人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
人教版数学6年级下册 第3单元(圆柱和圆锥)课后作业练习题(含答案)
人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。
A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。
A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。
11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。
13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。
14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。
人教版六年级数学下册第三单元《圆柱与圆锥》测试卷(含答案)
人教版六年级数学下册 第三单元《圆柱与圆锥》测试卷(全卷共6页,满分100分,80分钟完成)题号 一 二 三 四 五 总分 分数一、认真填一填。
(每空2分,共28分)1.一个圆柱的底面半径为5厘米,侧面展开后正好是一个正方形,圆柱的体积是( )立方厘米。
2.把一个高为5厘米的圆柱沿着底面直径往下切,表面积增加40平方厘米,这个圆柱的表面积是( )平方厘米。
3.如右图所示,将底面直径是8cm 的圆柱若干等分,拼成一个近似的长方体,表面积增加了80cm 2,拼成的长方体的体积是( ) cm 3。
4.一根圆柱形木料底面直径20厘米,长1.8米。
把它截成3段,使每一段都是圆柱形,截开后表面积增加了( )平方厘米。
5.爷爷有一只玻璃茶杯(如图),为了防止烫手,妈妈制作了这个杯子的布套,布套的高是茶杯的12,做这个布套至少要用布( )平方厘米。
(结果保留整数)6.一个长方体水池,长15米,宽8米,深1.57米,池底有根内径为2分米的出水管.放水时,水流速度平均每秒2米.放完池中的水需要( )分钟。
7.把长2.4米的圆柱形钢材按1∶2∶3截成三段,表面积比原来增加56平方厘米,这三 段圆钢材中最长的一段比最短的一段体积多( )立方厘米。
8.一个圆柱形状的容器装满水(如右图)。
将一个底面半径为0.5dm,高为2.4dm的圆柱形状的石柱竖直放入容器中(石柱的底面与容器完全接触),容器中的水溢出()dm3。
9.一个药瓶,它的瓶身呈圆柱形(不包括瓶颈),如右图所示,瓶内药水的体积为25.2cm3。
瓶子正放时,瓶内药水液面高7cm,瓶子倒放时,空余部分高2cm。
这个瓶子的容积是()cm3。
10.一个等腰直角三角形的直角边为6cm,以一条直角边为轴旋转一周,得到一个圆锥,则这个圆锥的高、底面直径和体积分别是()cm、()cm、()立方厘米。
11.一个圆柱体木块,削去38立方分米后,正好削成一个最大的圆锥,这个木块原来的体积是()。
小学人教版六年级下册数学(第三单元《圆柱与圆锥》达标测试卷(含参考答案)
小学人教版六年级下册数学第三单元《圆柱与圆锥》达标测试卷一、用心思考,我会选。
(每题2分,共10分)1. 下面各图不是圆柱的平面展开图的是()。
2. 底面周长和高相等的圆柱,侧面沿高展开后得到()。
A.长方形B.平行四边形C.正方形3. 把一根圆柱形木料削成与它等底、等高的圆锥,削去部分的体积是圆锥体积的()。
2A.3倍B.2倍C.34. 王老师做了一个圆柱形容器和几个圆锥形容器,尺寸如下图所示(单位:cm),将圆柱内的水倒入()圆锥内,正好倒满。
5. 一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积是10cm2,水深15cm,请你根据图中标明的数据,计算瓶子的容积是()cm³。
A.150B.250C.100二、判断。
(每题2分,共10分)1. 圆柱的高不变,圆柱的底面积越大,它的体积就越大。
()2. 等底、等高的圆柱与长方体体积相等。
()3. 如果两个圆柱的侧面积相等,它们的体积就相等。
()4. 一个直角三角形,以它的斜边为轴旋转一周,可以得到一个圆锥。
()5. 一个圆柱与圆锥的体积和高分别相等,那么圆锥的底面积与圆柱的底面积的比是3∶1。
()三、填空。
(每空1分,共21分)1. 把一个底面周长是12.56cm、高是6cm的圆柱的侧面沿高竖着剪开得到一个长方形,这个长方形的长是()cm,宽是()cm。
这个长方形的面积是()。
2. 一个圆柱高是 8cm,侧面积是100.48cm2,它的底面积是()cm²,表面积是()cm²。
3. 把一个圆柱的底面分成许多相等的扇形,然后竖直切开拼成一个长方体,长方体的底面积等于圆柱的(),高等于圆柱的(),因为长方体的体积=()×(),所以圆柱的体积=()×()。
4. 把一个底面直径为12cm、高是20cm的圆柱,沿底面直径切割成同样大小的两半,表面积增加()cm²,体积是()cm³。
人教版六年级下册《圆柱圆锥》小学数学-有答案-单元测试卷
人教版六年级下册《圆柱圆锥》小学数学-有答案-单元测试卷一、圆柱和圆锥1. 一个圆柱形蓄水池,直径10米,深2米。
这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?2. 做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?3. 压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?4. 大厅里有10根圆柱,圆柱底面直径1米,高8米。
在这些圆柱的侧面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?5. 一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?6. 把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?7. 将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体,这个物体的表面积是多少平方米?8. 一个蓄水池是圆柱形的,底面面积为31.4平方分米,高2.8分米,这个水池最多能容多少升水?9. 一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?(保留整数)10. 一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶的装满了水,求水面高是多少分米?11. 一个圆柱形量筒,底面半径是5cm,把一块圆锥形铁块从量筒里取出后水面下降3cm.这块铁块的体积是多少立方厘米?12. 把一根长1.5米的圆柱形钢材截成三段后,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?13. 把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?14. 砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?15. 一堆圆锥形黄沙,底面周长是25.12m,高是1.5m,每立方米黄沙重1.5吨,这椎黄沙重多少吨?16. 一个无盖的圆柱形水桶,底面直径10厘米,高20厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)17. 大厅内有8根同样的圆柱形木柱,每根高5米,底面周长是3.2米,如果每千克油漆可漆4.5平方米,漆这些木柱需油漆多少千克?18. 一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04米厚,可以铺多少米长?19. 一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
人教版六年级数学下册应用题专项训练3《圆柱圆锥》(含答案解析)
人教版六年级数学下册应用题专项训练三《圆柱与圆锥》(含答案解析)3.1《圆柱》1.工人李师傅用一块长90cm、宽31.4cm的铁皮焊接一节长90cm的圆柱体烟囱,这节烟囱的底面直径是多少?2.亮亮用硬纸板做一个底面直径为4cm、高为15cm的圆柱形笔筒.他想在这个圆柱形笔筒的侧面贴上彩纸,至少需要多少平方厘米的彩纸呢?3.一个圆柱形物体,底面直径和高都是6cm,它的表面积是多少?4.一个圆柱,底面半径是0.25米,高是1.8米,求它的侧面积.5.一种铁皮通风管,底面直径30cm,长120cm.做50节这样的通风管共需铁皮多少平方米?为4:3:2.现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?7.用一张边长20厘米的正方形围成一个最大的圆柱形纸筒,想一想这个纸筒的底面周长和高各是多少?侧面面积为多少?8.压路机的滚筒是一个圆柱体,它的底面直径是1米,长2米。
每滚动一周能压多大面积的路面?9.一根圆柱形钢锭,长30厘米,管底面半径为1厘米,已知每立方厘米的钢重7.8克,这根钢管重多少克?10.一个圆柱体的底面半径是4厘米,高8厘米,求它的体积和表面积.11.用铁皮做一个无盖的圆柱形水桶,底面半径是10分米,高5分米,制作这个水桶最少需要多少平方分米的铁皮?这个水桶的容积是多少?12.如图,冬冬要把自己做的圆柱形笔筒的高度以下涂上褐色(底面不涂),13.把一块长、宽、高10厘米、6.4厘米、7.85厘米的长方体铝块熔铸成一个底面半径是4厘米的圆柱,这个圆柱的高是多少厘米?14.一个圆柱形的铁皮桶,底面积半径是1分米,高4分米,这个水桶能装多少升水?(保留整数)15.一个圆柱形水池,底面半径3米,池高1.5米,这个水池最多可盛水多少吨?(1立方米的水重1吨)16.一个圆柱形蓄水池的底面半径为2米,深2.5米。
在池壁和池底抹上水泥,抹水泥的面积是多少平方米?刷墙多少平方米?18.一个圆柱形铁罐的容积是1升,高是12厘米。
人教版六年级下册数学第三单元圆柱与圆锥应用题达标练(含达标练答案)
人教版六年级下册数学第三单元圆柱与圆锥应用题达标练1.如图所示一个木制模型有15个圆柱形孔,每个孔的直径为2厘米,用多少立方厘米的木头能制作一个这样的模型?2.一个圆锥形沙堆,底面积36平方米,高0.8米。
用这堆沙子去填一个长7.5米、宽4米的长方体沙坑,沙坑里沙子的厚度是多少厘米?3.一个底面直径是40cm的圆柱形水桶里装有水,把一个底面半径是5cm的圆锥形玩具浸没在水中后,水面上升了1cm(未溢出)。
这个圆锥形玩具的高是多少厘米?4.一个圆锥形麦堆,底面直径6米,高0.9米,每立方米小麦约重500千克,这堆小麦重多少千克?若把这些小麦加工成面粉,小麦的出粉率是80%,可以加工面粉多少千克?5.沙场有一个圆锥形沙堆,量得底面周长25.12米,高2.4米。
如果每立方米沙的价钱是50元。
这堆沙可以卖出多少元钱?6.工地上有一个圆锥形的沙堆,高是2.4米,底面直径是4米,每立方米的沙约重2.8吨。
这堆沙约重多少吨?(得数保留整吨)7.一个内径是6厘米的矿泉水瓶里,饮料的高度为10厘米,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度为2厘米,这个瓶子的容积是多少?,做这个水桶大8.一个圆柱形塑料桶(无盖),高18分米,底面直径是高的56约要用多少塑料?9.一个圆柱的表面积是174dm2,侧面积是68dm2,一个底面的面积是多少?10.一个长方体水箱的长是50厘米,宽是40厘米,把一块底面半径是10厘米,高是10厘米的圆柱形铁块放入水箱,铁块全部没入水中(水未溢出),水面会上升多少厘米?11.张师傅要把一根底面半径是2分米、高是3分米的圆柱形零件熔铸成一个底面半径为3分米的圆锥形零件,圆锥形零件的高是多少分米?12.一个圆锥形沙堆的底面周长是18.84米,高是5米,每立方米售价45元,王大爷准备买下它盖房用,他应付多少钱?(结果保留整数)13.体育馆有一个圆柱形沙包,量得沙包的底面直径是2分米,高是4分米(外层厚度忽略不计),在一次训练中沙包破了,沙子全部流到地上形成了一个高2分米的圆锥形沙堆,这个沙堆的占地面积是多少平方分米?14.一个长16厘米,宽14厘米,高9厘米的长方体木料,把它加工成一个圆锥体(不能拼接),这个圆锥体体积最大是多少立方厘米?15.夏天到了,明明买了一瓶矿泉水,喝了一部分后,将瓶子倒置后无水部分的高为7厘米,瓶子的内直径为6厘米,这个矿泉水瓶的容积是多少毫升?16.把一个大圆柱截成两个小圆柱,两个小圆柱的高分别是4厘米和6厘米,它们的表面积相差50.24平方厘米,原来大圆柱的侧面积是多少平方厘米?17.一个圆柱形储油罐,从里面量,底面直径是2米,高是4米,如果1升汽油重0.75千克,这个储油罐最多可装汽油多少千克?18.一堆混凝土,堆成了圆锥形,底面周长是12.56米,高是1.5米。
小学人教版六年级下册数学第三单元《圆柱与圆锥》立体图形达标练(含参考答案)
小学人教版六年级下册数学第三单元《圆柱与圆锥》立体图形达标练一、圆柱和圆锥立体图形计算题1.求圆柱的表面积和体积。
2.求下面圆锥的体积。
3.求下面各圆柱的表面积。
(1)(2)4.求①号立体图形的表面积,求②号立体图形的体积。
(单位∶cm)5.求组合图形的表面积和体积。
(单位:厘米)6.计算下图的体积。
(单位:分米)7.求出这个空心水泥管的外表面积。
8.如下图,从圆柱上挖去一个圆锥,求剩下图形的体积。
(单位:厘米)9.如图所示,这个物体的体积是多少?10.求下图组合体的体积。
(单位:dm)参考答案一、圆柱和圆锥计算题1.2×3.14×2×5=6.28×2×10=12.56×10=125.6(cm 2)3.14×22×2=3.14×4×2=12.56×2=25.12(cm 2)125.6+25.12=150.72(cm 2)3.14×22×5=3.14×4×5=12.56×5=62.8(cm 3)2. 13×3.14×32×6=13×9×3.14×6=3×3.14×6=56.52(dm 2)3.(1)2×3.14×(20÷2)2+2×3.14×(20÷2)×3=6.28×102+6.28×10×3=6.28×100+62.8×3=628+188.4=816.4(m 2)(2)2×3.14×52+2×3.14×5×12=6.28×25+6.25×5×12=157+31.4×12=157+376.8=533.8(cm 2)4.① 3.14×(10÷2)2×2﹢3.14×5+3.14×5×3 =157+157+47.1=361.1②3.14×12×3×13=3.145.(5×3+5×4+4×3)×2+3.14×2×3 =(15+20+12)×2+18.84=47×2+18.84=94+18.84=112.84(平方厘米)5×3×4+3.14×(2÷2)2×3=60+3.14×1×3=60+9.42=69.42(立方厘米)6.13×3.14×32×(15-9) =13×3.14×9×6=3.14×18=56.52(立方分米)3.14×32×9=3.14×81=254.34(立方分米)56.52+254.34=310.86(立方分米)7. 7dm =70cm2×3.14×[(22÷2)2-(14÷2)2]+3.14×22×70 =2×3.14×[112-72]+3.14×22×70=2×3.14×[121-49]+3.14×22×70=2×3.14×72+3.14×22×70=3.14×(2×72+22×70)=3.14×(144+1540)=3.14×1684=5287.76(cm 2)8. 6÷2=3(厘米)3.14×32×10-3.14×32×6×13=3.14×9×10-3.14×9×6×13=28.26×10-169.56×13 =282.6-56.52=226.08(立方厘米)9.3.14×(22)2×3=9.42(立方分米) 3.14×(22)2×3=3.14×12×3=3.14×3=9.42(立方分米)10. 13×3.14×(2÷2)2×3×2+3.14×(2÷2)2×(18-2×3) =13×3.14×1×3×2+3.14×1×(18-6) =13×3.14×1×3×2+3.14×1×12 =(13×3)×(3.14×2)+3.14×12 =6.28+3.14×12=6.28+37.68=43.96(dm 3)。
人教版小学六年级数学下册第三单元《圆柱与圆锥》测试卷(附答案)
人教版六年级下册第三单元《圆柱与圆锥》测试卷学校:___________姓名:___________班级:___________等级:___________一、选择题(将正确答案的序号填在括号里)(10分)1.(2分)把一个圆柱形木头截成相等的三段,表面积()A.不变B.增加2个底面C.增加3个底面D.增加4个底面2.(2分)将一个圆柱体削制成一个圆锥体,削去部分的体积是圆柱体积的()A.B.C.2倍D.不能确定3.(2分)下面图形中,以某一边为轴旋转一周,可以得到圆柱体的是( )。
A.B. C.D.4.(2分)一个圆柱和一个圆锥的体积和底面积相等,圆柱的高是9厘米,圆锥的高是()A.9cm B.3cm C.27cm5.(2分)制作一个圆柱形油桶,至少需要多少平方米的材料,是求圆柱的()。
A.侧面积B.表面积C.容积D.体积二、填空题(共22分)6.(4分)圆柱的上、下底面是两个面积相等的_____形.圆柱的侧面是一个_____,沿着高展开后可能是一个_____形,也可能是一个_____形.7.(1分)计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的______。
8.(1分)等底和等高的圆柱和圆锥,它们的体积之比是_________。
9.(2分)如下图,把圆柱切开拼成一个长方体,已知长方体的长是3.14米,高是2米。
这个圆柱体的底面半径是________米,体积是__________立方米。
10.(1分)一个圆柱的体积比与它等底等高的圆锥的体积大50.24 dm3,已知圆锥的底面半径是20cm,圆锥的高是_________dm。
11.(1分)一个圆锥形的沙堆,底面周长是62.8平方米,高是6米,这堆沙子______立方米。
12.(3分)一个圆柱的底面半径是3cm,高是10cm,侧面积是________cm2,表面积是________cm2,体积是________cm3。
13.(2分)一个圆锥的底面面积是62.8平方分米,高是6分米,它的体积是_____立方分米,与它等底等高的圆柱体的体积是_______。
人教版六年级数学下册 第3单元 圆柱与圆锥 解决问题专项练习(含答案)
人教版六年级数学下册第3单元圆柱与圆锥解决问题专项练习时间:40分钟满分:100分班级:姓名:学号: .1.求下面图形的体积。
(单位:dm)2.计算下面物体的表面积。
(单位:dm)3. 把三角形ABC沿BC边和AB边分别旋转一周,得到2个圆锥(如下图),哪个圆锥的体积大?4.一个圆锥形小麦堆,底面周长是12.56米,高是1.5米,若每立方米小麦重0.7吨,这堆小麦重多少吨?5.制作底面直径0.2m,长1m的圆柱形通风管100根,至少需要铁皮多少平方米?6.把一个底面直径为6厘米的金属圆锥体投入到底面半径为9厘米的圆柱形杯内,杯中水面上升1.5厘米,金属圆锥的高是多少厘米?7.如图,在密封的容器中装有一些水,水面距底部的高度是10cm。
如果将这个容器倒过来,你能求出这时水面距底部的高度是多少厘米吗?6dm 8dm6cm 8cm4cm8.一个圆柱形玻璃容器里装有水,水中浸没了一个底面半径是3cm,高是10cm的圆锥形铁块(如图),如果把铁块从水中取出来,那么容器中的水面高度将下降多少厘米?9.红星广场有一个圆锥形玻璃罩,底面周长31.4米,高15米,这个玻璃罩的容积是多少立方米?(玻璃厚度忽略不计)10.某技工学校开展操作技能竞赛,要求把完全一样的圆柱形铁块平均切割成两块,且切成的零件不是圆柱体。
下图是张勇和李丽按要求切去一半后的形状,原来圆柱形铁块的体积是多少立方厘米?11.压路机的滚筒是个圆柱,它的宽是2米,滚筒横截面半径是0.6米,如果滚筒每分钟滚动5周,那么1小时可压路多少平方米?12.用塑料绳捆扎一个圆柱形的蛋糕盒(如下图),打结处正好是底面圆心,打结用去绳长10厘米。
(1)扎这个盒子至少用去塑料绳多少厘米?20cm40cm(2)在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?13.2021年7月各地汛情紧张,A市防汛指挥部在堤坝上围了一个圆柱形帐篷。
从外面测帐篷的直径为8米、高为6米。
人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
3 / 10
【巩固练习】 1.圆柱体的底面半径和高都扩大 2 倍.它的体积扩大(
)倍.
①2
②4
③6
④8
2.等底等高的圆柱体.正方体.长方体的体积相比较.( ).
少平方米? (取)
1 0.5
1 1
1 1.5
【解析】从上面看到图形是右上图.所以上下底面积和为(立方米).侧面积为(立方米).所以该物体的表 面积是(立方米). 23.141.52 14.13 23.14 (0.5 11.5)118.84 14.1318.84 32.97 【例题 2】有一个圆柱体的零件.高厘米.底面直径是厘米.零件的一端有一个圆柱形的圆孔.圆孔的直径 是厘米.孔深厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆.那么一共要涂多少平方厘米? 10 6 4 5
22
瓶中剩余空间的体积
酒瓶容积:
(30
25)π
10 2
10 2
125π
375π
125π
500π
1500(ml)
【变式 3】一个盖着瓶盖的瓶子里面装着一些水.瓶底面积为平方厘米.(如下图所示).请你根据图中标
明的数据.计算瓶子的容积是______.10
7cm
5cm
4cm
【解析】由已知条件知.第二个图上部空白部分的高为.从而水与空着的部分的比为.由图 1 知水的体积
157.7536 25.12 182.8736
6 / 10
【例题 5】一个圆柱体形状的木棒.沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆 柱体的表面积大.则这个圆柱体木棒的侧面积是________.(取) 2008cm2 cm2 π 3.14
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷附答案(黄金题型)
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷一.选择题(共5题, 共10分)1.一个圆柱的侧面展开图如图, 那么这个圆柱可能是下列图中的()。
A. B. C.2.一个圆锥的体积是36立方厘米, 底面积是12平方厘米, 高是()厘米。
A.9B.6C.33.求圆柱形罐头盒的用料就是求圆柱()。
A.体积B.容积C.表面积4.将一个圆锥底面积扩大6倍, 高不变, 那么圆锥的体积扩大()倍。
A.6B.3C.25.圆柱的底面直径是6分米, 高是8分米, 与它等底等高的圆锥的体积是()立方分米。
A.113.04B.226.08C.75.36二.判断题(共5题, 共10分)1.圆锥的体积一定等于圆柱的。
()2.一个圆锥体的底面积不变, 如果高扩大3倍, 体积也扩大3倍。
()3.一个直角三角形, 以它的斜边为轴旋转一周, 可以生成一个圆锥。
()4.一张长方形铁皮分别横着、竖着卷成两个圆柱, 把它们竖放在桌面上, 它们的容积完全相同。
()5.从圆锥的顶点到底面周长任意一点的连线都是圆锥的高。
()三.填空题(共8题, 共11分)1.一个圆柱的底面面积是25平方匣米, 高是10分米, 它的体积是()立方厘米。
2.一个圆柱底面半径2分米, 侧面积是113.04平方分米, 这个圆柱体的高是()分米。
3.把一个圆柱体等分成若干份, 可以拼成一个近似的长方体。
拼成的长方体的长等于圆柱的(), 长方体的宽等于圆柱的(), 高等于圆柱的()。
4.一个圆柱体的侧面积为150cm2, 底面半径是4厘米, 它的体积是()cm3。
5.一个圆柱的侧面展开图是一个正方形, 高是25.12 cm, 这个圆柱的底面半径是()cm。
6.把一个圆锥沿底面直径纵切开, 切面是一个()形。
7.一个圆柱的体积是100.48dm3, 它的底面半径是2dm, 高是()dm。
8.李师傅用一张长40分米, 宽12分米的铁皮做成圆柱形铁桶, 铁桶的侧面积是()平方分米;如果给这个铁桶再加一个底, 还需要()平方分米的铁皮。
六年级数学下册第三单元《圆柱与圆锥》测试卷-人教版(含答案)
17.沿着圆柱的高展开,侧面得到一个长方形,这个长方形的长等于圆柱的,宽等于圆柱的,当圆柱的底面周长和高相等时,侧面展开的图形是.
18.一个无盖的圆柱形水桶,底面直径是40厘米,高50厘米,做这个水桶至少需要平方米铁皮.
33.
六年级数学下册第三单元《圆柱与圆锥》测试卷-人教版(含答案)
一、选择题
1.一个圆柱体水桶的容积()圆锥体积.
A.相等 B.大于 C.小于 D.无法确定
2.一个圆柱的高是底面直径的π倍,这个圆柱侧面的展开图是一个( )
A.平行四边形 B.正方形C.长方形 D.圆形
3.一个圆柱形杯子盛满2.1升水,把与它等底等高的圆锥形铁块完全浸入水中,杯中还有()水。
A.3B.9C.27
7.将一个圆柱体削成一个最大的圆锥体.说法不正确的是( )
A.削去的体积是圆柱体积的
B.削去的体积是圆柱体积的
C.削去的体积是圆锥体积的2倍
8.一个圆柱体、底面直径扩大3倍,体积就扩大了( )
A.3倍B.6倍C.9倍
9.将长为3米,体积为12立方米的圆柱体据成两段,它的表面积增加了( )平方米.
14.6.25
15.6
16.3
17.底面周长,高,正方形
18.0.7536
19.1.35.
20.36
21.4.71立方分米
22.√
23.√
24.×
25.√Байду номын сангаас
26.×
27.803.84立方厘米
28.1695.6立方厘米
29.50.24;37.68;不能
30.1978.2千克
六年级下册数学试题 - 圆柱与圆锥 人教版(含答案)
六年级下册数学试题--圆柱与圆锥-132-人教新课标一、单选题(共2题;共4分)1.一个圆柱和一个圆锥,底面周长的比是2:3,它们体积的比是5:6,圆锥与圆柱高的最简单的整数比是()A. 8:5B. 12:5C. 5:12D. 5:8【答案】B【考点】圆柱的体积(容积),圆锥的体积(容积),比的基本性质【解析】【解答】解:圆柱的体积:圆锥的体积=(2×圆柱的高):(3×圆锥的高×)5:6=(2×圆柱的高):(3×圆锥的高×)5:6=2×圆柱的高:圆锥的高所以圆柱的高:圆锥的高=5:12;即圆锥的高:圆柱的高=12:5。
故答案为:B。
【分析】圆柱的底面周长=π×圆柱的底面半径×2,圆锥的底面周长=π×圆锥的底面半径×2,所以圆柱与圆锥的底面半径之比=圆柱与圆锥的底面周长之比;圆柱的体积=圆柱的底面积×圆柱的高;圆锥的体积=圆锥的底面积×圆锥的高×,圆柱的底面积=π×圆柱的底面半径的平方,圆锥的底面积=π×圆锥的底面半径的平方,所以圆柱的底面积:圆锥的底面积=圆柱的底面半径的平方:圆锥的底面半径的平方;即圆柱的体积:圆锥的体积=(2×圆柱的高):(3×圆锥的高×),进一步计算即可得出答案。
2.底面积相等的圆柱和圆锥,它们的体积比是1:1,圆锥的高是9cm,圆柱的高是()cm.A. 3B. 6C. 9D. 27【答案】A【考点】圆柱的体积(容积),圆锥的体积(容积),比的应用【解析】【解答】解:1:1=圆柱的高:(9×)圆柱的高=9×所以圆柱的高=3cm。
故答案为:A。
【分析】圆柱的体积=圆柱的底面积×圆柱的高;圆锥的体积=圆锥的底面积×圆锥的高×,由于圆柱和圆锥的底面积相等,所以圆柱的体积:圆锥的体积=圆柱的高:(圆锥的高×),代入数值计算即可。
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷(含答案)
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷(含答案)一、认真审题,填一填。
(第1小题4分,其余每小题3分,共28分)1.6.56 m2=( )dm2 3 m2 20 dm2=( )m28 L 50 mL=( )L 5 m325 dm3=( )m32.一个圆锥的体积是18.84 dm3,底面积是9.42 dm2,高是( ) dm,与它等底等高的圆柱的体积是( )dm3。
3.如图,一个圆柱形蛋糕盒的底面半径是10 cm,高是15 cm。
用彩带包扎这个蛋糕盒,至少需要彩带( )cm。
(打结处长20 cm)4.一个底面直径为20 cm,长为50 cm的圆柱形通风管,沿着地面滚动一周,滚过的面积是( )cm2。
5.一个近似于圆锥形状的野营帐篷,它的底面半径是3米,高是2.4米。
帐篷的占地面积是( )平方米,所容纳的空间是( )。
6.两个完全一样的圆柱,能拼成一个高4 dm的圆柱(如图),但表面积减少了25.12 dm2。
原来一个圆柱的体积是( )dm3。
(第6题图) (第7题图) (第8题图)7.如图所示,把底面直径为8 cm的圆柱切成若干等份,拼成一个近似的长方体。
这个长方体的表面积比原来增加了80 cm2,那么长方体的体积是( )cm3。
8.如图,把一个底面半径为4 cm的圆锥形木块,从顶点处垂直底面切成两个完全相同的木块,这时表面积增加48 cm2,这个圆锥的体积是( )cm3。
9.动手操作可以使抽象的数学知识形象化。
天天在数学课上用橡皮泥做了一个圆柱形学具,底面半径是4厘米,高是6厘米。
如果再用硬纸做成一个长方体纸盒,使圆柱形学具正好装进去,这个长方体纸盒的容积是( )立方厘米。
二、仔细推敲,选一选。
(将正确答案的序号填在括号里)(每小题3分,共15分)1.如下图,饮料罐底面积与锥形杯口的面积相等,将罐中的饮料倒入杯中,能倒满( )杯。
A.2B.6C.8D.92.一个长方形长为a,宽为b。
分别以长为轴、宽为轴旋转,产生了两个圆柱甲、乙。
六年级下册数学《圆柱与圆锥》专项练习题50道及答案【全国通用】
六年级下册数学《圆柱与圆锥》专项练习题50道一.选择题(共10题,共20分)1.计算圆锥的体积采用()公式。
A.V=ShB.V=ShC.V=3Sh2.如果圆柱的侧面展开后是一个正方形,那么这个圆柱的()一定和高相等。
A.直径B.半径C.底面周长3.一个圆柱体水桶的容积()圆锥体积。
A.相等B.大于C.小于D.无法确定4.一个圆锥的体积是48立方厘米,底面积是16平方厘米,高是()。
A.9B.3C.65.求圆柱形罐头盒的用料就是求圆柱()。
A.体积B.容积C.表面积6.一个圆柱和一个圆锥的底面积之比是1:3,高的比是2:3,体积比是()。
A.1:3B.2:3C.2:9D.4:97.一根圆柱形木料底面半径是0.2米,长是3米。
将它截成6段,如下图所示,这些木料的表面积比原木料增加了()平方米。
A.1.5072B.1.256C.12.56D.0.75368.一个底面直径是8cm,高是6cm的容器,小明将这个容器装满水,再把一个底面积是3.14平方厘米、高3cm的圆锥体铁块浸入容器的水中.会溢出()立方厘米的水。
A.301.44B.9.42C.3.14D.6.289.一个圆柱形容器内注有水,它的底面半径是r厘米,把一个圆锥形铜锤浸在水中,水面上升h厘米,这个圆锥形铜锤的体积是()。
10.一个圆柱体纸盒,侧面展开是正方形。
这个纸盒的底面半径是5厘米,它的高是()厘米。
A.10B.15.7C.31.4D.78.5二.判断题(共10题,共20分)1.把一根圆柱形木头,削成一个最大的圆锥体,削去部分的体积是圆锥体积的2倍。
()2.圆柱的体积比与它等底等高的圆锥大2倍。
()3.如果一个圆柱体与一个长方体的底面积和高都相等,那么它们的体积也一定相等。
()4.等高的圆柱和圆锥的底面半径之比是3∶1,则圆柱和圆锥体积之比为9∶1。
()5.两个圆锥的底和高各不相等,则两个圆锥的体积也一定不相等。
()6.一个底面半径为2.5cm,高为5cm的圆柱,它的表面积是117.75 cm2。
人教版六年级下学期数学第三单元《圆柱和圆锥》专项练习(含答案)
第三单元《圆柱和圆锥》典型题型专项一、填空题1.把一根长3m的圆柱形木料,截成5段圆柱形木料,表面积增加了280dm,那么这根圆木的底面积是( )2dm。
2.一个圆柱,若沿着一条底面直径纵切后,可以得到一个边长是8厘米的正方形的截面,这个圆柱的表面积是( )平方厘米。
3.一个底面积为x平方厘米、高为h厘米的圆柱切成若干个小圆柱。
每切1次,表面积都增加( )平方厘米,切5次表面积增加( )平方厘米。
4.一个圆柱的高减少2厘米,它的表面积就减少50.24平方厘米,这个圆柱的底面直径是( )厘米。
5.一块长31.4cm、宽10cm、高2cm的长方体钢材,熔铸成一个底面积为15.7cm²的圆柱体钢锭,这块钢锭的高为( )dm。
6.一个装满水的圆柱形容器的底面积为24平方分米,高为6分米,容器中水的体积是________升;如果将这些水倒入一个底面长为9分米、宽为4分米,高为8分米的长方体容器中,水深为________分米.(容器的厚度忽略不计)7.一个圆柱形量杯的总高度是12cm,里面盛有200mL的水。
现将一个小石块放进这个量杯中,水面上升到250ml刻度处,刚好上升了0.5cm。
若此时向杯中注入水,最多还可以注入( )毫升的水。
8.把一个高为5厘米的圆柱沿着底面直径往下切,表面积增加40平方厘米,这个圆柱的表面积是( )平方厘米。
二、解答题9.一个圆柱形水池,底面直径为10m,高为5m,要在它的四周和底面抹上水泥。
(1)抹水泥部分的面积是多少平方米?(2)如果抹水泥的人工费是每平方米12元,抹完整个水池一共需要人工费多少钱?10.王师傅加工20段底面半径为6cm,长为5dm的圆柱形铁皮通风管,至少要用多少平方分米的铁皮?11.一个圆柱形水池底面半径为4m,深为5m,如果在这个水池的内侧面和底部抹上一层水泥,那么抹水泥的面积有多少平方米?12.做一个没有盖的圆柱形水桶,底面直径20厘米,高27厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)13.有一个工具箱下半部分为正方体,上半部分为圆柱体一半(下图),如果把工具箱的表面涂上油漆(包括底面),求涂油漆部分的面积。
人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
圆柱与圆锥立体图形表面积体积h r圆柱222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱h r圆锥22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长21π3V r h =圆锥体【基础练习】一、选一选。
(将正确答案的序号填在括号里) 1、下面物体中,( )的形状是圆柱。
A 、B 、C 、D 、2、一个圆锥的体积是36dm 3,它的底面积是18dm 2,它的高是( )dm 。
A 、23 B 、2 C 、6 D 、183、下面( )图形是圆柱的展开图。
(单位:cm )4、下面( )杯中的饮料最多。
5、一个圆锥有( )条高,一个圆柱有( )条高。
A 、一 B 、二 C 、三 D 、无数条6、如右图:这个杯子( )装下3000ml 牛奶。
A 、能B 、不能C 、无法判断二、判断对错。
()1、圆柱的体积一般比它的表面积大。
()2、底面积相等的两个圆锥,体积也相等。
()3、圆柱的体积等于和它等底等高的圆锥体积的3倍。
()4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。
()5、把圆锥的侧面展开,得到的是一个长方形。
三、想一想,连一连。
四、填一填。
1、2.8立方米=()立方分米6000毫升=()3060立方厘米=()立方分米5平方米40平方分米=()平方米2、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。
3、用一张长分米,宽分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。
(接口处不计)4、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。
5、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。
五、求下面图形的体积。
(单位:厘米)六、解决问题。
1、⑴制作这个薯片筒的侧面标签,需要多大面积的纸?⑵这个薯片筒的体积是多少?2、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高米。
六年级下册数学试题 第三章《圆柱和圆锥》 人教版 含答案
第三章《圆柱和圆锥》一.选择题1.(2020•灯塔市)将圆柱体的侧面展开,将得不到()A.长方形B.正方形C.平行四边形D.梯形2.(2019春•沙雅县期末)把一个圆柱体削成一个与它等底的圆锥体,高将()A.扩大3倍B.缩小3倍C.无法判断3.(2019•长沙模拟)圆柱底面半径扩大2倍,高也扩大2倍,这个圆柱的体积就扩大()A.2倍B.4倍C.8倍D.16倍4.(2019•亳州模拟)一个圆锥与一个圆柱的体积和高都相等,那么圆柱与圆锥()A.底面半径的比是1:3 B.底面直径的比是3:1C.底面周长的比是3:1 D.底面积的比是1:35.(2020•渭滨区)圆柱体的侧面展开,不可能得到()A.长方形B.正方形C.梯形D.平行四边形6.(2019春•武侯区期中)一个圆柱体杯中盛满15升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还有()水.A.5升B.7.5升C.10升7.(2019•株洲模拟)从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的()相等.A.底半径和高B.底面直径和高C.底周长和高二.填空题8.(2020•许昌)如图,瓶底的面积和锥形杯口的面积相等,将瓶子中的液体倒入锥形杯子中,能倒满杯.9.(2020•顺义区)一个圆锥体的体积是12立方分米,底面积是3平方分米,高是分米.10.(2019•郴州模拟)一个圆柱形容器和圆锥形容器的底面积相等.将圆锥容器装满水后倒入圆柱形容器,刚好倒满.如果圆柱的高是12厘米,圆锥的高是厘米.11.(2019春•东海县月考)一个圆锥的体积是96立方分米,底面积是8平方分米,它的高是分米.12.(2019春•枣庄期中)等底等高的圆柱和圆锥的体积相差18立方米,这个圆柱的体积是立方米,圆锥的体积是立方米.三.判断题13.(2020•保定)圆柱的侧面展开图一定是长方形或正方形..(判断对错)14.(2020•路北区)圆锥的体积等于圆柱体积的..(判断对错)15.(2019春•沛县月考)一个圆锥的底面积扩大5倍,高不变,体积也扩大5倍..(判断对错)16.(2019春•镇康县校级月考)圆锥的高有无数条..(判断对错)四.计算题17.(2019•郑州模拟)求如图的表面积和体积.单位(dm)18.(2015春•武功县校级期中)计算下面图形的体积,并求出圆柱的表面积.五.应用题19.(2018春•单县期末)一根圆柱形钢材,截下2米,量得它的横截面面积是12平方厘米,如果每立方厘米的钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数)20.(2018•萧山区模拟)把一个底面直径12厘米的圆锥形金属铸件浸没在棱长1.5分米的正方体容器中,水面比原来升高1.2厘米,求这个圆锥的体积.21.孔师傅用一块长方形铁皮做一个铁皮筒,如下图进行裁剪,这个铁皮筒用铁皮多少平方分米?22.(2012•成都)一个侧面贴有商标纸的罐头盒,底面半径是8厘米,高是10厘米,商标纸的面积是多少平方厘米?(接头处不计)六.解答题23.(2015春•德江县期中)求圆柱的表面积和体积.(单位:cm)24.(2015秋•惠民县校级月考)(1)计算下面圆柱的表面积和体积.(单位:厘米)(2)计算下面圆锥体的体积.(单位:厘米)25.(2018•兴化市)一个长方体钢锭长5分米,宽4分米,高3.14分米,将它熔铸加工成底面半径是2分米的圆柱形部件,圆柱的高是多少分米?26.(2019•长沙模拟)有一个高为6.28分米的圆柱体机件,它的侧面展开正好是一个正方形,求这个机件的体积.27.(2019春•江宁区月考)一个圆锥的底面周长是15.7厘米,高是3厘米.从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?28.(2018春•保定期末)红星广场有一个圆锥形玻璃罩,底面周长31.4米,高15米,这个玻璃罩的容积是多少立方米?(玻璃厚度忽略不计)29.(2017春•陕西期末)一个圆柱,如果高减少2厘米,表面积就减少25.12平方厘米,体积减少.这个圆柱原来的体积是多少立方厘米?参考答案与试题解析一.选择题1.【分析】根据对圆柱的认识和圆柱的侧面展开图及实际操作进行选择即可.【解答】解:围成圆柱的侧面的是一个圆筒,沿高线剪开,会得到长方形或正方形,沿斜直线剪开会得到平行四边形.但是无论怎么直线剪开,都不会得到梯形.故选:D.【点评】此题考查圆柱的侧面展开图,要明确:沿高线剪开,圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高.2.【分析】根据圆柱的体积公式:V=Sh,以及圆锥的体积公式:V=Sh可知,把一个圆柱体削成一个与它等底的圆锥体,高的长度不能确定,据此选择.【解答】解:把一个圆柱体削成一个与它等底的圆锥体,高将无法确定.故选:C.【点评】本题主要考查圆柱和圆锥的体积,关键利用圆柱和圆锥的体积公式做题.3.【分析】根据圆柱的底面积=πr2和圆柱的体积=底面积×高,利用积的变化规律即可解答.【解答】解:圆柱的底面积=πr2,所以底面半径扩大2倍,则它的底面积就扩大2×2=4倍,圆柱的体积=底面积×高,底面积扩大4倍,高同时扩大2倍,则它的体积就扩大4×2=8倍,所以圆柱底面半径扩大2倍,高也扩大2倍,这个圆柱的体积就扩大8倍.故选:C.【点评】此题考查了积的变化规律在圆柱的体积公式中的灵活应用.4.【分析】根据圆柱的体积:V=S圆柱h,圆锥的体积:V=s圆锥h,可分别表示出圆柱的底面积和圆锥的底面积,然后再用圆柱的底面积比圆锥的底面积,最后进行化简比即可.【解答】解:圆柱的体积:V=S圆柱h,圆锥的体积:V=s圆锥h,S圆柱:s圆锥,=:,=1:3.答:一个圆锥与一个圆柱的体积和高都相等,那么圆柱与圆锥底面积比是1:3.故选:D.【点评】此题主要考查的是圆柱、圆锥体积公式的灵活应用.5.【分析】根据圆柱的特征,圆柱的侧面是一个曲面,侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,特殊情况当圆柱的底面周长和高相等时,侧面沿高展开是一个正方形,如果沿斜线展开,得到的是一个平行四边形.侧面无论怎样展开绝对不是梯形.由此做出选择.【解答】解:圆柱的侧面沿高展开是长方形或正方形,如果沿斜线展开得到的图形是一个平行四边形,侧面无论怎样展开绝对不是梯形;故选:C.【点评】此题主要考查圆柱的特征和侧面展开图的形状,圆柱的侧面沿高展开是长方形或正方形,如果沿斜线展开得到的图形是一个平行四边形.6.【分析】由条件“一个与它等底等高的铁圆锥”可知,圆锥的体积是圆柱体积的,也就是15升的;把铁圆锥倒放入水中后,铁圆锥会排出与它等体积的水,所以杯中剩下的水的体积就是圆柱体积的(1﹣),也就是15升的(1﹣),可用乘法列式求得.【解答】解:15×(1﹣)=15×=10(升);答:杯中还有10升水.故选:C.【点评】此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下才有3倍或的关系.7.【分析】从圆柱的正面看,看到的是一个长方形,长为圆柱的底面直径,宽为圆柱的高;当看到的轮廓是一个正方形,说明圆柱的圆柱的底面直径和高相等.据此解答.【解答】解:从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的圆柱的底面直径和高相等.故选:B.【点评】解答此题应明确:从圆柱的正面看,看到的是一个长方形,长为圆柱的底面直径,宽为圆柱的高.二.填空题8.【分析】根据题意知道瓶底的面积和锥形杯口的面积相等,设瓶底的面积为S,瓶子内水的高度为2h,则锥形杯子的高度为h,先根据圆柱的体积公式求出圆柱形瓶内水的体积,再算出圆锥形杯子的体积,进而得出答案.【解答】解:圆柱形瓶内水的体积:S×2h=2Sh,圆锥形杯子的体积:×S×h=Sh,倒满杯子的个数:2Sh÷Sh=6(杯);答:能倒满6杯.故答案为:6.【点评】此题虽然没有给出具体的数,但可以用字母表示未知数,找出各个量之间的关系,再利用相应的公式解决问题.9.【分析】根据圆锥的体积公式,代入体积和底面积,求出解即可.【解答】解:由题意知,V锥=Sh,得:h=3V锥÷S,=3×12÷3,=12(分米);故答案为:12分米.【点评】此题考查了已知圆锥的体积和底面积求高.10.【分析】因为“将圆锥容器装满水后倒入圆柱形容器,刚好倒满.”,说明圆锥和圆柱的容积相等;设底面积是S平方厘米,先表示出圆柱的容积,再根据圆锥的体积公式求出圆锥的高即可.【解答】解:设底面积都是S平方厘米,则圆柱的容积:12S立方厘米;圆锥的高:12S×3÷S=36(厘米).故答案为:36.【点评】此题是运用圆锥、圆柱的关系来求体积,当圆锥和圆柱等底等体积时,它们的高有3倍或的关系.11.【分析】根据圆锥的体积公式:v=sh,那么h=v÷s,把数据代入公式解答即可.【解答】解:96÷÷8=96×3÷8=36(分米),答:它的高是36分米.故答案为:12.【点评】此题主要考查圆锥体积公式的灵活运用,关键是熟记公式.12.【分析】根据“等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍”,也就是说,圆锥的体积是1份,圆柱的体积是3份,那么它们的体积就相差2份;已知它们的体积相差18立方米,用18除以2就是圆锥的体积,再用圆锥的体积乘3就是圆柱的体积.【解答】解:18÷(3﹣1)=9(立方米);9×3=27(立方米);答:这个圆柱的体积是27立方米,圆锥的体积是9立方米.故答案为:27,9.【点评】此题是考查体积的计算,可利用“等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍”来解答.三.判断题13.【分析】根据圆柱体的特征,它的上下底面是完全相同的两个圆,侧面是曲面,沿高展开得到长方形,这个长方形的长等于圆柱体的底面周长,宽等于圆柱体的高;圆柱体的底面周长和高相等,侧面沿高展开就是正方形;如果不沿高,而是从上底到下底斜着展开得到的是平行四边形;由此解答.【解答】解:圆柱体的侧面沿高展开得到的图形是长方形或正方形,如果不沿高,而是从上底到下底斜着展开得到的是平行四边形;因此,圆柱的侧面展开图一定是长方形或正方形.此说法错误.故答案为:×.【点评】此题主要考查圆柱体的特征和侧展开图的形状,侧面沿高展开得到的是长方形或正方形,如果不是沿高展开得到的就不是长方形或正方形;由此解决问题.14.【分析】因为圆柱和圆锥只有在“等底等高”的条件下,圆锥的体积才是圆柱体积的,所以原题说法是错误的.【解答】解:圆锥的体积是与它等底等高的圆柱体积的,原题没有“等底等高”的条件是不成立的;故答案为:×.【点评】此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下才有3倍或的关系.15.【分析】圆锥的体积=×底面积×高,是一个不变的值,若高不变,也就是×高的值不变,底面积扩大5倍,依据积与因数的变化规律:一个因数不变,另一个因数扩大5倍,那么积也扩大5倍即可解答.【解答】解:依据分析可得:一个圆锥的底面积扩大5倍,高不变,体积也扩大5倍,所以原题说法正确.故答案为:√.【点评】本题解答的依据是:圆锥体积的计算方法以及积与因数的变化规律.16.【分析】紧扣圆锥的特征:从圆锥的顶点到底面圆心的距离是圆锥的高;可知:圆锥只有一条高;据此判断即可.【解答】解:由圆锥高的含义可知:圆锥的高有无数条,说法错误;故答案为:×.【点评】此题考查了圆锥的特征,应注意基础知识的积累.四.计算题17.【分析】根据图示可知,这个组合图形的表面积就是外面正方体的表面积加上里面圆柱的侧面积,利用正方体和圆柱表面积公式进行计算即可;组合图形的体积等于正方体体积减去圆柱的体积,利用公式把数代入计算即可.【解答】解:10×10×6+3.14×4×6=600+75.36=675.36(平方分米)10×10×10﹣3.14×(4÷2)2×6=1000﹣75.36=924.64(立方分米)答:这个图形的表面积为675.36平方分米,体积为924.64立方分米.【点评】本题主要考查组合图形的体积和表面积的计算,关键把不规则图形转化为规则图形,再计算.18.【分析】(1)圆柱的体积=底面积×高,用字母表示:V=π(d÷2)2h.圆柱的表面积=侧面积+2个底面积=πdh+2πr2,圆柱的底面直径和高已知,代入公式即可求解.(2)圆锥的体积=×底面积×高=π(d÷2)2h,圆锥的底面直径径和高已知,代入数据即可解答.【解答】解:(1)3.14×(16÷2)2×18=200.96×18=3617.28(立方厘米)3.14×16×18+3.14×(16÷2)2×2=904.32+401.92=1306.24(平方厘米)答:圆柱的体积是3617.28立方厘米,表面积是1306.24平方厘米.(2)×3.14×92×21=3.14×81×7=1780.38(立方厘米)答:圆锥的体积是1780.38立方厘米.【点评】此题考查了圆柱的体积表面积公式和圆锥的体积公式的计算应用,熟记公式即可解答.五.应用题19.【分析】先利用圆柱的体积公式V=Sh求出它的体积,再求出这段钢材重多少千克即可.【解答】解:2米=200厘米,12×200×7.8=2400×7.8=18720(克);18720克≈19千克;答:截下的这段钢材重19千克.【点评】此题是考查圆柱的体积计算,在利用体积公式V=Sh求体积的过程中注意统一单位.20.【分析】由题意得圆锥铸件的体积等于上升的水的体积,上升的水的体积等于高为1.2厘米的长方体的体积,根据长方体体积=长×宽×高计算即可.【解答】解:15×15×1.2=225×1.2=270(立方厘米)答:这个圆锥铸件的体积是270立方厘米.【点评】解决本题的关键是明确圆锥铸件的体积等于上升的水的体积,直径是12厘米是无关条件.21.【分析】沿着圆柱的高剪开,圆柱的侧面展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,由图形可知:圆柱的底面直径是(6÷2)分米,圆柱的高是6分米,根据圆柱的侧面积公式:圆柱的侧面积=底面周长×高,把数据代入进行解答.【解答】解:3.14×(6÷2)×6=9.42×6=56.52(平方分米)答:这个铁皮筒用铁皮56.52平方分米.【点评】此题主要考查圆柱的侧面积公式的灵活运用.22.【分析】根据题意,商标纸的面积就是这个圆柱形罐头盒的侧面积,根据圆柱的侧面积=底面周长×高进行计算即可得到答案.【解答】解:3.14×8×2×10=502.4(平方厘米),答:商标纸的面积有502.4平方厘米.【点评】此题主要考查的是圆柱的侧面积公式的灵活应用.六.解答题23.【分析】圆柱的体积=底面积×高,圆柱的表面积=侧面积+底面积×2,将所给数据分别代入相应的公式,即可求出圆柱的表面积和体积.【解答】解:圆柱的体积:3.14×(6÷2)2×5=3.14×9×5=3.14×45=141.3(立方厘米);圆柱的表面积:3.14×6×5+3.14×(6÷2)2×2=3.14×30+3.14×9×2=94.2+3.14×18=94.2+56.52=150.72(平方厘米).【点评】此题主要考查圆柱的表面积和体积的计算方法.24.【分析】(1)圆柱的表面积等于侧面积+2个底面积,由此根据侧面积公式S=ch=πdh与圆的面积公式S=πr2列式解答即可;根据圆柱的体积公式V=sh=πr2h,代入数据列式解答即可.(2)根据圆锥的体积公式V=sh=πr2h,代入数据列式解答即可.【解答】解:(1)3.14×6×6+3.14×(6÷2)2×2,=18.84×6+3.14×9×2,=113.04+56.52,=169.56(平方厘米),3.14×(6÷2)2×6,=3.14×9×6,=169.56(立方厘米);(2)×3.14×22×6,=×3.14×24,=3.14×8,答:圆柱的表面积是169.56平方厘米,体积是169.56立方厘米;圆锥体的体积是25.12立方厘米.【点评】本题主要考查了圆柱的表面积与体积及圆锥的体积的计算方法.25.【分析】根据题意,长方体的体积等于熔铸成的圆柱的体积,可利用长方体的体积公式公式确定长方体的体积,然后再除以圆柱的底面积即可得到圆柱的高.【解答】解:5×4×3.14÷(3.14×22)=5×4×3.14÷3.14÷4=5(分米)答:圆柱的高是5分米.【点评】此题主要考查的是:长方体的体积公式V=长×宽×高,圆柱的体积V=底面积×高.26.【分析】根据“一个圆柱体的侧面展开得到一个边长6.28分米的正方形,”知道圆柱的底面周长是6.28分米,高是6.28分米,由此根据圆柱的体积公式,即可算出机件的体积.【解答】解:3.14×(6.28÷3.14÷2)2×6.28,=3.14×1×6.28,=19.7192(立方分米);答:机件的体积是19.7192立方分米;【点评】解答此题的关键是,能根据圆柱的侧面展开图与圆柱的关系,找出对应量,再根据圆柱的体积公式,列式解答即可.27.【分析】从圆锥的顶点沿着高把他切成两半后,表面积比原来圆锥的表面积增加了2个以圆锥的底面直径为底,以圆锥的高为高的三角形的面积,由此利用圆锥的底面周长15.7厘米求出它的底面直径即可解决问题.【解答】解:圆锥的底面直径为:15.7÷3.14=5(厘米);则切割后表面积增加了:5×3÷2×2=15(平方厘米);答:表面积之和比原来圆锥表面积增加15平方厘米.【点评】抓住圆锥的切割特点,得出增加部分的面积是2个以底面直径为底,以圆锥的高为高的三角形的面积是解决此类问题的关键.28.【分析】玻璃罩的形状是圆锥形的,利用圆锥的体积计算公式求得容积,问题得解.【解答】解:×3.14×(31.4÷3.14÷2)2×15,=3.14×52×5,答:这个玻璃罩的容积是392.5立方米.【点评】此题主要考查圆锥的体积计算公式V=πr2h,运用公式计算时不要漏乘.29.【分析】根据题干,高减少2厘米,表面积就减少25.12平方厘米,减少部分就是高2厘米的圆柱的侧面积,利用侧面积公式即可求得这个圆柱的底面周长,从而求得这个圆柱的底面半径,再根据圆柱的体积公式求得减少部分的体积,根据减少部分的体积是原来圆柱体积的,利用分数除法计算即可求得这个圆柱原来的体积.【解答】解:圆柱的底面半径为:25.12÷2÷3.14÷2=2(厘米)减少部分的体积为:3.14×22×2=25.12(立方厘米)原来圆柱的体积为:25.12÷=125.6(立方厘米)答:这个圆柱原来的体积为125.6立方厘米.【点评】抓住高减少2厘米时,表面积减少25.12平方厘米,从而求得这个圆柱的底面半径是解决本题的关键.。
小学六年级数学复习题(人教版十二册第三单元圆柱与圆锥例题及练习答案)
小学第十二册第三单元《圆柱与圆锥》例题及练习答案人教版教科书第20页练习三1、下面的图形哪些是圆柱?在下面()里画“√”(√)()()()()2、折一折,想一想,能得到什么图形?这在()里。
(长方体)(正方体)(圆柱体)3、下面哪个图形是圆柱的展开图(单位:cm)。
答:第一个是圆柱的展开图4、如图。
切完后的截面或剪完后展开的侧面分别是什么形状?连一连。
5、把一个长方形的纸横着或竖着卷起来,可以卷成什么形状?答:可以卷成圆柱。
人教版教科书第21页“做一做”一个圆柱形茶叶筒的侧面贴着商标纸,圆柱底面半径是5cm,高是20cm,这张商标纸的面积是多少?2×3.14×5×20=628(cm²)人教版教科书第22页例4:一顶圆柱形厨师帽,高30cm,帽顶直径20cm。
做这样一顶帽子至少要用多少平方厘米的布料?(得数保留整十数)。
(1)帽子的侧面积:3.14×20×30=1884(cm²)(2)帽顶的面积:3.14×(20÷2)²=314(cm²)(3)需要用的面料:1884+314=2198≈2200(cm²)21页“做一做”1、求下面各圆柱的侧面积。
(1)底面周长是1.6m,高是0.7m。
(2)底面半径是3.2dm,高5dm。
1.6×0.7=1.12(m²) 2×3.14×3.2×5=100.48(dm²)2、小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要有多少彩纸?第23页练习四1、求下面各圆柱的表面积。
(单位:cm)(1)表面积:3.14×(6÷2)²×2+3.14×6×12=56.52+226.08(cm²)体积:3.14×(6÷2)²×12=28.26×12=339.12(cm³)(2)表面积:3.14×(40÷2)²×2+3.14×40×3=2512+376.8=2888.8(cm²)体积:3.14×(40÷2)²×3=1256×3=3768(cm³)(3)表面积:3.14×(18÷2)²×2+3.14×18×15=508.68+847.8=1356.48(cm²)体积:3.14×(18÷2)²×15=254.34×15=3815.1(cm³)2、一台压路机的前轮是圆柱形,轮宽2m,直径1.2m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱与圆锥立体图形表面积体积hr圆柱222π2πS rh r=+=+圆柱侧面积个底面积2πV r h=圆柱hr圆锥22ππ360nS l r=+=+圆锥侧面积底面积注:l是母线,即从顶点到底面圆上的线段长21π3V r h=圆锥体【基础练习】一、选一选。
(将正确答案的序号填在括号里)1、下面物体中,( )的形状是圆柱。
A、B、C、D、2、一个圆锥的体积是36dm3,它的底面积是18dm2,它的高是()dm。
A、错误!B、2 C、6 D、183、下面( )图形是圆柱的展开图。
(单位:cm)4、下面( )杯中的饮料最多。
5、一个圆锥有( )条高,一个圆柱有( )条高。
A、一B、二C、三D、无数条6、如右图:这个杯子()装下3000ml牛奶。
A、能B、不能C、无法判断二、判断对错。
()1、圆柱的体积一般比它的表面积大。
( )2、底面积相等的两个圆锥,体积也相等。
()3、圆柱的体积等于和它等底等高的圆锥体积的3倍。
()4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。
()5、把圆锥的侧面展开,得到的是一个长方形。
三、想一想,连一连。
四、填一填。
1、2.8立方米=()立方分米6000毫升=()3060立方厘米=()立方分米5平方米40平方分米=()平方米2、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。
3、用一张长4.5分米,宽1.2分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是( )平方分米。
(接口处不计)4、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。
5、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。
五、求下面图形的体积。
(单位:厘米)六、解决问题。
1、⑴制作这个薯片筒的侧面标签,需要多大面积的纸?⑵这个薯片筒的体积是多少?2、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高1.5米。
每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)3、一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1.2米。
镶瓷砖的面积是多少平方米?4、如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高? (单位:厘米)5、张师傅要把一根圆柱形木料(如右图)削成一个圆锥。
⑴削成的圆锥的体积最大是多少立方分米?⑵请你提出一个数学问题并解答。
七、拓展应用。
某种饮料罐的形状为圆柱形,底面直径是7cm,高是12cm。
将24罐这种饮料按如图所示的方式放入箱内,这个纸箱的长、宽、高至少各是多少厘米?【巩固练习】1.圆柱体的底面半径和高都扩大2倍,它的体积扩大()倍.①2 ②4③6④82.等底等高的圆柱体、正方体、长方体的体积相比较,().①正方体体积大②长方体体积大③圆柱体体积大④一样大3、把一个圆柱的底面16等分后可以拼成一个近似长方形(如图),这个近似长方形的周长是33.12,那么,这个圆柱的底面积是()平方厘米;如果圆柱高为10厘米,这个圆柱的体积是( )立方厘米。
4.一个圆柱形油桶,装满了油,把桶里的油倒出3/4 ,还剩20升,油桶高8分米,油桶的底面积是多少平方分米?5、 一个圆柱和一个圆锥等底等高,体积相差6.28立方分米。
圆柱和圆锥的体积各是多少?6、一个圆锥与一个圆柱的底面积相等。
已知圆锥与圆柱的体积的比是16 ,圆锥的高是4.8厘米,圆柱的高是多少厘米?7、一个圆柱底面周长是另一个圆锥底面周长的 \F (2,3) ,而这个圆锥的高是圆柱高的 错误!,问:圆锥体积是圆柱体积的几分之几?8、如图,一个胶水瓶,它的瓶身呈圆柱形(不包括瓶颈),容积为32.4立方厘米。
当瓶子正放时,瓶内胶水液面高为8厘米;瓶子倒放时,空余部分高为2厘米。
请你算一算,瓶内胶水的体积是多少立方厘米? (5分)【提高练习】【例题1】如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米? (π取3.14)1110.511.5【解析】从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.84⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【例题2】有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【解析】涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为【例题3】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【解析】圆的直径为:()16.561 3.144÷+=(米),而油桶的高为2个直径长,即为:428(m)⨯=,故体积为100.48立方米.【变式】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米? (π 3.14=)【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:2π1062.8⨯⨯=(厘米),原来的长方形的面积为:10462.81022056⨯+⨯⨯=()()(平方厘米).【例题4】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.562 6.28÷=厘米,底面半径为6.28 3.1421÷÷=厘米,所以原来的圆柱体的体积是2π188π25.12⨯⨯==(立方厘米).【变式】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【解析】圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.高缩短4厘米,表面积就减少50.24平方厘米.阴影部分的面积为圆柱体表面积减少部分,值是50.24平方厘米,所以底面周长是50.24412.56÷=(厘米),侧面积是:12.5612.56157.7536⨯=(平方厘米),两个底面积是:()23.1412.56 3.142225.12⨯÷÷⨯=(平方厘米).所以表面积为:157.753625.12182.8736+=(平方厘米).【例题5】一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm ,则这个圆柱体木棒的侧面积是________2cm .(π取3.14)第2题【解析】根据题意可知,切开后表面积增加的就是两个长方形纵切面.设圆柱体底面半径为r ,高为h ,那么切成的两部分比原来的圆柱题表面积大: 2222008(cm )r h ⨯⨯=,所以2502(cm )r h ⨯=,所以,圆柱体侧面积为: 22π2 3.145023152.56(cm )r h ⨯⨯⨯=⨯⨯=.【变式】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)【解析】圆柱切开后表面积增加的是两个长方形的纵切面,长方形的长等于圆柱体的高为10厘米,宽为圆柱底面的直径,设为2r ,则210240r ⨯⨯=,1r =(厘米).圆柱体积为:2π11030⨯⨯=(立方厘米).【例题6】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【解析】这是一个半圆柱体与长方体的组合图形,通过分割平移法可求得表面积和体积分别为:11768平方厘米,89120立方厘米.【例题7】一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______立方厘米.(π取3.14)8(单位:厘米)4106【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为6厘米的圆柱,空气部分构成高为1082-=厘米的圆柱,瓶子的容积为这两部分之和,所以瓶子的容积为:24π()(62) 3.1432100.482⨯⨯+=⨯=(立方厘米).【变式1】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米? 合多少升?26【解析】由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余62.172=毫升0.062172=升.【变式2】一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少? (π取3)253015【解析】观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm,因为酒瓶深30cm,这样所剩空间为高5cm的圆柱,再加上原来15cm高【变式3】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【解析】由已知条件知,第二个图上部空白部分的高为752cm-=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米.【变式4】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积【例题8】如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【解析】在水中的木块体积为55375÷=(厘⨯⨯=(立方厘米),拿出后水面下降的高度为7550 1.5米)【例题9】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【解析】根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米);(法2):设水面上升了x厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)=+,x x 解得:2+=(厘米).x=,8210(提问”圆柱高是15厘米”,和”高为12厘米的长方体铁块”这两个条件给的是否多余? )【变式】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【解析】根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶例可知,钢材的长是水面下降高度的16倍.。