微积分常用公式及运算法则(上)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用一次近似式: ex ≈ x +1; sin x ≈ x; tan x ≈ x; (1+ x)a ≈ 1+ ax; ln(1+ x) ≈ x;
拉格朗日定理: 若f (x) ∈ C[a, b],并且f ∈ D(a,b), 那么至少存在一点ξ ∈ (a,b),使 f (b) − f (a) = f ′(ξ )(b − a)
=
0ab⋯00 ⋯⋯当当mm=<nn ∞⋯⋯当m > n
设 lim u →u0ຫໍສະໝຸດ f(u)=
A,
lim
x → x0
u
(
x
)
=
u0
,
且u
(
x)
≠ u0
则 lim f [u(x)] = lim f (u) = A
x → x0
u →u0
重要极限:
lim
x→0
sin x
x
= 1 sin
x
<
x
<
tan
x
x

f (n) (0) xn + f (n+1) (θ x) xn+1
n!
(n +1)!
f (x) = ex 的 n 阶泰勒公式:
ex = 1+ x + 1 x2 +⋯ + 1 xn + eθ x xn+1
2!
n! (n +1)!
(0 < θ < x)
带有佩亚诺余项的泰勒公式: 如果函数f (x)在含有x0的开区间(a,b)内具有 直道n +1阶的导数,且f (n+1) (x)在(a, b)内有界 则f (x)在(a, b)内有n阶带有佩亚诺余项的泰 勒公式:
2
2
2 1 + cosα
α tan
=
sin α
= 1− cosα ;
2 1+ cosα sinα
sin

=
2 tanα 1+ tan2 α

cos 2α
=
1− 1+
tan2 α tan2 α

tan 2α = 2 tanα ; sin2 α + cos2 α = 1 1− tan2 α
结合律 (A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C);
0,
π 2
1
lim nn = 1
n→∞
1
lim x x = 1
x→+∞
lim
x→∞
1
+
1 x x
=
e,
lim
x→∞
1

1 x x
=
1 , lim (1+
e x→0
1
x)x
=e
等价无穷小: 当x → 0时, x ∼ sin x ∼ tan x ∼ arcsin x ∼ arctan x ∼ ln(1+ x) ∼ ex −1; 1− cos x ∼ x2 ;(1+ x)a −1 ∼ ax(a ≠ 0);
1+ tan2 α = sec2 α 1+ cot2 α = csc2 α
y = cosh x = ex + e−x ( y > 1) , 2
积化和差:
sin α

cos
β
=
1 2
sin

+
β
)
+
sin


β
)
cosα
⋅ sin
β
=
1 2
sin

+
β
)

sin (α

β
)
sin α
⋅ sin
β
P(x),Q(x)为多项式,当Q(x) ≠ 0,有
lim
P(x)
=
lim
x → x0
P(x)
=
P(x0 )
x→x0 Q( x)
lim Q(x)
x → x0
Q(x0 )
对有理分式函数在无穷大处的极限,有
当a0, b0 ≠ 0时,
lim
x→∞
a0 xm + a1xm−1 + ⋯ + am b0 xn + b1xn−1 +⋯ + bn
d(C) = 0 d x,
d(xµ ) = µ xµ−1 d x,
d(ax ) = ax ln a d x
d(ex ) = ex d x
d(ln x) = 1 d x x
d(loga
x)
=
1 x ln
a
d
x
d(sin x) = cos x d x
d(cos x) = − sin x d x
d(tan x) = sec2 x d x
分配律 A ∩ (B ∪ C) = ( A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = ( A ∪ B) ∩ (A ∪ C); ( A ∪ B)c = Ac ∩ Bc ,
对偶律
( A ∩ B)c = Ac ∪ Bc ;
初等函数:
双曲正弦、余弦、正切及运算
y = sinh x = ex − e−x (−∞ < y < +∞) , 2
微积分常用公式及运算法则
常用三角公式: sin 2α = 2sinα cosα ;
cos 2α = cos2 α − sin2 α = 2 cos2 −1 = 1− 2sin2 α
tan 2α
=
2 tanα 1− tan2 a
; sin 2
α 2
=
1− cosα 2

cos2 α = 1 + cosα ; tan 2 α = 1 − cosα ;
d(cot x) = − csc2 x d x
d(sec x) = sec xitan x d x
d(csc x) = − csc xicot x d x
d(arcsin x) = 1 d x 1− x2
d(arccos x) = − 1 d x 1− x2
d(arctan
x)
=
1 1+ x2
d
x
d(arccot
然后两端对x求导,得
y′ = v′(x) ln u(x) + v(x)u′(x)
y
u(x)
参数方程求导:
若对参数方程
x y
= =
ϕ φ
(t) (t)
求导,则有
dy
dy dx
=
d yidt dt dx
=
dt dx
=
φ ′(t ) ϕ ′(t )
dt
高阶导数:
(xn )(n) = n!
1 x
(n)
那么对于x ∈ (a,b),有
f
(x)
=
f
(x0 ) +
f ′(x0 )(x −
x0 ) +
1 2!
f
′′(x0 )(x −
x0 )2
+⋯+
1 n!
f
(n) (x0 )(x

x0 )n
+
Rn (x)
其中
Rn (x) =
f (n+1) (ξ ) (n +1)!
(
x

x0
)n+1,
Rn (x)称为拉格朗日余项, 这里ξ是x0与x之间的某个值
u v

=
u′v − uv′ v2
设x = ϕ ( y),它的反函数是y = f (x),则有
f
′( x)
=
1 ϕ′( y)
链式求导法则:d y = d y id u dx du dx
对数求导法则:
求幂指函数y = [u(x)]v(x)的导数时,
可先取对数,得 ln y = v(x) ln u(x),
a2
(n)
=
(−1)n n! 2a (x
1 − a)n+1

(x
1 + a)n+1
∑n
(uv)(n) = Cnku(n−k )v(k )
k =0
3
微分定义:
d y = f ′(x)∆x = f ′(x) d x
微分求近似值(线性逼近或一次近似):
∆y ≈ d yx = x0 + ∆x f (x0 + ∆x) ≈ f (x0 ) + f ′(x0 )∆x 令x = x0 + ∆x得, f (x) ≈ f (x0 ) + f ′(x0 )(x − x0 )
(csc x)′ = − csc xicot x
(arcsin x)′ = 1 1− x2
(arccos x)′ = − 1 1− x2
(arctan x)′ = 1 1+ x2
(arccot
x)′
=

1
1 + x2
2
(sinh x)′ = cosh x (cosh x)′ = sinh x
微分公式:
=
(−1)n n! x n +1
(ex )(n) = ex
(sin
x)(n)
=
sin
x
+
nπ 2
(cos)(n)
=
cos
x
+
nπ 2
[ln(1 +
x)](n)
=
(−1)(n−1)
(n −1)! (1+ x)n
当x
>
−1
(αu + β v)(n) = αu(n) + β v(n)
x2
1 −
sinh 2x = 2sinh x • cosh x, cosh 2x = cosh2 x + sinh2 x, cosh2 x − sinh2 x = 1.
集合的并、交、余运算律: 交换律 A ∪ B = B ∪ A, A ∩ B = B ∩ A;
1
极限的运算法则: 设 lim f (x) = A, lim g(x) = B, 那么 lim[ f (x) ± g(x)] = A ± B = lim f (x) ± lim g(x) lim[ f (x)g(x)] = AB = lim f (x) • lim g(x) lim f (x) = A = lim f (x) (其中B ≠ 0)
x)
=

1 1+ x2
d
x
d(sinh x) = cosh x d x
d(cosh x) = sinh x d x
求导法则:
(u + v)′ = u′ + v′ (αu + β v)′ = αu′ + β v′ (uv)′ = u′v + uv′ (uvw)′ = u′vw + uv′w + uvw′
柯西中值定理: 若f , g ∈C[a,b],并且f , g ∈ D(a,b),在(a,b)内 g(x) ≠ 0, 那么至少存在一点ξ ∈ (a,b),使 f (b) − f (a) = f ′(ξ ) g(b) − g(a) g′(ξ )
泰勒中值定理:
如果函数f (x)在含x0的某个开区间(a, b) 内具有(n +1)阶导数,即f ∈ Dn+1(a,b),
2 ax −1 ∼ x ln a(a > 0, a ≠ 1).
函数连续性:
lim
x → x0
f
(x) =
f (x0 )
导数定义:
f ′(x) = lim ∆y = lim f (x + ∆x) − f (x)
∆x ∆x→0
∆x→0
∆x
f ′(x0 ) = f ′(x) |x=x0
求导公式:
(C)′ = 0,
2 1− x
和差化积:
sinα + sin β = 2sin α + β ⋅ cos α − β
2
2
sin α
− sin
β
=
α 2 cos
+
β
⋅sin α

β
2
2
cosα
+ cos β
=
α 2 cos
+
β
⋅ cos α

β
2
2
cosα + cos β = −2sin α + β ⋅sin α − β
2
2
sinh(x + y) = sinh x • cosh y + cosh x • sinh y, cosh(x + y) = cosh x • cosh y + sinh x • sinh y, sinh(x − y) = sinh x • cosh y − cosh x • sinh y, cosh(x − y) = cosh x • cosh y − sinh x • sinh y
=
1 2
cos


β
)

cos (α
+
β
)
cosα
⋅ cos β
=
1 2
cos (α
+
β
) + cos (α

β
)
y
=
tanh
x
=
sinh x cosh x
=
ex ex
− +
e−x e− x
(−1
<
y
< 1)
y = ar sinh x = ln(x + x2 +1), (x ∈ R, y ∈ R) y = ar cosh x = ln(x + x2 −1), (x ≥ −1, y ≥ 0) y = ar tanh x = 1 ln 1+ x , (−1 < x < 1, y ∈ R)
g(x) B lim g(x)
设 lim fi (x) = Ai ,i = 1, 2,⋯, n, 那么对ki ∈ R, i = 1, 2,⋯n,有 lim[k1 f1(x) + k2 f2 (x) +⋯ + kn fn (x)] = k1A1 + k2 A2 +⋯ + kn An , lim[ f1(x) f2 (x)⋯ fn (x)] = A1A2 ⋯ An
2!
n!
sin x = x − 1 x3 + 1 x5 −⋯ 3! 5!
f (x) =
f
(x0 ) +
f ′(x0 )(x − x0 ) +
1 2!
f ′′(x0 )(x − x0 )2
+⋯+
1 n!
f
(n)
(x0 )(x

x0 )n
+
o((x

x0 )n ).
常见的基本初等函数的带有佩亚诺余项的麦 克劳林公式:
ex = 1+ x + 1 x2 +⋯+ 1 xn + o(xn )
(xµ )′ = µ xµ −1,
(ax )′ = ax ln a
相关文档
最新文档