光通信技术外文翻译
光学通信技术的发展
光学通信技术的发展随着科技的不断进步,光学通信技术也得到了飞速的发展。
光学通信技术基于光传输信息的原理,具有传输速度快、信号稳定、隐蔽性高等优点,在如今的信息传输领域中备受人们青睐。
那么,光学通信技术的发展史究竟是如何的呢?它又将会朝着何方向发展呢?1. 光通信技术的发展概述光通信技术,英文名为 Optical Communication,是指利用光波作为信息传输的媒介进行通信。
早在公元前350年左右,我国的著名思想家孔子就已经探讨了光的传播问题,而到了公元17世纪,荷兰学者胡克(Hooke)首次提出了光传输信息的想法。
但是光学通信技术直到20世纪40年代后期才真正开始出现。
最早的光传输技术使用的是红外线,但由于传输效果不佳等问题,后来逐渐被激光技术所取代。
1960年代,激光技术开始广泛应用。
1977年,世界上第一条光纤通信线路在美国正式开通,标志着光通信技术的逐渐成熟。
随着计算机和互联网的不断普及以及数据通信需求的增长,光学通信技术得到了迅速的发展。
20世纪80年代,随着LED(发光二极管)和半导体激光器的发展,光的传输距离也有了很大的提高。
20世纪90年代,光通信技术逐渐进入商业化应用阶段,成为数据传输领域中最主要,也是最重要的一个部分。
2. 光通信技术的主要应用光通信技术主要应用于城市间的远距离通信、互联网数据中心的高速网络传输、移动通信、电视直播等领域。
(1)在城市间的远距离通信中,光纤的传输速度快,数据量大,传输距离远,既避免了传输过程中发生传输错误的可能性,又可满足高速数据通信需求。
(2)在互联网数据中心的高速网络传输中,由于网站、视频、文件等数据量的巨大,光通信技术的优越性在这种情况下得到了充分发挥。
而随着云计算等技术的不断发展和普及,对网络通信带宽提高的要求也越来越高,光通信技术也会在这个领域中持续发挥重要作用。
(3)在移动通信中,光学通信技术主要应用于基站与核心网之间的传输,在保障高速数据流量的同时,还能大大降低网络拥塞率,并为未来的技术更新和升级打下基础。
光纤通讯英文翻译
The DrawThe finished glass preform is then placed on a draw tower and drawn into one continuous strand of glass fiber (see Figure 5).First, the glass blank is lowered into the top of the draw furnace. The tip of the blank is heated until a piece of molten glass, called a gob, begins to fall from the blank -- much like hot taffy. As the glob falls it pulls behind it a thin strand of glass, the beginning of an optical fiber.The gob is cut off, and the fine fiber strand is threaded into a computercontrolled tractor assembly and drawn. Then, as the diameter is monitored, theassembly speeds up or slows down to precisely control the size of the fiber’s diameter.The fiber progresses through a diameter sensor that measures the diameter hundreds of times per second to ensure specified outside diameter. Next, the inner and outer primary coatings are applied and cured, using ultraviolet lamps. At the bottom of the draw, the fiber is wound on spools for further processing. Fiber from these spools is proof-tested and then measured for performance of relevant optical and geometrical parameters. Each fiber has a unique identification number that can be traced to all relevant manufacturing data (including raw materials and manufacturing equipment). Each fiber reel is then placed into protective shipping containers and prepared for shipment to customers worldwide.4. OVD BenefitsFiber produced using the OVD process is purely synthetic, exhibits enhanced reliability, and allows for precise geometrical and optical consistency. The OVD process produces a very consistent “matched-clad” fiber.OVD fibers are made of a core and cladding glass, each with slightly different compositions. The manufacturing process provides the relationship between these two glasses. A matched-clad, single-mode fiber design allows for a consistent fiber (see Figure 6).The OVD process produces well-controlled fiber profiles and geometry, both of which lead to a more consistent fiber. Fiber-to-fiber consistency is especially important when fibers from different manufacturing periods are joined, through splicing and connectorization, to form an optical system.Depressed-Clad Fiber ProfileThe modified chemical vapor deposition (MCVD) process produces what is called depressed-clad fiber because of the shape of its refractive index profile.Depressed-clad fibers are made with two different cladding glasses that form an inner and an outer cladding region. The outer cladding consists of a glass from a substrate tube that is generally purchased from an outside supplier, as opposed to the OVD method, where all of the glass is made synthetically within the fiber manufacturer’s control. The inner cladding region adjacent to the fiber core has an index of refraction that is lower than that of pure silica, while the outer cladding has an index equal to that of pure silica. Hence, the index of the glass adjacent to the core is depressed.Questions of StrengthOne common misconception about optical fiber is that it must be fragile becauseit is made of glass. In fact, research, theoretical analysis, and practical experience prove that the opposite is true. While traditional bulk glass is brittle, the ultrapureglass of optical fibers exhibits both high tensile strength and extremedurability.How strong is fiber? Figures like 600 or 800 thousand pounds per square inchare often cited, far more than copper’s capability of 100 pounds per square inch.That figure refers to the ultimate tensile strength of fiber produced today. Fiber’sreal, rather than theoretical, s trength is 2 million pounds per square inch.通常一种错误的观念认为光纤易碎,因为它是用玻璃做的. 事实上,调查研究,理论分析和实践经验证明正好是相反的. 传统玻璃大多呈脆性,但超纯玻璃光纤却具有高抗拉性和高耐力. 纤维到底有多强? 通常强度为600或800千磅每平方英寸,这远远超过了强度为100磅每平方英寸的铜. 这个数字来源于目前生产的纤维的极限抗拉强度.光纤实际上而非理论性上的抗拉强度为2万磅每平方英寸. .ABCs of Fiber Strength法学纤维强度The depth of inherent microscopic flaws on its surface determines the actualstrength of optical fiber. These microscopic flaws exist in any fiber. As in a length of chain, the weakest link (or, in fiber’s case, the deepest flaw) determines the ultimate strength of the entire length of the chain. The flaws are distributed along the fiber length – the larger the flaw, the more distance between them along the fiber.光纤表面固有的微观缺陷的深度,决定了它的强度. 这些微观缺陷存在于任何纤维中. 像一个长链中,最薄弱的环节(或者,对光纤来说是最深的缺陷)决定了整条长链的极限强度.缺陷沿光纤长度分布,缺陷越大,缺陷之间的距离就越长.Many fiber manufacturers tensile-load, or proof-test, fibers after production. This process eliminates proof-test size flaws and larger, thereby ensuring that the flaws of most concern are removed and creating a minimum design strength for the fiber.许多厂商通常在纤维生产后进行负荷拉伸或者检验,这个过程消除了校验缺陷,从而确保了人们最关心的光纤缺陷问题能被移除并且能为光纤造出最小设计强度.Life Expectancy寿命Fiber is designed and manufactured to provide a lifetime of service, provided it iscabled and installed according to recommended procedures. Life expectancy canbe extrapolated from many tests. These test results, along with theoretical analysis, support the prediction of long service life. Environmental issues are also important to consider when evaluating a fiber’s mechanical and reliability performance.设计与制造光纤用来提供终身服务只是要在铺线和安装时按照建议步骤进行. 通过很多测试我们可以推断光纤寿命. 这些测试结果与理论分析一起,为使用寿命的预测提供支持. 在评价某一纤维的力学性能和可靠性性能时,环保问题也是非常重要值得考虑的.Bending Parameters弯曲参数Optical fiber and cable are easy to install because it is lightweight, small in size,and flexible. Nevertheless, precautions are needed to avoid tight bends, which may cause loss of light or premature fiber failure.Experience and testing show that bare fiber can be safely looped with benddiameters as small as two to three inches, depending on allowable optical loss. Splice trays and other fiber-handling equipment, such as racks, are designed toprevent fiber-installation errors such as this.光纤光缆易于安装,因为它重量轻,体积小,机动灵活. 尽管如此,预防弯曲还是非常必要的,因为这可能造成的光的损失或光纤维过早衰竭. 经验和测试表明,裸光纤,环状弯曲直径可以小到2点58分英寸,这取决于允许光学损失. 剪接托架及其他纤维处理设备,如搁物架,是为了防止光纤安装误差等.5. Fiber Geometry: A Key Factor inSplicing and System Performance在光纤几何构建方面一个关键因素是接续和系统性能As greater volumes of fiber in higher fiber-count cables are installed, system engineers are becoming increasingly conscious of the impact of splicing on their systems. Splice yields and system losses have a profound impact on the quality of system performance and the cost of installation.随着含光纤数更多的光缆的大批量使用,系统工程师越来越多的考虑到光纤接续对整个系统性能的影响.光纤接续和系统损失对系统性能和安装费用具有重大影响.Glass geometry, the physical dimensions of an optical fiber, has been shownto be a primary contributor to splice loss and splice yield in the field. Early on,one company recognized the benefit provided by tightly controlled fiber geometry and has steadily invested in continuous improvement in this area. The manufacturing process helps engineers reduce systems costs and support the industry’s low maximum splice-loss requirement, typically at around 0.1 dB.光纤的物理尺寸和几何结构已经被证明是造成光纤接续损失的主要原因.早期一家公司承认严格控制光纤几何结构所带来的巨大效益,他们现在正继续的在这方面进行的投资.这样的制造手段能帮助工程师减少系统造价,并且支持业界的最高接头损耗的要求, 一般在大约0.1分贝.Fiber that exhibits tightly controlled geometry tolerances will not only be easier and faster to splice but will also reduce the need for testing by ensuring predictable, high-quality splice performance. This is particularly true when fibers are spliced by passive, mechanical, or fusion techniques for both single fibers and fiber ribbons. In addition, tight geometry tolerances lead to the additional benefit of flexibility in equipment choice.严格控制光纤产品的几何耐性不仅能是接续方便和快捷,而且能减少为确保高质量接续性能所进行的预测性实验.当单一纤维或者纤维带被被动、机械或者融接在一起时,这一点尤其是真的. 另外,严格的几何耐性在设备的选择方面增加了灵活性.The benefits of tighter geometry tolerances can be significant. In today’s fiber intensive architectures, it is estimated that splicing and testing can account for more than 30 percent of the total labor costs of system installation.严格控制光纤几何耐性的好处是显而易见的.目前,在光纤的密集使用的过程中,据估计接续和测试可以占到系统安装所需总的劳动力的30以上.Fiber Geometry Parameters光纤几何参数The three fiber geometry parameters that have the greatest impact on splicing performance include the following:cladding diameter: the outside diameter of the cladding glass regioncore/clad concentricity (or core-to-cladding offset): how well thecore is centered in the cladding glass regionfiber curl: the amount of curvature over a fixed length of fiberThese parameters are determined and controlled during the fiber-manufacturing process. As fiber is cut and spliced according to system needs, it is important to be able to count on consistent geometry along the entire length of the fiber and between fibers and not to rely solely on measurements made.对接续性能产生巨大影响的三纤几何参数主要包括以下几方面:包层直径:玻璃纤维包层的外部直径芯/包层同心度(或核心-包层补偿) : 纤芯如何集中在包层玻璃纤维中光纤弯曲:一个固定长度的光纤所能弯曲的程度.在纤维制造生产过程中,这些参数被加以确定和控制.根据系统需要光纤被剪切或接续,在整个光纤长度和光纤之间保持参数的不变是非常重要的,这不能仅依靠测量来决定. Cladding Diameter包层直径The cladding diameter tolerance controls the outer diameter of the fiber, with tighter tolerances ensuring that fibers are almost exactly the same size. During splicing, inconsistent cladding diameters can cause cores to misalign where the fibers join, leading to higher splice losses. The drawing process controls cladding diameter tolerance, and depending on the manufacturer’s skill level, can be very tightly controlled.包层直径耐性控制光纤的外径,通过高耐性以确保光纤尺寸几乎完全一样. 在接续过程中,不连续的包层直径在光纤接入的地方即纤芯处能造成有较高的接续损失。
光通讯英文缩写
光泵浦器件Pump Lasers光标Cursor光波长转换模块Wavelength Conversion Modules光波导分波器optical waveguide router光层交叉连接Optical Layer Cross Connect OLXC光传输Optical transmission光传输监控Optical Transmission Supervision光传输监控Optical Transmission Supervision光传输网Optical Transmission Network OTN光传输系统控制Optical Transmission System Control 光导纤维束Fiber Optics cluster光导纤维束Optical Fiber Cluster光电处理Opto-electronic process光电端机Optoelectrical transceiver光电耦合器Photocouplers光电器件Optoelectronic Devices光电整机Photoelectric Integrated Machine光调制解调器Optical Modem光端机Optical transceiver (ln)光多用表Optical Multimeter光发射单元Optical Transmit Unit OIU光发射二级管Light Emitting Diode LED光发送二极管Optical Transmitting LEDs光发送模块Opitcal Transmitters光发送器件Optical Transmitting Components光放大器Optical Amplifier OA光分波单元Optical demultiplexing unit (ODU)光分波器Optical Demultiplexer Unit ODU光分插复用器Optical Add/Drop Multiplexer OADM 光分路器Optical Divider光分配点Optical Distribution Point ODP光分配节点Optical Distribution Node ODN光分配网络Optical Distribution Network ODN光分支装置Optical Branching Device OBD光复用器Optical Multiplexer光告警方式Optical Alarming Mode光隔离器Optical Isolator光功率差Optical Power Difference光功率计Optical Power Meter光合波板Optical Multiplexer Unit OMU光交叉连接(光互联) Optical Cross-connect OXC光接入网Optical Access Network OAN光接收模块Optical Receivers光接收器件Optical Receiving Components光开关Optical Switch光缆Fiber Optic Cable光连接器Fiber Connectors光滤波器Optical Filters光敏电阻Optical Resistor光耦合器Optical Couplers光盘.激光唱盘Compact Disc CD光盘驱动器CD-ROM CD-ROM光配线架Optical Distribution Frame光配线网Optical Distribution Network ODN光前置放大板Optical Preamplifier OPA光时域反射计Optical Time-Domain Reflectometer OTDR光收发板Optical Transceiver Board OTB光收发模块Optical Transceivers光输入口允许频偏Permitted frequency deviation of optical input interface 光探测器Photodetector光通道Optical channel OCh光网络单元Optical Network Unit ONU光无源器件Optical Passive Devices光纤Optical Fiber/Optic fiber光纤包层Cladding of Fiber光纤布拉格光栅Fiber Bragg Grating FBG光纤到办公室Fiber To The Office FTTO光纤到大楼Fiber To The Building FTTB光纤到服务区Fiber To The Service Area FSA光纤到家Fiber To The Home FTTH光纤到路边Fiber To The Curb FTTC光纤到远端Fiber to the Remote FTTR光纤的Fiber-optic光纤放大器Optical Fiber Amplifier光纤分布式数据接口Fiber Distributed Data Interface FDDI光纤固定衰减器Optical Fixed Attenuator光纤管道Fiber Conduit光纤光缆Optical fiber cable光纤光栅Fiber Grating光纤基带快速以太网FastEthernet, 100baseX光纤接口Fiber Interface FBI光纤连接器Fiber Connector FC光纤耦合器Fiber Coupler光纤熔接盒Fiber splice tray光纤衰减器Fiber Attenuator光纤同轴混合网Hybrid Fiber and Coax Network HFC光纤尾纤Fiber Pigtail光纤引入线Fiber Optic Drop光纤用户环路Fiber In The Loop光纤载波等级3 OC-3 OC-3光线路Optical Line OL光线路板Optical Line Board OL光线路放大器Optical Line Amplifier OLA光线路收发板Optical Line Transceiver Board OLT光线路终端Optical line terminal OLT光信号Optical Signal光学器件Optics光学字符识别Optical Character Recognition OCR光载波第1级Optical Carrier Level 1 OC-1光载波第N级Optical Carrier Level N OC-N光栅(fiber) grating光支路接口optical tributary interface光支路接口单元optical interface units。
光纤通信英文版常见中英对照单词表
AAbsorption coefficient 吸收系数ac alternating current 交变电流交流Acoustic phonon 声学声子Active component 有源器件AM amplitude modulation 幅度调制AM,FM,PM:幅度/频率/相位调制AON all-optical network 全光网络AOTF acoustic optic tunable filter 声光调制器APD avalanche photodiode 雪崩二极管AR coatings antireflection coatings 抗反膜ASE amplified spontaneous emission 放大自发辐射ASK amplitude shift keying 幅移键控ASK/FSK/PSK 幅/频/相移键控ATM asynchronous transfer mode 异步转移模式Attenuation coefficient 衰减系数Attenuator 衰减器Auger recombination:俄歇复合AWG arrayed-waveguide grating 阵列波导光栅BBand gap:带隙Band pass filter 带通滤波器Beam divergence 光束发散BER bit error rate 误码率BER:误码率BH buried heterojunction 掩埋异质结Binary representation 二进制表示方法Binary 二进制Birefringence 双折射Birefringence双折射Bitrate-distance product 比特距离的乘积Block diagram 原理图Boltzman statistics:玻尔兹曼统计分布BPF band pass filter 带通滤波器Bragg condition 布拉格条件Bragg diffraction 布拉格衍射Brillouin scattering 布里渊散射Brillouin shift 布里渊频移Broad area 宽面Buried heterostructure 掩埋异质结CC3 cleaved-coupled cavity 解理耦合腔Carrier lifetime:载流子寿命CATV common antenna cable television 有线电视CDM code division multiplexing 码分复用Characteristics temperature 特征温度Chirp 啁啾Chirped Gaussian pulse 啁啾高斯脉冲Chromatic dispersion 色度色散Chromatic dispersion 色度色散Cladding layer:包层Cladding 包层CNR carrier to noise ratio 载噪比Conduction band:导带Confinement factor 限制因子Connector 连接头Core cladding interface 纤芯包层界面Core-cladding interface 芯层和包层界面Coupled cavity 耦合腔CPFSK continuous-phase frequency-shift keying 连续相位频移键控Cross-phase modulation 交叉相位调制Cross-talk 串音CSO Composite second order 复合二阶CSRZ:载波抑制归零码Cutoff condition 截止条件CVD chemical vapour deposition 化学汽相沉积CW continuous wave 连续波Cylindrical preform:预制棒DDBR distributed Bragg reflector 分布布拉格反射DBR: distributed Bragg reflector 分布式布拉格反射器dc direct current 直流DCF dispersion compensating fiber 色散补偿光纤Depressed-cladding fiber: 凹陷包层光纤DFB distributed feedback 分布反馈DFB: Distributed Feedback 分布式反馈Differential gain 微分增益Differential quantum efficiency 微分量子效率Differential-dispersion parameter:微分色散参数Diffusion 扩散Digital hierarchy 数字体系DIP dual in line package 双列直插Direct bandgap:直接带隙Directional coupler 定向耦合器Dispersion compensation fiber:色散补偿光纤Dispersion decreasing fiber:色散渐减光纤Dispersion parameter:色散参数Dispersion shifted fiber 色散位移光纤Dispersion slope 色散斜率Dispersion slope:色散斜率Dispersion-flatten fiber:色散平坦光纤Dispersion-shifted fiber:色散位移光纤Double heterojunction 双异质结Double heterostructure:双异质结Doubly clad:双包层DPSK differential phase-shift keying 差分相移键控Driving circuit 驱动电路Dry fiber 无水光纤DSF dispersion shift fiber 色散位移光纤DWDM dense wavelength divisionmultiplexing/multiplexer密集波分复用/器DWDM: dense wavelength division multiplexing密集波分复用E~GEDFA erbium doped fiber amplifier 掺铒光纤激光器Edge emitting LED 边发射LEDEdge-emitting 边发射Effective index 有效折射率Eigenvalue equation 本征值方程Elastic scattering 弹性散射Electron-hole pairs 电子空穴对Electron-hole recombination 电子空穴复合Electron-hole recombination:电子空穴复合Electrostriction 电致伸缩效应Ethernet 以太网External cavity 外腔External quantum efficiency 外量子效率Extinction ratio 消光比Eye diagram 眼图FBG fiber-bragg grating 光纤布拉格光栅FDDI fiber distributed data interface 光纤数据分配接口FDM frequency division multiplexing频分复用FDM:频分复用Fermi level 费米能级Fermi level:费米能级Fermi-Dirac distribution:费米狄拉克分布FET field effect transistor 场效应管Fiber Manufacturing:光纤制作Field radius 模场半径Filter 滤波器Flame hydrolysis 火焰裂解FM frequency modulation 频率调制Forward-biased :正向偏置FP Fabry Perot 法布里-珀落Free spectral range 自由光谱范围Free-space communication 自由空间光通信系统Fresnel transmissivity 菲涅耳透射率Front end 前端Furnace 熔炉FWHM full width at half maximum 半高全宽FWHM: 半高全宽FWM four-wave mixing 四波混频Gain coefficient 增益系数Gain coupled 增益耦合Gain-guided semiconductor laser 增益波导半导体激光器Germania 锗GIOF graded index optical fiber 渐变折射率分布Graded-index fiber 渐变折射率光纤Group index 群折射率GVD group-velocity dispersion 群速度色散GVD: 群速度色散H~LHBT heterojunction-bipolar transistor异质结双极晶体管HDTV high definition television 高清晰度电视Heavy doping:重掺杂Heavy-duty cable 重型光缆Heterodyne 外差Heterojunction:异质结HFC hybrid fiber-coaxial 混合光纤/电缆Higher-order dispersion 高阶色散Highpass filter 高通滤波器Homodyne 零差Homojunction:同质结IC integrated circuit 集成电路IM/DD intensity modulation with direct detection 强度调制直接探测IM/DD: 强度调制/直接探测IMD intermodulation distortion 交互调制失真Impulse 冲激Impurity 杂质Index-guided 折射率导引Indirect bandgap:非直接带隙Inelastic scattering 非弹性散射Inhomogeneous非均匀的Inline amplifier 在线放大器Intensity noise 强度噪声Intermodal dispersion:模间色散Intermode dispersion 模间色散Internal quantum efficiency:内量子效率Intramodal dispersion: 模内色散Intramode dispersion 模内色散Intrinsic absorption 本征吸收ISDN integrated services digital network 综合业务数字网ISI intersymbol interference 码间干扰Isotropic 各向同性Jacket 涂层Jitter 抖动Junction:结Kinetic energy:动能Lambertian source 朗伯光源LAN local-area network 局域网Large effective-area fiber 大有效面积发光Laser threshold 激光阈值Laser 激光器Lateral mode 侧模Lateral 侧向Lattice constant:晶格常数Launched power 发射功率LD laser diode 激光二极管LD:激光二极管LED light emitting diode 发光二极管LED: 发光二极管L-I light current 光电关系Light-duty cable 轻型光缆Linewidth enhancement factor 线宽加强因子Linewidth enhancement factor 线宽增强因子Linewidth 线宽Longitudinal mode 纵模Longitudinal model 纵模Lowpass filter 低通滤波器LPE liquid phase epitaxy 液相外延LPE:液相外延M~NMacrobending 宏弯MAN metropolitan-area network 城域网Material dispersion 材料色散Material dispersion:材料色散Maxwell’s equations 麦克斯韦方程组MBE molecular beam epitaxy 分子束外延MBE:分子束外延MCVD Modified chemical vapor deposition改进的化学汽相沉积MCVD:改进的化学汽相沉积Meridional rays 子午光线Microbending 微弯Mie scattering 米氏散射MOCVD metal-organic chemical vapor deposition金属有机物化学汽相沉积MOCVD:改进的化学汽相沉积Modal dispersion 模式色散Mode index 模式折射率Modulation format 调制格式Modulator 调制器MONET Multiwavelength optical network 多波长光网络MPEG motion-picture entertainment group视频动画专家小组MPN mode-partition noise 模式分配噪声MQW multiquantum well 多量子阱MQW: 多量子阱MSK minimum-shift keying 最小频偏键控MSR mode-suppression ratio 模式分配噪声MSR: Mode suppression ratio 模式抑制比Multimode fiber 多模光纤MZ mach-Zehnder 马赫泽德NA numerical aperture 数值孔径Near infrared 近红外NEP noise-equivalent power 等效噪声功率NF noise figure 噪声指数Nonradiative recombination 非辐射复合Nonradiative recombination:非辐射复合Normalized frequency 归一化频率NRZ non-return to zero 非归零NRZ:非归零码NSE nonlinear Schrodinger equation 非线性薛定额方程Numerical aperture 数值孔径Nyquist criterion 奈奎斯特准则O P QOC optical carrier 光载波OEIC opto-electronic integrated circuit 光电集成电路OOK on-off keying 开关键控OOK:通断键控OPC optical phase conjugation 光相位共轭Optical mode 光模式Optical phase conjugation 光相位共轭Optical soliton 光孤子Optical switch 光开关Optical transmitter 光发射机Optical transmitter:光发射机OTDM optical time-division multiplexing 光时分复用OVD outside-vapor deposition 轴外汽相沉积OVD:轴外汽相沉积OXC optical cross-connect 光交叉连接Packaging 封装Packet switch 分组交换Parabolic-index fiber 抛物线折射率分布光纤Passive component 无源器件PCM pulse-code modulation 脉冲编码调制PCM:脉冲编码调制PCVD:等离子体化学汽相沉积PDF probability density function 概率密度函数PDM polarization-division multiplexing 偏振复用PDM:脉冲宽度调制Phase-matching condition 相位匹配条件Phase-shifted DFB laser 相移DFB激光器Photon lifetime 光子寿命PMD 偏振模色散Polarization controller 偏振控制器Polarization mode dispersion:偏振模色散Polarization 偏振PON passive optical network 无源接入网Population inversion:粒子数反转Power amplifier 功率放大器Power-conversion efficiency 功率转换效率PPM:脉冲位置调制Preamplifer 前置放大器PSK phase-shift keying 相移键控Pulse broadening 脉冲展宽Quantization noise 量化噪声Quantum efficiency 量子效率Quantum limit 量子极限Quantum limited 量子极限Quantum noise 量子噪声RRA raman amplifier 喇曼放大器Raman scattering 喇曼散射Rate equation 速率方程Rayleigh scattering 瑞丽散射Rayleigh scattering 瑞利散射Receiver sensitivity 接收机灵敏度Receiver 接收机Refractive index 折射率Regenerator 再生器Repeater spacing 中继距离Resonant cavity 谐振腔Responsibility 响应度Responsivity 响应度Ridge waveguide laser 脊波导激光器Ridge waveguide 脊波导RIN relative intensity noise 相对强度噪声RMS root-mean-square 均方根RZ return-to-zero 归零RZ: 归零码SSAGCM separate absorption, grading, charge, and multiplication吸收渐变电荷倍增区分离APD的一种SAGM separate absorption and multiplication吸收渐变倍增区分离APD的一种SAM separate absorption and multiplication吸收倍增区分离APD的一种Sampling theorem 抽样定理SBS 受激布里渊散射SBS stimulated Brillouin scattering 受激布里渊散射SCM subcarrier multiplexing 副载波复用SDH synchronous digital hierarchy 同步数字体系SDH:同步数字体系Self-phase modulation 自相位调制Sellmeier equation:塞米尔方程Sensitivity degradation 灵敏度劣化Sensitivity 灵敏度Shot noise 散粒噪声Shot noise 散粒噪声Single-mode condition 单模条件Sintering :烧结SIOF step index optical fiber 阶跃折射率分布SLA/SOA semiconductor laser/optical amplifier 半导体光放大器SLM single longitudinal mode 单纵模SLM: Single Longitudinal mode单纵模Slope efficiency 斜率效率SNR signal-to-noise ratio 信噪比Soliton 孤子SONET synchronized optical network 同步光网络SONET:同步光网络Spectral density:光谱密度Spontaneous emission:自发辐射Spontaneous-emission factor 自发辐射因子SRS 受激喇曼散射SRS stimulated Raman scattering 受激喇曼散射Step-index fiber 阶跃折射率光纤Stimulated absorption:受激吸收Stimulated emission:受激发射STM synchronous transport module 同步转移模块STM:同步转移模块Stripe geometry semiconductor laser 条形激光器Stripe geometry 条形STS synchronous transport signal 同步转移信号Submarine transmission system 海底传输系统Substrate:衬底Superstructure grating 超结构光栅Surface emitting LED 表面发射LEDSurface recombination:表面复合Surface-emitting 表面发射TTCP/IP transmission control protocol/internet protocol传输控制协议/互联网协议TDM time-division multiplexing 时分复用TDM:时分复用TE transverse electric 横电模Ternary and quaternary compound:三元系和四元系化合物Thermal equilibrium:热平衡Thermal noise 热噪声Thermal noise 热噪声Threshold current 阈值电流Timing jitter 时间抖动TM transverse magnetic 横磁Total internal reflection 全内反射Transceiver module 收发模块Transmitter 发射机Transverse 横向Transverse mode 横模TW traveling wave 行波U ~ ZVAD vapor-axial epitaxy 轴向汽相沉积VAD:轴向沉积Valence band:价带VCSEL vertical-cavity surface-emitting laser垂直腔表面发射激光器VCSEL: vertical cavity surface-emitting lasers 垂直腔表面发射激光器VPE vapor-phase epitaxy 汽相沉积VPE:汽相外延VSB vestigial sideband 残留边带Wall-plug efficiency 电光转换效率WAN wide-area network 广域网Waveguide dispersion 波导色散Waveguide dispersion:波导色散Waveguide imperfection 波导不完善WDMA wavelength-division multiple access 波分复用接入系统WGA waveguide-grating router 波导光栅路由器White noise 白噪声XPM cross-phase modulation 交叉相位调制YIG yttrium iron garnet 钇铁石榴石晶体Zero-dispersion wavelength 零色散波长Zero-dispersion wavelength:零色散波长。
光纤英语单词
光纤英语单词单词:fiber(光纤)1. 定义与释义1.1词性:名词1.2释义:一种细长的、可用于传输光信号的纤维材料,是现代通信等领域的重要组成部分。
1.3英文解释:A long, thin, flexible thread - like structure, especially one made of glass or plastic, which can be used for transmitting light signals.1.4相关词汇:fibre(英式拼写,同义词),optical fiber(同指光纤,完整表述),fiber - optic(形容词形式,光纤的)。
2. 起源与背景2.1词源:“fiber”源自拉丁语“fibra”,原意为“纤维、细丝”。
随着科技发展,这种材料在光学通信领域的应用日益广泛,逐渐特指用于传输光信号的光纤。
2.2趣闻:最初研究光纤时,科学家们面临着如何在细长的玻璃纤维中实现光的高效传输且减少损耗的难题。
经过无数次的试验和改进,才使得光纤能够广泛应用于现代通信,就像从一根简单的玻璃丝发展成为信息高速公路的基石。
3. 常用搭配与短语3.1短语:(1) fiber optics:光纤技术例句:The development of fiber optics has revolutionized themunication industry.翻译:光纤技术的发展使通信行业发生了革命性的变化。
(2) fiber cable:光纤电缆例句:The fiber cable is being laid underground for the new network.翻译:为了新的网络正在地下铺设光纤电缆。
(3) single - mode fiber:单模光纤例句:Single - mode fiber is often used in long - distancemunication.翻译:单模光纤常用于长距离通信。
光通信技术-ASON介绍
1ASON介绍 关于本章ASON(Automatically Switched Optical Network),即自动光交换网络,是新一代光传送网络,也称智能光网络。
本章介绍了 ASON的一些基本概念及华为 ASON软件的应用和特性。
1.1 概华为公司提供的 ASON软件,可以应用在 OptiX OSN智能波分系列产品上,以支持传统网述络向 ASON网络的演进。
ASON软件符合 ITU-T和 IETF ASON/GMPLS系列标准。
1.2 ASON软件和功能华为公司提供 ASON控制平面软件,完成网络的呼叫连接,通过信令交换完成传送平面的动态控制等功能。
1.3 资源和拓扑自动发ASON网络可实现链路资源、网络拓扑和站点间光纤的自动发现,自动形成网络地图。
并现实时动态获取网络中波长/子波长业务的资源状态,包括占用和空闲资源状态,可以更方便快捷的了解当前网络情况。
1.4 智能路径建立和删在智能路径的建立、删除、修改和重路由的过程中,需要使用 RSVP-TE信令。
除1.5 ASON特性华为 OptiX OSN波分系列产品在加载智能软件后,即可提供 ASON功能。
1.6 光层和电层智能业智能软件不仅能提供波长级别的光层智能业务,还提供子波长级别的电层智能业务,客务户在不同层面均能实现灵活的业务调度。
1.1 概述华为公司提供的 ASON软件,可以应用在 OptiX OSN智能波分系列产品上,以支持传统网络向 ASON网络的演进。
ASON软件符合 ITU-T和 IETF ASON/GMPLS系列标准。
支持 ASON功能的智能波分系列产品如下:1.1.1 ASON 的产生和优势A SON作为传送网领域的新技术,相对于传统 WDM网络,在业务配置、带宽利用率和保护方式上更具优势。
1.1.2 ASON的特点A SON作为传送网领域的新技术,有其自身的特点。
1.1.3 华为 ASON解决方案华为提供了详尽的不同层面的 ASON解决方案。
激光、光电、光学词汇中英文对照
激光、光电、光学词汇中英文对照1. 激光(Laser)2. 光电效应(Photoelectric Effect)3. 光学(Optics)4. 光纤(Fiber Optic)5. 光谱(Spectrum)6. 折射率(Refractive Index)7. 透镜(Lens)8. 反射(Reflection)9. 干涉(Interference)10. 衍射(Diffraction)11. 偏振(Polarization)12. 激光切割(Laser Cutting)13. 激光焊接(Laser Welding)14. 光电探测器(Photoelectric Detector)15. 光电传感器(Photoelectric Sensor)16. 光学显微镜(Optical Microscope)17. 光学望远镜(Optical Telescope)18. 光学镜头(Optical Lens)19. 光学滤波器(Optical Filter)20. 光学编码器(Optical Enr)21. 光学通信(Optical Communication)22. 光学存储(Optical Storage)24. 光学子系统(Optical Subsystem)25. 光学设计(Optical Design)26. 光学加工(Optical Fabrication)27. 光学镀膜(Optical Coating)28. 光学检测(Optical Inspection)29. 光学成像(Optical Imaging)30. 光学治疗(Optical Therapy)31. 光学材料(Optical Materials)32. 光学元件(Optical Elements)33. 光学路径(Optical Path)34. 光学平台(Optical Platform)35. 光学子件(Optical Component)36. 光学连接器(Optical Connector)37. 光学开关(Optical Switch)38. 光学调制器(Optical Modulator)39. 光学衰减器(Optical Attenuator)40. 光学放大器(Optical Amplifier)41. 光学显示器(Optical Display)42. 光学子午线(Optical Meridian)43. 光学分辨率(Optical Resolution)44. 光学畸变(Optical Distortion)45. 光学厚度(Optical Thickness)46. 光学密度(Optical Density)48. 光学干涉仪(Optical Interferometer)49. 光学相干断层扫描(Optical Coherence Tomography)50. 光学扫描器(Optical Scanner)51. 光学跟踪(Optical Tracking)52. 光学遥感(Optical Remote Sensing)53. 光学成像系统(Optical Imaging System)54. 光学跟踪系统(Optical Tracking System)55. 光学定位系统(Optical Positioning System)56. 光学子午仪(Optical Meridian Instrument)57. 光学补偿器(Optical Compensator)58. 光学补偿器(Optical Corrector)59. 光学基准(Optical Reference)60. 光学基准面(Optical Reference Plane)这些词汇涵盖了激光、光电和光学领域的基本概念、技术和设备。
FSO无线光通信英文介绍
2. Principle
universal turntable unipod
tripod
Ultraviolet NLOS communication
3. Application
3.1 Domestic application
Number 1 2 3 Time(year) 1999 2005 2008 Rate(Mb /s) 8 155 2500 Range(km) 4 10 2
3. Application
3.2 Application in the USA unmanned system
In the roadmap, they discussed the advantage of optical communication system in unmanned system. Optical routers will be more practical when they employ unmanned high-flying vehicles like the Global Hawk, Boeing’s Phantom Eye, and the X-37B. LOS optical links have successfully been demonstrated at link ranges in excess of 50 km. Applications could apply to fixed locations and in air-to-air and ship-to-ship scenarios. Theoretical estimates indicate that air-to-ground links are feasible at rates up to 100 Mbit/s for link slant ranges up to 100 km, depending on atmospheric conditions. Due to the extreme narrow beamwidth of such systems, maintaining pointing accuracy to and from a moving unmanned system will be a major challenge (>2020).
光纤通信RF方面的中英文翻译
RF and Microwave Fiber-Optic Design GuideAgere Systems Inc., through its predecessors, began developing and producing lasers and detectors for linear fiber-optic links nearly two decades ago. Over time, these optoelectronic components have been continually refined for integration into a variety of systems that require high fidelity, high frequency, or long-distance transportation of analog and digital signals. As a result of this widespread use and development, by the late 1980s, these link products were routinely being treated as standard RF and microwave components in many different applications.There are several notable advantages of fiber optics that have led to its increasing use. The most immediate benefit of fiber optics is its low loss. With less than 0.4 dB/km of optical attenuation, fiber-optic links send signals tens of kilometers and still maintain nearly the original quality of the input.The low fiber loss is also independent of frequency for most practical systems. With laser and detector speeds up to 18 GHz, links can send high-frequency signals in their original form without the need to downconvert or digitize them for the transmission portion of a system. As a result, signal conversion equipment can be placed in convenient locations or even eliminated altogether, which often leads to significant cost and maintenancesavings.Savings are also realized due to the mechanical flexibility and lightweight fiber-optic cable, approximately 1/25 the weight of waveguide and 1/10 that of coax. Many transmission lines can be fed through small conduits, allowing for high signal rates without investing in expensive architectural supports. The placement of fiber cable is further simplified by the natural immunity of optical fiber to electromagnetic interference (EMI). Not only can large numbers of fibers be tightly bundled with power cables, they also provide a uniquely secure and electrically isolated transmission path.The general advantages of fiber-optics first led to their widespread use in long-haul digital telecommunications. In the most basic form of fiber-optic communications, light from a semiconductor laser or LED is switched on and off to send digitally coded information through a fiber to a photodiode receiver.By comparison, in linear fiber-optic systems developed by Lucent, the light sent through the fiber has an intensity directly related to the input electrical current. Whilethis places extra requirements on the quality of the lasers and photodiodes, it has been essential in many applications to transmit arbitrary RF and microwave signals. As a result, tens of thousands of Agere Systems’ transmitters are currently in use.The information offered here examines the basic link components, provides an overview of design calculations related to gain, bandwidth, noise, and dynamic range and distortion. A section on fiber-optic components discusses a number of key parameters, among them wavelength and loss, dispersion, reflections, and polarization and attenuation. Additional information evaluates optical isolators, distributed-feedback lasers and Fabry-Perot lasers, predistortion, and short- vs. long-wavelength transmission.One of linear optical fiber relation main usages or receives between the electronic installation and the remote localization antenna in the transmission transmits RF and the microwave signal。
电子信息工程的通讯历史
电子信息工程的通讯历史摘要:电子信息工程专业是一个电子和信息工程方面的较宽口径专业,该专业包括电路与系统,数字信号处理,通信工程三个方向。
其历史可追溯到19世纪,本人仅以其中的通信工程为例,阐述其发展历史。
关键词:电子信息工程;通讯工程;发展历史;引言:通讯工程的历史可大致划分为3个阶段:1837年电报开始的通信初级阶段;1948年香农提出信息论开始的近代通信阶段;80年代以后光纤通信应用、综合业务数字网崛起的现代通信阶段。
本文以这三个阶段为骨架,具体的阐述其历史。
1.通信初级阶段原始的传递信息最基本的方式就是听觉和视觉1.1 1837 年,摩尔斯发明了电报。
这一发明使通过一根铜线上的电脉冲来传递信息成为可能。
报文的每一字符被转换为一串或长或短的电脉冲(通俗地讲,就是点和划) 传输出去(Morse Code)1.2 1864年,麦克斯韦创立了电磁辐射理论,并被当时的赫兹证明,促使了后来无线通信的出现1.3 1876 年,贝尔发明了电话(人工转接到程控交换:步进制、空分、时分、程控交换、光交换)1.4 1896年,马可尼发明无线电报,并在英国取得了专利。
当时通信距离只有30米。
1.5 1907年,弗莱明发明电子管,通信进入电子信息时代。
随后通讯工程发展迅速1915年,横贯大陆电话开通; 实现越洋语音连接。
1918年,调幅无线电广播、超外差式接收机问世1925年,开通三路明线载波电话,开始多路通信1.6 1937年,雷沃斯发明脉冲编码调制,奠定了数字通信基础。
随后的第二次世界大战中,通信被广泛用于军事,而战争又刺激了通信技术的发展,此时雷达和微波通信技术相继问世并投入使用。
1.7 1946年在美国宾夕法尼亚大学,世界上第一台数字电子计算机ENIAC问世它包括1.8万只电子管,占地170m*2,重30t,耗电150kW。
这个跨时代的发明使通信与计算机结合发展为数据通信。
2.近代通信阶段20世纪中叶,‘信息论’这个标新立异的理论问世,有力的动摇了传统的科学框架,为计算机与远程通信建立了坚实的理论基础2.1 1948年,香农提出了信息论,建立了通信统计理论。
光纤通信中常用英文简写
光纤通信中常用英文缩写Acron ymsa c alt ernat ing c urren t 交变电流交流A M amp litud e mod ulati on 幅度调制AO N all-opti cal n etwor k 全光网络APD aval anche phot odiod e 雪崩二极管AS E amp lifie d spo ntane ous e missi on 放大自发辐射ASK a mplit ude s hiftkeyin g 幅移键控ATM asyn chron ous t ransf er mo de 异步转移模式BER b it er ror r ate 误码率BH buri ed he teros truct ure 掩埋异质结BPF b and p ass f ilter带通滤波器C3cleav ed-co upled cavi ty 解理耦合腔C ATV c ommon ante nna c abletelev ision有线电视CDMcodedivis ion m ultip lexin g 码分复用CNR carr ier t o noi se ra tio 载噪比CS O Com posit e sec ond o rder复合二阶CPFSK cont inuou s-pha se fr equen cy-sh ift k eying连续相位频移键控CVD c hemic al va pourdepos ition化学汽相沉积CW cont inuou s wav e 连续波DBRdistr ibute d Bra gg re flect or 分布布拉格反射DFBdistr ibute d fee dback分布反馈dc d irect curr ent 直流DCF disp ersio n com pensa tingfiber色散补偿光纤DS F dis persi on sh ift f iber色散位移光纤DIP dual in l ine p ackag e 双列直插DPS K dif feren tialphase-shif t key ing 差分相移键控EDFA erbi um do ped f iberampli fier掺铒光纤激光器FD DI fi ber d istri buted data inte rface光纤数据分配接口FDM f reque ncy d ivisi on mu ltipl exing频分复用FETfield effe ct tr ansis tor 场效应管F M fre quenc y mod ulati on 频率调制FP Fabr y Per ot 法布里里-珀落FSKfrequ ency-shift keyi ng 频移键控FW HM fu ll wi dth a t hal f max imum半高全宽FWM f our-w ave m ixing四波混频GVDgroup-velo citydispe rsion群速度色散HBT hete rojun ction-bipo lar t ransi stor异质结双极晶体管H DTV h igh d efini tiontelev ision高清晰度电视HF C hyb rid f iber-coaxi al 混合光纤纤/电缆ICinteg rated circ uit 集成电路I MD in termo dulat ion d istor tion交互调制失真IM/DD in tensi ty mo dulat ion w ith d irect dete ction强度调制直接探测ISDNinteg rated serv icesdigit al ne twork综合业务数字网I SI in tersy mbolinter feren ce 码间干扰LA N loc al-ar ea ne twork局域网LED l ightemitt ing d iode发光二极管L-Ilight curr ent 光电关系L PE li quidphase epit axy 液相外延M AN me tropo litan-area netw ork 城域网MB E mol ecula r bea m epi taxy分子束外延MOCV D met al-or ganic chem icalvapor depo sitio n金属有机物化学汽相沉积M CVD M odifi ed ch emica l vap or de posit ion改进的化学汽相沉积M ONETMulti wavel ength opti cal n etwor k 多波长光网络M PEG m otion-pict ure e ntert ainme nt gr oup 视频动画专家小组MP N mod e-par titio n noi se 模式分配噪声MQW m ultiq uantu m wel l 多量子阱MSK mini mum-s hiftkeyin g 最小频偏键控M SR mo de-su ppres sionratio模式分配噪声MZ mach-Zehn der 马赫泽德N A num erica l ape rture数值孔径NF n oisefigur e 噪声指数NEP nois e-equ ivale nt po wer 等效噪声功率NRZnon-r eturn to z ero 非归零NS E non linea r Sch rodin ger e quati on 非线性薛定额方程OCoptic al ca rrier光载波OEICopto-elect ronic inte grate d cir cuit光电集成电路OOK on-o ff ke ying开关键控OPC o ptica l pha se co njuga tion光相位共轭OTDM opti cal t ime-d ivisi on mu ltipl exing光时分复用OVD outs ide-v apordepos ition轴外汽相沉积OX C opt icalcross-conn ect 光交叉连接PCM p ulse-codemodul ation脉冲编码调制PD F pro babil ity d ensit y fun ction概率密度函数PD M pol ariza tion-divis ion m ultip lexin g 偏振复用PON pass ive o ptica l net work无源接入网PSKphase-shif t key ing 相移键控R IN re lativ e int ensit y noi se 相对强度噪声RMS r oot-m ean-s quare均方根RZ re turn-to-ze ro 归零RA r amanampli fier喇曼放大器SAGC M sep arate abso rptio n, gr ading, cha rge,and m ultip licat ion 吸收渐变电荷倍增区分离APD 的一种SA GM se parat e abs orpti on an d mul tipli catio n吸收渐变倍增区分离APD的一种S AM se parat e abs orpti on an d mul tipli catio n吸收倍增区分离A PD 的一种SBS stim ulate d Bri lloui n sca tteri ng 受激布里渊散射SCMsubca rrier mult iplex ing 副载波复用SDH s ynchr onous digi tal h ierar chy 同步数字体系SLA/SOA s emico nduct or la ser/o ptica l amp lifie r 半导体光放大器SLM s ingle long itudi nal m ode 单纵模SN R sig nal-t o-noi se ra tio 信噪比SO NET s ynchr onize d opt icalnetwo rk 同步光网络S PM se lf-ph ase m odula tion自相位调制SRSstimu lated Rama n sca tteri ng 受激喇曼散射STM s ynchr onous tran sport modu le 同步转移模块STS s ynchr onous tran sport sign al 同步转移信号TCP/I P tra nsmis sioncontr ol pr otoco l/int ernet prot ocol传输控制协议议/互联网协议T DM ti me-di visio n mul tiple xing时分复用TE tr ansve rse e lectr ic 横电模TMtrans verse magn etic横磁TW trav eling wave行波V AD va por-a xialepita xy 轴向汽相沉积VCSEL vert ical-cavit y sur face-emitt ing l aser垂直腔表面发射激光器VPEvapor-phas e epi taxy汽相沉积VSB v estig ial s ideba nd 残留边带WA N wid e-are a net work广域网W DMA w avele ngth-divis ion m ultip le ac cess波分复用接入系统W GA wa vegui de-gr ating rout er 波导光栅路由器XPMcross-phas e mod ulati on 交叉相位调制YIG y ttriu m iro n gar net 钇铁石榴石晶体DWD M den se wa velen gth d ivisi on mu ltipl exing/mult iplex er密集波分复用用/器FB G fib er-br agg g ratin g 光纤布拉格光栅AWG a rraye d-wav eguid e gra ting阵列波导光栅LDlaser diod e 激光二极管AO TF ac ousto opti c tun ablefilte r 声光调制器AR coat ingsantir eflec tioncoati ngs 抗反膜SI OF st ep in dex o ptica l fib er 阶跃折射率分布GIOF grad ed in dex o ptica l fib er 渐变折射率分布光纤通信技术课程常用词汇C ross-talk串音Pa ssive comp onent无源器件Acti ve co mpone nt 有源器件So liton孤子J itter抖动H etero dyne外差Ho modyn e 零差Trans mitte r 发射机Rece iver接收机T ransc eiver modu le 收发模块Bi refri ngenc e 双折射Chir p 啁啾Binar y 二进制Chro matic disp ersio n 色度色散Cla dding包层J acket涂层C ore c laddi ng in terfa ce 纤芯包层界面Gain-guide d sem icond uctor lase r 增益波导半导体激光器In dex-g uidesemic onduc tor l aser折射率波导半导体激光器Dam pingconst ant 阻尼常数T hresh old 阈值Pow er pe nalty功率代价Disp ersio n 色散Atten uatio n 衰减Nonli nearoptic al ef fect非线性效应Pola rizat ion 偏振Dou ble h etero junct ion 双异质结E lectr on-ho le re combi natio n 电子空穴复合L inewi dth 线宽Pre ampli fer 前置放大器Inlin e amp lifie r 在线放大器Po wer a mplif ier 功率放大器Extin ction rati o 消光比Eyediagr am 眼图Ferm i lev el 费米能级Mu ltimo de fi ber 多模光纤H igher-orde r dis persi on 高阶色散Di spers ion s lope色散斜率Block diag ram 原理图Qu antum limi ted 量子极限Intra modedispe rsion模内色散Filt er 滤波器Dir ectio nal c ouple r 定向耦合器Is olato r 隔离器Circ ulato r 环形器Dete ctor探测器L aser激光器P olari zatio n con troll er 偏振控制器A ttenu ator衰减器M odula tor 调制器Op tical swit ch 光开关Low passfilte r 低通滤波器Hi ghpas s fil ter 高通滤波器Bandp ass f ilter带通滤波器Lon gitud inalmode纵模Tr ansve rse m ode 横模Lat eralmode侧模Se nsiti vity灵敏度L inewi dth e nhanc ement fact or 线宽增强因子Packe t swi tch 分组交换Q uantu m eff icien cy 量子效率Wh ite n oise白噪声R espon sibil ity 响应度Wa vegui de di spers ion 波导色散S tripe geom etrysemic onduc tor l aser条形激光器Ridg e wav eguid e 脊波导Zero-disp ersio n wav eleng th 零色散波长F ree s pectr al ra nge 自由光谱范围Surf ace e mitti ng LE D 表面发射LEDEdgeemitt ing L ED 边发射LEDEther net 以太网Sh ot no ise 散粒噪声T herma l noi se 热噪声Qua ntumlimit量子极限Sens itivi ty de grada tion灵敏度劣化Inte nsity nois e 强度噪声Tim ing j itter时间抖动Fron t end前端P ackag ing 封装Max well’s equ ation s 麦克斯韦方程组Rayle igh s catte ring瑞利散射Nonra diati ve re combi natio n 非辐射复合Dr iving circ uit 驱动电路ADMAdd D rop M ultip lexer分插复用器:A ON Ac tiveOptic al Ne twork有源光网络:A PON A TM Pa ssive Opti cal N etwor k ATM无源光网络:AD SL As ymmet ric D igita l Sub scrib er Li ne 非对称数字用户线:A A Ada ptive Ante nna 自适应天线:ADP CM Ad aptiv e Dif feren tialPulse Code Modu latio n 自适应脉冲编码调制: A DFE A utoma tic D ecree Feed backEqual izer自适应判决反馈均衡器:AMI Alte rnate Mark Inve rsion信号交替反转码:AONAll O ptica l Net全光网AOWC AllOptic al Wa ve Co nvert er 全光波长转换器:AS K Amp litud e Shi ft Ke ying振幅键控:ATP C Aut omati c Tra nsfer Powe r Con trol自动发信功率控制:AWF A ll Wa ve Fi ber 全波光纤:AU A dmini strat ive U nit 管理单元:AUGAdmin istra tiveUnitGroup管理单元组:A PD Av alanc he Di ode 雪崩光电二极管 :BA Bo oster(powe r) Am plifi er 光功率放大器:BBE R Bac kgrou nd Bl ock E rrorRatio背景误块比:B R Bas ic Ra te Ac cess基本速率接入:B lueto oth 蓝牙:C Band C波带:Chi rp 啁啾:CConta inerC 容器:CSM A/CDCarri er Se nse M ultip le Ac cesswithColli sionDetec tion载波侦听多址接入/碰撞检测协议:CS MA/CA Carr ier S enseMulti ple A ccess with Coll ision Avoi dance载波侦听多址接入/避免冲撞协议:C NR Ca rrier to N oiseRatio载噪比:CPCross pola rizat ion 交叉极化:DCFDispe rsion Comp ensat ing F iber色散补偿单模光纤D FF Di spers ion-f latte ned F iber色散平坦光纤:DR Dive rsity Rece iver分集接收DPTDynam ic Pa cketTrans port动态包传输技术:O DM Op tical Divi sionltipl exer光分用器:DSF Disp ersio n-Shi ftedFiber色散移位光纤:DTM D ynami c Syn chron ous T ransf er Mo de 动态同步传送模式:D WDM D enseWavel ength Divi sionMulti plexi ng 密集波分复用:DLC Digi tal l oop c arrie r 数字环路载波:DXC Digi tal c rossconne ct eq uipme nt 数字交叉连接器:EA Elec trici ty Ab sorbModul ation电吸收调制器:E B Err or Bl ock 误块:E CC Em bedde d Con trolChann el 嵌入控制通路:EDF A Erb ium-d opedFiber Ampl ifier掺铒光纤放大器EDFLErbiu m-dop ed Fi ber L aser掺铒光纤激光器:E S Err oredSecon d 误块秒:ES R Err oredSecon d Rat io 误块秒比:FEC F orwar d Err or Co rrect ion 前向纠错:FWMFour-waveMixin g 四波混频:F DMA F reque ncy D ivisi on Mu ltipl e Acc ess 频分多址:FTTB Fibe r tothe B uildi ng 光纤到大楼:FTTC Fibe r tothe C urb 光纤到路边FTTH Fibe r tothe H ome 光纤到户:FA F reque ncy a gilit y 频率捷变:C SMF C ommon Sing le Mo de Fi ber 单模光纤:DSFDispe rsion-Shif ted F iber色散位移光纤:G E Gig abitEther net 千兆以太网技术:G IF Gr adedIndex Fibe r 渐变型多模光纤:GS-EDFAGainShift ed Er bium-doped Fibe r Amp lifie r增益平移掺饵光纤放大器: GVD G roupVeloc ity D isper sion群速度色散:HP F Hig h Pas s Fil ter 高通滤波器:HRD S Hyp othet icalRefer enceDigit al Se ction假设参考数字段:IDLC Inte grate d DLC综合数字环路载波:IDE N Int egrat ed Di gital Enha ncedNetwo rks 数字集群调度专网:IEEE802.3: CSM A/CD局域网,即以太网标准。
光纤通信英文作文
光纤通信英文作文Fiber optic communication is a revolutionary technology that has transformed the way we transmit data. It useslight signals to carry information through thin, flexible glass fibers. This allows for faster and more reliable communication compared to traditional copper wire systems.The use of fiber optic communication has become widespread in various industries, including telecommunications, internet services, and cable television. Its high bandwidth and low attenuation make it ideal for transmitting large amounts of data over long distances.One of the key advantages of fiber optic communicationis its immunity to electromagnetic interference. This means that the quality of the transmitted data is not affected by nearby power lines or other electrical devices, making it a reliable choice for communication in urban areas.In addition to its technical advantages, fiber opticcommunication also offers environmental benefits. The use of fiber optics reduces the need for large amounts of copper wiring, which in turn reduces the demand for raw materials and the energy required for manufacturing and installation.As technology continues to advance, the potential applications of fiber optic communication are expanding. From high-speed internet to advanced medical imaging, fiber optics is playing a crucial role in shaping the future of communication and connectivity.In conclusion, fiber optic communication has revolutionized the way we transmit data, offering faster speeds, greater reliability, and environmental benefits. As technology continues to advance, the potential applications of fiber optics are limitless, making it an essential technology for the modern world.。
无线光通信
无线光通信1. 简介无线光通信(Wireless Optical Communication)是一种通过无线传播光信号来进行通信的技术。
它利用可见光或红外光进行信息传输,可以实现高速、大容量、安全可靠的无线通信。
无线光通信技术已经得到广泛应用于室内无线网络、无线传感器网络、激光通信、机器人通信等领域。
2. 原理无线光通信的原理是基于光的传输与接收。
发送端使用LED或激光二极管将电信号转换成光信号,经过传输介质(通常是空气)传输到接收端。
接收端的光接收器接收光信号,并将其转换成电信号,从而完成信息传输。
3. 技术细节3.1 发送端发送端通常由以下组件组成:•光源:LED和激光二极管是两种常用的光源。
LED通常用于短距离通信,激光二极管则适用于长距离高速通信。
•调制器:用于将电信号转换成光信号。
常见的调制方式包括振幅调制(AM)、频率调制(FM)和脉冲位置调制(PPM)等。
•光透镜:用于聚焦光信号,提高信号的传输距离和接收效果。
•驱动电路:用于控制光源的亮度和频率。
3.2 传输介质传输介质是无线光通信中的关键因素之一。
在室内环境中,空气是最常见的传输介质。
在一些特殊的情况下,也可以使用其他介质如水、玻璃等作为传输介质。
传输介质的特性会影响光信号的传输距离和衰减情况。
3.3 接收端接收端通常由以下组件组成:•光接收器:用于接收光信号并将其转换成电信号。
常见的光接收器包括光电二极管和光电二极管阵列。
•放大器:用于放大接收到的信号,提高信号的强度和质量。
•解调器:用于将电信号解调成原始的信息信号。
•控制电路:用于控制接收端的工作状态和参数。
4. 优势和应用4.1 优势无线光通信相比传统的无线电通信具有以下优势:•高速传输:无线光通信可以实现几十兆甚至几百兆的传输速率,远高于无线电通信的速率。
•大容量:利用光的频谱资源,无线光通信可以实现更大的数据传输容量。
•低干扰:无线光通信使用的光波不会产生电磁干扰,适用于医疗、航空等对电磁干扰敏感的场景。
光通信
光通信器件是构建光通信系统与网络的基础,高速光传输设备、长距离光传输设备和智能光网络的发展、升 级以及推广应用,都取决于光通信器件技术进步和产品更新换代的支持。因此,通信技术的更新与升级将促使光 通信器件不断发展进步。
历史
1
烽火台语
4
光**
5
“走弯路”
新疆呼图壁县境内的烽火台每当我们提到烽火台,就会自然而然地想到长城,实际上烽火台筑在长城沿线的 险要处和交通要道上。一旦发现敌情,便立刻发出警报:白天点燃掺有狼粪的柴草,使浓烟直上云霄;夜里则燃 烧加有硫磺和硝石的干柴,使火光通明,以传递紧急军情。上图为新疆呼图壁县境内的烽火台,在呼图壁县境内 共有5个烽火台,其中3个已毁,烽火台长宽均约4米,高约5米,筑台年月不详。
贝尔用弧光灯或者太阳光作为光源,光束通过透镜聚焦在话筒的震动片上。当人对着话筒讲话时,震动片随 着话音震动而使反射光的强弱随着话音的强弱作相应的变化,从而使话音信息“承载”在光波上(这个过程叫调 制)。在接收端,装有一个抛物面接收镜,它把经过大气传送过来的载有话音信息的光波反射到硅光电池上,硅 光电池将光能转换成电流(这个过程叫解调)。电流送到听筒,就可以听到从发送端送过来的声音了。
了解F1的旗语吧: 白色旗表示跑道上有缓慢移动的车辆 红色旗表示比赛已停止 黑色旗表示指定的赛车下次通过修理站时要停车 黄底红道旗意思是告诉车手跑道较滑 黑白对角旗表示是非运动员行为 黄旗表示有危险
光通信的出现比无线电通信还早。波波夫发送与接收第一封无线电报是在1896年,以发明**而著名的贝尔, 在1876年发明了**之后,就想到利用光来通**的问题。1880年,他利用太阳光作光源,大气为传输媒质,用硒晶 体作为光接收器件,成功地进行了光**的实验,通话距离最远达到了213米。1881年,贝尔宣读了题为《关于利 用光线进行声音的产生与复制》的论文,报导了他的光**装置。在贝尔本人看来:在他的所有发明中,光**是最 伟大的发明。
光纤通信技术外文翻译中英对照
Optical Fiber Communication TechnologyOptical fiber communication is the use of optical fiber transmission signals, the transmission of information in order to achieve a means of communication. 光导纤维通信简称光纤通信。
Referred to as optical fiber communication optical fiber communications. 可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。
Can be based on optical fiber communication optical fiber as transmission medium for the "wired" optical communication. 光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。
Fiber from the core and cladding of the inner core is generally a few microns or tens of microns, than a human hair; outside layer called the cladding, the role of cladding is to protect the fiber. 实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。
In fact the use of optical fiber communication system is not a single fiber, but that brings together a number of fiber-optic cable componentsOptical fiber communication is the use of light for the carrier with fiber optics as a transmission medium to spread information from one another means of communication. 1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。
光纤通信的基本概念
摘要光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。
随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。
光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。
关键词:通信系统光导纤维AbstractOptical fiber communication system is based on the carrier, the use of high purity glass drawn into very fine optical fiber as a transmission medium by photoelectric conversion, light to transmit information in communication systems. With the Internet business and communications industry, the rapid development of information technology to the world's productive forces and the development of human society has brought great promotion. Optical fiber communication technology as the main pillars of information, one will become the 21st century's most important strategic industry.Keywords: optical fiber communication system目录一、光纤通信的基本概念1、光纤通信技光纤通信基本光纤通信系统2、数字光纤通信系统二、光纤通信技术的特点及应用1、光纤通信技术2、光纤通信技术的特点3、光纤通信技术在有线电视网络中的应用三、光纤通信的发展史四、光纤通信发展趋势1、向超高速系统的发展2、向超大容量WDM系统的演进3、实现光联网——战略大方向浅谈光纤通信系统的发展趋势一、光纤通信的基本概念光纤通信技术和计算机技术是信息化的两大核心支柱,计算机负责把信息数字化,输入网络中去;光纤则是担负着信息传输的重任。
光纤通信 1.Fiber Optic Communications System幻灯片PPT
photo-conducting selenium(硒) cell, which
converted the message to electrical current. A telephone receiver completed the system. The photophone never achieved commercial success, although it worked rather well.
How can it work in darkness?
source
Detecting device
information
Human first communicated by using hand signal .
Chapter 1
Fiber Optic Communications System
Information transfer by such a system is slow, the transmission distance is limited, and the chances for error are great.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文文献阅读及翻译译文及原稿译文题目以太网无源光网络原稿题目 Passive optical network based on Ethernet 姓名吴腾学号 31202130班级通信1204以太网无源光网络格伦·克雷默北京邮电大学出版社2007以太网无源光网络(Ethernet Passive Optical Network , EPON)是一种新型的光纤接入网技术,它采用点到多点结构、无源光纤传输,在以太网之上提供多种业务。
它在物理层采用了PON技术,在链路层使用以太网协议,利用PON的拓扑结构实现了以太网的接入。
因此,它综合了PON 技术和以太网技术的优点:低成本;高带宽;扩展性强,灵活快速的服务重组;与现有以太网的兼容性;方便的管理等等。
由于EPON的众多优点,它越来越受到人们的青睐,即将成为宽带接入网一种最有效的通信方法。
为了保证EPON网络能够稳定、高效、准确的运行,为EPON提供一个有效的网络管理系统显得尤为重要。
在网络管理领域,随着基于TCP/IP体系的网络管理技术的不断发展,SNMP已经成为事实上的标准。
基于SNMP的EPON网络管理系统是指采用SNMP管理协议框架,对EPONSNMP的介绍SNMP(简单网络管理协议)是一种基于TCP/IP的网络管理协议,它使用UDP作为传输层协议,能管理支持代理进程的网络设备。
SNMP主要包括SMI(管理信息结构)、MIB(管理信息库)和SNMP协议几部分。
SMI 给出了管理对象定义的一般框架。
MIB是设备所维护的全部被管理对象的结构集合。
SNMP协议包括SNMP操作、SNMP信息的格式以及如何在应用程序和设备SNMP采用代理/管理站模型进行网络管理。
SNMP有5种消息类型,分别为Get-Request、Get-Response、Get-Next-Request、Set-Request和Trap。
代理和管理站之间通过这几种消息报文进行相互通信,以获取网络设备的各种信息,从而控制网络设备的正常运行。
EPON网管系统结构EPON系统的管理对象为1个OLT(光线路终端)和32个ONU(光网络单元)。
基于SNMP的EPON网管系统结构如图2所示。
EMS网管系统安装在工作站,与OLT设备之间通过带外网管接口(F 接口)相连。
EMS网管系统和OLT、ONU设备之间采用SNMP协议进行通信,实现在EMS中对OLT、ONU的统一管理。
通信的方式有2种:(1)轮询。
管理站每隔一段时间对所有OLT和ONU代理站的MIB进行主动查询,各代理站返回被查询的结点值。
(2)告警(trap)。
当某些指定事件发生时,代理进程向管理站发送trap报文。
管理站接收、显示告警事件,并做相应处理。
同时OLT设备和ONU设备具备本地Console接口,可以实现本地操作管理维护。
EPON网管系统的设计EPON网管系统按照网管功能分为四大模块:配置管理、性能管理、故障管理和安全管理。
1. 配置管理配置管理主要是组织EPON网内运转所需要的资源和数据,构造和维护网络系统的配置,识别各网元,保证网元的基本配置,监控当前配置和按照具体情况改变配置,设置系统参数,收集并存储各参数,报告与基本配置值的偏差,启动和关闭资源等。
EPON配置管理包括系统初次启动时的配置管理和系统正常运行时的配置管理。
启动时,针对EPON网络,可自动或手动生成OLT、ONU设备拓扑图,显示当前网络中各OLT、ONU设备的状态。
在网络拓扑图生成后,SNMP 管理进程采用轮询的方式定期查询SNMP 代理进程,收集设备信息用于更新数据库,以实现配置信息的实时性。
系统正常运行后,网管可根据需要随时手动设置其各项配置参数。
如可以设置各OLT、ONU代理的标识信息和系统信息,启用、禁用某个端口,配置各端口的工作状态,配置网桥的工作参数,配置VLAN,重启设备等。
还提供基于用户的动态带宽管理。
2. 性能管理性能管理功能对EPON网络性能进行监视、检测,采集相关性能统计数据,进行分析、诊断,从而为网络进一步规划与调整提供依据,以保证网络的业务质量。
EPON的性能管理功能分为性能监测、性能管理控制和性能统计分析。
性能监测是连续的收集OLT、ONU上与性能相关的数据,根据性能数据确定网元的性能,从而掌握设备单元因不太频繁或间断的差错导致业务质量变差的性能情况。
性能管理控制的目的是支持管理人员发出控制命令或网管软件自动发出控制命令,以改善OLT、ONU性能。
它可以设置性能管理数据采集周期、设置性能监测数据存储过滤条件,并对门限值进行管理。
性能统计分析是对收集到的性能数据做进一步的处理,以分析表或分析图的形式报告分析结果。
如计算接口利用率、接口的输入错误率、接口输出错误率、吞吐率等。
3. 故障管理故障管理功能提供对EPON网络故障监测、故障定位,保护切换与恢复,并存储故障信息供以后查询。
对来自硬件设备或路径结点的报警进行监控、报告和存储,对故障进行诊断、定位和处理,是故障管理的重要工作。
当监测到网络、设备故障或异常时,网管系统实时产生报警。
一些故障、异常是由网管程序通过查询代理站MIB发现的,而另一些是代理站通过Trap通知管理站发现的。
可以设置各种告警事件的告警等级。
不同等级的告警事件采取不同的告警指示和处理措施。
网管系统收到告警信息后,进行分析和提示,然后针对不同等级的告警,进行不同的处理。
对于严重影响网络运行的故障,需要进行故障定位和测试。
启动故障定位过程,试图从这些过程中获取相关信息。
进行故障定位后,网管系统会尽快做出响应,采取故障修复措施,使EPON网络恢复正常。
告警信息被存储到本地数据库。
可以按照告警时间、告警设备、告警等级等关键字查询历史告警信息。
根据全部告警信息,进行告警统计分析,绘制出统计图表。
4. 安全管理安全管理功能通过访问操作控制策略等方法保证管理应用程序和管理信息不被非法访问和破坏。
用户标识和鉴定,是网管系统提供的最外层的安全保护措施。
网管用户在启动程序前必须输入用户名和登陆密码,系统在核实鉴定了用户身份以后才能提供网管系统的使用权。
用户被分为3个等级,不同等级的用户设置不同的管理权限,第一级用户拥有最高管理权限,可以使用网管系统提供的所有功能;低级用户在设置参数、操作设备等权限上被限制;高级用户拥有低级用户的所有权限,并能对低级用户进行管理。
系统还提供安全日志,登陆者的所有操作将被录入数据库,以便维护和检查使用。
EPON网管系统的实现EPON网管系统的实现包括管理站网管软件的实现和代理站软件的实现。
1. 管理站网管软件的实现管理站网管系统是为用户提供友好的交互式界面,利用SNMP协议对通信模块的功能是按照SNMP协议,对网络中的代理站(OLT和ONU)发送、接收SNMP报文,从而获取或设置代理站中MIB库的相应信息。
一方面,它将上层的操作、信息封装成对应的PDU(协议数据单元),向网络中发送。
另一方面,它接收代理发给自己的PDU,并解析成上层可识别的信息,向上传递。
对应于5种消息类型,SNMP有5种类型数据采集、处理模块负责将采集的数据分析、处理、储存或者送往上层。
对各种采集到的数据,要按照配置、性能、故障几个模块的需求进行转换,向上传送。
一些数据直接可以给上层显示使用;一些采集到的数据需要处理后,再送往上层显示。
如通过访问接口MIB,可以得到每个接口在每个时刻的总流量。
可以设置每隔一秒钟取一次值,然后计算秒间总流量差值,得到接口每秒钟的流量。
有些数据暂时不需要显示,需要储存在数据库,供以后查询使用。
显示模块是面向用户的。
它按照配置管理、性能管理、故障管理、安全管理几个模块分类,以图形化界面形式显示各项信息,并且提供人机接口,供配置使用。
本系统是在Windows环境下,用VC++ 6.0开发出来的。
通信模块是利用Windows提供的API函数,封装成一个SNMP类,来实现SNMP的各种操作。
按照显示模块的需要,数据处理模块采用各种算法对采集到的数据进行分析处理。
显示模块则以对话框、列表框、曲线图等形式,提供直观、方便的图形化界面,如图42.代理站软件的实现SNMP在代理站的实现工作主要包括代理进程软件的实现和MIB的设计与组织。
(1) 代理进程软件的实现代理进程软件实现SNMP协议,并管理MIB。
它实际上是一个执行无限循环的守护进程,在循环中,它接收管理站的SNMP请求,然后进行相应的操作,并作出响应。
同时,代理进程能够根据自身管理的MIB信息,主动向管理站发送陷阱报文(Trap),以通知管理站所管理的网络设备发生了异常事件,实现故障告警。
通常,在开发过程中使用一些软件开发包可以大大缩短产品开发周期。
ucd-snmp软件包是一个广泛使用的实现SNMP代理开发的免费软件包,它支持SNMP v1/v2c/v3,支持分布式代理的开发,支持MIB-II。
它包括SNMP协议模块和MIB管理模块,实现了SNMP(2) EPON设备MIB的设计与组织OLT、ONU设备的MIB主要包括RFC1213定义的MIB-II、RFC1573定义的Interfaces MIB、RFC1493定义的Bridge MIB和根据EPON设备需要自定义的私有MIB。
MIB-II包含了基于TCP/IP网络的基本网管信息,包括系统组、接口组、IP组、ICMP组、UDP组、SNMP组等基本管理对象。
通过MIB-II,我们可以获取OLT、ONU设备运行的基本网络信息,如系统信息、端口基本信息、IP、ICMP等类型数据包的统计等,对某些对象可以配置。
Interfaces MIB是针对改善MIB-II中的接口组的不足和缺陷,发展而来的一个以定义网络接口管理对象为主的MIB。
Bridge MIB是一个定义网桥管理对象的MIB,它包括一般网桥管理信息、生成树网桥管理信息和透明网桥管理信息。
它主要对OLT设备中所具有的生成树网桥的设置、监测提供网络管理手段。
自定义MIB是针对OLT、ONU特殊管理对象和特殊功能而定义的,主要包含各OLT、ONU的特殊系统信息和带宽控制管理两部分。
特殊系统信息包括硬件系统信息和软件系统信息。
如我们的EPON系统上行是采用WDMA方式的,对于每个ONU端,对应于不同的上行波长。
把波长信息加入每个ONU的自定义MIB中,这样通过网管系统就可以查询各ONU的波长相关信息了。
带宽控制管理MIB是自定义MIB的一个重要部分,通过它,我随着EPON的快速发展,为EPON设计和实现一个稳定高效和准确的网络管理系统具有重要的意义。
本文结合EPON的特点,设计和实现了一个基于SNMP的EPON网络管理系统。
目前,本系统已经基本完成,正在进行最后的测试工作。
Passive optical network based on EthernetEPON Ethernet passive optical network is a new optical access network technology. It has a point to multipoint architecture and passive optical transmission, basing on Ethernet provides a variety of business. It uses the PON technology in the physical layer, the link layer uses the Ethernet protocol, the use of the topology of the PON to achieve the Ethernet access. Therefore, it combines the advantages of PON technology and Ethernet Technology: low cost; high bandwidth; expansion of strong, fast and flexible service restructuring; compatibility with the existing Ethernet; convenient management and so on. Because of the many advantages of EPON, it is becoming more and more popular, and it will become one of the most effective communication methods for broadband access network. In order to ensure the stable, efficient and accurate operation of EPON network, it is very important to provide an effective network management system for EPON.In the field of network management, with the development of network management technology based on TCP/IP system, SNMP has become the standard in fact. The EPON network management system based on SNMP is a system which uses the SNMP management protocol framework and the EPON network entity to realize the effective management. InIntroduction of SNMPSNMP is a network management protocol based on TCP/IP, which uses UDP as the transport layer protocol, which can manage the network equipment supporting the agency process. SNMP mainly includes SMI , MIB and SNMP protocol. SMI gives the general framework of the management object definition. MIB is the structure of the entire managed object that is maintained by the device. The SNMP protocol includes SNMP operations, SNMP information format, and how to exchange messages between applications and devices. TheSNMP using the agent / management station model for network management. SNMP has 5 types of message types, Get-Request, Get-Next-Request, Set-Request, Trap and Get-Response. Between the agent and the management station, through the several messages to communicate each other, in order to obtain a variety of network equipment information, so as to control the normal operation of network equipment.EPON network management system structureThe management object of the EPON system is 1 OLT and 32 ONU . The structure of EPON network management system based on SNMP is shown in Figure 2.EMS network management system is installed on the workstation, and the OLT device is connected with the F interface. EMS network management system and OLT, ONU devices using SNMP protocol to communicate, to achieve the unified management of ONU and OLT in EMS. There are 2 ways of communication:(1) polling. Management station every time to all OLT and ONU proxy MIB to carry out the active query, each agent to return the query node value. (2) alarm (trap).When certain events occur, the broker sends a trap message to the management station. Management station to receive, display the alarm event, and do the appropriate processing.At the same time, the OLT equipment and ONU equipment with the local Console interface, can realize the local operation management and maintenance. Design of EPON network management systemEPON network management system is divided into four major modules: configuration management, performance management, fault management and security management.1 configuration managementConfiguration management is mainly within the organization of EPON network operation needed resources and data, construction and maintenance of network system configuration, each network element identification, basic configuration to ensure network, monitoring the current configuration and in accordance with the specific circumstances change the configuration, the system parameter setting, to collect and store the parameters, report and basic configuration value deviation, start and close the resource etc.At the start of the EPON network, can be automatically or manually generated OLT, ONU device topology, showing the current network in the ONU, OLT device status. After the network topology map is generated, the SNMP management process uses the polling method to query the SNMP proxy process regularly, and collects the equipment information to update the database, in order to realize the configuration information. After the normal operation of the system, the network management can manually set up the configuration parameters according to the need. If we can set the OLT, ONU agent identification information and information systems to enable, disable a port, and configure the port, the working parameters of the bridge configuration, VLAN configuration, reboot the device. Also provides user based dynamic bandwidth management.2 performance managementThe functions of performance management of EPON network performance for monitoring, detecting and related performance statistics data acquisition, analysis, diagnosis, so as to network further planning and to provide references for the adjustment, in order to ensure the service quality of the network.Performance management function of EPON is divided into performance monitoring, performance management control and performance analysis. Performance monitoring is a continuous collection of OLT and ONU and performance related data, according to the performance data to determine network performance, so as to grasp the equipment unit business quality becomes poor performance caused from the less frequent or constant error. The purpose of the performance management control is to support the management personnel to issue control commands or network management software to automatically issue control commands to improve the performance of ONU and OLT. It can set up the performance management data collection period, set up the performancemonitoring data storage filtering condition, and the threshold value is managed. Performance statistics analysis is a collection of performance data to do further processing, in order to analyze the table or analysis of the results of the report analysis. Such as the calculation of the use of the interface, the interface of the input error rate, interface output error rate, throughput, etc..3 fault managementFault management function provides the EPON network fault monitoring, fault location, protection switching and recovery, and storage of fault information for future inquiries. To monitor, report and store the alarm from the hardware device or path node, and fault diagnosis, location and processing. It is an important work of fault management.When monitoring network, equipment malfunction or abnormal, the network management system can produce the alarm in real time. Some failures and exceptions are found by the network management program through the query agent station MIB, while others are found by the Trap notification management station. You can set up a variety of alarm alarm level. Different levels of alarm events to take different alarm instructions and treatment measures.After receiving the alarm information, the network management system is analyzed and prompted, and then the different levels of alarm, different processing. Fault location and testing are required for the serious impact of network operation. Start the fault location process, and try to get the relevant information from these processes. After the fault location, the network management system will respond quickly, take the fault repair measures, so that the EPON network to resume normal.Alarm information is stored to the local database. Can be in accordance with the alarm time, alarm equipment, alarm level, and other key words query historical alarm information. According to all the alarm information, alarm statistics analysis, draw a statistical chart.4 security managementSecurity management functions such as access control policies to ensure that management applications and management information is not illegal access and destruction.User identification and authentication is the most external security measures provided by the network management system. Network users must enter the user name and password before starting the program. The system can provide the right to use the network management system after verification and identification. User is divided into three levels, different levels of users set different management authority, the first level user has the highest administrative authority, you can use management system to provide all of the functions; low-level users in the permission of the parameter setting and operating equipment is limited; advanced users have low-level user all the permissions, and can carry on the management to the low-level user.The system also provides a security log, all of the operator will be enteredinto the database, so as to maintain and check the use.Implementation of EPON network management systemThe realization of EPON network management system includes the realization of the management station network management software and the realization of the proxy software.1 management station network management softwareManagement station network management system is to provide users with a friendly interactive interface, the use of SNMP protocol to achieve the management of the agent process control entities. InThe function of the communication module is to transmit and receive SNMP packets according to SNMP protocol, which can obtain or set up the corresponding information of the MIB Library in the ONU. On the one hand, it will be the upper operation, the information is encapsulated into the corresponding PDU (protocol data unit), to send to the network. On the other hand, it receives the PDU that the proxy sends to its own, and is resolved into the upper layer which can be identified by the information that is transmitted to the. SNMP has 5 types, corresponding to the 5 message typesThe data acquisition, processing module is responsible for data collection, analysis processing, storage or sent to the upper. On the various data collected, according to the configuration, performance, failure of the needs of several modules to convert, to send. Some of the data can be displayed directly to the upper level; some of the collected data need to be processed, and then sent to the upper display. The total flow rate at each moment can be obtained by accessing the interface MIB. You can set a value every second to take a second, and then calculate the total flow difference between seconds, get the flow of the interface per second. Some data is not required for the time being, the need to be stored in the database for future use.Display module is for the user. According to the configuration management, performance management, fault management, security management of several modules to display information, and to provide a graphical interface for the use of human machine interface.This system is developed by VC++ 6 in Windows environment. Communication module is the use of API to provide the Windows function, packaged into a SNMP class, to achieve a variety of SNMP operation. According to the needs of the display module, data processing module uses various algorithms to analyze and process the data collected. Display module in the form of dialog box, list box, graph, etc., to provide intuitive and convenient graphical interface, as shown in figure 4. In2 proxy software implementationThe implementation of SNMP in the proxy station mainly includes the implementation of the proxy process software and the design and organization of MIB.(1) implementation of the agent process softwareThe SNMP protocol is implemented with the MIB protocol, and the management外文文献阅读及翻译is implemented. It is actually a process of executing an infinite loop, in theloop, it receives the SNMP request of the management station, and then performsthe corresponding operation, and makes the response. At the same time, theprocess agent can according to their own management MIB information, take theinitiative to the management station to send trap message (TRAP), to informthe management station management network equipment occurred abnormal events,and to realize the fault alarm.In general, in the development process using a number of software developmentpackage can greatly shorten the product development cycle. Ucd-snmp softwarepackage is a widely used SNMP agent to achieve the development of free softwarepackages, which supports v1/v2c/v3 SNMP, support for the development ofdistributed agents, support MIB-II. It includes SNMP protocol module and MIBmanagement module, and realizes the basic framework of SNMP proxy. In(2) the design and organization of EPON MIBONU, OLT device MIB mainly includes the definition of MIB-II RFC1213, RFC1573Interfaces MIB, RFC1493 definition of MIB Bridge and EPON devices based on theneed to customize the private MIB.MIB-II contains the basic network management information based on TCP/IPnetwork, including system group, interface group, IP group, ICMP group, UDPgroup, SNMP group, etc.. Through mib-ii, we can obtain the OLT, ONU equipmentoperation of the basic network information, such as system information, basicinformation of port, IP, ICMP, packet types of statistics, for certain objectscan be configured. MIB MIB is a Interfaces based on the definition of networkinterface management for improving the deficiencies and defects of the interface group in MIB-II. Bridge MIB is a definition of bridge managementobject in the MIB. It includes general bridge management information, generatestree bridge management information and transparent bridge managementinformation. It mainly provides network management tools, set up monitoringto the OLT equipment in the spanning tree bridge.The custom MIB is defined by the OLT, ONU special management object and thespecial function, which mainly includes two parts: the OLT, ONU, the specialsystem information and the bandwidth control management. Information ofspecial system includes hardware system and software system. Such as our EPONsystem uplink is the use of WDMA, for each ONU terminal, corresponding todifferent upstream wavelength. The wavelength information of each MIB is addedto each ONU, so that the wavelength of the ONU can be queried by the networkmanagement system. Bandwidth control management MIB is an important part ofthe custom MIB, through which we can remotely carry on the user based bandwidth management. InWith the rapid development of EPON, the design and implementation of a stableand efficient and accurate network management system is of great significancefor EPON. This paper designs and implements a EPON based SNMP network managementsystem based on EPON. At present, the system has been basically completed, andthe final test is being conducted.。