等差数列基础测试题题库百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( )

A .7

B .10

C .13

D .16

2.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .

825

两 B .

845

两 C .

865

两 D .

885

两 3.设数列{}n a 的前n 项和2

1n S n =+. 则8a 的值为( ).

A .65

B .16

C .15

D .14

4.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231

n n a n b n =+,则2121S T 的值为( )

A .

13

15

B .

2335

C .

1117 D .

49

5.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32

B .33

C .34

D .35

6.已知数列{}n a 的前n 项和n S 满足()

12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭

的前10项的和为( ) A .

89

B .

910

C .10

11

D .

1112

7.已知等差数列{}n a 中,前n 项和2

15n S n n =-,则使n S 有最小值的n 是( )

A .7

B .8

C .7或8

D .9

8.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10

B .9

C .8

D .7

9.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200

B .100

C .90

D .80

10.已知数列{}n a 中,132a =

,且满足()*

1

112,22n n n

a a n n N -=+≥∈,若对于任意*n N ∈,都有

n a n

λ

≥成立,则实数λ的最小值是( ) A .2

B .4

C .8

D .16

11.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24

B .39

C .104

D .52

12.已知数列{}n a 的前n 项和为n S ,11

2

a =

,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫

⎨⎬⎩⎭

的前n 项和为n T ,则下列说法中错误的是( )

A .21

4

a =-

B .

648

211S S S =+ C .数列{}12n n n S S S +++-的最大项为

712

D .1121

n n n n n

T T T n n +-=

++ 13.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60

B .120

C .160

D .240

14.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .

1

2

尺布 B .

5

18

尺布 C .

16

31

尺布 D .

16

29

尺布 15.已知等差数列{}n a 的公差d 为正数,()()111,211,

n n n a a a tn a t +=+=+为常数,则

n a =( )

A .21n -

B .43n -

C .54n -

D .n

16.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60

B .11

C .50

D .55

17.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25

B .11

C .10

D .9

18.在数列{}n a 中,11a =,且11n

n n

a a na +=+,则其通项公式为n a =( ) A .

2

1

1n n -+ B .2

1

2n n -+

C .22

1

n n -+

D .2

2

2

n n -+

19.已知数列{x n }满足x 1=1,x 2=23

,且

11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(

23

)n -1

B .(

23)n C .

21

n + D .

1

2

n + 20.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( )

相关文档
最新文档