红外光谱测试分析
红外光谱分析测试
![红外光谱分析测试](https://img.taocdn.com/s3/m/21328ff11b37f111f18583d049649b6648d709f7.png)
红外光谱分析测试红外光谱分析测试是一种广泛应用于化学、生物、材料科学等领域的分析技术。
本文将介绍红外光谱分析测试的原理、应用以及分析结果的解读。
一、原理红外光谱分析测试基于物质在红外光区的吸收特征,通过测量物质在不同波长的红外光下的吸收强度,来获得物质的红外光谱。
红外光谱图由红外光吸收与波数之间的关系所构成,每个特定的物质都有其独特的红外光谱特征。
二、应用1. 化学分析:红外光谱分析可以用于鉴定化学物质的结构和组成。
通过与已知物质的红外光谱进行对比,可以确定未知物质的成分和结构特征。
2. 生物医药:红外光谱分析在生物医药领域有着广泛应用。
例如,通过检测人体组织、体液中的红外光谱特征,可以实现疾病的早期诊断和治疗效果的评估。
3. 材料科学:红外光谱分析可用于表征材料的组成和结构,研究材料的光学性质、导电性质以及材料的热学性质等。
这对于新材料的开发和性能改良具有重要意义。
三、分析结果解读红外光谱图包含多个峰,每个峰代表了不同化学官能团的振动模式。
通过峰的位置、形状和强度,可以分析物质的成分和结构特征。
1. 峰的位置:不同官能团的振动模式对应不同的峰位。
通过查阅红外光谱数据库或已知物质的红外光谱图,可以确定特定峰位所代表的官能团。
2. 峰的形状:峰的形状可以提供关于官能团的对称性和键的强度信息。
对称性越高,峰的形状越尖锐;键的强度越强,峰的形状越宽。
3. 峰的强度:峰的强度与物质中特定官能团的含量有关。
峰的强度越高,表示特定官能团的含量越多。
根据红外光谱分析测试的结果,可以得出结论并作出相应的应用决策。
但需要注意的是,红外光谱分析只是一种辅助手段,综合其他分析方法和实验结果来进行综合分析是更可靠的。
综上所述,红外光谱分析测试是一种重要的化学分析技术,广泛应用于各个领域。
通过分析红外光谱图的峰位、形状和强度,可以确定物质的成分和结构特征,为相关领域的科研和应用提供有力的支持。
红外光谱的分析实验报告
![红外光谱的分析实验报告](https://img.taocdn.com/s3/m/bfbd25239a6648d7c1c708a1284ac850ad0204e5.png)
红外光谱的分析实验报告引言红外光谱分析是一种常用的分析技术,通过测量物质对红外辐射的吸收特性,可以获得物质的结构和组成信息。
本实验旨在通过红外光谱仪测量不同样品的红外光谱,并利用谱图进行分析和鉴定。
实验步骤1. 实验准备准备实验所需的设备和试剂,包括红外光谱仪、样品、红外透明片等。
2. 样品制备将待分析的样品制备成适合红外光谱测量的形式。
常见的制备方法包括固态压片法、涂布法等,根据样品的性质选择合适的制备方法。
3. 样品测量将制备好的样品放置在红外光谱仪的样品台上,调整仪器参数并启动测量程序。
确保样品与红外辐射充分接触,并保持稳定的测量条件。
4. 数据处理将测量得到的光谱数据导出,并进行必要的数据处理。
常见的处理方法包括基线校正、光谱峰位标定等。
5. 谱图分析根据处理后的数据,绘制红外光谱谱图。
观察谱图中的吸收峰位、强度等特征,并与已知谱图进行比对。
6. 结果与讨论根据谱图分析结果,对样品的结构和组成进行推测和讨论。
分析不同峰位的吸收特性,并与已有文献进行对比和验证。
实验结果1. 实验数据测量得到的红外光谱数据如下:波数(cm-1)吸光度1000 0.1231100 0.2341200 0.456……2. 谱图分析根据实验数据绘制得到的红外光谱谱图如下图所示:在此插入红外光谱谱图的Markdown代码3. 结果讨论根据谱图分析,样品中出现了多个吸收峰位,其中波数为1200 cm-1附近的吸收峰较为明显。
根据已有文献,该峰位与C-O键的振动有关,可以推测样品中含有羧酸基团。
此外,还观察到其他峰位,需要进一步分析和鉴定。
结论通过红外光谱分析实验,我们获得了样品的红外光谱谱图,并推测了样品中可能存在的功能基团。
进一步的实验和分析将有助于确认样品的结构和组成,为后续的研究工作提供基础数据。
参考文献[1] 张三, 李四. 红外光谱分析方法研究进展. 分析化学, 20XX, XX(XX): XX-XX.[2] 王五, 赵六. 红外光谱鉴定有机化合物的应用研究. 物理化学学报, 20XX,XX(XX): XX-XX.以上为红外光谱的分析实验报告,通过测量样品的红外光谱并进行谱图分析,我们可以获得样品的结构和组成信息,为进一步的研究提供重要参考。
红外光谱实验报告
![红外光谱实验报告](https://img.taocdn.com/s3/m/78633464bfd5b9f3f90f76c66137ee06eff94e8c.png)
红外光谱实验报告一、实验目的1、了解红外光谱的基本原理和应用。
2、学习红外光谱仪的操作方法。
3、通过对样品的红外光谱分析,确定样品的化学结构和官能团。
二、实验原理红外光谱是一种基于分子振动和转动能级跃迁而产生的吸收光谱。
当一束具有连续波长的红外光通过物质时,物质分子中的某些基团会吸收与其振动和转动频率相同的红外光,从而在红外光谱图上出现特征吸收峰。
不同的官能团具有不同的振动频率,因此可以通过分析红外光谱图中的吸收峰位置、强度和形状来推断物质的结构和成分。
分子的振动形式可以分为伸缩振动和弯曲振动。
伸缩振动是指化学键沿键轴方向的伸长和缩短,如 CH 键的伸缩振动;弯曲振动则是指化学键在垂直于键轴方向的振动,如 CH 键的弯曲振动。
红外光谱的波长范围通常在25 25 μm 之间,对应的波数范围为4000 400 cm⁻¹。
其中,4000 1300 cm⁻¹区域称为官能团区,主要反映分子中官能团的特征吸收;1300 400 cm⁻¹区域称为指纹区,主要反映分子的整体结构特征。
三、实验仪器与试剂1、仪器:傅里叶变换红外光谱仪(FTIR)、压片机、玛瑙研钵、干燥器。
2、试剂:KBr 粉末(光谱纯)、待测试样(固体或液体)。
四、实验步骤1、样品制备固体样品:采用 KBr 压片法。
称取 1 2 mg 样品,在玛瑙研钵中与100 200 mg KBr 粉末充分研磨混合,然后将混合物置于压片机中,在一定压力下压成透明薄片。
液体样品:采用液膜法或溶液法。
液膜法是将少量液体样品直接滴在两片盐片之间,形成液膜进行测试;溶液法是将样品溶解在适当的溶剂中,然后将溶液注入液体池中进行测试。
2、仪器操作打开红外光谱仪电源,预热 30 分钟。
设置仪器参数,如扫描范围、分辨率、扫描次数等。
将制备好的样品放入样品室,进行扫描测量。
3、数据处理对获得的红外光谱图进行基线校正、平滑处理等。
标注吸收峰的位置和强度,并与标准谱图进行对比分析。
红外光谱分析
![红外光谱分析](https://img.taocdn.com/s3/m/031021740a4c2e3f5727a5e9856a561252d32103.png)
红外光谱分析红外光谱分析是一种用于物质表征和分析的重要技术方法。
它利用红外光波与物质相互作用的特性,通过测量物质对不同波长红外光的吸收、散射或透射行为,来了解物质的结构、组成和特性。
红外光谱分析在化学、生物、医药、农业、环保等领域得到广泛应用。
红外光谱分析是一种非破坏性的分析技术,可以对样品进行快速、准确的分析,而无需对样品进行特殊处理。
这使得红外光谱分析在实际应用中非常方便,特别适用于对大多数无机和有机化合物的分析。
在红外光谱分析中,主要利用了物质与红外光的相互作用。
红外光的频率范围通常被分为近红外区、中红外区和远红外区。
这些不同区域的红外光与样品分子之间的相互作用方式也不相同,因而可以提供不同的信息。
近红外区主要用于有机物的结构表征和定性分析,中红外区则用于有机物和无机物的定性和定量分析,而远红外区则常用于无机物的分析。
红外光谱仪是进行红外光谱分析的主要工具。
红外光谱仪的核心部分是一个光学系统,用于将红外光进行分光和检测。
光谱仪通过扫描不同波长的红外光,得到样品在不同波长下的吸收、散射或透射光强度的变化。
这些光谱数据可以表示为一个光谱图,通常是以波数(cm-1)作为横坐标,吸光度或透射率作为纵坐标。
红外光谱图是红外光谱分析的结果,它可以提供有关样品组成和结构的信息。
根据不同波数下的吸收峰位置和强度,可以推断样品中的官能团、键合情况、分子构型等信息。
通过与已知物质的红外光谱进行比对,还可以对未知物质进行鉴定和定性分析。
红外光谱分析在化学研究和工业实践中具有广泛的应用。
它可以用于药物开发中的药物结构表征和质量控制,可用于环境监测中的水质和空气质量分析,也可以用于食品和农产品的质量安全检测。
此外,红外光谱分析还可以用于病理学、生物学和生物医药等领域的研究。
红外光谱分析作为一种重要的分析方法,不仅可以为科学研究提供强有力的技术支持,也为工业生产和品质管理提供了有效的工具。
它不仅具有分析速度快、结果准确、操作简便的特点,还能够将样品准备工作降到最低,减少了对环境和样品的破坏。
红外光谱分析原理
![红外光谱分析原理](https://img.taocdn.com/s3/m/826662af162ded630b1c59eef8c75fbfc77d94b7.png)
红外光谱分析原理
红外光谱分析是一种常用的无损检测方法,用于确定化学物质的结构和组成。
其原理基于分子的光谱吸收特性,通过测量样品在不同波长红外辐射下的吸收光谱,来识别样品中的化学键和官能团。
红外光谱分析使用的是红外辐射,其波长范围为0.78至1000
微米,对应的频率范围为12800至10波数。
样品与红外辐射
相互作用后,会吸收一部分光谱,形成一个特定的吸收带。
每个分子都有一个独特的红外吸收谱图,因此通过比较样品的红外吸收谱和已知物质的红外谱图数据库,可以确定样品的成分。
红外光谱分析所测量的是样品对不同波长红外辐射的吸收强度。
红外辐射在与样品相互作用时,其能量与样品的分子振动模式相互转移。
不同官能团和化学键的振动会在红外光谱上表现出不同的吸收带,从而反映出样品的化学组成和结构信息。
常见的红外光谱吸收带包括相对于振动的拉伸、弯曲和扭转等模式。
一般来说,红外光谱的吸收带呈现为峰的形式,峰的位置和形状可以提供有关样品成分和结构的信息。
例如,C-H键的伸缩振动在波数范围2800至3000波数之间,C=O键的伸
缩振动在1650至1800波数之间。
红外光谱分析可以应用于各种领域,包括化学、制药、环境监测等。
它是一种快速、准确、无损的分析方法,能够对样品进行定性和定量分析。
此外,红外光谱仪的设备也逐渐变得便携化和小型化,使得红外光谱分析更加便捷和实用。
红外光谱实验实验报告
![红外光谱实验实验报告](https://img.taocdn.com/s3/m/5a929ba7951ea76e58fafab069dc5022aaea469b.png)
一、实验目的1. 了解红外光谱的基本原理和应用领域。
2. 掌握红外光谱仪的操作方法和实验技巧。
3. 通过红外光谱分析,对样品进行定性鉴定。
二、实验原理红外光谱(Infrared Spectroscopy)是一种利用分子对红外辐射的吸收特性进行物质定性和定量分析的技术。
当分子中的化学键振动和转动时,会吸收特定频率的红外光,从而产生红外光谱。
红外光谱具有特征性强、灵敏度高、样品用量少等优点,广泛应用于有机化学、材料科学、生物医学等领域。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、紫外-可见分光光度计、电子天平、干燥器等。
2. 试剂:待测样品、标准样品、溶剂等。
四、实验步骤1. 样品制备:将待测样品研磨成粉末,过筛后备用。
2. 样品池准备:将样品池清洗干净,晾干后备用。
3. 样品测试:将样品放入样品池中,进行红外光谱扫描。
扫描范围为4000-400cm-1,分辨率设置为2cm-1。
4. 数据处理:将得到的红外光谱数据导入数据处理软件,进行基线校正、平滑处理等操作。
5. 定性分析:将处理后的红外光谱与标准样品光谱进行比对,结合化学知识,对样品进行定性鉴定。
五、实验结果与分析1. 样品A:经过红外光谱分析,样品A的特征峰与标准样品光谱一致,鉴定为化合物A。
2. 样品B:样品B的红外光谱特征峰与标准样品光谱存在差异,但经过化学知识分析,推断样品B为化合物B。
3. 样品C:样品C的红外光谱特征峰与标准样品光谱一致,鉴定为化合物C。
六、实验讨论与心得1. 实验过程中,样品池的清洁度对实验结果有较大影响。
实验前需确保样品池干净、干燥。
2. 在数据处理过程中,基线校正和平滑处理是提高光谱质量的重要步骤。
3. 红外光谱分析具有较好的准确性和可靠性,但在进行定性鉴定时,还需结合化学知识进行分析。
4. 实验过程中,注意红外光谱仪的操作安全,避免仪器损坏。
5. 本实验加深了对红外光谱原理和操作方法的理解,提高了样品分析能力。
红外光谱测试
![红外光谱测试](https://img.taocdn.com/s3/m/061990bc7d1cfad6195f312b3169a4517623e56a.png)
当红外光照射到物质上时,物质分子会吸收特定波长的红外 光,产生振动和转动能级的跃迁,从而形成红外光谱。不同 物质分子具有不同的振动和转动能级,因此红外光谱具有特 征性,可以用于物质鉴别和组成分析。
红外光谱的分类
透射光谱法
测量透过物质后的红外光的强度,从而得到物 质的红外光谱。
反射光谱法
测量照射到物质表面后的红外光的反射强度, 从而得到物质的红外光谱。
技术创新与进步
1 2
高精度光谱解析
随着计算技术和算法的进步,红外光谱解析的精 度将进一步提高,能够更准确地解析出物质的结 构和组成。
微型化与便携化
随着微电子技术和制造工艺的发展,红外光谱仪 将进一步微型化和便携化,便于野外和现场测试。
3
智能化与自动化
未来红外光谱测试将更加智能化和自动化,减少 人工操作和干预,提高测试效率和准确性。
根据特征峰的位置和强度,推断样品中存在的官能团或分子结 构。
结合红外光谱的特征峰和其他测试结果,对样品的分子结构进 行分析和推断。
通过特征峰的峰高和峰面积,计算样品中相关官能团或分子的 含量或浓度,进行定量分析。
红外光谱测试结果可用于材料科学、化学、生物学、医学等领 域,为相关研究和应用提供重要信息。
物质。
用于生物大分子的结构 和组成分析,如蛋白质、
核酸等。
02 红外光谱测试的样品准备
样品选择与制备
01
02
03
04
固体样品
选择具有代表性的样品,确保 样品纯净度高,无杂质。
液体样品
选择清澈透明的液体,避免含 有气泡和悬浮物。
气体样品
选择纯净的气体,避免含有杂 质和水分。
制备方法
根据样品类型,采用合适的制 备方法,如研磨、溶解、干燥
红外光谱分析(FT-IR)
![红外光谱分析(FT-IR)](https://img.taocdn.com/s3/m/1c0790565e0e7cd184254b35eefdc8d376ee1409.png)
红外光谱分析(FT-IR)傅立叶变换红外光谱(FT-IR)是一种强大的技术,可用于获取吸收/排放固体、液体或气体的红外光谱。
当红外辐射穿过被测样品时,一部分红外辐射会被官能团的特定共价键吸收,另一部分红外辐射则直接穿透收集到的光谱代表了分子的吸收和传输,形成了用于化学鉴定的分子指纹。
这也使得红外光谱可用于多种类型的分析。
傅立叶变换红外光谱仪同时收集宽波长范围内的高分辨率光谱,这与色散光谱仪相比具有显著的优势,色散光谱仪一次只能测量相当窄波长范围内的峰值强度。
傅立叶变换红外光谱(FT-IR)分析。
傅立叶变换红外光谱仪可用于所有使用色散仪来提高灵敏度和速度的应用,能够优于红外光谱分析的色散法或滤光片法取决于其:1,非破坏性;2,无需外部校准;3,速度更快;4,灵敏度更高;5,光通量更高;6,操作更简单。
傅立叶变换红外光谱仪分析应用。
1.基于同质异性、同系物、几何和光学异构体的光谱差异进行化学鉴定;2.根据吸收的波长鉴定被测化学品中的官能团;3.通过研究潜在污染物的峰值进行纯度估算;4.通过比较特定官能团的峰跟踪化学反应过程;5.通过监测特定峰对化学物质进行定量分析。
百泰派克生物科技BTP基于CNAS/ISO9001双重质量认证体系建立七大检测平台,采用Thermo公司Nicolet系列仪器建立FT-IR分析平台,测定样品中蛋白和多肽的红外光谱,并进行后续的基线校正、Gaussian去卷积、二阶导数拟合,最终根据峰面积确定样品中蛋白和多肽的二级结构信息。
联系我们,免费项目咨询。
百泰派克生物科技生物制品表征服务内容。
FT-IR分析一站式服务。
您只需下单-寄送样品。
百泰派克生物科技一站式服务完成:样品处理-上机分析-数据分析-项目报告。
红外光谱的测试技术及应用实验报告误差分析
![红外光谱的测试技术及应用实验报告误差分析](https://img.taocdn.com/s3/m/c4ac7dd36394dd88d0d233d4b14e852458fb39e9.png)
红外光谱的测试技术及应用实验报告误差分析本次实验旨在探究红外光谱测试技术的原理和应用,并通过误差分析来评估实验数据的可靠性。
1. 实验原理红外光谱测试技术是一种用于分析材料结构和化学组成的非破坏性分析方法。
它基于物质分子的振动和旋转运动,在特定波长区间内吸收光能,产生特征性的谱带。
通过比较不同样品的红外光谱图谱,可以快速确定它们的化学成分和结构。
红外光谱测试技术广泛应用于化学、材料科学、生物医药等领域。
2. 实验步骤本次实验使用的是ATR红外光谱仪,具体步骤如下:1)将样品放置于ATR晶体上,并将其压实。
2)启动ATR红外光谱仪,进行基线扫描。
3)将样品移动到ATR晶体上,进行样品扫描。
4)将获取的光谱数据导入红外光谱分析软件中,进行数据处理。
3. 实验结果经过实验,我们得到了不同样品的红外光谱图谱。
通过比较不同样品之间的光谱图谱,我们可以确定它们的化学成分和结构。
同时,我们也计算了实验数据的误差,以评估实验结果的可靠性。
4. 误差分析在实验过程中,我们需要注意以下几个因素可能会影响红外光谱测试结果的准确性:1)样品的制备方法和状态。
2)ATR晶体的选用和状态。
3)光谱仪的性能和状态。
4)数据处理的方法和准确性。
在实验中,我们尽可能控制以上因素的影响,但仍然存在一定的误差。
我们通过统计多次实验数据,并计算出实验数据的标准差和置信区间,以评估实验数据的可靠性。
5. 实验结论通过本次实验,我们深入了解了红外光谱测试技术的原理和应用,并通过误差分析评估了实验数据的可靠性。
我们相信,这种分析方法将在更广泛的实验和应用中发挥越来越大的作用。
红外光谱测试分析
![红外光谱测试分析](https://img.taocdn.com/s3/m/652071933086bceb19e8b8f67c1cfad6185fe97a.png)
红外光谱测试分析引言:红外光谱测试是一种常用的实验技术,用于分析样品的化学结构、官能团及其化学环境。
它是通过观察和记录样品在红外区域(4000至400 cm^-1)的吸收、散射或透射红外辐射而得到的。
红外光谱测试广泛应用于有机、无机、生物、聚合物等领域。
本文将介绍红外光谱测试的原理、仪器、样品制备以及数据分析等内容。
一、红外光谱测试原理红外光谱测试基于物质与红外辐射的相互作用。
红外光谱仪将红外辐射通过样品,然后测量样品吸收、散射或透射的光强。
红外辐射包含许多波长,在红外区域中的每种波长都与特定的分子振动模式相对应。
当样品中的分子振动发生时,它们会吸收特定波长的红外光,从而产生特征峰。
根据这些特征峰的位置和强度可以推断样品的化学组成和结构。
二、红外光谱测试仪器红外光谱测试仪器主要由光源、样品盒、分光器和探测器等组成。
常见的红外光谱仪有傅里叶变换红外光谱仪(FTIR)和色散红外光谱仪(dispersive IR)。
其中,FTIR光谱仪具有高分辨率、高灵敏度和快速测量的优点,被广泛应用于科研和工业领域。
三、样品制备样品制备是红外光谱测试的关键步骤之一、样品可以是固体、液体或气体。
对于固体样品,常用的方法是将样品与适合的红外吸收剂混合,然后挤压成适当的片状样品。
对于液体样品,可以使用液态电池夹持装置保持样品在红外光束中。
对于气体样品,需要将气体置于透明的气室中,并对室内气体进行红外光谱的测量。
四、红外光谱数据分析红外光谱数据分析是针对测得的吸收谱进行的。
常见的红外光谱数据分析包括鉴定功能性团、质谱相关性分析和量子化学计算等。
鉴定功能性团是通过对比样品的吸收峰位置和精确峰位表进行的。
质谱相关性分析是利用红外光谱和质谱数据之间的相关性,为红外光谱的解释提供重要信息。
量子化学计算是通过计算得到的理论红外光谱与实际测量的红外光谱进行比对,以验证实验结果的准确性。
结论:红外光谱测试是一种重要的化学分析技术,广泛应用于化学、材料、药物和环境等领域。
红外光谱分析
![红外光谱分析](https://img.taocdn.com/s3/m/651a97abf9c75fbfc77da26925c52cc58bd6901d.png)
红外光谱分析简介红外光谱分析(Infrared Spectroscopy)是一种常用的分析技术,用于研究物质的结构和组成。
通过测量物质对红外辐射的吸收和散射情况,可以获取有关分子振动和结构的信息。
红外光谱分析广泛应用于有机化合物的鉴定和定量分析、材料分析、环境和食品安全监测等领域。
原理红外光谱分析基于物质分子的振动和转动产生的谱线。
大部分物质的振动频率位于红外光谱范围内,因此该技术可以用来研究物质的结构和组成。
红外光谱分析的原理可概括为以下几个方面:1.吸收谱线:物质分子在特定波长的红外辐射下,会吸收特定频率的红外光,产生吸收谱线。
不同官能团或结构单位的振动频率不同,因此吸收谱线可以用来识别物质的组成和结构。
2.波数:红外光谱中使用波数来表示振动频率。
波数与波长的倒数成正比,常用的单位是cm-1。
波数越大,振动频率越高。
3.力常数:物质分子中的振动频率受到分子内力的限制,可以通过量化力常数来描述。
力常数与振动能量相关,可以通过红外光谱数据计算得到。
4.傅里叶变换红外光谱(FTIR):FTIR是一种常用的红外光谱仪器,利用傅里叶变换原理将红外辐射的吸收信号转换为频率谱线。
FTIR具有快速、高分辨率和高灵敏度的特点,适用于各种物质的分析。
实验步骤进行红外光谱分析通常需要以下步骤:1.样品制备:将待分析的样品制备成适当形式,如固体样品可以通过压片或混合胶制备成薄片,液体样品可以直接放置在红外吸收盒中。
在制备过程中需要注意去除杂质和保持样品的均匀性。
2.仪器校准:使用已知物质进行仪器校准,确保红外光谱仪的准确性和灵敏度。
校准样品通常是有明确红外光谱特征的化合物,如苯环等。
3.获取红外光谱:将样品放置在红外光谱仪中,启动仪器进行红外辐射的扫描。
扫描过程中,红外光谱仪会记录样品对吸收红外辐射的响应。
得到光谱数据后,可以进行后续的数据处理和分析。
4.数据处理和分析:利用软件工具对得到的光谱数据进行处理和分析。
红外光谱分析报告
![红外光谱分析报告](https://img.taocdn.com/s3/m/d3c2807d86c24028915f804d2b160b4e767f81de.png)
红外光谱分析报告引言红外光谱分析是一种常用的无损检测技术,通过对物质吸收、发射、散射红外辐射的特性进行测量,可以得到样品的红外光谱图谱,从而了解样品的组成、结构、功能等信息。
本报告将以步骤思路,介绍红外光谱分析的基本原理、仪器设备、样品制备和数据处理方法。
步骤 1:基本原理红外光谱分析是基于物质分子的振动和转动特性进行的。
物质分子在吸收红外辐射时,分子中的化学键会发生振动、伸缩或弯曲,产生不同频率的红外吸收峰。
根据这些吸收峰的位置和强度,可以推断出物质的结构和成分。
步骤 2:仪器设备进行红外光谱分析需要使用红外光谱仪。
红外光谱仪由光源、样品室、光谱仪和检测器等组成。
光源发出红外光,经过样品室后被光谱仪分解成不同波长的光,并通过检测器进行信号转换和记录。
步骤 3:样品制备在进行红外光谱分析之前,需要对样品进行适当的制备。
通常情况下,样品需要制备成薄片或粉末状,并将其置于样品室中进行测量。
对于液体样品,可以直接将其滴在红外透明的盘片上进行测量。
步骤 4:数据处理红外光谱仪会输出一张红外光谱图谱,其中横轴表示波数(或波长),纵轴表示吸光度。
通过对红外光谱图谱的解读和分析,可以获得样品的结构和成分信息。
数据处理的方法包括:1.峰位解析:根据吸收峰的位置,判断样品中存在的官能团或化学键。
2.峰强度分析:根据吸收峰的强度,推断样品中不同官能团或化学键的含量。
3.峰形分析:观察吸收峰的形状,判断样品的结构和分子对称性。
步骤 5:应用领域红外光谱分析在许多领域有着广泛的应用。
以下是一些常见的应用领域:1.化学品鉴定:通过对未知化合物的红外光谱分析,可以确定其分子结构和成分,帮助进行化学品鉴定。
2.药物研究:红外光谱分析可以用于药物的质量控制、相似性比较和稳定性研究。
3.环境监测:红外光谱分析可以用于检测和监测环境中有害物质的存在和浓度。
4.食品安全:红外光谱分析可以用于食品中添加物的检测和鉴定,帮助维护食品的安全性。
红外光谱材料分析与测试技术作业-PPT
![红外光谱材料分析与测试技术作业-PPT](https://img.taocdn.com/s3/m/6b3f1c3fdcccda38376baf1ffc4ffe473368fd2a.png)
例:水分子(非线性分子) 振动自由度数=3 ×3 -6 =3
红外谱图上得峰数往往少于基本振动得数目。原因: (1)红外非活性振动:分子偶极距不发生变化 (2)峰得简并:振动频率完全相同,吸收带重合 (3)峰得掩盖:宽而强得吸收峰掩盖频率相近得窄
8、振动耦合效应与费米共振 振动耦合效应:当两个振动频率相同或相近得基团在分子中靠得很近时 ,她们得振动可能产生相互影响,使吸收峰裂分为两个,一个高于原来得 频率,一个低于原来得频率。 费米共振:当某一振动得倍频或组频位于另一强得基频附近时,由于相 互产生强烈得振动耦合作用,使原来很弱得泛频峰强化,或出现裂分双 峰,这种特殊得振动耦合称为费米共振。 9、互变异构 如果分子有互变异构现象发生,吸收峰将发生位移。
根据普朗克方程,发生振动能级跃迁需要能量得大小取 决于键两端原子得折合质量和键得力常数,即取决于分 子得结构特征。
结论: (1)化学键越强,K 越大,振动频率越高; (2)二原子μ越大,振动频率越低。
二分子得振动能级与吸收峰位置
分子得振动能级就是量子化得,相应能级得能量为: E振=(V+1/2)hν
V :振动量子数,其值可取0,1,2,3 …等整数 ν :化学键得振动频率
E1 = 1/2 hν E2 = 3/2 hν ……
△E=E2-E1= hν
……
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
分子振动能级就是量子化得,振动能级差得大小与分子得结 构密切相关。分子振动吸收能量等于其振动能级差得频率 得光。
二、分子外部因素对峰位得影响
外部因素包括:样品得物理状态、溶剂、仪器等。
1、样品得物理状态。 气态分子吸收峰尖锐,有时会出现转动能级跃迁引起得精细结构 小峰。 液态分子之间距离减小,作用力增强,谱带变宽,精细结构减弱或消 失,频率降低。 固态分子红移程度增大,振动耦合使谱带增多
红外光谱分析实验报告
![红外光谱分析实验报告](https://img.taocdn.com/s3/m/db4b9db14793daef5ef7ba0d4a7302768f996f72.png)
红外光谱分析实验报告红外光谱分析实验报告引言:红外光谱分析是一种非常重要的分析技术,它通过测量物质在红外光波段的吸收和散射特性,来研究物质的结构和成分。
本实验旨在通过红外光谱仪对不同化合物进行测试,探索其红外光谱图谱,进而了解物质的结构和功能。
实验方法:1. 实验仪器与试剂本实验使用的是一台红外光谱仪,试剂包括苯酚、甲醇、丙酮等有机化合物。
2. 实验步骤(1)将待测样品制备成适当的固体或液体样品。
(2)将样品放置在红外光谱仪的样品槽中。
(3)选择适当的波长范围和扫描速度,开始测量。
(4)记录红外光谱图谱,并进行分析和解读。
实验结果与分析:1. 苯酚的红外光谱分析苯酚是一种常见的有机化合物,它的红外光谱图谱显示了许多特征峰。
在波数范围为4000-400 cm^-1之间,我们可以观察到苯酚的O-H伸缩振动峰,峰位在3400 cm^-1左右。
此外,还可以观察到苯环的C-H伸缩振动峰,峰位在3000-3100 cm^-1之间。
2. 甲醇的红外光谱分析甲醇是一种常用的溶剂,其红外光谱图谱也有着独特的特征。
在波数范围为4000-400 cm^-1之间,我们可以观察到甲醇的O-H伸缩振动峰,峰位在3600-3650 cm^-1之间。
此外,还可以观察到C-H伸缩振动峰,峰位在2800-3000 cm^-1之间。
3. 丙酮的红外光谱分析丙酮是一种常用的有机溶剂,其红外光谱图谱也有着独特的特征。
在波数范围为4000-400 cm^-1之间,我们可以观察到丙酮的C=O伸缩振动峰,峰位在1700-1750 cm^-1之间。
此外,还可以观察到C-H伸缩振动峰,峰位在2800-3000 cm^-1之间。
结论:通过本实验的红外光谱分析,我们可以观察到不同化合物的红外光谱图谱,并解读出它们的结构和功能。
苯酚、甲醇和丙酮的红外光谱图谱中的特征峰提供了宝贵的信息,帮助我们了解这些化合物的分子结构和它们之间的化学键。
红外光谱分析技术在化学、药学、材料科学等领域具有广泛的应用前景,对于研究和开发新材料、新药物等具有重要意义。
红外分析的实验报告
![红外分析的实验报告](https://img.taocdn.com/s3/m/fca27e9bba4cf7ec4afe04a1b0717fd5360cb2a0.png)
一、实验题目红外光谱分析实验二、实验目的1. 理解红外光谱分析的基本原理和操作方法。
2. 掌握使用红外光谱仪对样品进行定性和定量分析的能力。
3. 通过实验,加深对红外光谱图的理解和解析能力。
三、实验原理红外光谱分析是一种基于分子振动和转动能级跃迁的物理分析方法。
当分子吸收特定波长的红外光时,分子内部的化学键会振动或转动,从而产生红外光谱。
红外光谱反映了分子内部的结构信息,因此可以用于物质的定性和定量分析。
四、实验仪器与试剂1. 仪器:傅里叶变换红外光谱仪(FTIR)、样品池、真空泵、电子天平。
2. 试剂:待测样品(如聚合物、有机化合物等)、KBr压片机、分析纯KBr。
五、实验步骤1. 样品制备:将待测样品与KBr按一定比例混合,充分研磨后,使用KBr压片机压制样品片。
2. 样品测试:将制备好的样品片放入红外光谱仪中,进行扫描,记录红外光谱图。
3. 数据处理:将扫描得到的红外光谱图与标准光谱图进行比对,分析样品的结构特征。
六、实验结果与分析1. 样品A的红外光谱分析样品A的红外光谱图显示,在2920cm-1和2850cm-1处出现了两个较强的吸收峰,这表明样品A中含有C-H键。
在1730cm-1处出现了一个明显的吸收峰,这表明样品A中含有C=O键。
在1020cm-1处出现了一个吸收峰,这表明样品A中含有C-O键。
通过对样品A红外光谱的分析,可以确定样品A是一种含有C-H、C=O和C-O键的有机化合物。
2. 样品B的红外光谱分析样品B的红外光谱图显示,在3400cm-1处出现了一个宽而强的吸收峰,这表明样品B中含有O-H键。
在1640cm-1处出现了一个明显的吸收峰,这表明样品B中含有C=O键。
在1380cm-1处出现了一个吸收峰,这表明样品B中含有C-N键。
通过对样品B红外光谱的分析,可以确定样品B是一种含有O-H、C=O和C-N键的有机化合物。
七、实验讨论1. 红外光谱分析是一种快速、简便、灵敏的物理分析方法,在化学、材料科学、生物医学等领域有着广泛的应用。
红外光谱分析
![红外光谱分析](https://img.taocdn.com/s3/m/34bb232bdcccda38376baf1ffc4ffe473368fdb2.png)
红外光谱分析红外光谱分析是一种重要的分析技术,广泛应用于化学、生物、材料等领域。
通过测量物质在红外光谱范围内的吸收和发射特性,可以得到物质分子的结构信息,实现物质的鉴定、定量分析和质量控制等目的。
本文将从红外光谱的基本原理、仪器设备、样品制备和数据解析等方面介绍红外光谱分析的相关知识。
一、基本原理红外光谱分析基于物质对红外辐射的吸收特性。
红外辐射是电磁波谱中的一部分,波长范围在0.78μm至1000μm之间,对应的频率范围在3000GHz至0.3THz之间。
物质分子由原子组成,原子核围绕电子运动,当受到外界的电磁波激发时,分子内部的键振动和转动将发生改变,导致物质吸收特定波长的红外辐射。
不同物质的分子结构和化学键在红外光谱图上表现出特征性的吸收峰,通过观察这些吸收峰的位置和强度可以确定物质的成分和结构。
二、仪器设备进行红外光谱分析需要使用红外光谱仪。
常见的红外光谱仪包括傅立叶变换红外光谱仪(FTIR)和光散射式红外光谱仪(IR)。
FTIR光谱仪通过傅立叶变换技术将红外辐射转换为光谱图,具有高灵敏度和快速测量的优点,适用于定性和定量分析。
光散射式红外光谱仪则通过散射光信号进行检测,适用于固态样品和表面分析。
三、样品制备在进行红外光谱分析前,需要对样品进行适当的制备处理。
液态样品可以直接涂覆在透明吸收的样品基底上进行测试,固态样品通常需要将样品捣碎并与适当的载体混合后进行测试。
在取样和制备过程中需要避免空气和水分的干扰,避免发生氧化和水解反应,影响测试结果的准确性。
四、数据解析红外光谱分析得到的数据通常以吸收光谱图的形式呈现。
吸收光谱图的横轴表示波数或波长,纵轴表示吸收强度,吸收峰的位置和形状反映了物质的分子结构。
数据解析是红外光谱分析的关键步骤,需要借助专业的光谱库和软件进行分析和比对,以确定样品的成分和结构信息。
在实际应用中,红外光谱分析可用于鉴定有机化合物、无机物质、生物大分子等多种样品,广泛应用于医药、食品、环境、材料科学等领域。
红外光谱分析
![红外光谱分析](https://img.taocdn.com/s3/m/b2ee00516d175f0e7cd184254b35eefdc8d315f2.png)
红外光谱分析一、引言红外光谱分析是一种广泛应用于化学、物理、生物等领域的分析技术。
通过对物质吸收、发射、散射红外光谱的研究,可以确定物质的分子结构、功能基团和化学键等信息。
本文将介绍红外光谱分析的原理、仪器设备和应用领域,并探讨其在不同领域的应用前景。
二、原理及仪器设备A. 红外光谱的原理红外光谱是指物质在红外辐射下的吸收、发射、散射谱。
红外光谱谱图中的吸收峰对应着物质的特定振动模式,通过与已知物质的吸收峰进行比对,可以确定待测物质的组成和结构。
B. 红外光谱仪的工作原理红外光谱仪主要由红外光源、样品室、光谱分析器和红外光谱仪操作系统组成。
红外光源发出红外辐射,经过样品室中的待测物质,被吸收部分将影响到传入光谱分析器的光线,分析器将光信号转换成电信号,并在计算机操作系统中显示光谱图。
C. 常用红外光谱仪的类型1. 红外线分光光度计2. 红外线显微镜3. 傅里叶红外光谱仪4. 近红外光谱仪三、应用领域A. 化学领域1. 有机化合物分析:红外光谱可以确定有机化合物的官能团和分子结构,用于鉴定化合物纯度、反应程度等。
2. 药物研发:通过红外光谱分析药物的活性成分、药效成分,提高药物研发的效率与质量。
B. 环境领域1. 空气污染监测:红外光谱可用于检测大气中的有害气体,如二氧化碳、一氧化碳等,对环境保护和监测具有重要意义。
2. 水质分析:利用红外光谱可以检测水中溶解的有机物和无机物,分析水质的污染程度。
C. 生物医学领域1. 蛋白质结构研究:红外光谱可以研究蛋白质的次级结构,帮助研究蛋白质的折叠、稳定性等关键问题。
2. 癌症诊断:通过对血液、尿液等样本的红外光谱分析,可以实现对肿瘤的早期检测与诊断。
四、红外光谱分析的前景与挑战A. 前景红外光谱分析作为一种非破坏性、快速、准确的分析方法,具有广泛的应用前景。
随着红外光谱仪器设备的不断更新,红外光谱分析技术在多个领域得到了广泛应用,并取得了一系列有益的成果。
红外光谱测定方法介绍
![红外光谱测定方法介绍](https://img.taocdn.com/s3/m/8fd0e01e0622192e453610661ed9ad51f11d5451.png)
红外光谱测定方法介绍红外光谱(Infrared spectroscopy)是一种常用的无损检测技术,广泛应用于化学、材料科学、生物医药、环境保护等领域。
它能通过测量样品中物质对红外辐射的吸收,快速准确地分析样品的成分和结构。
本文将介绍一些常用的红外光谱测定方法。
一、红外吸收光谱红外吸收光谱是红外光谱分析中最常见的测试方法。
它基于分子在特定波长范围的红外光辐射下吸收能量的原理。
光谱图通常以波数(cm^-1)或波长(μm)为横坐标,吸收强度为纵坐标。
在红外吸收光谱图上,吸收峰的位置和强度可以提供关于分子结构、官能团以及样品组分的信息。
二、透射光谱透射光谱是近红外和中红外光谱分析中常用的测定方法。
通过将红外光辐射通过样品后,测量透过样品的光线强度,可以得到透射光谱。
与吸收光谱不同,透射光谱通常用于测量样品对红外光的传导能力。
三、傅里叶变换红外光谱傅里叶变换红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)是红外光谱分析中一种重要的技术。
与传统的红外光谱仪相比,FTIR能够更精确地测量样品的吸收光谱。
它利用傅里叶变换的原理,将样品红外光谱转换为频谱,通过对频谱进行处理,可以获得更详细的样品信息。
四、拉曼光谱拉曼光谱是一种与红外光谱相似的分析方法,通过测量样品对激光光源散射光的频移来获取样品的信息。
相比于红外光谱,拉曼光谱对样品的要求较低,可以在常温下进行测量,避免了样品的破坏或变化。
它对于无机物、有机物和生物分子的测量都非常有效。
五、拉曼散射光谱拉曼散射光谱是一种非常有用的红外光谱测定方法。
它通过测量样品中分子或晶体的振动和转动对光散射的影响,提供了样品的表面形态、晶体结构和分子构象的信息。
拉曼散射光谱广泛应用于材料科学、生命科学和地球科学等领域。
总结红外光谱测定方法多样且广泛应用,它们能够提供样品的成分、结构以及其他相关信息。
红外吸收光谱、透射光谱、傅里叶变换红外光谱、拉曼光谱和拉曼散射光谱等方法,各有特点,适用于不同类型的样品。
红外光谱分析实验报告
![红外光谱分析实验报告](https://img.taocdn.com/s3/m/e9e1d7fc1b37f111f18583d049649b6648d70982.png)
红外光谱分析实验报告实验目的,通过红外光谱分析技术,对不同物质的分子结构进行研究,掌握红外光谱仪的使用方法,了解不同功能基团在红外光谱上的特征峰,为进一步的化学研究提供基础数据。
实验仪器,FT-IR红外光谱仪。
实验原理,红外光谱是利用物质对红外辐射的吸收和散射来研究物质的结构和性质的一种分析方法。
在红外光谱图上,不同波数处的吸收峰对应不同的化学键和功能基团,通过观察吸收峰的位置和强度,可以确定物质的结构和成分。
实验步骤:1. 打开红外光谱仪,进行预热和仪器调零。
2. 将样品放置在样品室中,调整样品位置和光路。
3. 设置扫描范围和扫描次数,开始采集红外光谱数据。
4. 对数据进行处理和分析,绘制红外光谱图。
实验结果与分析:通过红外光谱仪采集到了样品的红外光谱图,观察到了吸收峰的位置和强度。
根据红外光谱图的特征峰,可以初步判断样品中存在的功能基团和化学键类型。
比如,羟基、羰基、氨基、硫醚键等在红外光谱图上都有明显的吸收峰。
通过对比标准物质的红外光谱图,可以进一步确认样品的成分和结构。
实验结论:本次实验通过红外光谱分析技术,成功地对样品的分子结构进行了研究。
通过观察红外光谱图,我们可以初步判断样品中存在的功能基团和化学键类型,为进一步的化学研究提供了重要的参考数据。
红外光谱分析技术具有快速、准确、非破坏性的特点,是化学研究中常用的分析手段之一。
实验注意事项:1. 在进行红外光谱分析时,样品应尽量均匀地涂抹在样品室中,避免出现不均匀吸收。
2. 在操作红外光谱仪时,要注意仪器的使用方法和安全事项,避免操作失误和仪器损坏。
3. 对于不同类型的样品,要选择合适的扫描范围和扫描次数,以获得清晰的红外光谱数据。
总结:红外光谱分析技术是一种重要的化学分析手段,能够为化学研究提供丰富的结构信息。
通过本次实验,我们掌握了红外光谱仪的使用方法,了解了不同功能基团在红外光谱上的特征峰,为今后的化学研究打下了良好的基础。
希望通过不断地实践和学习,能够更好地运用红外光谱分析技术,为科学研究做出更多的贡献。
(完整)红外光谱分析实验报告
![(完整)红外光谱分析实验报告](https://img.taocdn.com/s3/m/7c793af5eff9aef8951e0644.png)
一、【实验题目】红外光谱分析实验二、【实验目的】1。
了解傅立叶变换红外光谱仪的基本构造及工作原理2。
掌握红外光谱分析的基础实验技术3.学会用傅立叶变换红外光谱仪进行样品测试4。
掌握几种常用的红外光谱解析方法三、【实验要求】利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。
四、【实验原理】红外光是一种波长介于可见光区和微波区之间的电磁波谱。
波长在0.78~300μm。
通常又把这个波段分成三个区域,即近红外区:波长在0。
78~2.5μm(波数在12820~4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm—1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区.其中中红外区是研究、应用最多的区域。
红外区的光谱除用波长λ表征外,更常用波数(wave number)σ表征。
波数是波长的倒数,表示单位厘米波长内所含波的数目。
其关系式为:作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为”分子指纹".它最广泛的应用还在于对物质的化学组成进行分析.用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。
其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。
它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析.而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。
因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。
根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征区(官能团区)分为三个区域:
(1)4000 ~2500 cm-1 X-H伸缩振动区 (X可以是O、H、C或S等原子)
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、 酚类和有机酸类的重要依据。羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰 向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。胺和酰胺的NH伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。
IR
起源 适用 特征性 用途 分子振动能级伴 随转动能级跃迁 所有红外吸收的 有机化合物 特征性强 鉴定化合物 鉴定官能团 推测结构
UV
分子外层价电子能级跃迁 具n-π*跃迁有机化合物 具π-π*跃迁有机化合物 简单、特征性不强 定量 推测有机化合物共轭骨架
红外分光光度法基本原理
红外分光光度法 ——研究物质结构与红外光谱之间关系 红外光谱 ——由吸收峰位置和吸收峰强度共同描述 一、红外吸收光谱的产生 二、振动形式 三、吸收特征峰与相关峰 四、吸收峰位置与强度
中红外光谱法又简称为红外光谱法。
红外光谱是鉴别物质和分析物质化学结构的有效 手段,已被广泛应用于物质的定性鉴别、物相分析和 定量测定,并用于研究分子间和分子内部的相互作用。
四、红外光谱的表示方法
T~λ曲线 →前密后疏
4 10 (cm 1 ) ( m)
T ~σ曲线 →前疏后密
IR与UV的区别
利用物质对红外光区电磁辐射的选择性吸收的特性来进行结构
分析、定性和定量的分析方法,称红外吸收光谱法
红外光谱法
1、概述 2、基本原理 3、红外光谱仪 4、试样的处理和制备
概述
一、红外光的区划
红外线:波长在0.76~500μm (1000μm) 范围内的电磁波
近红外区(NIR):0.76~2.5μm(760~ 2500nm)-OH和-NH倍频吸收区
图示
as 1 CH ~ 2960 cm 3
as CH 2 s CH 3
~ 2925 cm
1 1
~ 1450 cm CH 2 ~ 1465 20cm1
as CH 3
1
~ 2870 cm
s CH 3
~ 1375cm
1
s 1 CH ~ 2850 cm 2
CH 2 ~ 720cm1
红外
Interaction
原子核转变
内层电 子的跃 迁
外层电子的跃迁
分子振动
分子转动
电磁转动
Wavelength (m)
1010
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
1
101
三、红外光谱的作用
绝大多数有机化合物的基频吸收带出现在MIR光 区。基频振动是红外光谱中吸收最强的振动,最适于 进行红外光谱的定性和定量分析。中红外光谱仪最为 成熟、简单,因此它是应用极为广泛的光谱区。通常,
振动形式
一般将振动形式分成两类:伸缩振动和变形振动。 (1)伸缩振动 原子沿键轴方向伸缩,键长发生变化而键角不变的振动称为伸缩 振动,用符号表示。它又可以分为对称伸缩振动( s)和不对称伸 缩振动( as )。对同一基团,不对称伸缩振动的频率要稍高于对称 伸缩振动。 (2)变形振动(又称弯曲振动或变角振动) 基团键角发生周期变化而键长不变的振动称为变形振动,用符号 表示。变形振动又分为面内变形和面外变形振动。面内变形振动又 分为剪式(以表示)和平面摇摆振动(以表示)。面外变形振动又 分为非平面摇摆(以表示)和扭曲振动(以表示)。
红外光谱
红外光谱 (IR) infrared spectroscopy
当样品受到频率连续变化的红外光照射时,分子吸收了某些特 定频率的辐射,并由其振动或转动运动引起偶极矩的变化,产生分子 振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透 射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就 得到红外光谱。
红外吸收峰
物质的红外光谱是其分子结构的反映,谱图中的吸 收峰与分子中各基团的振动形式相对应。 实验表明,组成分子的各种基团,如O-H、N-H、CH、C=C、C=OH和CC等,都有自己的特定的红外吸收 区域,分子的其它部分对其吸收位置影响较小。 通常把这种能代表及存在、并有较高强度的吸收谱 带称为基团频率,其所在的位置一般又称为特征吸收峰。
中红外区(MIR):2.5~25μm (4000~ 400cm-1)振动、伴随转动光谱 远红外区(FIR):25~500μm 纯转动光谱 电子光谱
紫外-可见(UV-VIS):190 ~900nm
二、红外吸收过程
UV——分子外层价电子能级的跃迁(电子光谱) IR——分子振动和转动能级的跃迁 (分子光谱)
Hale Waihona Puke 红外吸收峰红外光谱区可分成4000 cm-1 ~1300 cm-1、 1300 cm-1 ~ 600 cm-1两个区域。
4000 cm-1 ~ 1300 cm-1 之间,称为基团频率区、官能团区或特征区。 区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定 官能团(最有分析价值)。 1300 cm-1 ~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振 动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时, 该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹 一样,因此称为指纹区。(作为化合物存在某种基团的旁证)
谱区范围
4000 cm-1 (2.5μm )
Wavelength (cm-1)
400 cm -1 (25μm ) 104
近 红 外
108
107
106
105
103
102
101
1
10-1 10-2 10-3
核磁 振动 Radio, TV 无线 电波
Region
-射线
X–射 线
紫外
可 见
中红外
远红外
电子自旋振 动 微波
红外吸收光谱的产生
红外光谱主要由分子的振动能级跃迁产生 分子的振动能级差0.05 1.0eV远大于转动能级差(0.0001 0.05eV) 分子发生振动能级跃迁必然同时伴随转动能级跃迁 双原子分子A-B→近似看作谐振子 两原子间的伸缩振动→近似看作简谐振动
只有当红外辐射频率等于振动量子数的差值与分 子振动频率的乘积时,分子才能吸收红外辐射,产生 红外吸收光谱。