2013-第三章--配合物的化学键理论解析

合集下载

第三章配合物的化学键理论

第三章配合物的化学键理论

• 计算分裂能的经验公式
Jø rgensen公式: = f· g
f:配体因子 g:中心金属离子因子
2-4 电子成对能(P)与配合物自旋状态
问题:正八面体场Fe3+ (d5)中的电子如何排布呢?
Paulli原理 需要满足三个条件: 能量最低原理
Hund规则
eg
o
eg
o
t2g
低自旋 高自旋
低自旋配合物的晶体场稳定化能
•配合物的热力学性质 离子的水合热(-H):
Mn+(g) + xH2O = [M(H2O)6]n+ (aq) + (-H)
水 合 能
Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn
100
离子半径
由于随核电荷增 加,d电子也增加, 但d电子不能将增加 的核电荷完全屏蔽, 单从这个因素考虑应 单调下降。
dyz , dxz dxy, dyz , dxz
dxy
2
dxy dyz , dxz
Z轴缩短的 正八面体场 Oh 八面体(D4h)
Z轴拉长的 八面体(D4h)
dx2-y2 dz2, dx2-y2

d
dz2 dxy dxy , dyz , dxz
dyz , dxz 拉长八面体场中Cu2+ (d9)的电子排布
如[Fe(H2O)6]2+/3+,[FeX6]3-等
③ P: 自旋交叉
㈡ 晶体场理论对配合物高低自旋状态的预测
•[Fe(CN)6]4-: = 33000 cm-1, P = 17600 cm-1
>P,t2g6,低自旋 ( = 0)
•[Fe(H2O)6]2+: = 10400 cm-1, P = 17600 cm-1 <P,t2g4eg2,高自旋 ( = 4.9 B.M.)

配合物的化学键理论

 配合物的化学键理论

杂化
轨道 sp3d2 d2sp3
sp3
dsp2
配键 类型 外轨型 内轨型
外轨型
内轨型
Kf 1014
稳定性
<
1042
107. 96
1031. 3
<
磁性
Ni2+的d电子构型 杂化轨道 配键类型
未成对电子数 磁性
[Ni(NH3)4]2+ [Ni(CN)4]2 d8
sp3 外轨型
dsp2 内轨型
2 顺磁性
弱场配体
强场配体
——以上称为光谱化学序列
4. 电子成对能和配合物高、低自旋
电子在分裂后轨道上的分布遵循: 能量最低原理和洪特规则
如 Cr3+ d3
eg
E t2g
八面体场
d4d7构型的离子, d电子分布有高、低自旋两种方式。
如 Cr2+ d4
[Cr(H2O)6]2+
eg
△o t2g
[Cr(CN)6]4-
中心离子和配体之间以静电引力相互作用而形 成化学键。
中心离子的5个能量相同的d轨道受配体负电场 的排斥作用,发生能级分裂(有的轨道能量升 高,有的能量降低)。
2. 正八面体场中d轨道的能级分裂
无外电场作用下的d轨道 Edxy= Edxz= Edyz= Edx2-y2= Edz2
在带负电荷均匀球形场的作用下,d轨道能量 均升高相同值,能级不发生分裂。
请问: [Zn(NH3)4]2+、 [Ag(NH3)2]+呈现什么颜色?
中心离子d 轨道全空(d0)或全满(d10), 不能发生 d-d跃迁,其水合离子为无色。
解释配合物的稳定性
Eeg=+0.

配合物化学键理论

配合物化学键理论



强场:o > P 弱场:o < P
d5 型
强场o > P
弱场o < P
(4) 影响CFSE的因素 ① d电子数目; ② 配位体的强弱; ③ 晶体场的类型
表1 过渡金属络离子的稳定化能(CFSE)
弱场CFSE/Dq
dn d0 离子 Ca2+,Sc3+ 正方型 0 正八面体 0 正四面 体 0 正方型 0

中心离子用外层(n-1)d,ns,np杂化轨道与电负性 较小的配位原子,如CN-、NO2-等形成内轨型配合 物。例如[Fe(CN)6]3-配离子,Fe采用d2sp3内轨型 杂化轨道,配合物的键能大,稳定,在水中不易 离解。
(3)内、外轨型配合物的测定---磁矩

由磁矩可判断内轨或外轨型配合物

s n—分子中未成对电子数
z
y
x
x
dz2
y z
dx2-y2
z
x
x
y
dxy
dxz
dyz
1.分裂能 (1)分裂能与配合物几何构型的关系

八面体型的配合物
在八面体型的配合物中,6个配位体分别占据八 面体的6个顶点,由此产生的静电场叫做八面体场。
(1)八面体场
八面体场中d轨道能级分裂
dz2 dx2-y2 eg 3 5 Δo =6Dq Δ o =10Dq 2 5 Δ o = 4Dq t2g dxy dxz dyz
[CrCl6]313600
[MoCl6]319200
分裂能与配位体的关系:光谱化学序列
[CoF6]3- [Co(H2O)6]3+ [Co(NH3)6]3+ o/cm-1 13000 18600 22900 [Co(CN)6]334000

配合物中的化学键理论

配合物中的化学键理论
7
3-
3-
3、 外轨型配合物和内轨型配合物 外轨型配合物: ①、外轨型配合物:
A、定义:指形成配合物时,中心离子全部采用 定义:指形成配合物时, 外层空轨道( nd)进行杂化, 外层空轨道(ns, np, nd)进行杂化,并与配体结 合而形成的配合物。 合而形成的配合物。
B、特点: 特点:
a 、 中心离子仅采用外层空轨道 ( ns, np, nd) 中心离子仅采用外层空轨道( nd) 进行杂化成键。 进行杂化成键。 b、杂化类型为:sp3和sp3d2杂化。 杂化类型为: 杂化。 c、配合物有较多的未成对电子。 配合物有较多的未成对电子。
4d
d2sp3
返回6 返回6
26
16
④、成键过程: 成键过程:
17
[Ag(NH3)2]+的形成过程 Ag+的价电子构型为 解:Ag+的价电子构型为 4d10 5s0
5p 5s 4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
SP杂化 杂化 5p
4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
sp
:NH3 :NH3
↑↓ ↑↓ ↑↓
5p
2NH3
↑↓ ↑↓
4d
↑↓ ↑↓
3
2、 配离子的空间构型 ①、配位数为2的配离子 配位数为2 中心离子sp杂化 空间构型为直线型。 杂化, 中心离子sp杂化,空间构型为直线型。 [Ag(CN)2]-等。 如 例: 配位数为4 ②、配位数为4的配离子 有两种成键方式 A、以sp3杂化轨道成键 : 中心离子sp 杂化, 中心离子sp3杂化,配离子的空间构型为 四面体。 正 四面体。 如: [Zn(NH3)4]2+、[HgI4]2-等。 例:
见例5 例:(见例5、例7、)

配合物的化学键理论

配合物的化学键理论

配体场理论
配位场理论是晶体场理论的发展,分别 取其晶体场理论和分子轨道理论的优点 结合而成。对中心离子与配体静电作用 部分用晶体场理论来处理,而共价作用 部分用分子轨道理论来处理。
遵循成键三原则:能量近似、最大重叠 和对称性匹配原则。
在理论上比晶体场理论等方法更为严谨, 所得的结果常用来补充晶体场理论的不 足。
一.判断配合物的空间构型 二.判断配合物的成键类型 三.判断配合物的磁性 四.价键理论的特殊应用
(一) 判断配合物的空间构型
杂化类型决定配离子的空间构型;杂化轨道数 等于中心原子的配位数。
价键理论顺利地解释了配合物的分子构型:
配位数
2
3
4
杂化轨道
sp
sp2
sp3
4 dsp2
分子构型 直线 三角形 正四面体 正方形
配位数
5
杂化轨道 sp3d d2sp2,
分子构型 三角双锥
5 d4s 四方锥
6 sp3d2, d2 正八面体
➢ 2配位的配合物 [Ag(NH3)2]+
Ag+(d10)的电子结构:
4d
5s
5p
[Ag(NH3)2]+的结构 4d :
sp杂化 5p
H3N NH3
结果: [Ag(NH3)2]+形成前后, 中心原子的d电子
单击此处添加标题
第4讲 配合物的化学键理论
单击此处添加标题
配合物的化学键理论,主要研究中心原子和 配体之间结合力的本性;
并用来说明配合物的物理和化学性质:如配 位数、几何构型、磁学性质、光学性质、热 力学稳定性、动力学反应性等。
单击此处添加标题
静电理论 体场理论
分子轨道理论

第三章配合物的化学键理论

第三章配合物的化学键理论

2
思考题2
利用光谱化学序列和磁矩数据确定下列配合 物的配体哪些是强场配体,哪些是弱场配体? 并确定d电子的排布及未成对电子数。
[Co(NO2)6]3- = 0 B.M. [Fe(NH3)6]2+ = 5.2 B.M.
[Fe(CN)6]3[FeF6]3-
2019/11/1
3
思考题3
已知Co3+的p=17800cm-1,Co3+与下列配体
L

t*2g
eg* 10Dq
t2g
t2g
t2g 由p轨道构成
F-
Mn+
M t2*g
eg*由*轨t2道g 构成
t2g CO
2019/11/1
40
形成p-d键,使得分裂能减小 形成d - *反馈键,使得分裂能增大
2019/11/1
41
三种理论比较
价键理论:中心原子采取杂化轨道与配体形成配位 键。对于说明比较简单的分子的结构和反应性是有 用的,但是往往不适用于说明非经典配合物
9
思考题1
已知: [Co(H2O)6]2+ = 4.3 B.M. [Co(EDTA)]- = 0 B.M.
指出分子构型、中心离子的价层电子排布和杂化方式
2019/11/1
10
价键理论的优缺点
很好地解释了配合物的空间构型、磁性,直 观明了
无法解释配合物的颜色(吸收光谱) 无法解释配合物的稳定性随Mn+的d电子数目
( 1

4)

1 2
( 2
5)


1 2
( 3
6)
eg,e*g t1u,t*1u

配合物的化学键理论(讲义)

配合物的化学键理论(讲义)

在不同场中的分裂情况:正方形>八面体>四面体
四面体场
八面体场
四方形场
分裂能与中心离子的关系电荷Z增大,增大;主量子数n 增大, o增大,3d < 4d < 5d。 例如:
[Cr(H2O)6]3+ o /cm-1 o /cm-1 o /cm-1 17600 [Fe(H2O)6]3+ 13700 [Cr(H2O)6]2+ 14000 [Fe(H2O)6]2+ 10400
[CrCl6]313600
[MoCl6]319200
分裂能与配位体的关系:光谱化学序列
[CoF6]3- [Co(H2O)6]3+ [Co(NH3)6]3+ o/cm-1 13000 18600 22900 [Co(CN)6]334000
各种配体对同一中心离子的晶体场分裂能的值由小到大的 顺序:
4.价键理论的局限性 配离子的杂化轨道类型,说明了配离子的空间构型和 配位数,以及配合物之间稳定性的差异。 (1)可以解释[Co(CN)6]4- 易被氧化[Co(CN)6]3- 但无法 解释[Cu(NH3)4]2+结构稳定的事实。 (2)对配合物产生高低自旋的解释过于牵强。 (3)无法解释配离子的稳定性与中心离子电子构型之 间的关系,未考虑配体对中心离子的影响。
二、 晶体场理论
晶体场理论要点: 在配合物中,中心离子M处于带电的配位体L形 成的静电场中,二者完全靠静电作用结合在一起。 配位体对中心离子的影响 (a)中心离子M与配位体L成键时,配体的静电 场对中心离子的d 轨道电子的不同排 斥作用力, 使d 轨道能级发生了分裂。
(b)过渡金属的中心离子的5个d轨道在假想的球形 场(均匀电场) 中能量是简并的, 受到配位体负电 场作用时,会发生d 轨道的能级分裂。 晶体场理论的核心是配位体的静电场与中心离子 的作用引起的d轨道的分裂和d电子进入低能轨 道时所产生的稳定化能。 分裂类型与空间构型有关。

配合物中的化学键理论

配合物中的化学键理论
16
④、成键过程:
17
[Ag(NH3)2]+的形成过程 解:Ag+的价电子构型为 4d10 5s0
5p 5s 4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
SP杂化 5p
4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
sp
:NH3 :NH3
↑↓ ↑↓ ↑↓
5p
2NH3
4d
↑↓ ↑↓ ↑↓ ↑↓
重叠
返回3
18
例:
[Ni(NH3)4]2+的形成 。
↑ ↑
3d
↑ ↑ ↑
4d
SP 3d2 杂化
3d
↑ ↑ ↑ ↑ ↑
sp3d2
23
6F重叠
4d
:F- :F- :F- :F- :F- ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
↑ ↑
3d
↑ ↑ ↑
:F- ↑↓
sp3d2
返回5
24
例: [Fe(CN)6]3-的形成。 解:Fe3+ 的价电子构型为
4S 3d
↑ ↑ ↑ ↑ ↑
③规律:中心离子 SP3d2 与d2SP 3 杂化, 配离子的空间构型均为正八面体形。
7
3-
3-
3、 外轨型配合物和内轨型配合物 ①、外轨型配合物:
A、定义:指形成配合物时,中心离子全部采用 外层空轨道(ns, np, nd)进行杂化,并与配体结 合而形成的配合物。
B、特点:
a、中心离子仅采用外层空轨道(ns, np, nd) 进行杂化成键。 b、杂化类型为:sp3和sp3d2杂化。 c、配合物有较多的未成对电子。
4
B、以dsp2杂化轨道成键:
例:
成键结果分析比较: 2+ 2①Ni(NH3)4 ②Ni(CN)4 M 用以杂 4s 4p (4-1)d 4s 4s 化的轨道: ns np (n-1)d ns np 杂化特点:全部用外层轨道 使用内层轨道和 外层轨道 成键类型: 外轨配键 内轨配键 配合物的类型: 外轨型 内轨型 成单电子状态: 高自旋 低自旋 空间构型 正四面体 平面正方形

无机化学-配位化学基础-配合物的化学键理论

无机化学-配位化学基础-配合物的化学键理论

解得: Et2 = + 1.78 Dq Ee = - 2.67 Dq
dxy ,dxz 和 dyz 轨道(即t 轨道) d x2-y2和 d z2轨道(即e 轨道)
( 3 ) 正方形场
sq = 17.42 Dq
四面体、八面体或正方形场中,中心金属离子5个d 轨道的能级分裂
t = 4.45 Dq
sq = 17.42 Dq
中心离子
电荷↑,半径↑, △ ↑
同一几何构型配合物的 △ : 八面体场△o
第二过渡系列中心离子 > 第一过渡系列(40 - 50%)
第三过渡系列中心离子 > 第二过渡系列(20 - 25%)
正八面体配合物ML6的△o (cm-1)
1 cm-1 = 1.23977 10-4 eV = 1.19 10-2 kJ.mol-1
电荷迁移跃迁: KMnO4 , K2CrO4 , HgO 等
(中心离子为d 0 或d 10的化合物)
互相极化 e(荷移跃迁) Mn+ ——— O2- ———→ Mn+
h
→ 显示互补色
E
hν e
O2-
1951年,几位化学家用CFT解释了 [Ti(H2O)6]3+的吸收光谱,应用于配合物,迅 速发展。
9.3.2.1 要点
1. 静电模型:配合物中Mn+ - L纯粹是静电作用,均
为点电荷,L是阴离子成偶极分子.
2. d 轨道能量分裂:
中心离子的d 轨道的能量在非球形对称的配位体形成
的晶体场中都升高,且发生分裂,分离能为 △ :
d4 – d7 构型中心离子在 八面体强场和弱场中d电子的排布
弱 场 ( △o < P )
d4

第3章 配合物的化学键理论

第3章 配合物的化学键理论

Mn2+ < Co2+ Ni2+ < V2+ < Fe3+ < Cr3+ < Co3+ < Mo3+ < Rh3+ < Ir3+ < Pt4+
3. 晶体场理论
3. 晶体场理论
(3)配体的性质和光谱化学序
(A)同一金属、不同配位原子对的影响 I < Br < Cl < S < F < O < N < C
MXL5:拉长 / 缩短八面体
3. 晶体场理论
3. 晶体场理论
3.2 晶体场分裂能( )及其影响因素
晶体场分裂能( ):d轨道能量分裂后,最高能量d轨道与最低能量 d轨道之间的能量差。相当于1个电子从能量最低d轨道跃迁至能量最高d 轨道所需吸收的能量。
影响因素:
(1)晶体场类型
八面体场、四面体场、平面正方形场· · · · · ·
[Co(NH3)6]3+
o = 23000 cm-1
(C)中心金属离子半径:半径越大, 越大。 中心离子半径越大,d轨道离核越远,易在配体场作用下改变能量, 增加。 同族元素, 随中心离子轨道主量子数的增加而增加: 3d4d, 增加约40%50%; [Co(NH3)6]3+ [Rh(NH3)6]3+ 4d5d, 增加约20%25%
原子半径减小 电负性减小
(B)光谱化学序列 (spectrochemical series) 弱场 I-<Br-<S2-<SCN-<Cl-<NO3-<F-<(NH2)2CO<OH- ~
CH3COO- ~ HCOO-<C2O42-<H2O<NCS-<gly-<CH3CN<edta4<py < NH3<en<NH2OH<bpy<Phen<NO2-<PPh3<CN-<CO 强场

2013-第三章--配合物的化学键理论解析

2013-第三章--配合物的化学键理论解析

Cu2+
4X-
CuX42-
dsp2
在此过程中, 自由离子 Cu2+要由3d激发一个电 子到4p需要的激发能为1422.6 kJ·mol-1, 看不出这么 大的能量从何而来。
根据这个结构, 可以推测Cu2+的配合物应当很 容易地失去未配对的4p电子而迅速氧化为Cu3+, 但 事实并非如此。
价键理论被配位场理论或分子轨道理论取代是十 分必然的。
价键理论的成功与不足
成功
① 杂化轨道
配位数、构型
② 内、外轨型配合物
磁性、配合物稳定性
③ 继承了传统的价键概念(配位共价键),简明 易于理解。
不足 ① 定量程度差,只是一种近似的定性理论,而无法
解释配合物的吸收光谱. ② 无法说明Cu2+平面正方形内轨型配合物的稳定性.
过渡元素具有强烈的形成配合物的趋向,原因: 1.过渡元素有能量相近的属同一个能级组的 (n-1)d、
µ= 0.0 B.M. µ= 5.5 B.M.
这表明,这两种配合物中成单电子数不同。
对配合物稳定性的解释
[Fe(CN)6]3- 和 [FeF3]3-
d2sp3
sp3d2
Байду номын сангаас
内轨型
外轨型
外轨型配合物是中心离子的电子结构不受配体影 响, 保持其自由离子的结构, 给予体电子排布在外层轨 道, 中心离子和配体借静电引力结合在一起。
内轨型配合物是中心离子的内层 d 电子重新排布 空出部分轨道参与成键, 中心离子和配体借较强的共价 键结合在一起。
现在, 在过渡元素配位化学中价键理论已逐步被配 位场理论和分子轨道理论所代替。
这是因为, 价键理论有它不可克服的缺点, 例如:
1. 这一理论认为配合物中所有的3d轨道能量均相同, 这是不真实的;

第三章 配合物化学键理论

第三章 配合物化学键理论

1 d 轨道在晶体场中的分裂
d 轨道在八面体场中的能级分裂
•dxy、dxz 、 dyz 、 dx2-y2 、 dz2在球形 对称场中,受到的作用相等,为简 并轨道;
•若有一个配合物ML6,M处于八面 体场oh中,由于L沿着x、y、z轴方向 接近中心离子, dxy、dxz 、 dyz 正好 插入配位体L的空隙中间,受静电排 斥相对较小,能量较低、而dx2-y2 、 dz2正好正对着配位体L,受静电排 斥相对较大,能量较高。
(σ-π的协同效应)
当配位体给出电子对与中心元素形成 键时,如果中心元素的
某些d 轨道(如dxy、dyz、dxz)有孤电子对,而配位体有空的p分子轨
道(如CO中有空的 p*轨道) 或空的 p或 d 轨道,而两者的对称性又匹 配时,则中心元素的孤对 d 电子也可以反过来给予配位体形成所谓
的“反馈 p 键”,它可用下式简示:
⑴ 正八面体配离子中d轨道的能级分裂 在过渡金属的自由离子中,五个d轨道的空间取向虽 然不同,但他们的能量却是相同的,是五个简并轨道,设 其能量为E。如果中心离子处在球形对称的电场中,由于 负电场在各个方向的斥力相同,五个d轨道能量升高的程 度也相同,因此,五个d轨道的能量虽都有升高,但并不 发生分裂,设其能量E=0 Dq。
d 轨道在四面体场中的能级分裂
在球型场中 在四面体场中
组轨道的能量与八面体场中正好相反。其能量差用 符号△T表示: △T = E(t2g) - E(eg)
d 轨道在平面正方形场中的能级分裂
在球型场中 在平面四边形场中
dx2–y2
dx2–y2
dz2
Δ
0
eg
dxy dxy dxz dyz dxz
2/3Δ dz20 dyz1/12Δ 0

配合物的化学键理论

配合物的化学键理论

配合物的化学键理论The Chemical Bond Theories of Complexes配合物的化学键理论处理中心原子(或离子)与配体之间的键合本质问题,用以阐明中心原子的配位数、配位化合物的立体结构以及配合物的热力学性质、动力学性质、光谱性质和磁性质等。

几十年来,提出来的化学键理论有: 静电理论(EST) Electrostatic Theory 价键理论(VBT) Valence Bond Theory 晶体场理论(CFT) Crystal Field Theory分子轨道理论(MOT) Molecular Orbital Theory 角重叠模型(AOM) Angular Overlap Model在这一节中,我们讲授配合物的价键理论和晶体场理论。

分子轨道理论和角重叠模型在后续课程中学习。

一、价键理论(Valence Bond Theory )L .Pauling 等人在二十世纪30年代初提出了杂化轨道理论,首先用此理论来处理配合物的形成、配合物的几何构型、配合物的磁性等问题,建立了配合物的价键理论,在配合物的化学键理论的领域内占统治地位达二十多年之久。

1.价键理论的基本内容:(1) 配合物的中心体M 与配体L 之间的结合,一般是靠配体单方面提供孤对电子对与M 共用,形成配键M ←∶L ,这种键的本质是共价性质的,称为σ配键。

(2) 形成配位键的必要条件是:配体L 至少含有一对孤对电子对,而中心体M必须有空的价轨道。

(3) 在形成配合物(或配离子)时,中心体所提供的空轨道(s 、p ,d 、s 、p 或s 、p 、d)必须首先进行杂化,形成能量相同的与配位原子数目相等的新的杂化轨道。

2.实例:(1) 主族元素配合物 Be 4O(CH 3COO)6:每个Be 原子都采取sp 3杂化-4BF :B 原子为sp 3杂化,正四面体构型 -36AlF :-3][ Al 3+周围共有12个价电子 Al 3+采取sp 3d 2杂化 (2) 过渡元素配合物a .(n - 1)d 10电子构型中心体+243)Zn(NH sp 3杂化 正四面体-3HgI sp 2杂化 平面三角形b .(n - 1)d 8电子构型中心体F Al F F F FF+243])[Ni(NH sp 3杂化 正四面体 -24]Ni(CN)[ dsp 2杂化 平面四方-24PtCl dsp 2杂化 平面四方c .(n - 1)d x (x <8)电子构型中心体-36Fe(CN) d 2sp 3杂化 正八面体+363])[Co(NH d 2sp 3杂化 正八面体 +263])[Co(NH sp 3d 2杂化 正八面体-36FeF sp 3d 2杂化 正八面体3.讨论:(1) 配合物中的中心体可以使用两种杂化形式来形成共价键:一种杂化形式为(n - 1)d 、n s 、n p 杂化,称为内轨型杂化。

配合物的化学键理论

配合物的化学键理论

d 轨道的分裂并非纯粹的静电效应,

其中的共价因素也不可忽略。
电子成对能和配合物高低自旋
成对能是电子在配对时为了克服静电场的排斥作用所 需的能量, 以P表示。
对于一个处于配位场中的金属离子, 其电子排布究竟采 用高自旋, 还是低自旋的状态, 可以根据成对能和分裂能 的相对大小来进行判断:
●当P>△时, 因电子成对需要的能量高, 电子将尽量以单电子 排布分占不同的轨道, 取高自旋状态; ●当P<△时, 电子成对耗能较少, 此时将取低自旋状态。
将eg和t2g这两组轨道间的能量差用△o或10Dq来表示 , △o或10 Dq称为分裂能.
2E(eg)+3E(t2g)=0 E(eg)-E(t2g)=△o
由此解得
E(eg)=0.6△o = 6Dq E(t2g)=-0.4△o =-4Dq
2 正四面体场 在正四面体场中, 过渡金属离子的五条d轨道同样分裂为两 组, 一组包括dxy、dxz、dyz三条轨道, 用t2表示, 这三条轨道的极 大值分别指向立方体棱边的中点。距配体较近, 受到的排斥作 用较强, 能级升高, 另一组包括dz2和dx2-y2, 以e表示, 这两条轨道 的极大值分别指向立方体的面心, 距配体较远, 受到的排斥作用 较弱, 能级下降。
四面体场中的d轨道
在四面体场中,这两组轨道都在一定程度 下避开了配体分裂能△t小于△o,计算表明 △t=(4/9)△o 同样, 出t2及e轨道的相对能量:
△t=E(t2)-E(e)=(4/9)△o 3E(t2)+2 E(e)=0 解得: E(t2)=1.78Dq E(e)=-2.67Dq
配体的本性
①在弱场时, 由于△值较小, 配合物将取高自旋构型, 相反, 在 强场时, 由于△值较大, 配合物将取低自旋构型。 ②对于四面体配合物, 由于△t=(4/9)△0, 这样小的△t值, 通常 都不能超过成对能值, 所以四面体配合物通常都是高自旋的。

配位化学-中科院-3-化学键理论

配位化学-中科院-3-化学键理论

***八面体与正方形之间的选择:
大多数情况: CFSE正方形>CFSE八面体 从键能考虑: 八面体构型有利
多数情况 八面体构型
当CFSE正方形》CFSE八面体 : 正方形构型有利。 * 例:弱场d4和 d9,强场d8构型易形成正方形配合物。 如: [Cu(NH3)4]2+、[Ni(CN)4]2-
(4) Jahn-Teller效应:
② 四面体场
dX2—Y2 z
dZ2 dxy
y dyz
轨道瓣指向面心, 能量降低。
dxz
x
轨道瓣指向立方体 棱边中心,能量升 高。
E(eg) = + 6 Dq
eg
E(t2) = 1.78 Dq
t2
o
t2g
E(t2g) = - 4 Dq
t = 4/9 o
E(e) = - 2.67 Dq
e
八面体场
电子排布: 电子排布三原则
能量最低原理 不相容原理 Hund规则
晶体场稳定化能 (CFSE)
电子在晶体场中排列后 体系的能量与未分裂前 相比降低的能量
CFSE 越小,配合物越稳定。
例:八面体场
d1
t2g1
d2
t2g2
d3
t2g3
CFSE: - 4Dq
d4
t2g3eg1 t2g4
- 8Dq
d5
- 12Dq
例5: [Ni(CN)5]33d
Ni2+: 3d8 4s 4p
电子归并, 杂化 xx xx xx xx xx
dsp3 三角双锥
例6:[TiF5]2-
Ti3+: 3d1
3d
xx xx xx xx
4s

配合物的化学键理论详解

配合物的化学键理论详解

配合物的化学键理论摘要:化学键理论在配位化学中有着重要的运用,它现在主要有三大流派。

本文就回顾化学键的发展历程,并对三大化学键理论做出仔细的阐述。

关键字:化学键价键理论分子轨道理论晶体场理论配位场理论化学键的发展历程最早化学家假设原子和原子之间是用一个神秘的钩钩住的,这种设想至今仍留下痕迹,化学键的键字就有钩的意思。

1916年,德国科学家柯塞尔考察大量的事实后得出结论:任何元素的原子都要使最外层满足8 电子稳定结构。

柯塞尔的理论能解释许多离子化合物的形成,但无法解释非离子型化合物。

1923 年,美国化学家路易斯发展了柯塞尔的理论,提出共价键的电子理论:两种元素的原子可以相互共用一对或多对电子,以便达到稀有气体原子的电子结构,这样形成的化学健叫做共价健。

柯塞尔和路易斯的理论常叫原子价电子理论。

它只能定性地描述分子的形成,化学家更需要对化学键做定量阐述。

1927 年,海特勒和伦敦用量子力学处理氢分子,用近似方法计算出氢分子体系的波函数和能量获得成功,这是用量子力学解决共价键问题的首例。

1930 年,鲍林更提出原子成键的杂化理论(杂化轨道理论),洪德把单键、多键分成δ和∏键两类。

δ健是指在沿着连接两个原子核的直线(对称轴)上电子云有最大重叠的共价键,这种键比较稳定。

∏键是指沿电子云垂直于这条直线方向上结合而成的键,这种键比较活泼。

这就使价键理论进一步系统化,使经典的化合价和化学键有机地结合在一起了。

由于上述的价键理论对共扼分子、氧气分子的顺磁性等事实不能有效解释,因此本世纪30 年代后又产生一种新的理论——分子轨道理论。

分子轨道理论在1932 年首先由美国化学家马利肯提出。

他用的方法跟经典化学相距很远,一时不被化学界接受,后经密立根、洪德、休克尔、伦纳德等人努力,使分子轨道理论得到充实和完善。

它把分子看作一个整体,原子化合成分子时,由原子轨道组合成分子轨道,原子的电子属于分子整体。

分子轨道就是电子云占据间,它们可相互重叠成键。

第三章配合物的化学键理论

第三章配合物的化学键理论

d x2-y2
d
dz2
dxy
dxy , dyz , dxz dyz , dxz
八面体场中Ni2+ (d8)的电子排布 C不FS发E生= 0畸变(t2g6eg2)
无论采用哪一种几何畸变, 都会 引起能级的进一步分裂, 消除简并, 其 中一个能级降低, 从而获得额外的稳 定化能(左图为第一种情况的能级图)。
根据△G=△H -T△S=-RTlnK, 配合物的稳定性将 由△G决定, 由于各种配合物的△S相差不大, 所以主要决 定于△H, 显然, △H值越负, 则MLm愈稳定。
设m=6、4……时, 上述配合反应的△H值为 △H正八面体=6△bH(M-L)-CFSE正八面体 △H正四面体=4△bH(M-L)-CFSE正四面体 △H正方形 =4△bH(M-L)-CFSE正方形 ……
思考题:
组态为d1-10的离子在八面体对称场中 有哪些可能的电子排布?
eg d
t2g
㈢ 自旋交叉(Spin Crossover)
高自旋(HS) T⇌/h低自旋(LS)
例:配合物[Fe(phen)2(NCS)2]
NN
N F e N CS
N N CS

粉红色
H S (t2g4eg2)
白色
具有这种性质的物质 在一种持久外场的微 扰下 ,就能发生一种 稳定态向另一种稳定 态的转变 ,从而达到 信息储存和开关的作用。
L S (t2g6eg0)
T
FeII(phen)2(NCS)2的变温磁化率图
2-5 晶体场稳定化能(CFSE) •晶体场稳定化能(CFSE)
定义:由于d轨道的分裂所造成的体系总 能量的降低,即稳定性的增加
eg
6 Dq
t2g -4 Dq

AB配合物的化学键理论

AB配合物的化学键理论
3
§3.1 价键理论 (Valence Bond Theory)
L. Pauling提出 要点: ① 配体的孤对电子可以进入中心原子的空轨道; ② 中心原子用于成键的轨道是杂化轨道(用于说明构型)。
4
一、价键理论的基本内容 二、价键理论的应用 三、价键理论的优点与局限性 四、反馈键
5
一、价键理论的基本内容
• d轨道的分裂使d轨道上的电子重排,配合物得到稳定化能CFSE,CFSE的大小 与Δ和中心原子的电子构型有关(电子成对能P)
43
一、晶体场中d轨道能级的分裂
1、正八面体场 2、正四面体场 3、平面正方形场
44
1、正八面体场
假设一个d1构型的正离子处于一个 球壳的中心,球壳表面分布着6q 的负电荷,由于负电荷的分布是 球形对称的,不管这个电子处在 哪个d轨道上,它所受到的负电荷 的排斥作用是相同的。也就是说, d轨道能量虽然升高,但仍然保持 5重简并。
2Eeg + 3Et2g = 0 Eeg Et2g = 0
Eeg = 3/50 Et2g = 2/50
48
结论
• 在正八面体Oh场中, d轨道分裂成两组 • eg组,包括dx2-y2、dz2,能量上升3/5Δ0 • t2g组,包括dxy、dxz 、dyz,能量下降2/5Δ0 • 两组能级差Δ0称为分裂能
45
• 负电荷集中在球的内接正八面体的六个顶点,每个顶点的电量为q, 球壳上的总电量仍为6q,不会改变对d电子的总排斥力和d轨道的总能 量。
但单电子处在不同d轨道上 时所受到的排斥作用不再 完全相同。
46
八面体晶体场下d轨道的分裂
eg轨道
t2g轨道
47
重心守恒原理——原来简并的轨道在外电场 作用下如果发生分裂,则分裂后所有轨道能量 改变值的代数和为零。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有4个不成对电子
sp3d2杂化
[ [Fe(CN3)-6]4- InneIrnonrebritoarlbciotmalplceoxmesplexes
内轨配合物:6 配位原子的电负性较小,如氰基(CN-, 以C配位),氮 (-NO2,以N配位),较易给出孤电子对, 对中心离子的影响较大,使电子层结构发生变化, (n-1)d 轨道上的成单电子被强行配位(需要的能量叫 “成对能”,P) 腾出内层能量较低的 d 轨道接受配位 体的孤电子对, 形成内轨型配合物。
过渡金属与羰基、氰、链烯烃、环烯烃等含有π电 子配体形成的配合物都含有d-p π配键(反馈键)。
(1) 羰基配合物 单核配合物:Ni(CO)4、Fe(CO)5 等 双核配合物:Fe2(CO)9、Co2(CO)8 等
例 讨论Ni (CO)4的成键情况 解:Ni采取sp3杂化,CO中C上的孤电子对向Ni的
sp
直线形
3
sp2
三角形
4
sp3
四面体
4
dsp2
正方形
5
sp3d
三角双锥
5
dsp3
三角双锥
6
sp3d2
正八面体
6
d2sp3
正八面体
实例 Ag(NH3)2+ Cu(CN)32- Zn(NH3)42+ Ni(CN)42- Fe(SCN)52-
Fe(CO)5 Co(NH3)62+ Co(NH3)63+
四配位的配合物: 以[Ni (NH3)4]2+的结构为例
中心离子Ni2+的结构 3d
4s
4p
[Ni(NH3)4]2+的结构 3d
sp3杂化
NH3 NH3 NH3
NH3
结果: [Ni(NH3)4]2+形成前后, 中心原子的d电子排布 没有变化,配位原子的孤对电子填在由外层轨道杂
化而得的杂化轨道上。这样一类配合物叫外轨型配
合物(Outer orbital complexes)。
缺陷:难定量计算、无法说明激发态的问题,例如: 配合物的颜色、吸收光谱 六配位 M(II) 的相对稳定性
1. 理论要点和配合物的本质 形成体(M)有空轨道,配位体(L)有孤对电子或π电
子,形成配位键 ML; 形成体(中心离子)采用杂化轨道成键; 配位单元的构型与中心空轨道的杂化类型有关; 可以形成反馈π键──由金属原子提供电子对与配
sp3 杂化空轨道配位,形成σ配键。实验结果表明, Ni(CO)4 较稳定,这和配体与中心之间只有σ配键不符,
进一步实验和理论计算都证明,中心原子与配体之间 肯定还有其它成键作用。
Ni (CO)4 中d-pπ配键示意图
(2) 氰配合物
氰(CN-)配位能力很强,与过渡金属形成的配 合物都很稳定,除了C原子给电子能力较强外,氰能 与过渡金属形成d-pπ配键也是一个重要因素。
§3-1 配合物的价键理论 (Valence bond theory) 把杂化轨道理论应用于配合物的结构与成键研究,
就形成配合物的价键理论。其实质是配体中配位原子的 孤电子对向中心的空杂化轨道配位形成配位键。
要点:中心原子杂化,配体提供孤对电子 解释: 配位数,立体构型,磁性,
定性讨论部分配合物的稳定性
CN-与CO相似,既有可配位的孤电子对,又有 与d轨道对称性一致的π* 轨道可接受d电子的配位。
与羰基配合物成键过程相似,CN-配体中C上的 孤电子对向金属的杂化空轨道配位,形成σ配键,金 属的d电子向CN- π* 轨道配位,形成d-pπ配键。
没有不成对电子
稳定性:内轨型配合物 > 外轨型配合物
根据实验测得的有效磁矩,判断下列各种离子分
别有多少个未成对电子?哪个是外轨?哪个是内轨?
① Fe(en22)
5.5 B.M.
② Co(SCN42) 4.3 B.M.
③ Pt(CN42) 0 B.M.
Mn(SCN46)
根据计算磁矩的近似公式 µ= [n ( n + 2 ) ] 1/2
同样是四配位,但对配合物 [Ni(CN)4]2– 则不相同
[Ni(CN)4]2–的结构 3d
dsp2杂化
CN CN CN CN
结果:[Ni(CN)4]2-形成前后, 中心原子的d电子排布发 生了变化,原来由单电子占据、后来腾空了的(n-1)d 轨道参与了杂化,这样一类配合物叫内轨型配合物
(Inner orbital complexes),它们是指配位体孤对电子 填充在(n-1)d轨道和一部分n层轨道上的一类配合物。
体空的反键π轨道形成的配位键。
① 配体的孤对电子可以进入中心原子的空轨道。 ② 中心原子用于成键的轨道是杂化轨道
(用于说明构型)。
价键理论顺利地解ห้องสมุดไป่ตู้了配合物的分子构型。
显然, 分子构型决定于杂化轨道的类型:
配位数 2
杂化轨道 sp
分子构型 直线
3
4
4
sp2
sp3 dsp2
三角形 正四面体 正方形
配位数
第三章 配合物的化学键理论
内容:研究中心原子和配体之间结合力的本性。
目标:解释性质,如配位数、几何结构、磁学性
质、光谱、热力学稳定性、动力学反应性等。
理论:① 价键理论
② 晶体场理论
③ 分子轨道理论 ④ 角重叠模型
§3-1 配合物的价键理论 (VBT) §3-2 配合物的晶体场理论 (CFT) §3-3 配合物的分子轨道理论 (MOT)
① 5.5 = [n(n+2)]1/2 ② 4.3 = [n(n+2)]1/2 ③ 0 = [n(n+2)]1/2
n 4 n 3 n 0
是外轨型配合物 是外轨型配合物 是内轨型配合物
形成内轨型配合物还是外轨型配合物与配位原子 的电负性大小、中心离子的电子构型有关。
配合物中的 d-pπ配键(反馈π键)
5
5
6
杂化轨道 sp3d d2sp2, d4s sp3d2, d2sp3
分子构型 三角双锥 四方锥 正八面体
根据配合物的磁矩可以计算配合物中成单的电子数 并由此确定杂化轨道的类型:
= n(n2) (B.M) 玻尔磁子 其中n为配合物中的成单电子数, 为配合物的磁矩。
配位数 中心杂化类型 空间构型
2
六配位的配合物 Outer orbital complexes [FeF6]3- 或 [Fe(H2O)6]3+ 外轨型配合物:
配位原子的电负性很大,如卤素、氧等, 不易给 出孤电子对,使中心离子的结构不发生变化,仅用外 层的空轨道ns、np和nd进行杂化生成能量相同,数目 相等的杂化轨道与配体结合。
相关文档
最新文档