自动控制原理实验报告线性系统的频域分析讲述

合集下载

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析实验三线性系统的频域分析一、实验目的1.掌握用MATLAB语句绘制各种频域曲线。

2.掌握控制系统的频域分析方法。

二、基础知识及MATLAB函数频域分析法是应用频域特性研究控制系统的一种经典方法。

它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。

采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。

1.频率曲线主要包括三种:Nyquist图、Bode图和Nichols图。

1)Nyquist图的绘制与分析MATLAB中绘制系统Nyquist图的函数调用格式为:nyquist(num,den) 频率响应w的范围由软件自动设定 nyquist(num,den,w) 频率响应w的范围由人工设定[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图2s?6例4-1:已知系统的开环传递函数为G(s)?3,试绘制Nyquists?2s2?5s?2图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; nyquist(num,den)极点的显示结果及绘制的Nyquist图如图4-1所示。

由于系统的开环右根数P=0,系统的Nyquist曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。

p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668图4-1 开环极点的显示结果及Nyquist图若上例要求绘制??(10?2,103)间的Nyquist图,则对应的MATLAB语句为:num=[2 6]; den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。

Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率?的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。

自动控制原理实验报告线性系统的频域分析讲述

自动控制原理实验报告线性系统的频域分析讲述

武汉工程大学实验报告专业 自动化 班号 组别 指导教师 姓名 同组者实验名称 线性系统的频域分析 实验日期 2016/4/4 第 5 次实验一、实验目的1.掌握用MATLAB 语句绘制各种频域曲线。

2.掌握控制系统的频域分析方法。

二、实验内容1.典型二阶系统2222)(nn ns s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。

解: 程序如下:num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid holdbode(num,den2,w)bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)-100-80-60-40-20020M a g n i t u d e (d B)101010101010P h a s e (d e g )Bode DiagramFrequency (rad/sec)分析:随着.0=ζ的增大,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为)5)(15(10)(2+-=s s s s G)106)(15()1(8)(22++++=s s s s s s G )11.0)(105.0)(102.0()13/(4)(++++=s s s s s s G绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。

解: 程序如下 奈氏曲线:(1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100);nyquist(num1,den1,w)-80-60-40-2020406080Nyquist DiagramReal AxisI m a g i n a r y A x i s(2) num2=[8,8];den2=conv([1,0],conv([1,0],conv([1,15],[1,6,10]))); w=logspace(-1,1,100);nyquist(num2,den2)-0.25-0.2-0.15-0.1-0.0500.050.10.150.20.25Nyquist DiagramReal AxisI m a g i n a r y A x i s(3) num3=[4/3,4];den3=conv([1,0],conv([0.02,1],conv([0.05,1],[0.1,1])));w=logspace(-1,1,100); nyquist(num3,den3)Nyquist DiagramReal AxisI m a g i n a r y A x i s分析:系统1,2 不稳定,系统3稳定。

线性系统频域分析实验报告

线性系统频域分析实验报告

实验三、线性系统的频域分析法一,实验目的1,掌握matlab绘制波特图以及奈奎斯特图的方法。

2,学会从波特图以及奈奎斯特图判定系统的稳定性。

3,学会从波特图上求系统的稳定裕度。

4,了解k值变化时对波特图幅频和相频曲线的影响。

5,掌握matalab绘制系统零极点分布图的方法。

6,学会从系统的零极点分布图判断系统的稳定性。

二,实验原理1,从奈奎斯特图判定系统是否稳定的原理奈式稳定判据:反馈控制系统稳定的充分必要条件是半闭合曲线ΓGH不穿过(-1,0j)点,且逆时针包围临界点(-1,0j)点的圈数R 等于开环传递函数正实部极点数P具体方法是,先观察系统传递函数得出系统是否在s平面的右半开平面由极点,得出P的值,在观察曲线从(-1,0j)点右侧穿越的次数,其中自上而下为正穿越,自下而上为负穿越,完整的一次穿越记为N 半次穿越记为0.5N,R=2N=2(N+ -N-) 而Z=P-R,观察Z是否为零,Z 为零则系统是稳定的,Z不为零时则系统是不稳定的。

2,从波特图判定系统是否稳定的原理。

从奈奎斯特稳定判定我们可以知道,要判定系统是否稳定就要观察曲线穿越(-1,0j)点次数,对应在波特图中,当取w=wc时,要满足A(wc)=|G(jwc)H(jwc)|=1 L(wc)=20logA(wc)=0因此wc为分界点,对应到相频曲线上,观察在w<wc时曲线穿越-180度的次数。

然后计算方法和上面相同,既可以判定系统的稳定性。

3,根据系统的零极点分布判断系统稳定性的原理三,实验内容A、设单位负反馈系统的开环传递函数为K(S+1)/S(S+2)(S^2+17S+4000) 其中K=1000(1)绘制波特图。

(2)观察绘制出的bode 图,分析系统的稳定性,并在图上求稳定裕度;(3)绘制K=2000 时系统的bode 图,分析曲线的改变情况,并分析K 值变化时,对系统幅频响应和相频响应的影响。

分析:1,绘制波特图matlab 文本命令为:s=tf(‘s’);G=1000*(s+1)/(s*(s+2)*(s^2+17*s+4000))Bode(G)Grid onMargin(G),2,绘制出的波形为2,由于传递函数中可知v=1所以要在相频中增补从-90度到0度的相频曲线,由波特图可以看出当L(w)=0dB时对应的频率值为wc,在w<wc 时,在相频曲线中没有穿越-180度,所以可以知道R=0,又由传递函数可以知道P=0,所以Z=0,从而我们知道系统此时是稳定的,由裕度函数我们可以在图中求出幅值裕度Gm=36.7dB,相角裕度Pm=93.5度.剪切频率wc=0.126rad/s.3,改变系统的k值,令k=2000绘制此时的波特图,matlab文本命令为;s=tf(‘s’);G=2000*(s+1)/(s*(s+2)*(s^2+17*s+4000))Bode(G)margin(G)grid on得到系统的波特图为:由波特图可以看出,当k值变大后,对相频曲线没有影响,因为k环节不提供相角,而对于幅频曲线来说当k值变为2000后相当于整个曲线向上平移了20lg2,从而使得幅值裕度和相角裕度改变了,幅值裕度为Gm=30.7dB,相角裕度为Pm=97度,剪切频率wc=0.256rad/s.B,设单位负反馈的开环传递函数为G(s)=10/(s+5)/(s-1)(1)绘制系统的Nyquist 曲线(2)分析系统的稳定性(3)根据系统的闭环零极点的分布图来分析系统的稳定性,和(2)得到的结果比较;1,绘制Nyquist 曲线的matlab文本命令为:num=10;den=conv([1 5],[1 -1]);nyquist(num,den)绘制出的图形为:2,分析系统的稳定性,当w趋于零时G(Jw)等于-2所以曲线的起点在(-2,0j),由曲线我们可以看出,曲线在(-1,0j)左边有半次自上而下的正穿越所以N+=0.5,N=2(N+-N-)=1,所以R=1,由系统的传递函数可以知道P=1,所以Z=P-R=0,从而得出系统是稳定的。

自控实验3--线性控制系统的频域分析

自控实验3--线性控制系统的频域分析

北京XX大学实验报告课程(项目)名称:线性控制系统的频域分析学院:专业:姓名:学号:指导教师:成绩:2013年12 月12 日实验三 线性控制系统的频域分析3. 1 频率特性测试一.实验目的1.了解线性系统频率特性的基本概念。

2.了解和掌握对数幅频曲线和相频曲线(波德图)的构造及绘制方法。

二.实验内容及步骤被测系统是一阶惯性的模拟电路图见图3-1,观测被测系统的幅频特性和相频特性,填入实验报告,並在对数座标纸上画出幅频特性和相频特性曲线。

本实验将正弦波发生器(B5)单元的正弦波加于被测系统的输入端,用虚拟示波器观测被测系统的幅频特性和相频特性,了解各种正弦波输入频率的被测系统的幅频特性和相频特性。

图3-1 被测系统的模拟电路图实验步骤:(1)将函数发生器(B5)单元的正弦波输出作为系统输入。

① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘正弦波’(正弦波指示灯亮)。

② 量程选择开关S2置下档,调节“设定电位器2”,使之正弦波频率为8Hz (D1单元右显示)。

③ 调节B5单元的“正弦波调幅”电位器,使之正弦波振幅值输出为2V 左右(D1单元左显示)。

(2)构造模拟电路:按图3-1安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线(3)运行、观察、记录:① 运行LABACT 程序,在界面的自动控制菜单下的线性控制系统的频率响应分析实验项目,选择时域分析,就会弹出虚拟示波器的界面,点击开始,用示波器观察波形,应避免系统进入非线性状态。

②点击停止键后,可拖动时间量程(在运行过程中,时间量程无法改变),以满足观察要求。

示波器的截图详见虚拟示波器的使用。

三.实验报告要求:按下表改变实验被测系统正弦波输入频率:(输入振幅为2V)。

实验截图:频率为1Hz时:频率为1.6Hz时:频率为3.2Hz时:频率为4.5Hz时:频率为8Hz时:3.2 一阶惯性环节的频率特性曲线一.实验目的1.了解和掌握一阶惯性环节的对数幅频特性)(ωL 和相频特性)(ωϕ,实频特性)Re(ω和虚频特性)Im(ω的计算。

自动控制原理课件:线性系统的频域分析

自动控制原理课件:线性系统的频域分析
曲线顺时针方向移动一周时,在 平面上的映射曲线按逆时针方向
包围坐标原点 − 周。
m
F (s)
K1 ( s z j )
j 1
n

i 1
( s pi )
24
• 02
基本概念
m
1 G ( s) H ( s) F ( s)
K1 ( s z j )
j 1
在 平面上的映射曲线 F 1 G ( j ) H ( j )将按逆时针方向
围绕坐标原点旋转 = − 周。
如果在s平面上,s沿着奈奎斯特回线顺时针方向移动一周时,
在 平面上的映射曲线围绕坐标原点按逆时针方向旋转 =
周,则系统为稳定的。
26
根据
( 1, j 0)
L( ) 20 lg K 20 lg 1 12 2 20 lg 1 22 2
( ) arctg 1 arctg 2
τ2
20dB / dec 1
2

L3 ( )
L2 ( )
40dB / dec
( )
0
L( )

90
A( ) 1, ( )
L ( ) 20 lg A( ) 0
L( )
jQ( )
L( ) 0
0
( )
1
0
1
P( )
1

0


30

60
16
5.3
系统开环频率特性图
设开环系统由n个典型环节串联组成
G(s ) G 1(s )G 2(s ) G n(s )
这意味着 的映射曲线 F 围绕原点运动的情况,相当于

《自动控制原理》Matlab求解控制系统频域分析实验

《自动控制原理》Matlab求解控制系统频域分析实验
频率分析法在自动控制系统的分析中具有许多优点,频域分析不仅可以分析线性定常系统,还可以推广到非线性系统,借助于MATLAB软件来分析系统的频率特性,可以简化分析中的大量计算,直接可以得到需要的性能参数,结合参数和相应的曲线来对系统进行分析。使用MATLAB软件可以精确地绘制出系统的bode图、nyquist曲线和Nichols曲线,使得对系统的分析带来很大的方便
《自动控制原理》Matlab求解控制系统频域分析实验
一、实验目的
1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、Bode图的基本方法。
3、掌握典型环节的频率特性。
二、实验仪器
Matlab2014b版
三、实验原理
1.奈奎斯特图(幅相频率特性图)
MATLAB为用户提供了专门用于绘制奈奎斯特图的函数nyquist
axis([-2,0.4,-1.5,1.5]);
k=500;
num=[1,10];
den=conv([1,0],conv([1,1],conv([1,20],[h,50])));
w=logspace(-1,3,200)
bode(k*num,den,w);
grid;
五、实验原始数据记录与数据处理
六、实验结果与分析讨论
范围是自动确定的。当需要指定幅值范围和相角范围时,则需用下面的功能指令:
[mag,phase,w]=bode(num,den,w)
四、实验内容及步骤
z=[]:
p=[0,-1,-2]:
k=5;
g=zpk(z,p,k):
nyquist(g);
w=0.5:0.1:10:
figure(2):
nyquist(g:w);

控制系统的频域分析实验报告

控制系统的频域分析实验报告

控制系统的频域分析实验报告
摘要:
本实验旨在通过频域分析的方法来研究和评估控制系统的特性和性能。

在实验中,我们采用了频域分析的基本工具——Bode图和Nyquist图,通过对控制系统的幅频特性和相频特性进行分析,得出了系统的稳定性、干扰抑制能力和稳态性精度等方面的结论。

实验结果表明,频域分析是评估和优化控制系统的一种有效方法。

一、引言
频域分析是控制系统分析中常用的一种方法,通过对系统的频率响应进行研究,可以揭示系统的动态特性和性能,为控制系统的设计和优化提供指导。

在本实验中,我们将利用频域分析方法对一个具体的控制系统进行分析,通过实验验证频域分析的有效性。

二、实验装置和方法
实验所用控制系统包括一个控制对象(如电动机或水流系统)和一个控制器(如PID控制器)。

在实验中,我们将通过改变输入信号的频率来研究系统的频率响应。

实验步骤如下:
1. 连接实验装置,确保控制系统可正常工作。

2. 设计和设置适当的输入信号,包括常值信号、正弦信号和随
机信号等。

3. 改变输入信号的频率,记录系统的输出信号。

4. 利用实验记录的数据,绘制系统的幅频特性曲线和相频特性
曲线。

三、实验结果与讨论
根据实验记录的数据,我们绘制了控制系统的幅频特性曲线和
相频特性曲线,并对实验结果进行了分析和讨论。

1. 幅频特性分析
幅频特性曲线描述了控制系统对不同频率输入信号的增益特性。

在幅频特性曲线中,频率越高,输出信号的幅值越低,说明系统对
高频信号具有抑制作用。

第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】

第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】

)2
A(0) 1 (0) 0
G(jn )
A() 0 () 180
j
G(j0)

0
G(jn )
共振点
G( jn ) (n ) 0 G( jn ) (n ) 180
变化趋势 0 n () 0 , A() :1
n () 180 , A() : 0
零阻尼振荡环节在自然振荡频率处,相角突变180°。
A()
谐振现象是振荡系统的 特性,谐振频率 r 与系 统固有频率 n 和阻尼比
有关。当谐振频率等于
频率响应峰值
Mr 1/ (2 1 2 )
阶跃响应超调
p exp( / 1 2 )
固有频率时,则发生共振。
共振的危害巨大。
当阻尼比较小,且系统谐振频率处于输入信号的
频率范围时,系统输出会出现很大的振荡,影响系
5.2 典型环节与开环系统的频率特性
环节是系统的基本组成单元。將环节进行分类形成 典型环节。典型环节的频率特性是开环系统频率特性 的分解,而开环系统频率特性是闭环系统分析与设计 的基础。
一、典型环节的频率特性
1.典型环节的分类
环节:系统增益、零点或极点对应的因式
分类:按照增益的正负性、零点或极点的位置(实数 或复数、位于左半平面或右半平面)进行划分,共分 为最小相位、非最小相位两大类、12种典型环节。
设互为倒数的典型环节频率特性为
G1(j)=A1()e j1() G2 (j) =A2 ()e j2 ()
则由 G1(s) 1/ G2 (s) 得
A1()e j1 ( ) =A21()e j2 ( )
L1() L2 ()
互为倒数典型环节的对数相频曲线关于0°线对称, 对数幅频曲线关于0dB线对称。

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。

(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。

非最小相位环节的频率特性。

(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。

单环系统开环对数频率持性的求取与绘制。

最小相位系统开环对数幅频特性与相频特性间的对应关系。

(4)奈奎斯特稳定判据幅角定理。

S平面与F平面的映射关系。

根据开环频率特性判别闭环系统稳定性的奈氏判据。

奈氏判据在多环系统中的应用和推广。

系统的相对稳定性。

相角与增益稳定裕量。

(5)二阶和高阶系统的频率域性能指标与时域性指标。

系统频率域性能指标。

二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。

(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。

用等M圆线从开环频率特性求取闭环频率特性。

用尼氏图线从开环对数频率特性求取闭环频率特性。

2、重点(l)系统稳态频率响应和暂态时域响应的关系。

(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。

(3)奈奎斯特稳定判据和稳定裕量。

5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。

频域分析是控制理论的一个重要分析方法。

5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。

实验四 线性系统的频域分析

实验四 线性系统的频域分析

实验四线性系统的频域分析
线性系统的频域分析是一种利用线性系统的响应特性来提高系统性能的有效手段,它
在系统设计中起着重要的作用。

其主要思想是将系统的响应特性根据其与频率之间的关系
进行分割,从而更好地理解该响应的物理规律。

本文的目的是介绍线性系统的频域分析方法。

线性系统的频域分析分为时域分析和频域分析两种技术。

时域分析是检测一个系统在
其他变量没有变化时,系统输出信号形状及其随时间变化趋势的一种分析方法。

时域分析中,将系统的输入和输出逐样本放入示波器进行分析及测试。

频域分析是通过将系统的输
入和输出信号进行频谱分析,将它们映射到频率轴上进行分析的一种方法。

在频域分析中,我们可以通过频谱分析仪、傅里叶变换、系统增益、阶跃响应等技术来检测系统响应的特性,得出系统的频率响应函数,从而研究系统是否属于线性系统。

线性系统的频域分析一般步骤如下:
1、定义时域函数并将其傅里叶变换,从而得到其频域函数;
2、计算系统的增益及其全频响应曲线,以便了解频率和增益之间的关系;
3、根据阶跃响应的拟合结果,利用积分和微分的技巧,确定系统的阶跃函数;
4、选择优化算法,进行系统参数优化调整,使系统达到所需要的设计目标。

以上就是线性系统的频域分析方法介绍,从分析输入输出信号,到频域拟合分析,再
到进行参数优化调整,这一系列的步骤可以帮助我们更好的理解系统的物理机理,实现系
统的最佳设计性能。

自动控制原理第五章线性系统的频域分析

自动控制原理第五章线性系统的频域分析

第五章 线性系统的频域分析例5-1 已知一控制系统结构图如图5-1所示,当输入r (t ) = 2sin t 时,测得输出c (t )=4sin(t -45︒),试确定系统的参数ξ ,ωn 。

图5-1 系统结构图解:系统闭环传递函数为222()2nn ns s s ωΦξωω=++ 系统幅频特性为2()j Φω相频特性为222arctan)(ωωωξωωϕ--=nn由题设条件知c (t ) = 4sin( t -45︒) =2 A (1) sin(t + ϕ(1)) 即122222224)()1(=+-=ωωωξωωωnnnA 24)1(22222=+-=nnnωξωω1222arctan)1(=--=ωωωωξωϕn n ︒-=--=4512arctan2n nωξω整理得]4)1[(422224n n n ωξωω+-= 122-=n n ωξω解得 1.244n ω=,0.22ζ=例5-2 已知系统传递函数为)5.0)(2()52(10)(2-++-=s s s s s G ,试绘制系统的概略幅相特性曲线。

解:(1)传递函数按典型环节分解)15.0)(12()1)5(51251(50)(2+-++--=s s s s s G(2)计算起点和终点50)(lim 0-=→ωωj G ,10)(lim =∞→ωωj G相角变化范围:不稳定比例环节-50:-180︒ ~ -180︒;惯性环节1/(0.2s +1):0︒~ -90︒;不稳定惯性环节1/(-2s +1):0︒~ +90︒;不稳定二阶微分环节0.2s 2-0.4s +1:0︒~ -180︒(3)计算与实轴的交点22222)5.1()1()5.11)(25(10)(ωωωωωωω++-----=j j j G2222222)5.1()1()]5.35.5(3)1)(5([10ωωωωωωω+++-+++--=j(4) 确定变化趋势 根据G (j ω)的表达式,当ω <ωx 时,I m [G (j ω)] < 0;当ω >ωx 时,I m [G (j ω)] > 0。

自动控制原理第五章 线性系统的频域分析法-5-1

自动控制原理第五章 线性系统的频域分析法-5-1
如同声音、图像一样,任一信号都可以表示为不同频率正弦信号的合成
如同收音机、电视机一样,任一系统的频率响应反映系统的频率特性,体现系统的控制性能。
系统频率特性物理意义明确。应用频率特性分析研究系统性能的方法称为频域分析法。
控制系统的频域分析法兼顾动态响应和噪声抑制的要求,可以拓展应用于非线性系统。
频率特性定义
分别称为系统的幅频特性和相频特性。
系统数学模型间的关系
控 制 系 统
傅氏变换
拉氏变换
g(t)
数学建模
例5.1-1
图示系统,设输入为r(t)=sin(5t),计算系统的频率响应和稳态误差。

1
2
3
4
5
6
7
8
9
10
20
100
1
2
3
4
5
6
7
8
9
10
0
0.301
0.477
0.602
0.699
0.788
0.845
0.903
0.954
1
十倍频程
两倍频程
0.1
0.2
200
十倍频程
十倍频程
对数坐标的单位长度
⑶ 对数频率特性曲线
对数幅频特性曲线 纵坐标: ,线性刻度,单位为分贝(dB) 横坐标:ω ,对数刻度,单位为弧度/秒(rad/s)
绘制一阶系统幅相频率特性曲线
解:系统频率特性为
且有

复平面上位于第Ⅳ象限圆心为(1/2,j0),半径为1的半圆。
箭头表示随ω增加,曲线的运动方向
2. 对数频率特性曲线(对数坐标图、伯德(Bode)图)
⑴ 频率特性的常用对数函数

系统频域分析实验报告

系统频域分析实验报告

系统频域分析实验报告1. 引言系统频域分析是一种用于研究线性时不变系统的方法,通过对系统的输入和输出信号在频域上的分析,可以得到系统的频率响应特性。

本实验旨在通过实际测量和分析,了解系统频域分析的基本原理和方法。

2. 实验设备和原理2.1 实验设备本实验所用设备包括: - 函数发生器 - 数字示波器 - 电阻、电容和电感等被测元件 - 电缆和连接线等连接配件2.2 实验原理系统频域分析是基于傅里叶变换的原理,通过将时域上的信号转换到频域上进行分析。

在本实验中,我们将使用函数发生器产生不同频率和幅度的正弦信号作为输入信号,通过被测系统输出的信号,使用数字示波器进行采集和分析。

3. 实验步骤3.1 连接实验设备将函数发生器的输出端与被测系统的输入端相连,将被测系统的输出端与数字示波器的输入端相连,确保连接正确可靠。

3.2 设置函数发生器调整函数发生器的频率、幅度和波形等参数,以产生不同频率和幅度的正弦信号作为输入信号。

3.3 采集数据使用数字示波器对被测系统的输出信号进行采集和记录。

可以选择适当的采样频率和采样时间,确保得到足够的数据点。

3.4 数据分析使用计算机软件或编程语言,对采集到的数据进行频域分析。

可以使用离散傅里叶变换(DFT)等方法,将时域上的信号转换到频域上,得到信号的频谱图。

3.5 分析结果根据得到的频谱图,可以分析出被测系统的频率响应特性。

可以通过找到频率响应曲线的极值点、截止频率等特征,来判断系统的性能和特点。

4. 实验结果和讨论4.1 频谱图展示根据采集到的数据和进行频域分析的结果,绘制出被测系统的频谱图。

4.2 频率响应特性分析根据频谱图的分析结果,可以得到被测系统的频率响应特性。

比如,可以观察到系统在不同频率下的增益特性、相位特性等。

4.3 讨论实验误差在实际实验中,可能存在各种误差的影响。

可以对实验误差进行分析和讨论,比如测量误差、系统本身的非线性特性等。

5. 结论通过本实验,我们了解了系统频域分析的基本原理和方法。

自动控制原理第五章线性系统的频域分析

自动控制原理第五章线性系统的频域分析
1 a
AT 2
a
Ts 1 s2
2
(Ts 1)
s 1
T
1 T 2 2
U0 (t)
e a
t
T
T
d1e jt
d 2e jt
lim
t
U
0
(t
)
d1e jt
d 2e jt
A sin( t arctgT)
1T2 2
这里应用欧拉公式 sin e j e j
2j
说明:
1.网络的稳态输出仍是正弦电压, 其频率与输入电压相同,
(1,j0)
8.延时环节
G(S) e-s
G(j) e-j cos - jsin
=0
u() cos v() -sin
| G(j) | 1 G(j) -
u 2 () v2 () 1
极坐标图为一 9.不稳定环节
单位圆, 端点在单
位圆上无
限循环
Im
G(S)
1 TS -1
G(j
) 1 jT-1
G(s)
(1) 向量作图法
C( j ) G( j ) A( )e j () R( j) 1 G( j)
在开环频率响应G( j)Nyquist图中
G( j1 ) (1 )
QA 1 G( j1 ) [1 G( j1 )] (1 )
Im
A(1 )
G( j1 ) 1 G( j1 )
OA QA
幅值是输入电压的1 1T 22 (幅频特性), 相角比输入电压
滞后- arctgT (相频特性).
2. e e 1
- jarctgT
1T2 2
1
j 1(1 jT )
1 jT

自动控制原理实验报告(实验一,二,三)分析

自动控制原理实验报告(实验一,二,三)分析

自动控制原理实验报告实验名称:线性系统的时域分析线性系统的频域分析线性系统的校正与状态反馈班级:学号:姓名:指导老师:2013 年12 月15日典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。

改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。

图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。

① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。

② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。

③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。

(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。

自动控制原理实验六 线性系统的频域分析

自动控制原理实验六 线性系统的频域分析

实验六 线性系统的频域分析一. 实验目的(1)熟练掌握使用MA TLAB 命令绘制控制系统Nyquist 图的方法; (2)能够分析控制系统Nyquist 图的基本规律;(3)加深理解控制系统乃奎斯特稳定性判据的实际应用; (4)学会利用奈氏图设计控制系统;(5)熟练掌握运用MA TLAB 命令绘制控制系统伯德图的方法; (6)了解系统伯德图的一般规律及其频域指标的获取方法; (7)熟练掌握运用伯德图分析控制系统稳定性的方法; (8)设计超前校正环节并绘制Bode 图; (9)设计滞后校正环节并绘制Bode 图。

二. 实验原理及内容 1、频率特性函数)(ωj G 。

频率特性函数为:nn n n m m m m a j a j a j a b j b j b j b jw G ++⋅⋅⋅++++⋅⋅⋅++=---)()()()()()()(1101110ωωωωωω由下面的MATLAB 语句可直接求出G(jw)。

i=sqrt(-1) % 求取-1的平方根GW=polyval(num ,i*w)./polyval(den ,i*w) 2、用MATLAB 作奈魁斯特图。

控制系统工具箱中提供了一个MATLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。

当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为:nyquist(num,den) ;作Nyquist 图,nyquist(num,den,w);作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据)反馈控制系统稳定的充分必要条件是当ω从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数R 等于开环传递函数的正实部极点数。

4、用MATLAB 作伯德图控制系统工具箱里提供的bode()函数可以直接求取、绘制给定线性系统的伯德图。

频域分析综合实验报告

频域分析综合实验报告

一、实验目的1. 理解和掌握频域分析的基本原理和方法。

2. 熟悉MATLAB在频域分析中的应用。

3. 通过实验,深入理解线性系统在频域中的特性。

4. 培养分析和解决实际问题的能力。

二、实验原理频域分析是研究线性系统的一种重要方法,它将时域信号转换到频域进行分析,从而揭示系统在各个频率分量上的响应特性。

频域分析方法主要包括傅里叶变换、拉普拉斯变换、Z变换等。

1. 傅里叶变换:将时域信号转换到频域的数学方法,适用于连续时间信号。

其逆变换可以将频域信号转换回时域。

2. 拉普拉斯变换:将时域信号转换到复频域的数学方法,适用于连续时间信号。

其逆变换可以将复频域信号转换回时域。

3. Z变换:将时域信号转换到离散时间域的数学方法,适用于离散时间信号。

其逆变换可以将离散时间域信号转换回时域。

三、实验内容及步骤1. 实验一:连续时间信号的频域分析(1)利用MATLAB实现连续时间信号的傅里叶变换和逆变换。

(2)绘制信号的时域波形图、频谱图、相位图等。

(3)分析信号的频率成分、幅度、相位等特性。

2. 实验二:离散时间信号的频域分析(1)利用MATLAB实现离散时间信号的离散傅里叶变换(DFT)和离散傅里叶逆变换(IDFT)。

(2)绘制信号的时域波形图、频谱图、相位图等。

(3)分析信号的频率成分、幅度、相位等特性。

3. 实验三:线性系统的频域分析(1)利用MATLAB绘制系统的幅频特性曲线、相频特性曲线。

(2)分析系统的截止频率、带宽、稳定性等特性。

(3)比较不同系统的频域特性,分析其对信号处理的影响。

四、实验结果与分析1. 实验一:通过傅里叶变换,将时域信号转换到频域,可以直观地观察到信号的频率成分、幅度、相位等特性。

例如,对于正弦信号,其频谱图显示只有一个频率分量,且幅度和相位保持不变。

2. 实验二:离散傅里叶变换(DFT)是离散时间信号频域分析的重要工具。

通过DFT,可以将离散时间信号分解为多个频率分量,从而分析信号的频率特性。

自动控制原理第五章 线性系统的频域分析法-5-6

自动控制原理第五章 线性系统的频域分析法-5-6
自 动
5.6 控制系统的频域校正方法

结合校正装置,简要介绍串联校正的设计方法。常
制 原
用校正装置分为无源和有源两大类。
理 1. 串联无源校正 包括无源超前、无源滞后和无源滞
后-超前校正三种。无源校正网络由电阻、电容构成。
⑴ 串联无源超前校正
超前校正网络实现形式
Gc
(s)
U U
c r
( (
s s
) )
a4
制 校验相角裕度
原 理
m
arctan
a 21 a=源自arctan3 4
=36.9
=180 +(c)+m 180 167.2 36.9 49.7
达到相角裕度的要求。由于选择超前校正,校正后开
环幅相曲线与负实轴仍无交点,故幅值裕度无穷大,
自然满足要求。
再由
m
T
1 a
=4.4
T 0.114 s
串联超前校正设计步骤
R(s)
K C(s)
例5.6-1 图示反馈系统
-
s(s 1)
要求系统在 r(t)=t 1(t) 时,
稳态误差 e ss 0 .1 ra d ,截止频率 c 4 .4 ra d / s 相角
裕度 4 5 幅值裕度 h d B 1 0 d B ,试设计串联无
源超前网络。
5
Page: 5
自 解:① 设计开环增益,满足稳态要求

控 未校正系统为Ⅰ型系统。在单位斜坡输入下,由

1
原 理
ess K 0.1
K 10
T 为a的减函数 m 为a的增函数
② 校验待校正系统频域指标 由 L(m) 为a的增函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉工程大学实验报告
专业 自动化 班号 组别 指导教师 姓名 同组者
实验名称 线性系统的频域分析 实验日期 2016/4/4 第 5 次实验
一、实验目的
1.掌握用MATLAB 语句绘制各种频域曲线。

2.掌握控制系统的频域分析方法。

二、实验内容
1.典型二阶系统
2
2
22)(n
n n
s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。

解: 程序如下:
num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold
bode(num,den2,w)
bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)
-100-80-60-40-200
20M a g n i t u d e (d B
)10
10
10
10
10
10
P h a s e (d e g )
Bode Diagram
Frequency (rad/sec)
分析:随着.0=ζ的增大
,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为
)
5)(15(10
)(2+-=
s s s s G
)
106)(15()
1(8)(2
2++++=
s s s s s s G )
11.0)(105.0)(102.0()
13/(4)(++++=
s s s s s s G
绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。

解: 程序如下 奈氏曲线:
(1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100);
nyquist(num1,den1,w)
-80-60
-40
-20
20
40
60
80
Nyquist Diagram
Real Axis
I m a g i n a r y A x i s
(2) num2=[8,8];den2=conv([1,0],conv([1,0],conv([1,15],[1,6,10]))); w=logspace(-1,1,100);
nyquist(num2,den2)
-0.25
-0.2-0.15-0.1-0.0500.050.1
0.150.20.25Nyquist Diagram
Real Axis
I m a g i n a r y A x i s
(3) num3=[4/3,4];den3=conv([1,0],conv([0.02,1],conv([0.05,1],[0.1,1])));
w=logspace(-1,1,100); nyquist(num3,den3)
Nyquist Diagram
Real Axis
I m a g i n a r y A x i s
分析:系统1,2 不稳定,系统3稳定。

伯德图:
num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); num2=[8,8];den2=conv([1,0],conv([1,0],conv([1,15],[1,6,10]))); num3=[4/3,4];den3=conv([1,0],conv([0.02,1],conv([0.05,1],[0.1,1]))); bode(num1,den1) grid hold
bode(num2,den2) bode(num3,den3)
-300-200
-100
100
M a g n i t u d e (d B
)10
-2
10
-1
10
10
1
10
2
10
3
P h a s e (d e g )
Bode Diagram
Frequency (rad/sec)
分析:系统1,2 不稳定,系统3稳定。

阶跃响应曲线
(1)num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); step(num1,den1) grid
0.511.522.53
3.54
4.58
Step Response
Time (sec)
A m p l i t u d e
(2) num2=[8,8];den2=conv([1,0],conv([1,0],conv([1,15],[1,6,10]))); step(num2,den2)
grid
1
2
3
4
5
6
7
4
Step Response
Time (sec)
A m p l i t u d e
(3) num3=[4/3,4];den3=conv([1,0],conv([0.02,1],conv([0.05,1],[0.1,1]))); step(num3,den3) grid
1000
2000
3000
4000
5000
6000
7000
Step Response
Time (sec)
A m p l i t u d e
3.已知系统的开环传递函数为)
11.0(1
)(2
++=
s s s s G 。

求系统的开环截止频率、穿越频率、幅值裕度和相位裕度。

应用频率稳定判据判定系统的稳定性。

解:绘出系统伯德图,程序如下 num=[0 0 1 1]; den=[0.1 1 0 0]; w=logspace(-2,3,100); bode(num,den,w)
[gm,pm,wcg,wcp]=margin(num,den); gm,pm,wcg,wcp grid
Bode Diagram
Frequency (rad/sec)
-150-100-50050
100
M a g n i t u d e (d B )10
-2
10
-1
10
10
1
10
2
10
3
-180
-150
-120
P h a s e (d e g )
gm =0 pm =44.4594 wcg =0 wcp =1.2647
分析: 系统截止频率Wc=1.2647,相角裕度r=44.4594,幅值裕度hg=0,穿越频率Wg=0
因此系统稳定。

4. 频域法分析系统的优点
1)无需求解微分方程,图解(频率特性图)法间接揭示系统性能并指明改进性能的方向 2)系统的频率特性又很容易和它的结构、参数联系起来 3)可由微分方程或传递函数求得,也易于实验分析 4)可方便设计出能有效抑制噪声的系统
三.实验心得与体会
总结:通过这次实验,我掌握了各种图形的matlab绘制方法,加深了对课本上各种稳定性判别方法的理解,学会了用软件作图判定系统稳定性,进一步了解了各种系统参数对系统性能的影响。

相关文档
最新文档