常微分方程第三版答案2.2

合集下载

常微分方程第三版答案.doc

常微分方程第三版答案.doc

习题 1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy -y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln x y 令xy=u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y +证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

常微分方程第三版课后答案(00001)

常微分方程第三版课后答案(00001)

常微分方程第三版课后答案常微分方程 2.11.xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程第三版习题答案

常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。

在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。

本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。

1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。

将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

常微分方程第三版答案(王高雄)

常微分方程第三版答案(王高雄)
2 3
dx
2 2
y
1 2 = ln x − ln 1 + x + ln c (c ≠ 0), (1 + 2
y )(1 + x ) = c x
1+
y
2
(1 + x ) = c x
2
2
4 (1 + x) ydx + (1 − y ) xdy = 0 y=0 x=0 ln x + x + ln y − y = c, xy ≠ 0 ln xy + x − y = c, 1+ x 1− y dx = dy = 0 x y

dy 1 − 2 x y −1 dx 够 x 2 次0 个 dy 1 − 2 x y +1 dx 次- x 2 个
18.
x dy = = f ( xy ) y dx x dy 2 + x 2 y 2 = y dx 2 − x 2 y 2 xy = u, x
xy = u
1 . y (1 + x 2 y 2 )dx = xdy (2).
y+x
dy dy = , dx dx
x
dy du = −y dx dx
1 du du u 1 − 1 = f(u), = (f(u) + 1) = (uf(u) + u) y dx dx = y(f(u) + 1) x x x=0 y=0 du 1 3 = (2u + u ), dx x xy ≠ 0s du 2u + u
在个
次个e 次 ce
− sin t
+ sin t − 1 个个个


dy x − y = ex xn dx n 个个 个个个n

常微分方程2.2

常微分方程2.2
§2.2 线性方程与常数变易法
一阶线性微分方程
a( x) dy b( x) y c( x) 0 dx
在a( x) 0的区间上可写成
dy P( x) y Q( x) (1) dx 其中P( x), Q( x)在考虑的区间上是x的连续函数
若Q( x) 0,则(1)变为
dy P( x) y (2) dx
解线性方程: dI R I E . dt L L
得通解为:
I(t)
Rt
ce L
E
R
I(t)
Rt
ce L
E
R
由初始条件I(0) 0得, c E R
故当开关K合上后,电路中电流强度为
I(t)
E
Rt
(1 e L )
R
作业
P37 7,8,11,12,15,16,20
代入(1)得 dc( x) Q( x)e p( x)dx
dx
积分得:
c(x)
Q(
x )e
p(
x )dxdx
~
c
故(1)的通解为
y e p( x)dx (
Q(
x)e
p(
x
)dxdx
~
c)
(3)
注 求(1)的通解可直接用公式(3)
例1 求方程
( x 1) dy ny e x ( x 1)n1 dx
注:对任意x0 I常数变易法求解
注意到一阶齐次线性方程的通解为y Ce P( x)dx ,
(将常数c变为x的待定函数 c(x), 使它为(1)的解) 令y c( x)e p( x)dx为(1)的解,则
dy dc( x) e p( x)dx c( x) p( x)e p( x)dx dx dx

常微分方程第三版答案.doc

常微分方程第三版答案.doc

1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c-另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

/5.(y+x )dy+(x-y)dx=0 解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -》则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 3》2 ex3-3e2y -=c.(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令xy=u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- ,e y=cex11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+carctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21u、u-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 :dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) (2)y(1+x 2y 2)dx=xdy3) y x dx dy =2222x -2 y x 2y +证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

常微分方程第三版课后习题答案

常微分方程第三版课后习题答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

常微分方程第三版答案

常微分方程第三版答案

习题2.2求下列方程的解 1.dxdy=x y sin + 解: y=e ⎰dx (⎰x sin e ⎰-dxc dx +)=e x [-21e x-(x x cos sin +)+c] =c e x -21(x x cos sin +)是原方程的解。

2.dtdx+3x=e t 2 解:原方程可化为:dtdx=-3x+e t 2 所以:x=e ⎰-dt3 (⎰et2e -⎰-dt 3c dt +) =e t 3- (51e t 5+c)=c e t 3-+51e t 2 是原方程的解。

3.dtds=-s t cos +21t 2sin解:s=e ⎰-tdt cos (t 2sin 21⎰e dt dt ⎰3c + )=e t sin -(⎰+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。

4.dx dy n x x e y nx=- , n 为常数. 解:原方程可化为:dx dy n x x e y nx+=)(c dx ex e ey dxx nnx dxx n+⎰⎰=⎰-)(c e x x n += 是原方程的解.5.dx dy +1212--y xx=0 解:原方程可化为:dx dy =-1212+-y x x⎰=-dxx x ey 212(c dx edxx x +⎰-221))21(ln 2+=x e)(1ln 2⎰+--c dx exx=)1(12xce x +是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dx P x dxx P x dxdy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++⎰⎰==+⎰⎰++⎰⎰P(x)dx 232解:方程的通解为:y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23221(1)()211,()(())dyy x c dy y dx x y dx x y dy y yQ y y y eyQ y dy c -+++==+=⎰⎰==⎰⎰+⎰⎰2243P(y)dyP(y)dyP(y)dy1)dx+c)=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。

常微分方程第三版答案.doc

常微分方程第三版答案.doc

习题1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。

解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x +y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为:y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dxdy =-y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2xy . 6. x dx dy -y+22y x -=0解:原方程为: dx dy =x y +x x ||-2)(1x y- 则令x y =u dx dy =u+ x dx du211u - du=sgnx x 1dx arcsin x y=sgnx ln|x|+c7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgx dx两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x ccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8 dx dy +y e xy 32+=0解:原方程为:dx dy =y e y 2e x32 e x 3-3e 2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln x y令x y =u ,则dx dy =u+ x dxdu u+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+ln x y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dxdu -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15: dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dx dy =(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dx dy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2y x 2y +证明: 令xy=u,则x dx dy +y=dx du则dx dy =x 1dx du -2x u,有: u x dx du=f(u)+1 )1)((1+u f u du=x 1dx所以原方程可化为变量分离方程。

常微分方程2.2习题参考解答

常微分方程2.2习题参考解答

习题2.2求下列方程的解1.dxdy =x y sin +解:y=e ⎰dx (⎰x sin e ⎰-dx c dx +)=e x [-21e x -(x x cos sin +)+c]=c e x -21(x x cos sin +)是原方程的解。

2.dt dx +3x=e t2解:原方程可化为:dt dx =-3x+e t 2所以:x=e ⎰-dt 3(⎰e t 2e -⎰-dt 3c dt +)=e t 3-(51e t 5+c)=c e t 3-+51e t 2是原方程的解。

3.dt ds =-s t cos +21t 2sin 解:s=e ⎰-tdt cos (t 2sin 21⎰e dt dt ⎰3c +)=e t sin -(⎰+c dt te t t sin cos sin )=e t sin -(c e te t t +-sin sin sin )=1sin sin -+-t ce t 是原方程的解。

4.dx dy nx x e y n x =-,n 为常数.解:原方程可化为:dx dy nx x e y nx +=)(c dx e x e e y dx x n n x x n +⎰⎰=⎰-)(c e x x n +=是原方程的解.5.dx dy +1212--y x x =0解:原方程可化为:dx dy =-1212+-y x x ⎰=-dx x x e y 212(c dx e x x+⎰-221))21(ln 2+=x e )(1ln 2⎰+--c dx ex x =)1(12x ce x +是原方程的解.6.dx dy 234xy x x +=解:dx dy 234xy x x +==23y x +x y 令x y u =则uxy =dx dy =u dx du x +因此:dx du x u +=2u x 21udx du =dxdu u =2c x u +=331c x x u +=-33(*)将x y u =带入(*)中得:3433cx x y =-是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dx P x dx x P x dx dy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++⎰⎰==+⎰⎰++⎰⎰P(x)dx 232解:方程的通解为: y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23221(1)()211,()(())dy y x c dy y dx x y dx x y dy y yQ y y ye yQ y dy c -+++==+=⎰⎰==⎰⎰+⎰⎰2243P(y)dy P(y)dy P(y)dy 1)dx+c)=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。

常微分方程2.2解的存在唯一性定理

常微分方程2.2解的存在唯一性定理
1 (x) 在 x0 x x0 h 上有定义,连续
即命题2 当 n=1 时成立。 现在用数学归纳法证明对于任何正整数 n ,命题2都成立。
即 当 n=k 时, k (x)在 x0 x x0 h 上有定义,连续,
也就是满足不等式 k (x) y0 b
x
而当 n=k+1 时, k1(x) y0 x0 f (,k ( ))d
x
0 (x) (x) x0 f (, ( )) d M (x x0 )
x
k1(x) y0 x0 f (,k ( )) d M (x x0 ) Mh b
k 1 (x) 在 x0 x x0 h 上有定义,连续。
§ 2.2 Existence & Uniqueness Theorem & Progressive Method
即命题2在 n=k+1时也成立。
现在取 0 (x) y0 ,构造皮卡逐步逼近函数序列如下:
0 (x) y0
n (x) y0
x x0
f ( ,n1( ))d
x0 h x x0 h
(3.1.9)
0 (x) y0
x
1(x) y0 x0 f ( ,0 ( ))d
x
2 (x) y0 x0 f (,1( ))d
x0+a
x
§ 2.2 Existence & Uniqueness Theorem & Progressive Method
0 (x) y0
n (x) y0
x x0
f ( , n1 ( ))d
命题2 对于所有的 (3.1.9) 中函数
x0 x x0 h
n (x) 在
x0 x x0 h 上有定义、连续,即满足不等式:

常微分方程第三版课后答案汇编

常微分方程第三版课后答案汇编

常微分方程 2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

《常微分方程》(王高雄)第三版课后答案

《常微分方程》(王高雄)第三版课后答案

21常微分方程习题 2.11.dy = 2xy ,并求满足初始条件:x=0,y=1 的特解.dx解:对原式进行变量分离得1 dy y= 2 xdx , 两边同时积分得: ln y = x 2 + c ,即 y = c e x 2把 x = 0, y = 1代入得 c = 1, 故它的特解为 y = e x 2。

2. y dx + (x + 1)dy = 0, 并求满足初始条件:x=0,y=1 的特解.解:对原式进行变量分离得:-1 x + 1 dx = 1 dy ,当y ≠ 0时,两边同时积分得;ln x + 1 = 1 + c ,即y = y 2y 1 c + ln x + 1当y = 0时显然也是原方程的解。

当x = 0, y = 1时,代入式子得c = 1,故特解是 y =1 + ln1 + x 。

3dy =1 + y 2dx xy + x 3 y解:原式可化为:22dy = 1 + y • 1 显然1 + y ≠ 0,故分离变量得 y dy = 1dxdx y x + x 3 y1 + y x + x 3两边积分得 1 ln1 + y 2 = ln x - 1 ln1 + x 2 + ln c (c ≠ 0),即(1 + y 2)(1 + x 2) = c x 22 2故原方程的解为(1 + y 2)(1 + x 2) = c x24:(1 + x ) ydx + (1 - y )xdy = 0解:由y = 0或x = 0是方程的解,当xy ≠ 0时,变量分离1 + x dx =1 - y dy = 0x y两边积分ln x + x + ln y - y = c ,即ln xy + x - y = c , 故原方程的解为ln xy = x - y = c ; y = 0; x = 0.2x2(1 - u 2) u c21 : = 5 : ( y + x )dy + ( y - x )dx = 0dy = y - x ,y = , =, dy = + du解: 令 dx y + x xu y ux u xdx dx 则u + x du = u + 1 , 变量分离,得:- u + 1 du = 1dxdx u + 1 u2 + 1x 两边积分得:arctgu + 1ln(1 + 2) = - ln x + c 。

常微分方程第三版课后答案

常微分方程第三版课后答案

3t15t=e ( e +c)5=c e 3t +15e 2t 是原方程的解ds 13. =-s cost + sin2tdt 2cos tdt 13dt解:s=e ( sin2t e dt c )=esint( sin t coste sin t dt c) sin tsint sint= e( sin tee c )常微分方程 习题 2.2求下列方程的解1. dy = y sin x dx解: y=e ( sinxe dx c)x1 x=e x [- e x (sinx cos x )+c]= ce sint sint 1 是原方程的解。

4.dy xy e x x n,n 为常数. dx n解:原方程可化为:dy xy e x x n dx n方程的解。

=c e(sinx cos x )是原yendxx x ( e x x e n n dx n xdx c)2.dx+3x=e 2tnxx (ec)dt 解:原方程可化为:dx=-3x+edt是原方程的解 .所以:3dtx=ee2te 3dt5.dy +1 22x y 1=0 dx x 2dt c)ds23P(x) ,Q(x) (x 1)3 x1P(x)dxee=(x+1) 2((x 21) c)即: 2y=c(x+21+)(x+14) 为方程的通解。

8.d dy x =x y y 33dx x+y 1 2 解: xy 2dy y yP(y)dy P(y)dy( e Q(y)dy c) =y( 1*y 2dy c)y3= y cy23即 x=y +cy 是方程的通解 ,且 y=0也是方程的解。

2解:原方程可化为:dy dx1x 22xy 1x7.dy 2y (x 1)3dx x 1 解:dy 2y(x 1)3 dx x 1 (x 1)2(ln x 2e方程的通解为:ln x 2 1( e x dx c)1= x 2(1 ce x )P(x)dx P(x)dxy=e ( e Q(x)dx c) =(x+1)(=(x+1)((x 11)2 *(x+1)3dx+c) (x+1)dx+c) 是原方程的解.x=edx c )2则P(y)=y 1,Q(y) y 2方程的通解9. dy ay x 1,a 为常数 dx x x解:(P x) a ,Q(x) x 1xP(x )dxeedx方程的通解为:y=(x)dx P (x)dx(e Q(x)dx=xa(1 x+1dx+c)x a时,x 方程的通解为11.dy xy x 3y 3 dx 解:dy xyx 3y 3dx 两边除以3y c)d 3y xy 2 x 3 ydxdy2( xy 2 x 3)y=x+ln/x/+c当 y=cx+xln/x/-1当 a 1时, 方程 的通解为a 0,1时,方程的通解为y=cxa x 1 +-1- a adx 令y 2 z dz 2( xz x 3) dx P(x) 2x,Q(x) 2x 3 epx dx e2xdxe x 2 方程的通解为:z= e dx( e dxQ(x)dx c)10.x d d x y y x 3解:d dy x 1x y x 3P(x) 1,Q(x) x =e =xx(e x (2x 3)dx c) 22ce x1故方程的通解为y :2(x 2 ce x 1) 1,且y 0也是方程的解。

常微分方程第三版答案.doc

常微分方程第三版答案.doc

1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c'另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

!5.(y+x )dy+(x-y)dx=0 解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -?则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 3^2 ex3-3e2y -=c.(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- )e y =ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21u>u-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 , dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) ~2)y(1+x 2y 2)dx=xdy3) y x dx dy =2222x -2 y x 2y +证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

常微分方程第三版课后习题答案(1)

常微分方程第三版课后习题答案(1)

常微分方程第三版课后习题答案常微分方程习题2.11.,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:3解:原式可化为:12.解15.16.解:,这是齐次方程,令17.解:原方程化为令方程组则有令当当另外19.已知f(x).解:设f(x)=y,则原方程化为两边求导得20.求具有性质x(t+s)=的函数x(t),已知x’(0)存在。

解:令t=s=0x(0)==若x(0)0得x=-1矛盾。

所以x(0)=0.x’(t)=)两边积分得a r c t gx(t)=x’(0)t+c所以x(t)=t g[x’(0)t+c]当t=0时x(0)=0故c=0所以x(t)=t g[x’(0)t]习题2.2求下列方程的解1.=解:y=e(e)=e[-e()+c]=c e-()是原方程的解。

2.+3x=e解:原方程可化为:=-3x+e所以:x=e(e e)=e(e+c)=c e+e是原方程的解。

3.=-s+解:s=e(e)=e()=e()=是原方程的解。

4.,n为常数.解:原方程可化为:是原方程的解.5.+=解:原方程可化为:=-()=是原方程的解. 6.解:=+令则=u因此:=(*)将带入(*)中得:是原方程的解.13这是n=-1时的伯努利方程。

两边同除以,令P(x)=Q(x)=-1由一阶线性方程的求解公式=14两边同乘以令这是n=2时的伯努利方程。

两边同除以令P(x)=Q(x)=由一阶线性方程的求解公式==15这是n=3时的伯努利方程。

两边同除以令=P(y)=-2y Q(y)=由一阶线性方程的求解公式==16y=+P(x)=1Q(x)=由一阶线性方程的求解公式==c=1y=17设函数(t)于∞<t<∞上连续,(0)存在且满足关系式(t+s)=(t)(s)试求此函数。

令t=s=0得(0+0)=(0)(0)即(0)=故或(1)当时即∞,∞)(2)当时====于是变量分离得积分由于,即t=0时1=c=1故20.试证:(1)一阶非齐线性方程(2.28)的任两解之差必为相应的齐线性方程(2.3)之解;(2)若是(2.3)的非零解,而是(2.28)的解,则方程(2.28)的通解可表为,其中为任意常数.(3)方程(2.3)任一解的常数倍或任两解之和(或差)仍是方程(2.3)的解.证明:(2.28)(2.3)(1)设,是(2.28)的任意两个解则(1)(2)(1)-(2)得即是满足方程(2.3)所以,命题成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题2.2求下列方程的解1.dxdy =x y sin + 解: y=e ⎰dx (⎰x sin e ⎰-dx c dx +)=e x [-21e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。

2.dtdx +3x=e t 2 解:原方程可化为:dt dx =-3x+e t 2 所以:x=e ⎰-dt 3 (⎰e t 2 e -⎰-dt 3c dt +)=e t 3- (51e t 5+c) =c e t 3-+51e t 2 是原方程的解。

3.dtds =-s t cos +21t 2sin 解:s=e ⎰-tdt cos (t 2sin 21⎰e dt dt ⎰3c + ) =e t sin -(⎰+c dt te t t sin cos sin )= e t sin -(c e te t t +-sin sin sin )=1sin sin -+-t ce t 是原方程的解。

4.dx dy n x x e y nx =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x nn x dx x n+⎰⎰=⎰-)(c e x x n += 是原方程的解.5.dx dy +1212--y xx =0 解:原方程可化为:dx dy =-1212+-y x x ⎰=-dx x x e y 212(c dx e dx x x+⎰-221))21(ln 2+=x e )(1ln 2⎰+--c dx ex x =)1(12x ce x + 是原方程的解. 6. dx dy 234xyx x += 解:dx dy 234xyx x += =23yx +x y 令xy u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2u x 21u dx du = dx du u =2c x u +=331 c x x u +=-33 (*)将xy u =带入 (*)中 得:3433cx x y =-是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dx P x dx x P x dx dy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++⎰⎰==+⎰⎰++⎰⎰P(x)dx 232解:方程的通解为:y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23221(1)()211,()(())dy y x c dy y dx x y dx x y dy y yQ y y ye y Q y dy c -+++==+=⎰⎰==⎰⎰+⎰⎰2243P(y)dy P(y)dy P(y)dy 1)dx+c)=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。

8. =x+y 解:则P(y)= e 方程的通解为:x=e e 2331*)22y dy c yy cy y ++⎰ =y( =即 x= +cy是方程的通解 ,且y=0也是方程的解。

()()()19.,1),()(())01adx P x dx a x P x dx P x dxa a dy ay x a dx x xa x P x Q x x x e e x e e Q x dx c a a -+=++==⎰⎰==⎰⎰+==⎰为常数解:(方程的通解为: y=1x+1 =x (dx+c) x x当 时,方程的通解为 y=x+ln/x/+c当 时,方程01a a a≠a 的通解为y=cx+xln/x/-1当 ,时,方程的通解为x 1 y=cx +- 1-3331()()()310.11(),()1(())(*)dx P x dx x P x dx P x dx dy x y x dxdy y x dx xP x Q x x xe e xe e Q x dx c x x dx c c xc x--+==-+=-=⎰⎰==⎰⎰++++⎰⎰33解:方程的通解为: y=1 =xx =4x 方程的通解为: y=4322212111()()222ln 112.(ln 2)424ln 2ln 2ln 22ln 2ln (),()(())ln 1(())(P x dx P x dx dx dx x x c x y x ydx xdy x dy x y y dx x xy dy x y y dx x xdy x y dx x xy zdz x z dx x xx P x Q x x xz e e Q x dx c x z e e dx c x x -------=++=-=-=-==-==-⎰⎰=+⎰⎰=-+=⎰⎰解: 两边除以 令方程的通解为:222ln ())ln 1424ln 1:()1,424x dx c x x c x x c x y x -+=++++=⎰方程的通解为且y=0也是解。

13222(2)2122xydy y x dxdy y x y dx xy x y=--==- 这是n=-1时的伯努利方程。

两边同除以1y, 212dy y y dx x =- 令2y z = 2dz dy y dx dx= 22211dz y z dx x x=-=-P(x)=2xQ(x)=-1 由一阶线性方程的求解公式22()dx dx x x z e e dx c -⎰⎰=-+⎰ =2x x c +22y x x c =+14 23y dy e x dx x+= 两边同乘以y e 22()3y yydy e xe e dx x += 令y e z = ydz dy e dx dx= 222233dz z xz z z dx x x x+==+ 这是n=2时的伯努利方程。

两边同除以2z22131dz z dx xz x =+ 令1T z= 21dT dz dx z dx =- 231dT T dx x x-=+ P (x )=3x - Q(x)=21x - 由一阶线性方程的求解公式3321()dx dx x x T e e dx c x--⎰⎰=+⎰ =321()2x x c --+ =1312x cx ---+ 131()12z x cx ---+= 131()12y e x cx ---+= 2312y y x e ce x -+= 2312y x x e c -+=15 331dy dx xy x y =+33dx yx y x dy =+ 这是n=3时的伯努利方程。

两边同除以3x 3321dx y y x dy x=+ 令2x z -= 32dz dx x dy dy-=- 3222dz y y dy x=--=322yz y -- P(y)=-2y Q(y)=32y - 由一阶线性方程的求解公式223(2)ydy ydy z e y e dy c ---⎰⎰=-+⎰=223(2)y y e y e dy c --+⎰=221y y ce --++ 222(1)1y x y ce --++=22222(1)y y y x e y ce e --++=22222(1)y e x x y cx -+=16 y=x e +0()x y t dt ⎰ ()x dy e y x dx=+ x dy y e dx=+ P(x)=1 Q(x)=x e 由一阶线性方程的求解公式11()dx dx x y e e e dx c -⎰⎰=+⎰=()x x x e e e dx c -+⎰=()x e x c +0()()xx x x e x c e e x c dx +=++⎰ c=1y=()x e x c +17 设函数ϕ(t)于-∞<t<+∞上连续,'ϕ(0)存在且满足关系式ϕ(t+s)=ϕ(t)ϕ(s)试求此函数。

令t=s=0 得ϕ(0+0)=ϕ(0)ϕ(0) 即ϕ(0)=2(0)ϕ 故(0)0ϕ=或(0)1ϕ=(1) 当(0)0ϕ=时 ()(0)()(0)t t t ϕϕϕϕ=+= 即()0t ϕ=(t ∀∈-∞,+∞)(2) 当(0)1ϕ=时 '0()()()lim t t t t t t ϕϕϕ∆→+∆-=∆=0()()()lim t t t t t ϕϕϕ∆→∆-∆=0()(()1)lim t t t t ϕϕ∆→∆-∆=0(0)(0)()lim t t t t ϕϕϕ∆→∆+-∆='(0)()t ϕϕ 于是'(0)()d t dtϕϕϕ= 变量分离得'(0)d dt ϕϕϕ= 积分 '(0)t ce ϕϕ= 由于(0)1ϕ=,即t=0时1ϕ= 1=0ce ⇒c=1故'(0)()t t e ϕϕ=20.试证:(1)一阶非齐线性方程(2 .28)的任两解之差必为相应的齐线性方程(2.3)之解;(2)若()y y x =是(2.3)的非零解,而()y y x =是(2.28)的解,则方程(2.28)的通解可表为()()y cy x y x =+,其中c 为任意常数.(3)方程(2.3)任一解的常数倍或任两解之和(或差)仍是方程(2.3)的解. 证明:()()dy P x y Q x dx=+ (2.28) ()dy P x y dx = (2.3)(1) 设1y ,2y 是(2.28)的任意两个解则 11()()dy P x y Q x dx=+ (1) 22()()dy P x y Q x dx=+ (2) (1)-(2)得()1212()()d y y P x y y dx-=- 即12y y y =-是满足方程(2.3)所以,命题成立。

(2) 由题意得:()()dy x P x y dx= (3) ()()()()d y x P x y x Q x dx=+ (4) 1)先证y cy y =+是(2.28)的一个解。

于是 ()()34c ⨯+ 得()()()cdy d y cP x y P x y Q x dx dx+=++ ()()()()d cy y P x cy y Q x dx+=++故y cy y =+是(2.28)的一个解。

2)现证方程(4)的任一解都可写成cy y +的形式设1y 是(2.28)的一个解则 11()()dy P x y Q x dx=+ (4’) 于是 (4’)-(4)得11()()()d y y P x y y dx-=- 从而 ()1P x dx y y ce cy ⎰-==即 1y y cy =+所以,命题成立。

相关文档
最新文档