了许多几何和代数问题。
同时,卡尔丹的学生费马提出了著名的费马大定理,引发了数学界几个世纪的研究热潮。
3. 近代数学17世纪是数学发展的重要转折点。
牛顿和莱布尼茨同时独立发明了微积分学,为物理学和工程学等应用学科提供了坚实的数学基础。
微积分的发展不仅丰富了数学理论,还在研究天体运动和物体运动等领域发挥了重要作用。
18世纪的数学史上最重要的事件之一是欧拉的工作。
欧拉是一位多产的数学家,他在分析学、数论、几何学等领域都有重要贡献。
19世纪是数学发展的繁荣时期。
高斯、拉格朗日、阿贝尔等杰出的数学家出现,并在代数、数论和几何学等领域取得突破性进展。
数学的抽象化程度越来越高,从而推动了现代数学的诞生。
4. 现代数学20世纪以来,数学的发展进入了一个全新的阶段。
在此期间,数学分支不断扩张,涉及到概率论、拓扑学、数理逻辑、组合数学等领域。
计算机的发明也催生了计算数学学科的诞生。
数学的发展并不仅限于理论层面,它也在科学、工程和金融等领域产生了广泛的应用。
数学的发展历史
数学的发展历史从古至今,数学一直在人类社会中起着至关重要的作用。
它作为一门学科,其发展历史丰富多彩,并为人们的生活与技术进步做出了巨大贡献。
本文将回顾数学的发展历史,探讨它的重要里程碑,并展望未来的发展趋势。
一、数学的起源数学的起源可以追溯到古代文明的崛起。
早在埃及、巴比伦、古希腊和古印度等古代文明时期,人们就开始意识到数学的存在和重要性。
这些文明以各自独特的方式发展了代数、几何和三角学等数学分支。
其中,古埃及的数学主要用于土地测量和建筑工程,古巴比伦的数学则与天文学和商业有关。
二、古希腊数学的辉煌希腊古代数学的发展被认为是数学史上的一大里程碑。
在公元前6世纪至公元前4世纪,一批杰出的数学家如毕达哥拉斯、欧几里德、阿基米德等相继涌现。
他们的贡献不仅仅在于解决实际问题,更在于构建了严谨的数学体系和证明方法。
欧几里德的《几何原本》成为了欧洲西方世界数学教材的基石。
三、中世纪的数学复兴尽管中世纪欧洲的思想受到了宗教的限制,但在阿拉伯学者的传承下,数学仍得以保留和发展。
通过回归古希腊的数学遗产,中世纪的数学家们进一步强化了代数和几何的研究。
阿拉伯人引入十进制数制和阿拉伯数字,这无疑加速了数学的推广和发展。
四、近代数学的飞跃17世纪至18世纪,数学在欧洲经历了一场革命般的变革。
牛顿和莱布尼茨开创了微积分学,为物理学、天文学等其他科学领域的研究提供了重要工具。
同时,代数学、数论、概率论等新的数学分支相继涌现,在数学的应用和理论方面取得了重大突破。
五、现代数学的发展20世纪,数学进入了一个全新的阶段。
在这个时期,数学与计算机科学和工程学等学科紧密结合,引发了许多数学应用于实际问题的研究。
线性代数、离散数学、图论、数值计算等分支蓬勃发展,为信息技术和通信技术的迅猛发展提供了坚实基础。
六、未来数学的前景随着科技的不断进步和人类对知识的渴求,数学在未来的发展前景是无限的。
数学将继续在科学研究、工程技术和金融领域发挥至关重要的作用。
数的起源与发展
数的起源与发展引言概述:数是人类认识和描述世界的基础工具,它的起源和发展经历了漫长的历史。
本文将从数的起源、数的发展过程、数的分类、数的应用以及数的未来发展等五个方面进行详细阐述。
一、数的起源1.1 古代数的起源- 人类最早的数是通过手指计数而来的,这种计数方式称为原始计数法。
- 随着社会的发展,人们开始使用自然物体如石头、贝壳等来代表数量。
1.2 埃及和巴比伦的数学- 埃及人和巴比伦人是数学发展的重要贡献者,他们创造了简单的计数系统和运算规则。
- 埃及人发明了分数,并用于商业和建造领域。
- 巴比伦人发明了基于60的进位制,这种制度至今仍在时间和角度的计量中使用。
1.3 希腊数学的兴起- 希腊人对数学的发展起到了重要的推动作用。
- 希腊人通过几何学的发展,建立了严谨的证明体系。
- 希腊人提出了无理数的概念,推动了数学的发展。
二、数的发展过程2.1 阿拉伯数字的引入- 阿拉伯数字的引入使数的表示更加简洁和灵便。
- 阿拉伯数字的特点是使用有限的符号来表示无限的数。
- 阿拉伯数字的传入欧洲,推动了数学的发展和商业的繁荣。
2.2 笛卡尔坐标系的建立- 笛卡尔坐标系的建立将代数和几何学联系在一起,为数学的发展开辟了新的道路。
- 笛卡尔坐标系的应用使得解决几何问题变得更加简单。
2.3 微积分的诞生- 微积分的诞生标志着数学的一次革命。
- 微积分的发展推动了物理学和工程学等应用学科的发展。
三、数的分类3.1 自然数和整数- 自然数是最早浮现的数,表示物体的个数。
- 整数是自然数的扩展,包括正整数、负整数和零。
3.2 有理数和无理数- 有理数是可以表示为两个整数之比的数,包括分数和整数。
- 无理数是不能表示为两个整数之比的数,如π和√2。
3.3 实数和复数- 实数包括有理数和无理数,是数学中最基本的概念。
- 复数是实数的扩展,包括实部和虚部,广泛应用于物理学和工程学。
四、数的应用4.1 数的应用于科学- 数学是科学的基础,几乎所有科学领域都离不开数学的应用。
中国数学的起源与发展
中国数学的起源与发展中国数学的起源与发展经历了漫长的历史过程,主要如下:1.起源:- 远古时期的记数意识:在远古时代,人们就有了记数的意识。
大约7000年以前,人们对数字的认知还非常有限,甚至数到2以上都有困难。
后来人们逐渐把数字和双手联系起来,每只手代表一个“1”,这是最初对数字的直观理解。
为了记录和表达数量,祖先们先是结绳记数,后来发展到“书契”记数。
在五六千年前,已经能够书写1至30的数字,到了春秋时代,能书写3000以上的数字,并且有了加法和乘法的意识。
- 早期的数学知识记载:春秋时期孔子修改过的《周易》中出现了八卦,这是一种具有深刻数学内涵的符号系统,对后世数学的发展产生了深远影响。
八卦在数学、天文、物理等多方面都发挥着重要作用。
- 战国时期的数学突破:这一时期中国数学取得了显著进展。
算术领域,四则运算得到确立,乘法口诀已经在一些著作中零散出现,分数计算也开始应用于生产生活,比如种植土地、分配粮食等方面;几何领域,出现了勾股定理;代数领域,出现了负数概念的萌芽;并且出现了“对策论”的萌芽,如战国时期孙膑提出的“斗马术”问题,就反映了对策论中争取总体最优的数学思想。
2.发展:- 秦汉时期:这一时期在记数和计算方法上有了进一步的发展。
乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法口诀。
在几何方面,对于长方形面积的计算以及体积计算的知识也更加丰富。
同时,算筹和十进位制系统的出现和应用,为数学计算提供了便利的工具和有效的计数方法。
算筹是一些直径1分、长6分的小棍儿,质料有竹、木、骨、铁、铜等,其功用与算盘珠相仿。
- 西汉末期至隋朝中叶:这是中国数学理论的第一个高峰期,标志是《九章算术》的诞生。
《九章算术》是中国秦汉时期一二百年的数学知识结晶,全书共分为九章,收录了246道数学应用题,每道题都分为问、答、术(解法,有的一题一术,有的一题多术)三部分,内容与社会生产紧密联系。
这一时期除了《九章算术》,还出现了刘徽注的《九章算术》以及《海岛算经》《孙子算经》等数学专著。
数学的发展历史
数学的发展历史数学,作为一门古老而又深奥的学科,对人类文明的进步起到了不可忽视的作用。
数学的发展历史可以追溯到古代世界各地的文明时期,经过了漫长而辛苦的进程,才逐渐形成了今天我们所熟知的数学体系。
本文将为您介绍数学的发展历史,并从古代世界各地的贡献中感受到数学的伟大魅力。
1. 古代巴比伦和埃及的数学之旅数学在巴比伦和埃及文明中具有重要地位。
在巴比伦,人们编制了一系列的计量系统,推动了数学的发展。
巴比伦人创造了著名的巴比伦数字系统,具有较强的运算能力。
而埃及人则专注于土地测量和建筑工程,他们的技术和知识为几何学的发展奠定了基础。
2. 古希腊数学的辉煌时代古希腊是数学发展的黄金时代,许多著名的数学家纷纷涌现。
毕达哥拉斯学派提出了毕达哥拉斯定理,为几何学做出了重要贡献。
欧几里德整理了前人的几何学知识,创作了著名的《几何原本》,成为后世几何学的经典之作。
阿基米德则在数值计算和测量上取得了突破。
3. 印度数学的卓越贡献古代印度的数学成就也非常出色。
数学家阿耶尔巴塔提出了无穷级数和无理数的概念,对数学领域产生了深远影响。
他们还发展了一套高度精确的算术系统,并进行了广泛的记录。
此外,印度数学家在三角学和代数学方面也有杰出的成就。
4. 中国数学的辉煌历史中国古代的数学也有悠久的发展历史。
中国数学家刘徽提出并完善了二次方程求解方法,著名的《九章算术》系统地总结了当时数学的各个领域。
中国古代的负数概念也在数学发展中首次出现。
中国数学发展的一个重要特点是注重实用和实践,许多数学问题是源于实际生活中的困惑。
5. 近代数学的飞跃进步随着17世纪的到来,数学领域出现了突破性的发展。
牛顿和莱布尼茨发现了微积分学,为数学在物理学和工程学中的应用提供了强大的工具。
数论在欧拉和高斯的努力下逐渐成为独立的数学分支。
同时,矩阵论、概率论、数理逻辑等领域也取得了长足进展。
6. 现代数学的多样发展20世纪以来,数学的发展进入了一个多样而广泛的时代。
数学的发展历史
数学的发展历史数学是一门古老而又迷人的学科,它随着人类文明的进步而不断发展。
在人类的历史长河中,数学发展经历了多个重要的阶段和里程碑。
本文将回顾数学的发展历史,带您一起走进这个充满智慧的领域。
1. 古代数学的起源数学的起源可以追溯到公元前3000年左右的古巴比伦和古埃及。
在巴比伦,人们开始研究几何学,并应用它来解决土地测量和建筑等实际问题。
古埃及人则致力于测量、计数和记录财产。
他们发明了用于扩大数字量级的系统——埃及分数系统。
2. 古希腊数学的兴起古希腊是数学史上一个重要的里程碑。
在公元前6世纪,古希腊人开始对几何学和算术进行深入研究。
毕达哥拉斯提出了一系列关于直角三角形的理论,开创了几何学研究的先河。
欧几里得则在其巨著《几何原本》中,系统地整理了希腊前人的研究成果,成为几何学的标准教材,并对后世产生深远影响。
3. 中世纪的逐渐复兴在中世纪,数学的发展出现了滞缓的趋势,但仍有一些关键性的进展。
尤其是在伊斯兰文化的影响下,阿拉伯和波斯数学家的贡献不可忽视。
穆罕默德·本·穆萨等人为代数学的发展奠定了基础,并引入了许多重要的数学概念和技术。
4. 文艺复兴时期的数学大革命文艺复兴时期,欧洲大陆经历了一场思想解放的浪潮,数学领域也不例外。
这个时期的数学家对古希腊的数学遗产进行了翻新和扩展。
尼古拉斯·科佩尼库斯在代数学中引入了符号表示法,使得代数问题的处理更加灵活高效。
同时,数学的应用范围也被扩展到物理学和天文学等领域,为科学的进步做出了巨大贡献。
5. 近现代数学的突破18世纪和19世纪是数学领域的黄金时代。
数学家们在微积分、概率论、数论和几何学等方面取得了重大突破。
如牛顿和莱布尼茨共同发现了微积分,为物理学和工程学的发展提供了坚实的基础。
高斯则在数论和代数几何学方面做出了杰出的贡献,并推动了非欧几何学的发展。
6. 当代数学的拓展和应用随着科技的进步和人类对自然规律的深入理解,数学在当代的发展变得更加广泛和深入。
数的发展简史
数的发展简史
引言概述:
数的概念是人类文明发展过程中最基本的数学概念之一。
从古至今,数的概念和应用经历了漫长而复杂的发展过程。
本文将从数的起源开始,通过五个大点来阐述数的发展简史。
正文内容:
1. 数的起源
1.1 早期人类的计数方法
1.2 数的符号化和计算工具的发展
1.3 埃及和巴比伦数学的贡献
2. 古代数学的发展
2.1 古希腊数学的兴起
2.2 古印度数学的发展
2.3 中国古代数学的独特性
2.4 阿拉伯数学的传播与发展
3. 中世纪数学的突破
3.1 十进制计数法的引入
3.2 代数学的兴起
3.3 几何学的发展
4. 近代数学的革新
4.1 微积分的发展
4.2 概率论的浮现
4.3 线性代数的发展
5. 现代数学的发展
5.1 集合论的建立
5.2 数论的研究
5.3 应用数学的发展
5.4 计算机科学与数学的结合
总结:
数的发展经历了漫长而复杂的历史过程。
从早期人类的计数方法开始,到数的符号化和计算工具的发展,再到古代数学的兴起和中世纪数学的突破,数学在近代和现代经历了微积分、概率论、线性代数等多个领域的革新。
现代数学的发展包括集合论、数论、应用数学以及与计算机科学的结合。
数的发展简史展示了人类对于数学的不断探索和创新,为我们提供了丰富的数学知识和应用领域。
数学的发展将继续为人类社会的进步做出贡献。
中国数学发展史
中国数学发展史中国数学发展历史可以追溯到古代,早在商代,中国人就已经开始使用字母和数字了。
随着历史的发展,中国数学也不断发展。
下面我们来一一介绍。
1.古代数学古代数学主要有三个时期:先秦时期、汉代到隋唐时期、唐宋明清时期。
在先秦时期,尚书:“六铢”之中就包含有算术运算方法。
《九章算术》是将古代运算方法集中起来的一项数学成果。
在隋唐时期,王陂算经出现,这是一部有关算术、代数、几何、人工运算和天文理论的书籍。
唐代的《数书九章》更是囊括了古代数学大量的知识和成果。
2.八股文数学八股文是中国传统文化时期的一种标志性的文章写作形式。
在明清时期,数学教育也采用了这种形式。
后来,八股文数学成为了中国古代数学的代表性成果之一,而数学分成九科也成为了这一时期的一个标志性成果。
3.古代算术古代算术指的是古人们在生产和生活中所进行的算术运算。
在《数书九章》中,有大量关于古代算术的内容。
古代算术主要包括加法、减法、乘法、除法等计算方面的知识,还包括古人们使用的算盘、草率和算具等。
4.代数学代数学是一门古老而又现代的数学学科。
最早的代数学思想可以追溯至先秦时期的“六铢”,唐代的“大衍数学”和宋代的“忘穴”等都是代数学的成果。
代数学在古代并不是一个独立的学科,而是与其他学科如几何学和算术学紧密联系在一起的。
5.数学教育古代的数学教育主要有两种形式:家教和私塾。
在家教方面,大富豪会请最好的数学家为其子弟授课。
而在私塾方面,数学家将自己的子女和其他有志于学习数学的青年聚集在一起,进行数学教育。
6.现代数学现代数学是在西方文化的影响下,从19世纪末期到20世纪初期在中国发展壮大的一门学科。
现代数学的发展主要包括微积分、概率论、数理逻辑、数论、拓扑、代数等方面。
现代数学的发展推动了许多雷同的新学科和理论的出现。
以上是有关中国数学发展史的简介。
在古代,中国数学相当发达,与世界同步。
而在现代,中国数学在与其它强国数学学者竞争的同时,被大家逐渐所认同和赞扬。
数学史资料
数学史资料数学作为一门古老的学科,在人类历史上已经有着数千年的历史。
从最原始的计算工具,到现代复杂的数学理论,数学一直是人类社会持续发展的重要组成部分。
本文将介绍数学史的发展历程和一些数学领域的基础知识。
1、古代数学古代数学是指在西方古希腊和早期东方文明中,诞生的数学学科。
古代数学起源于公元前3000年左右的巴比伦和古埃及。
在那个时代,人们使用简单的计算工具,如木板、羊皮纸和算盘等,来进行基础的运算和计算。
古希腊数学的起源可以追溯到公元前6世纪。
希腊数学家发展了几何学,并设计了可以精确测量角度的工具,如量角器。
这些成果使得希腊文明成为古代数学的鼻祖。
在古代数学的发展历程中,爱因斯坦公认的古代数学家欧几里得是一位伟大的数学家。
他的著作《几何原本》包含许多几何学的基本定理和公式。
另一位著名的古代数学家是阿基米德。
他发展了物理学和几何学,并设计了可以测量园的周长和面积的工具。
这些古代数学家的成就对现代数学的发展产生了深远的影响。
2、中世纪数学中世纪数学是在公元5世纪至16世纪期间,在欧洲和阿拉伯国家发展起来的数学学科。
在这个时期,数学逐渐成为了一种独立的学科,并且与其他学科密切相关。
中世纪数学包括代数学、几何学和三角学等领域。
在这个时期,阿拉伯数学家也做出了许多重要的贡献。
阿拉伯数学家发明了数值法,并且开发出了一些解方程的方法。
中世纪时期最著名的数学家是阿拉伯数学家阿尔-哈里兹米。
他的书《代数的胜利》详细介绍了代数学的原理与应用。
尼可洛和勒让德则深入研究几何学,并发现了许多重要的公式和定理。
此外,中世纪数学家还开发出了用于计算圆周率的公式,并开发了几何学中的平滑曲线和三角函数。
3、现代数学现代数学是从17世纪开始,在欧洲和美国等国家快速发展起来的一门学科。
现代数学中的代数学、几何学、解析几何学、数论、分析数学、微积分等领域的发展,是近现代科学发展和工业化进程的基础。
17世纪的法国数学家笛卡尔提出了解析几何学,这使得人们能够在基于坐标的几何分析中使用代数学的方法。
数学发展史时间轴及事件
数学发展史时间轴及事件1.古埃及数学(公元前3000年-公元前1000年)数学在古埃及有着悠久的历史。
古埃及人发展出了一套完整的计数系统,以及用于计算和测量的一系列实用技术和工具。
例如,他们使用了“象形数字”来表达数值,同时发明了一种称为“祭坛测量的土地”的算法,用于计算矩形或金字塔的面积。
2.古希腊数学(公元前600年-公元500年)古希腊数学在西方数学史上占据了重要的地位。
在这个时期,出现了许多杰出的数学家,如毕达哥拉斯、欧几里得和阿基米德等。
他们为数学界的发展做出了巨大的贡献,如毕达哥拉斯提出了著名的勾股定理,欧几里得写下了著名的《几何原本》,阿基米德则发明了微积分的基本原理。
3.中世纪欧洲数学(公元500年-1500年)在中世纪欧洲,数学得到了进一步的发展。
在这个时期,出现了许多修道士和学者,如奥尔本修道士和尼科马科斯等。
他们对数学进行了深入的研究,并在代数、几何和三角学等领域取得了一些重要成果。
同时,中世纪欧洲的数学教育也变得日益重要,一些大学纷纷开设数学课程。
4.文艺复兴时期数学(公元1500年-1700年)在文艺复兴时期,数学经历了巨大的变革和发展。
人们重新审视古希腊数学,并在此基础上进行创新。
代数学逐渐成为数学的主流,同时平面几何和立体几何也得到了极大的发展。
一些重要的数学思想和方法开始形成,如极限、导数和微积分等。
在这个时期,一些重要的数学家如雷科德、韦达和牛顿等为数学界的发展做出了巨大贡献。
雷科德在其著作《大术》中系统地阐述了代数符号和算术方法,韦达则发展出了符号代数,为现代代数奠定了基础。
牛顿则在微积分和物理学等领域做出了杰出的贡献。
5.近现代数学(公元1800年至今)近现代数学的发展可以说是日新月异。
在19世纪,数学家们开始研究更抽象的问题,如数论、抽象代数和拓扑学等。
同时,概率论和统计学也得到了迅速的发展。
20世纪初,数学开始与物理学、工程学等领域紧密联系,出现了许多应用数学分支,如量子力学、计算机科学、经济学等。
数学的发展历程
数学的发展历程一、古代数学(公元前3000年 - 公元5世纪)1. 古埃及数学- 古埃及人在公元前3000年左右就有了初步的数学知识。
他们主要为了满足实际生活的需要,如土地测量、建筑工程等。
- 埃及人发展了一套独特的计数系统,以10为基数,但不是位值制。
例如,他们用象形文字表示数字,一个竖线表示1,一个倒置的U形符号表示10等。
- 在几何学方面,他们能够计算简单的面积和体积。
如计算三角形、梯形面积,并且在建造金字塔等建筑时运用了一定的几何知识。
2. 古巴比伦数学- 古巴比伦人大约在公元前1800年就有了较为发达的数学。
他们的计数系统是60进制,这种进制对现代的时间(60秒为1分钟,60分钟为1小时)和角度(360度,1度 = 60分,1分 = 60秒)计量有深远影响。
- 他们能解一元二次方程,有泥板记录了大量的数学问题,包括商业中的算术问题、土地划分等几何问题等。
3. 古希腊数学- 早期希腊数学(公元前600 - 公元前300年)- 泰勒斯被认为是古希腊第一位数学家,他引入了演绎推理的思想,证明了一些几何定理,如等腰三角形两底角相等。
- 毕达哥拉斯及其学派强调数的和谐,发现了毕达哥拉斯定理(勾股定理),并且对数字进行了分类,如奇数、偶数、完全数等。
但他们也有一些神秘主义的数学观念,如认为数是万物的本原。
- 古典希腊数学(公元前300 - 公元前200年)- 希腊化时期数学(公元前200 - 公元5世纪)- 阿基米德是这一时期最伟大的数学家之一。
他在几何学方面取得了巨大成就,计算出许多复杂图形的面积和体积,如球的表面积和体积公式。
他还善于将数学应用于实际问题,如利用杠杆原理计算物体的重量等。
同时,他也是一位伟大的物理学家。
4. 古代中国数学- 中国古代数学有着悠久的历史。
早在商代(公元前1600 - 公元前1046年)就有了甲骨文记载的数字。
- 南北朝时期(公元420 - 589年)的祖冲之进一步将圆周率精确到3.1415926和3.1415927之间,这一成果领先世界近千年。
数学的历史与文化背景
数学的历史与文化背景数学作为一门学科,拥有悠久的历史和深厚的文化背景。
它不仅是人类思维和智慧的结晶,也承载着人类社会发展的伟大成就。
本文将从数学的起源开始,探讨数学的历史脉络以及它与不同文化背景的关系。
1. 数学的起源数学的起源可以追溯到古代文明。
早在公元前3000年左右的古代埃及和巴比伦,人们就开始运用简单的计数和几何概念来解决实际问题。
例如,古埃及人利用数学方法计算农田面积以确定税收,巴比伦人则制定了一个复杂的法典,其中包括了关于土地交易和建筑规划的几何问题。
同时,古希腊的数学也对后世产生了深远影响。
毕达哥拉斯学派的出现引导了抽象的数学思维,创立了几何学的基本概念和定理。
而欧几里德的《几何原本》更是成为了后世数学发展的重要参考。
2. 数学与不同文化背景的交融随着古代文明的兴起和交流,不同文化背景中的数学开始相互影响和交融。
例如,印度的数学家通过阿拉伯人传入欧洲,将印度的算术和代数学知识带到了西方世界。
这对于欧洲文艺复兴时期的数学发展起到了重要的推动作用。
此外,中国古代的数学也以其独特的发展路径和重要贡献而闻名。
中国古代数学家发明了十进位制和算盘,推动了代数学和几何学的发展。
中国数学还以其注重实用和应用的特点而与其他文化相区别,例如通过应用数学解决土地测量和水利工程等实际问题。
3. 数学在不同文化中的应用数学不仅仅是一门学科,也被广泛应用于各个文化领域。
例如,古代文明的天文观测和历法制定离不开对数学的运用。
埃及人和中美洲的玛雅人利用几何学和数值系统来建造庞大的金字塔和城市。
另一方面,数学在艺术领域也有重要的地位。
数学原理和比例被应用于建筑、绘画和音乐等艺术形式中,赋予作品以美感和和谐。
例如,古代希腊的黄金分割理论影响了许多建筑和艺术作品的设计。
4. 数学与现代文化的关系在现代社会,数学已经成为科学研究和技术应用的重要基础。
物理学、化学、经济学等学科离不开数学方法的应用。
同时,信息技术的迅猛发展也使得数学在计算机科学和人工智能领域扮演着关键角色。
数学的发展历程
数学的发展历程数学是一门古老而又深奥的学科,几乎无所不在,与我们的日常生活息息相关。
数学的发展历程可以追溯到几千年前的古代文明时期,经历了漫长而辉煌的发展进程。
本文将带您回顾数学发展的重要里程碑,揭示数学持续演化的奥秘。
1. 古代数学数学的历史可以追溯到公元前3000年的古代文明时期,古埃及、古希腊、巴比伦、印度和中国等文明都在这个时期有了自己的数学贡献。
古埃及人发展了一套用于测量土地和建筑的基础几何学。
他们利用三角形、直角和平行线等概念进行测量,应用于农业、建筑和社会管理中。
古希腊人以毕达哥拉斯定理为代表,推动了几何学的发展。
他们还研究了形状和尺寸之间的关系,为后来的几何学奠定了基础。
巴比伦人和印度人则在代数学上取得了突破。
巴比伦人发展了一套用于解决实际问题的代数学方法,而印度人发明了零的概念,并制定了一套计算方法,为现代数学的发展做出了贡献。
中国古代数学以《九章算术》和《海岛算经》为代表,这些著作涵盖了整数运算、代数和几何学等方面,对世界数学的发展产生了深远的影响。
2. 中世纪数学中世纪时期,数学的发展相对较慢,但仍有一些重要的贡献。
伊斯兰世界在这一时期成为数学知识的守护者。
阿拉伯数学家通过翻译和注释古代希腊和巴比伦的著作,将这些知识传播到欧洲。
他们的研究促进了代数和三角学的发展。
黄金比例是中世纪数学的一个显著成就。
斐波那契等数学家的贡献推动了黄金比例的研究,这为后来的美学和建筑设计提供了重要的参考。
3. 文艺复兴时期的数学文艺复兴时期,欧洲兴起了一股热情的数学研究浪潮。
笛卡尔开创了解析几何学,将代数学和几何学完美地结合在一起。
这项发明为数学的发展带来了巨大的推动力。
牛顿和莱布尼茨的微积分发明被公认为数学史上的一次重大突破。
微积分通过研究无限小量的变化,解决了许多物理和工程问题,并成为后来的科学研究的基础。
4. 现代数学进入现代时期,数学的发展进入了一个全新的时代。
20世纪以来的数学研究涉及范围广泛,涵盖了数理逻辑、群论、拓扑学、概率论和数论等多个领域。
数学发展史的四个阶段的主要成就
数学发展史的四个阶段的主要成就数学是人类最古老的科学之一,它的起源可以追溯到史前时期。
随着时间的推移,数学逐渐发展成为一门独立的学科,并在不同的历史阶段取得了重要的成就。
本文将介绍数学发展史的四个阶段及其主要成就。
第一阶段:古代数学古代数学起源于人类文明初期,主要研究的是计数、几何、算术和天文等方面的问题。
这个时期的数学成就有:1. 计数系统的发明:人类最早的计数系统是手指计数,后来逐渐发展出了石块计数、结绳计数等。
这些计数系统的发明为数学的发展奠定了基础。
2. 几何学的发展:古埃及人发明了象形文字,并开始使用几何学来测量土地和建造建筑物。
几何学的发展为后来的建筑设计、工程测量等领域提供了重要的工具。
3. 算术的发展:古代印度人发明了阿拉伯数字,并发展出了算术运算的基本规则和方法。
这些成就为后来的数学发展提供了重要的基础。
4. 天文学的发展:古代中国人和希腊人最早开始研究天文学,并使用数学方法来描述天体的运动规律。
天文学的发展为后来的物理学、宇宙探索等领域提供了重要的基础。
第二阶段:中世纪数学中世纪时期,欧洲的学术界开始逐渐复兴,数学也在这个时期取得了重要的成就。
这个时期的数学成就有:1. 代数的发展:阿拉伯数学家开始研究代数,并发明了代数符号和方程求解方法。
这些成就为后来的代数发展提供了重要的基础。
2. 平面几何的进步:欧几里得发表了《几何原本》,总结了当时所有的几何知识,并建立了完整的几何学体系。
这个体系的建立为后来的几何学发展提供了重要的基础。
3. 对数理论的完善:苏格兰数学家纳皮尔发明了对数表,并发展出了对数理论。
对数理论的完善为后来的科学计算、工程学等领域提供了重要的工具。
4. 三角学的兴起:三角学在这个时期逐渐发展成为一门独立的学科,并为后来的航海、天文学等领域提供了重要的工具。
第三阶段:近代数学随着科学技术的不断发展,数学也逐渐发展成为一门更加独立的学科。
这个时期的数学成就有:1. 微积分的发明:牛顿和莱布尼茨分别独立发明了微积分,并建立了微积分的基本理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学在提出问题和解答问题方面,已经形成了一门特殊的科学。
在数学的发展史上,有很多的例子可以说明,数学问题是数学发展的主要源泉。
数学家门为了解答这些问题,要花费较大力量和时间。
尽管还有一些问题仍然没有得到解答,然而在这个过程中,他们创立了不少的新概念、新理论、新方法,这些才是数学中最有价值的东西。
◇公元前600年以前◇据中国战国时尸佼著《尸子》记载:"古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉",这相当于在公元前2500年前,已有"圆、方、平、直"等形的概念。
公元前2100年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。
公元前2000年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。
并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。
中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。
公元前约1950年,巴比伦人能解二个变数的一次和二次方程,已经知道"勾股定理" 。
◇公元前600--1年◇公元前六世纪,发展了初等几何学(古希腊泰勒斯)。
约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。
证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。
公元前六世纪,印度人求出√2=1.4142156。
公元前462年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊巴门尼德、芝诺等).。
公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。
公元前四世纪,把比例论推广到不可通约量上,发现了"穷竭法"(古希腊,欧多克斯)。
公元前四世纪,古希腊德谟克利特学派用"原子法"计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的"原子"所组成。
公元前四世纪,建立了亚里士多德学派,对数学、动物学等进行了综合的研究(古希腊,亚里士多德等)。
公元前四世纪末,提出圆锥曲线,得到了三次方程式的最古老的解法(古希腊,密内凯莫)。
公元前三世纪,《几何学原本》十三卷发表,把以前有的和他本人的发现系统化了,成为古希腊数学的代表作(古希腊,欧几里得)。
公元前三世纪,研究了曲线图和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面;讨论了圆柱、圆锥半球之关系;还研究了螺线(古希腊,阿基米德)。
公元前三世纪,筹算是当时中国的主要计算方法。
公元前三至前二世纪,发表了八本《圆锥曲线学》,是一部最早的关于椭圆、抛物线和双曲线的论著(古希腊阿波罗尼)。
约公元前一世纪,中国的《周髀算经》发表。
其中阐述了"盖天说"和四分历法,使用分数算法和开方法等。
公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图洛书纵横图,即为"九宫算"这被认为是现代"组合数学"最古老的发现。
◇1-400年◇继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专著,收集了246个问题的解法。
一世纪左右,发表《球学》,其中包括球的几何学,并附有球面三角形的讨论(古希腊,梅内劳)。
一世纪左右,写了关于几何学、计算的和力学科目的百科全书。
在其中的《度量论》中,以几何形式推算出三角形面积的"希隆公式"(古希腊,希隆)。
100年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科。
150年左右,求出π=3.14166,提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例(古希腊,托勒密)。
三世纪时,写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊,丢番都)。
三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角三角形三边之间关系的命题共21条(中国,赵爽)。
三世纪至四世纪魏晋时期,发明"割圆术",得π=3.1416(中国,刘徽)。
三世纪至四世纪魏晋时期,《海岛算经》中论述了有关测量和计算海岛的距离、高度的方法(中国刘徽)。
四世纪时,几何学著作《数学集成》问世,是研究古希腊数学的手册(古希腊,帕普斯)。
◇401-1000年◇五世纪,算出了π的近似值到七位小数,比西方早一千多年(中国祖冲之)。
五世纪,著书研究数学和天文学,其中讨论了一次不定方程式的解法、度量术和三角学等(印度,阿耶波多)。
六世纪中国六朝时,提出祖氏定律:若二立体等高处的截面积相等,则二者体积相等。
西方直到十七世纪才发现同一定律,称为卡瓦列利原理(中国,祖暅)。
六世纪,隋代《皇极历法》内,已用"内插法"来计算日、月的正确位置(中国,刘焯)。
七世纪,研究了定方程和不定方程、四边形、圆周率、梯形和序列。
给出了ax+by=c (a,b,c,是整数)的第一个一般解(印度,婆罗摩笈多)。
七世纪,唐代的《缉古算经》中,解决了大规模土方工程中提出的三次方程求正根的问题(中国,王孝通)。
七世纪,唐代有《"十部算经"注释》。
"十部算经"指:《周髀》、《九章算术》、《海岛算经》、《张邱建算经》、《五经算术》等(中国,李淳风等)。
727年,唐开元年间的《大衍历》中,建立了不等距的内插公式(中国,僧一行)。
九世纪,发表《印度计数算法》,使西欧熟悉了十进位制(阿拉伯,阿尔·花刺子模 )。
◇1001-1500年◇1086-1093年,宋朝的《梦溪笔谈》中提出"隙积术"和"会圆术",开始高阶等差级数的研究(中国,沈括)。
十一世纪,第一次解出x2n+axn=b型方程的根(阿拉伯,阿尔·卡尔希)。
十一世纪,完成了一部系统研究三次方程的书《代数学》(阿拉伯,卡牙姆)。
十一世纪,解决了"海赛姆"问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角(埃及,阿尔·海赛姆)。
十一世纪中叶,宋朝的《黄帝九章算术细草》中,创造了开任意高次幂的"增乘开方法",列出二项式定理系数表,这是现代"组合数学"的早期发现。
后人所称的"杨辉三角"即指此法(中国,贾宪)。
十二世纪,《立剌瓦提》一书是东方算术和计算方面的重要著作(印度,拜斯迦罗)。
1202年,发表《计算之书》,把印度-阿拉伯记数法介绍到西方(意大利,费婆拿契 )。
1220年,发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例(意大利,费婆拿契)。
1247年,宋朝的《数书九章》共十八卷,推广了"增乘开方法"。
书中提出的联立一次同余式的解法,比西方早五百七十余年(中国,秦九韶)。
1248年,宋朝的《测圆海镜》十二卷,是第一部系统论述"天元术"的著作(中国,李治 )。
1261年,宋朝发表《详解九章算法》,用"垛积术"求出几类高阶等差级数之和(中国,杨辉)。
1274年,宋朝发表《乘除通变本末》,叙述"九归"捷法,介绍了筹算乘除的各种运算法(中国,杨辉)。
1280年,元朝《授时历》用招差法编制日月的方位表(中国,王恂、郭守敬等)。
十四世纪中叶前,中国开始应用珠算盘。
1303年,元朝发表《四元玉鉴》三卷,把"天元术"推广为"四元术"(中国,朱世杰)。
1464年,在《论各种三角形》(1533年出版)中,系统地总结了三角学(德国,约·米勒)。
1494年,发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识( 意大利,帕奇欧里)。
◇1501-1600年◇1545年,卡尔达诺在《大法》中发表了非尔洛求三次方程的一般代数解的公式(意大利,卡尔达诺、非尔洛)。
1550─1572年,出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题(意大利,邦别利)。
1591年左右,在《美妙的代数》中出现了用字母表示数字系数的一般符号,推进了代数问题的一般讨论(德国,韦达)。
1596─1613年,完成了六个三角函数的间隔10秒的十五位小数表(德国,奥脱、皮提斯库斯)。
◇1601-1650年◇1614年,制定了对数(英国,耐普尔)。
1615年,发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积(德国,刻卜勒 )。
1635年,发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分(意大利,卡瓦列利)。
1637年,出版《几何学》,制定了解析几何。
把变量引进数学,成为"数学中的转折点","有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了"(法国,笛卡尔)。
1638年,开始用微分法求极大、极小问题(法国,费尔玛)。
1638年,发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就(意大利,伽里略)。
1639年,发行《企图研究圆锥和平面的相交所发生的事的草案》,是近世射影几何学的早期工作(法国,德沙格)。
1641年,发现关于圆锥内接六边形的"巴斯噶定理"(法国,巴斯噶)。
1649年,制成巴斯噶计算器,它是近代计算机的先驱(法国,巴斯噶)。
.◇1651-1700年◇1654年,研究了概率论的基础(法国,巴斯噶、费尔玛)。
1655年,出版《无穷算术》一书,第一次把代数学扩展到分析学(英国,瓦里斯)。
1657年,发表关于概率论的早期论文《论机会游戏的演算》(荷兰,惠更斯)。
1658年,出版《摆线通论》,对"摆线"进行了充分的研究(法国,巴斯噶)。
1665─1676年,牛顿(1665─1666年)先于莱布尼茨(1673─1676年)制定了微积分,莱布尼茨(1684─1686年)早于牛顿(1704─1736年)发表微积分(英国,牛顿,德国,莱布尼茨 )。
1669年,发明解非线性方程的牛顿-雷夫逊方法(英国,牛顿、雷夫逊)。
1670年,提出"费尔玛大定理",预测:若X,Y,Z,n都是整数,则Xn +Yn=Zn ,当 n>2时是不可能的(法国,费尔玛)。
1673年,发表《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线(荷兰,惠更斯)。
1684年,发表关于微分法的著作《关于极大极小以及切线的新方法》(德国,莱布尼茨)。