广东省深圳市宝安区八年级(上)期末数学试卷

合集下载

2022-2023学年广东省深圳市宝安区八年级(上)期末数学试卷

2022-2023学年广东省深圳市宝安区八年级(上)期末数学试卷

2022-2023学年广东省深圳市宝安区八年级(上)期末数学试卷一、选择题(共9小题,每小题3分,共30分.)1.(3分) 下列各数中,是无理数的是( )A .38B .0.3C . 227D . 32.(3分)二元一次方程x -2y =3有无数多个解,下列四组值中不是该方程的解是( )A .11x y =⎧⎨=-⎩B .13x y =-⎧⎨=-⎩C .51x y =⎧⎨=⎩D .12x y =-⎧⎨=-⎩ 3.(3分)下列式子正确的是( )A .42=±B .527+=C .2623⨯=D .2552-=4.(3分)将一副直角三角板如图放置,已知∠F =45°,∠B =60°,EF ∥BC ,则∠BGE 的度数为( )A .115°B .105°C .110°D .120°5.(3分)下列各组数中,能作为直角三角形三边的是( )A .1,2,3B .3,3,6C .4,6,8D .111,,3456.(3分)下列命题中是真命题的是( )A .无限小数都是无理数B .数轴上的点表示的数都是有理数C .一个三角形的最大内角不会小于60°D .同旁内角互补7.(3分)在平面直角坐标系中,点(,1)A a 与点(2,)B b - 关于x 轴对称,则(,)a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.(3分)某配餐公司需用甲、乙两种食材为在校午餐的同学配置营养餐,两种食材的蛋白质含量和碳水化合物含量如下表所示:若每位中学生每餐需要21单位蛋白质和40单位碳水化合物,那么每餐甲、乙两种食材各多少克恰好满足一个中学生的需要?设每餐需要甲食材x 克,乙食材y 克,那么可列方程组为( ) A .0.30.6210.70.440x y x y +=⎧⎨+=⎩ B .0.60.3210.40.740x y x y +=⎧⎨+=⎩ C .0.30.7210.60.440x y x y +=⎧⎨+=⎩ D .0.30.7400.60.421x y x y +=⎧⎨+=⎩甲食材 乙食材每克所含蛋白质 0.3单位 0.7单位 每克所含碳水化合物 0.6单位 0.4单位9.(3分)如图是我国古代著名的“赵爽弦图”,大正方形ABCD 是由四个全等的直角三角形和一个小正方形拼接而成,连接EC ,若正方形ABCD 的面积为10,EC =BC ,则小正方形EFGH 的面积为( )A .2B .2.5C .3D .3.510. (3分)如图,在平面直角坐标系中,直线3y x =-+与x 轴,y 轴交于A ,B 两点,一束光从点C(2, 0)发出,射向y 轴上的点D (0,1),经点D 反射后经过$AB $上一点E ,则点E 的坐标是( ) A .27(,)33 B .45(,)33 C .33(,)22 D .54(,)33第9题图 第10题图二、填空题(每小题3分,共15分,请把答案填到答题卡相应位置上)11.(3分)点A (-2,1)关于y 轴对称的点的坐标为 .12.(313.(3分)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为2S 甲、2S 乙,则2S 甲 2S 甲 (填“>”“<”或“=”)14.(3分)请写出一个二元一次方程组,使该方程组无解.你写的方程组是 .15.(3分)如图,在长方形ABCD 中,AB =6,BC =8,点E 为AB 上一点,将△BCE 沿CE 翻折至△FCE ,延长CF 交AB 于点O ,交DA 的延长线于点G ,且EF =AG ,则BE 的长为 .第13题图 第15题图三、解答题(本题共7小题,其中第16题8分,第17题6分,第18题8分,第19题8分,第20题8分,第21题8分,第22题9分,共55分)16.(8分)计算题:()()()1215252;3++- 0(2)18(20035)3271 2.+-+-+-∣∣17.(6分)解方程组25.1x y y x -=⎧⎨=-⎩ 18.(8分)2022年11月5日,第二十三届深圳读书月盛大开幕,本届读书月以“读时代新篇创文明典范”为年度主题,2300余场文化活动“阅”动全城.春海学校积极响应深圳读书月的号召,在校内推广课外阅读活动.为了解七、八年级学生每周课外阅读的情况,分别从两个年级随机抽取了10名学生进行调查,并对调查数据进行整理分析.现将参与调查的每个学生每周课外阅读的时间用x (小时)表示,并将两个年级的调查数据分别分成四组:A .0≤x <4,B .4≤x <8,C .8≤x <12,D .12≤x ≤16,以下是相关的数据信息:七年级学生调查数据:3,14,8,9,9,11,8,11,16,11八年级学生调查数据位于C 组中的是:9,10,10,10七、八年级抽取的学生每周课外阅读时间统计表根据以上信息,解答下列问题:(1)上述图表中a = ,b = ,c = ;(2)若七、八年级共有1000名学生,请你估计该校七、八年级学生每周课外阅读时间不低于12小时的共有 人.19.(8分)列方程解应用题:某校举行了“歌唱祖国,爱我中华”合唱比赛,学校购买了A ,B 两种型号的笔记本对表现优异的班级进行奖励.若购买40本B 型笔记本比20本A 型笔记本多20元,购买30本A 型笔记本和50本B 型笔记本价格相同,请计算A ,B 两种笔记本的单价分别是多少元? 平均数 众数 中位数 七年级 10 a b 八年级 9 10 c20.(8分)如图,在△ABC中,过点B作BD⊥CA交CA的延长线于点D,过点C作CE⊥BA交BA的延长线于点E,延长BD,CE相交于点F,BF=AC=5.(1)求证:△BEF≌△CEA;(2)若CE=2,求BD的长.21.(8分)学校饮用水安全问题事关重大,直接影响到广大青少年的身体健康.为了全力保障校园饮水安全,让学生喝上放心水、健康水,星月学校在教学楼每个楼层都安装了饮水机.为了解饮水机的使用情况,小亮所在综合实践小组进行了调查研究,他们发现:饮水机的容量是25L,共有三个放水管,且每个水管出水的速度相同;三个水管同时打开时,饮水机的存水量(升)与放水时间(分)的关系如表所示.放水时间(分)038…直饮水机的存水量(升)2517.55…(1)当三个放水管全部打开时,每分钟的总出水量为L.(2)某天课间休息时,同学们依次用饮水机接水.假设前后两人接水的间隔时间忽略不计,且水不发生泼洒,每个同学所接的水量相同.刚开始时,只打开了其中两个放水管,过了一会儿,来接水的同学越来越多,三个放水管全部打开.饮水机的存水量y(L)与放水时间x(min)的函数关系如图所示.①求饮水机中的存水量y(L)与放水时间x(min)(x≥3)的函数关系式;②如果前3分钟恰好有10名同学接完水,则前25个同学接完水共需多少时间?22.(9分)点P、点P'和点Q为平面直角坐标系中的三个点,给出如下定义:若PQ=P'Q,且∠PQP'=90°,则称P'为点P关于点Q的等垂点.(1)已知点Q的坐标为(4,0),①如图1,若点P为原点,直接写出P关于Q的等②如图2,P为y轴上一点,且点P关于点Q的等垂点P'恰好在一次函数y=2x+3的图象上,求点P'的坐标;(2)如图3,若点Q的坐标为(1,-2),P为直线y=2上一点,P关于点Q的等垂点P'位于y轴右侧,连接OP',QP',请问OP'+QP'是否有最小值?若有,请求出最小值;若无,请说明理由.。

2023-2024学年广东省深圳中学初中部八年级(上)期末数学试卷及答案解析

2023-2024学年广东省深圳中学初中部八年级(上)期末数学试卷及答案解析

2023-2024学年广东省深圳中学初中部八年级(上)期末数学试卷一.选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)下列各式中,是最简二次根式的是()A.B.C.D.2.(3分)在y=﹣π,,0,,,﹣2.5656656665…(相邻两个5之间6的个数逐次加1),其中无理数的个数为()A.3个B.4个C.5个D.6个3.(3分)估计的值应在()A.6和7之间B.5和6之间C.4和5之间D.3和4之间4.(3分)下列命题中是真命题的是()A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.一个三角形的最大内角不会小于60°D.同旁内角互补5.(3分)已知点P到x,y轴的距离分别是2和5,若点P在第四象限,则点P的坐标是()A.(﹣5,2)B.(2,﹣5)C.(5,﹣2)D.(﹣2,5)6.(3分)如图,如果AE∥DF,求∠A+∠B+∠C+∠D的度数是()A.90°B.180°C.300°D.360°7.(3分)在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是()A.82分B.84分C.85分D.86分8.(3分)在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A2023的坐标为()A.(22022,22022)B.(22022,22022﹣1)C.(22022,22022+1)D.(22022﹣1,22022)9.(3分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x的值为3,则被墨水所覆盖的图形为()A.B.C.D.10.(3分)已知甲,乙两地相距480km,一辆出租车从甲地出发往返于甲乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装完货物后,发现此时与出租车相距120km,货车改变速度继续出发后与出租车相遇.出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地.如图是两车距各自出发地的距离y(km)与货车行驶时间x(h)之间的函数图象,则下列说法错误的是()A.a=120B.点F的坐标为(8,0)C.出租车从乙地返回甲地的速度为128km/hD.出租车返回的过程中,货车出发或都与出租车相距12km二.填空题(本大题共5小题,每小题3分,共15分)11.(3分)若式子在实数范围内有意义,则x的取值范围是.12.(3分)毕达哥拉斯树也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树状图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.如图,若正方形A、B、C、D的边长分别是2,3,1,2,则正方形G的边长是.13.(3分)定义一种运算※如下:x※y=ax+by,a和b均为常数,已知:3※5=12,4※7=20,则2※3=.14.(3分)已知一次函数y=kx+b,当﹣1≤x≤2时,对应的函数值y的取值范围是0≤y≤4,则b的值为.15.(3分)四个全等的直角三角形按如图方式拼成正方形ABCD,将四个直角三角形的短直角边(如EA)向外延长,使得,连接AA′=BB′=CC′=DD',连接A',B',C',D',得四边形A'B'C'D',连接B'C.已知A是A′E的中点,△B′BC和△CC'B'的面积之比为2:3,四边形ABB′A′的面积为15,则四边形A'B'C'D'的面积是.三.解答题(本题共7小题,共55分)16.(8分)计算:(1)﹣+|﹣2|;(2)﹣4.17.(4分)解方程组:.18.(8分)如图,在直角坐标系中,A(0,1),B(2,0),C(4,3).(1)在如图所示的平面直角坐标系中描出各点,画出△ABC;(2)在图中作出△ABC关于y轴对称的图形△A1B1C1;(3)求△ABC的面积;(4)设点P在y轴上,且△ABP与△ABC的面积相等,直接写出点P的坐标.19.(8分)深圳市某中学开展法治知识竞赛,为了从甲、乙两位同学中选拔一人参赛,某班级举行了6次选拔赛,根据两位同学6次选拔赛的成绩,分别绘制了如下统计图:(1)甲同学成绩的中位数是分,乙同学成绩的众数是分.(2)小明同学已经算出甲同学的平均成绩(85+82+89+98+93+93)=90,方差=,请你求出乙同学成绩的平均成绩和方差;(3)根据(2)中计算结果,分析应选择哪个同学参赛并说明理由.20.(8分)为了预防甲型流感病毒的扩散,学校准备购买一批医用口罩和洗手液用于日常防护,若医用口罩买600个,洗手液买50瓶,则需1850元;若医用口罩买800个,洗手液买25瓶,则需1425元.(1)求医用口罩和洗手液的单价.(2)学校本次采购准备了500元,除购买医用口罩和洗手液外,还需增加购买单价为3元的N95口罩a个,医用口罩和N95口罩共250个,购买洗手液b瓶,钱恰好全部用完且a•b≠0,学校一共有几种购买方案?写出所有采购方案.21.(9分)利用“模型”解决几何综合问题往往会取得事半功倍的效果.几何模型:如图(1),我们称它为“A”型图案,易证明:∠EDF=∠A+∠B+∠C;应用上面模型解决问题:(1)如图(2),“五角星”形,求∠A1+∠A2+∠A3+∠A4+∠A5=?分析:图中A1A3DA4是“A”型图,于是∠A2DA5=∠A1+∠A3+∠A4,所以∠A1+∠A2+∠A3+∠A4+∠A5=;(2)如图(3),“七角星”形,求∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7;(3)如图(4),“八角星”形,可以求得:∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7+∠A8=;22.(10分)如图,在平面直角坐标系中,O是坐标原点,一次函数y=kx+b的图象与y轴交于点A(0,4),与x轴交于点B,与正比例函数y=x交于点C,点C的横坐标为2.(1)求一次函数y=kx+b的表达式;=S△BOC,求点M的坐标;(2)如图1,点M为线段OA上一点,若S△BCM(3)如图2,点N为线段OB上一点,连接CN,将△BCN沿直线CN翻折得到△DCN (点B的对应点为点D),CD交x轴于点E.若△DNE为直角三角形,请直接写出点N 的坐标.2023-2024学年广东省深圳中学初中部八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.【分析】利用二次根式的性质化简及分母有理化的运算逐一判断即可求解.【解答】解:A、,则A选项错误,不符合题意;B、,则B选项错误,不符合题意;C、是最简二次根式,正确,故符合题意;D、,则D选项错误,不符合题意.故选:C.【点评】本题考查了二次根式的性质化简及分母有理化,最简二次根式的概念,熟练掌握其化简方法及分母有理化的运算法则是解题的关键.2.【分析】根据无理数的定义解答即可.【解答】解:y=﹣π,,﹣2.5656656665…(相邻两个5之间6的个数逐次加1),这三个是无理数.故选:A.【点评】本题考查了无理数的定义,熟知无理数是无限不循环小数是解题的关键.3.【分析】先估算出的范围,再得到的范围,即可求解.【解答】解:∵16<20<25,∴,∴,∴估计的值应在5和6之间,故选:B.【点评】本题主要考查了无理数的估算,根据题意得到是解题的关键.4.【分析】根据有理数、平行线的性质、三角形的内角、无理数的概念判断即可.【解答】解:A、无限不循环小数都是无理数,故本选项说法是假命题,不符合题意;B、数轴上的点表示的数都是实数,故本选项说法是假命题,不符合题意;C、一个三角形的最大内角不会小于60°,是真命题,符合题意;D、两直线平行,同旁内角互补,故本选项说法是假命题,不符合题意;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:点P到x,y轴的距离分别是2和5,得|y|=2,|x|=5,若点P在第四象限,y=﹣2,x=5.则点P的坐标是(5,﹣2),故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.【分析】根据AE∥DF可得∠AMN+∠DNM=180°,又根据三角形外角的性质得到∠DNM =∠C+∠D,从而∠A+∠B+∠C+∠D=∠AMN+∠DNM=180°.【解答】解:∵AE∥DF,∴∠AMN+∠DNM=180°,∵∠AMN=∠A+∠B,∠DNM=∠C+∠D,∴∠A+∠B+∠C+∠D=∠AMN+∠DNM=180°.故选:B.【点评】本题考查三角形外角的性质,平行线的性质,解题的关键是掌握相关性质.7.【分析】根据题意和加权平均数的计算方法,可以计算出这个人的最终得分.【解答】解:90×20%+80×40%+85×40%=84(分),即这个人的最终得分是84分,故选:B.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.8.【分析】首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰的坐标,即可求得点B4的坐标.直角三角形的性质推知点B n﹣1【解答】解:如图,∵点B1的坐标为(1,0),点B2的坐标为(3,0),∴OB1=1,OB2=3,则B1B2=2.∵△A1B1O是等腰直角三角形,∠A1OB1=90°,∴OA1=OB1=1.∴点A1的坐标是(0,1).同理,在等腰直角△A2B2B1中,∠A2B1B2=90°,A2B1=B1B2=2,则A2(1,2).∵点A1、A2均在一次函数y=kx+b的图象上,∴,解得,∴该直线方程是y=x+1.∵点A3,B2的横坐标相同,都是3,∴当x=3时,y=4,即A3(3,4),则A3B2=4,∴B3(7,0).…B n(2n﹣1,0),∴当x=2n﹣1﹣1时,y=2n﹣1﹣1+1=2n﹣1,即点A n的坐标为(2n﹣1﹣1,2n﹣1).∴A2023的坐标为(22022﹣1,22022).故选:D.【点评】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点B n的坐标的规律.9.【分析】设被墨水所覆盖的图形表示的数据为a,根据题意列出方程组,把x=3代入,求得a的值便可.【解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入得,,由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选:C.【点评】此题是一道材料分析题,先要读懂材料所给出的用算筹表示二元一次方程组的方法,再解方程组.10.【分析】由图象知,C(4,480),设直线OC的解析式为:y=kx,则直线OC的解析式为y=120x,进而求得:a=120;由于停下来装完货物后,发现此时与出租车相距120km,货车行驶时间为小时,此时出租车距离乙地为240(km),可得B(2,120),而租车的速度为120km/h,相遇时,货车的速度为120÷﹣120=60(km/h),则可设直线BG的解析式为y=60x+b,所以直线BG的解析式为y=60x(2<x<8),可得G(8,480),F (8,0),出租车和货车第二次相遇前,相距12km时,分两种情况求解即可.【解答】解:由图象知,C(4,480),设直线OC的解析式为:y=kx,把C(4,480)代入得,480=4k,解得k=120,则直线OC的解析式为y=120x,∴把(1,a)代入y=120x,解得:a=120,故A正确;由于停下来装完货物后,发现此时与出租车相距120km,货车行驶时间为小时,∵a=120(km),∴货车卸货时与乙地相距120km,∴出租车距离乙地为120+120=240(km),∴出租车距离甲地为480﹣240=240(km),把y=240代入y=120x得240=120x解得:x=2,∴货车装完货物时,x=2,则B(2,120)根据货车继续出发h后与出租车相遇,可得×(出租车的速度+货车的速度)=120,根据直线OC的解析式为y=120x(0<x<4),可得出租车的速度为120km/h∴相遇时,货车的速度为120÷﹣120=60(km/h),故可设直线BG的解析式为y=60x+b,将B(2,120)代入y=60x+b,可得120=120+b,:解得b=0,∴直线BG的解析式为y=60x(2<x<8),故货车装完货物后驶往甲地的过程中,距其出发地的距离y(km)与行驶时间x(h)之间的函数关系式为y=60x,把y=480代入y=60x,可得:480=60x,解得x=8,∴G(8,480),∴F(8,0),故B正确;根据出租车到达乙地后立即按原路返回经过比货车早15分钟到达甲地,可得EF=,∴E(,0),∴出租车返回后的速度为:480÷(4)=128km/h,故C正确;设在出租车返回的行驶过程中,货车出发t小时,与出租车相距12km,此时货车距离乙地为60t km,出租车距离乙地为128(t﹣4)=(128t﹣512)km,①出租车和货车第二次相遇前,相距12km时,可得60t1﹣(128t1﹣512)=12,解得t1=;②出租车和货车第二次相遇后,相距12km时,可得(128t2﹣512)﹣60t2=12,解得t2=;故在出租车返回的行驶过程中,货车出发h或h与出租车相距12km,故D错误,故答案选:D.【点评】本题考查一次函数得实际应用,理解题意,弄出数量关系是解决问题的关键.二.填空题(本大题共5小题,每小题3分,共15分)11.【分析】根据二次根式有意义的条件得出x+2≥0,再求出答案即可.【解答】解:要使式子在实数范围内有意义,必须x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.【点评】本题考查了二次根式有意义的条件,能根据二次根式有意义的条件得出x+2≥0是解此题的关键,式子中a≥0.12.【分析】分别设中间两个正方形和最大正方形的边长为x,y,z,由勾股定理得出x2=22+32=13,y2=12+22=5,z2=x2+y2=18即最大正方形的面积为z2=18,则可求出答案.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形G的边长为z,则由勾股定理得:x2=22+32=13;y2=12+22=5;z2=x2+y2=18;即最大正方形G的面积为:z2=18,∴最大正方形G的边长为3.故答案为:3.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13.【分析】根据新定义运算的意义得到3a+5b=12,4a+7b=20,进而求出a、b的值,再根据新定义运算的意义进行计算即可.【解答】解:∵3※5=12,4※7=20,∴3a+5b=12,4a+7b=20,即,解得,∴2※3=﹣16×2+12×3=4.故答案为:4.【点评】本题考查解二元一次方程组,掌握二元一次方程组的解法,理解新定义的运算的意义是正确解答的关键.14.【分析】利用一次函数的性质,若k>0,x=﹣1,y=0;x=2,y=4.若k<0,x=﹣1,y=4;x=2,y=0,然后分别利用待定系数法求出一次函数解析式,从而得到b的值.【解答】解:若k>0,x=﹣1,y=0;x=2,y=4,∴,解得,∴此时一次函数解析式为y=x+;若k<0,x=﹣1,y=4;x=2,y=0,∴,解得,∴此时一次函数解析式为y=﹣x+;综上所述,b的值为或.故答案为:或.【点评】本题考查了待定系数法求一次函数解析式:求一次函数y=kx+b,需要两组x,y的值,,熟练掌握一次函数的性质是解决问题的关键.15.【分析】根据四个全等的直角三角形,已知A是A'E的中点,可得Rt△A′E′B≌Rt△B′FC′≌Rt△C′HD′≌Rt△D′HA′,可得S四边形ABB′A′=S四边形BCC′B′=15,在根=S△BCB′=6,S△B′C′F=S△BCF+S四边形BCC′B′=21,设据三角形中线的性质可得S△BCFEA=FB=GC=HD=a>0,EB=FC=GD=HA=b>0,根据三角形的面积公式可求出a,b 的值,可求出B ′C ′的值,根据正方形的面积公式即可求解.【解答】解:四个全等的直角三角形,即Rt △AEB ≌Rt △BFC ≌Rt △CGD ≌Rt △DHA ,∴AB =BC =CD =AD ,EA =FB =GC =HD ,∠AEF =∠BFG =∠CGH =∠DHE =90°,∵AA '=BB '=CC '=DD ',∴A ′E =B ′F =C ′G =D ′H ,∴Rt △A ′E ′B ≌Rt △B ′FC ′≌Rt △C ′HD ′≌Rt △D ′HA ′,∵四个全等的直角三角形,∴S 四边形ABB ′A ′=S 四边形BCC ′B ′=15,∵△B 'BC 和△CC 'B '的面积之比为2:3,即=,∴S △B ′BC =S 四边形BCC ′B ′=×15=6,S △CC ′B ′=S 四边形BCC ′B ′=×15=9,已知A 是A 'E 的中点,AA ′=BB ′=CC ′=DD ',在Rt △B ′CF 中,点B 是B ′F 的中点,∴S △BCF =S △BCB ′=6,则S △B ′C ′F =S △BCF +S 四边形BCC ′B ′=21,设EA =FB =GC =HD =a >0,EB =FC =GD =HA =b >0,∴B ′F =2BF =2a ,FC ′=FC +CC ′=FC +CH =a +b ,∴S △BCF =12ab =6,S △B ′C ′F =B ′F ⋅FC ′=×2a (a +b )=21,∴,解得,,∴B ′F =2a =6,FC ′=a +b =7在Rt △B ′C ′F 中,B ′C ′2=FB ′2+FC ′2=62+72=85,∵四个全等的直角三角形按如图方式拼成正方形ABCD ,∴△A ′EB ′,△B ′FC ′,△C ′GD ′,△D ′HA ′四个直角三角全等,围成的四边形A ′B ′C ′D ′是正方形,∴S 正方形A ′B ′C ′D ′=(B ′C ′)2=85,故答案为:85.【点评】本题主要考查直角三角形的性质,全等三角形的性质,三角形中线的性质,面积计算方法,勾股定理的综合,掌握以上知识的运用是解题的关键.三.解答题(本题共7小题,共55分)16.【分析】(1)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可;(2)首先计算开平方,然后计算乘法,最后计算减法,求出算式的值即可.【解答】解:(1)﹣+|﹣2|=4﹣2+(2﹣)=4﹣2+2﹣=4﹣.(2)﹣4=﹣4×=20﹣2=18.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.17.【分析】利用加减消元法解二元一次方程组即可.【解答】解:,①﹣②×2得:7y=﹣14,解得y=﹣2,把y=﹣2代入②得:x﹣3x(﹣2)=8,解得:x=2,所以原方程组的解为.【点评】本题考查解二元一次方程组,掌握加减消元法解二元一次方程组是正确解答的关键.18.【分析】(1)根据点的坐标找到位置即可;(2)根据轴对称的性质,画出△A1B1C1;(3)用矩形面积减去三个三角形面积即可;(4)根据△ABP的面积=AP×|x B|=4,求出AP的长即可解决问题.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△A1B1C1即为所求.(3)S﹣=4;(4)当点P在y轴上时,△ABP的面积=AP×|x B|=4,即AP×2=4,解得:AP=4.∴点P的坐标为(0,5)或(0,﹣3).【点评】本题主要考查了作图﹣轴对称变换,平面直角坐标系中点的坐标的特征,三角形的面积等知识,注意点P的位置有两个是解题的关键.19.【分析】(1)根据中位数和众数的定义求解即可;(2)根据算术平均数和方差的定义求解即可;(3)根据方差的意义求解即可.【解答】解:(1)甲同学成绩的中位数是=91(分),乙同学成绩的众数是85分,故答案为:91、85;(2)乙同学平均成绩,方差;(3)选甲同学参赛,因为甲乙两位同学的平均成绩相同,但是,所以甲同学的成绩更稳定.【点评】本题主要考查方差,解题的关键是掌握中位数、众数和方差的定义及方差的意义.20.【分析】(1)设医用口罩的单价为x元,洗手液的单价为y元,根据若医用口罩买600个,洗手液买50瓶,则需1850元;若医用口罩买800个,洗手液买25瓶,则需1425元.列出二元一次方程组,解方程组即可;(2)根据学校本次采购准备了500元,除购买医用口罩和洗手液外,还需增加购买单价为3元的N95口罩a个,医用口罩和N95口罩共250个,购买洗手液b瓶,钱恰好全部用完,列出二元一次方程,求出正整数解,即可得出结论.【解答】解:(1)设医用口罩的单价为x元,洗手液的单价为y元,根据题意得:,解得:,答:医用口罩的单价为1元,洗手液的单价为25元;(2)由题意得:3a+1×(250﹣a)+25b=500,整理得:2a+25b=250,∴a=125﹣b,∵ab≠0,∴a、b均为正整数,∴或或或,∴学校一共有4种购买方案:①购买N95口罩100个,医用口罩150个,洗手液2瓶;②购买N95口罩75个,医用口罩175个,洗手液4瓶;③购买N95口罩50个,医用口罩200个,洗手液6瓶;④购买N95口罩25个,医用口罩225个,洗手液8瓶.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.21.【分析】(1)根据三角形外角的性质把5个角转化到一个三角形中可得答案;(2)根据三角形外角的性质把7个角转化到一个三角形中可得答案;(3)根据三角形外角的性质把8个角转化到一个四边形中可得答案.【解答】解:(1)如图,由三角形外角的性质可得,∠1=∠A3+∠A5,∠2=∠A2+∠A4,∵∠1+∠2+∠A1=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5=180°,故答案为:180°;(2)如图,由三角形外角的性质可得,∠8=∠A2+∠A6,∠10=∠A7+∠A4,∠11=∠A1+∠A5,∠9=∠A3+∠10=∠A3+∠A4+∠A7,∵∠8+∠9+∠11=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7=180°;(3)如图,由三角形外角的性质可得,∠9=∠A1+∠A4,∠10=∠A3+∠A8,∠11=∠A2+∠A7,∠12=∠11+∠A5=∠A2+∠A7+∠A5,∵∠9+∠10+∠12+∠A6=360°,∴∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7+∠A8=360°,故答案为:360°.【点评】本题考查多边形的内角和与三角形外角的性质,能够根据三角形外角的性质进行转化是解题关键.22.【分析】(1)先求出点C的坐标,然后用待定系数法求出一次函数解析式;(2)设点M的坐标(0,m),先求出点B(8,0),得出,,列出关于m的方程,解出m的值即可;(3)分两种情况,∠DEN=90°或∠DNE=90°,分别画出图形,利用勾股定理求出点N的坐标.【解答】解:(1)∵点C的横坐标为2,把x=2代入得y=3,∴点C的坐标为(2,3),把A(0,4),C(2,3)代入y=kx+b,得,解得:,∴一次函数表达式为;(2)设点M的坐标(0,m),把y=0代入得,解得x=8,∴点B的坐标为(8,0),∴,∴,∵,∴,解得,∴点M的坐标为;(3)①当∠DNE=90°时,过点C作CM⊥x轴于点M,并延长CM,过点D作DF⊥CM于点F,如图所示:设点N(n,0),则BN=8﹣n,根据折叠可得,DN=BN=8﹣n,∵∠DFM=∠FMN=∠DNM=90°,∴四边形DNMF为矩形,∴MF=DN=8﹣n,DF=MN=n﹣2,∴CF=CM+MF=3+8﹣n=11﹣n,在Rt△CFD中,根据勾股定理得CD2=CF2+DF2,即,第15页(共15页)解得:n =5或n =8(舍去),∴点N 的坐标为(5,0);②当∠DEN =90°时,如图所示:设点N (n ,0),则BN =8﹣n ,根据折叠可得,DN =BN =8﹣n ,∵∠DEN =90°,∴CD ⊥x 轴,∴CE =3,OE =2,∴,EN =n ﹣2,在Rt △DEN 中,根据勾股定理得DN 2=EN 2+DE 2,即,解得,∴点N 的坐标为:综上所述,点N 的坐标为:或(5,0).【点评】本题考查了一次函数的综合应用,勾股定理,折叠的性质,三角形面积的计算,解题的关键是根据题意作出相应的图形,数形结合并进行分类讨论。

宝安区初二期末数学试卷

宝安区初二期末数学试卷

一、选择题(每题4分,共20分)1. 下列各数中,属于有理数的是()A. √9B. √16C. √25D. √-42. 若a、b是实数,且a + b = 0,则下列结论正确的是()A. a = bB. a = -bC. a² = b²D. a² + b² = 03. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²4. 已知一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式为Δ = b² - 4ac,则下列结论正确的是()A. 当Δ > 0时,方程有两个不相等的实数根B. 当Δ = 0时,方程有两个相等的实数根C. 当Δ < 0时,方程没有实数根D. 当Δ > 0时,方程有一个实数根5. 在直角坐标系中,点A(-2,3)关于原点的对称点为()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)二、填空题(每题5分,共25分)6. 若a² = 9,则a的值为______。

7. 已知等腰三角形的底边长为4,腰长为6,则该三角形的周长为______。

8. 若一元二次方程x² - 5x + 6 = 0的两个根分别为m和n,则m + n的值为______。

9. 在平面直角坐标系中,点P(2,-3)到原点O的距离为______。

10. 若sin∠A = 0.6,则∠A的度数约为______。

三、解答题(每题15分,共45分)11. (15分)已知一元二次方程x² - 4x + 3 = 0,求该方程的解。

广东省深圳市宝安区2021-2022学年八年级上学期期末数学试题(含答案解析)

广东省深圳市宝安区2021-2022学年八年级上学期期末数学试题(含答案解析)

广东省深圳市宝安区2021-2022学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,是无理数的是( )A .3.14B .πC .38 D 2.若点(,2)P m -在第三象限内,则m 的值可以是( )A .2B .0C .2-D .2± 3.下列计算中,正确的是( )AB .3+=CD .24.下列各组数中,不能作为直角三角形的三边的是( )A .3,4,5B .2,3,C .8,15,17D .32,42,52 5.如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒ 6.生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P 点照射到抛物线上的光线,PA PB 等反射以后沿着与直线PF 平行的方向射出,若CAP α∠=︒,DBP β∠=︒,则APB ∠的度数为( )°A .2αB .2βC .αβ+D .5()4αβ+ 7.下列命题正确的是( )A .数轴上的每一个点都表示一个有理数B .甲、乙两人五次考试平均成绩相同,且S 甲2=0.9,S 乙2=1.2,则乙的成绩更稳定C .三角形的一个外角大于任意一个内角D .在平面直角坐标系中,点(4,﹣2)与点(4,2)关于x 轴对称8.如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A .0,0k b >>B .y 随x 的增大而增大C .当0x >时,0y <D .关于x 的方程2kx b +=的解是1x = 9.某学校体育场的环形跑道长250m ,甲、乙分别以一定的速度练习长跑和骑自行车,同时同地出发,如果反向而行,那么他们每隔20s 相遇一次.如果同向而行,那么每隔50s 乙就追上甲一次,设甲的速度为x m/s ,乙的速度为y m/s ,则可列方程组为( )A .()()2025050250x y y x ⎧+=⎪⎨-=⎪⎩B .()()2025050250y x x y ⎧-=⎪⎨+=⎪⎩C .()()2050050250x y x y ⎧-=⎪⎨+=⎪⎩D .()()2025050500x y y x ⎧+=⎪⎨-=⎪⎩10.如图,直线443y x =-+与x 轴交于点B ,与y 轴交于点C ,点(1,0)E ,D 为线段BC 的中点,P 为y 轴上的一个动点,连接PD 、PE ,当PED 的周长最小时,点P 的坐标为( )A .40,5⎛⎫ ⎪⎝⎭B .(0,1)C .(1,0)D .30,2⎛⎫ ⎪⎝⎭二、填空题11.9的算术平方根是 .12.为了庆祝中国共产党成立100周年,某校举行“歌唱祖国”班级合唱比赛,评委将从“舞台造型、合唱音准和进退场秩序”这三项进行打分,各项成绩均按百分制计算,然后再按舞台造型占40%,合唱音准占40%,进退场秩序占20%计算班级的综合成锁.七(1)班三项成绩依次是95分、90分、95分,则七(1)班的综合成绩为________.13.如图,长方形ABCD 的边AB 落在数轴上,A 、B 两点在数轴上对应的数分别为1-和1,1BC =,连接BD ,以B 为圆心,BD 为半径画弧交数轴于点E ,则点E 在数轴上所表示的数为_________.14.如图,若一次函数3y kx =+与正比例函数2y x =的图象交于点(1,)m ,则方程组320kx y x y -=-⎧⎨-=⎩的解为_________.15.如图,将长方形纸片ABCD 沿MN 折叠,使点A 落在BC 边上点A ′处,点D 的对应点为D ′,连接A 'D ′交边CD 于点E ,连接CD ′,若AB =9,AD =6,A '点为BC 的中点,则线段ED '的长为 _____.三、解答题16.计算:17.解方程组:22263x y x y -=⎧⎨-=⎩18.深圳市教育局印发的《深圳市义务教育阶段学校课后服务实施意见》明确中小学课后延时服务从2021年3月5日开始实施某校积极开展课后延时服务活动,提供了“有趣的生物实验、经典影视欣赏、虚拟机器人竞赛、趣味篮球训练、国际象棋大赛……”等课程供学生自由选择.一个学期后,该校现为了解学生对课后延时服务的满意情况,随机对部分学生进行问卷调查,并将调查结果按照“A .非常满意;B .比较满意;C .基本满意;D .不满意”四个等级绘制成了如图所示的两幅不完整的统计图:请你根据图中信息,解答下列问题:(1)该校抽样调查的学生人数为 人,请补全条形统计图;(2)样本中,学生对课后延时服务满意情况的“中位数”所在等级为 ,“众数”所在等级为 ;(填“A 、B 、C 或D ”)(3)若该校共有学生2100人,据此调查估计全校学生对延时服务满意(包含A 、B 、C 三个等级)的学生有 人.19.列方程组解应用题:全自动红外体温检测仪是一种非接触式人体测温系统,通过人体温度补偿、温度自动校正等技术实现准确、快速的测温工作,具备人体非接触测温、高温报警等功能.为了提高体温检测效率,某医院引进了一批全自动红外体温检测仪.通过一段时间使用发现,全自动红外体温检测仪的平均测温用时比人工测温快2秒,全自动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒,请计算全自动红外体温检测仪和人工测量测温的平均时间分别是多少秒?20.如图,1l 表示星月公司某种电子产品的销售收入与销售量之间的关系,2l 表示该电子产品的生产成本与销售量之间的关系.(1)当销售量为 件时,销售收入等于生产成本.(2)当6x =时,生产成本= 万元.(3)若星月公司要想获得不低于22万元的利润,那么销售量至少为多少件?21.定义:我们把一次函数(0)y kx b k =+≠与正比例函数y x =的交点称为一次函数(0)y kx b k =+≠的“不动点”.例如求21y x =-的“不动点”;联立方程21y x y x=-⎧⎨=⎩,解得11x y =⎧⎨=⎩,则21y x =-的“不动点”为(1,1). (1)由定义可知,一次函数32y x =+的“不动点”为 .(2)若一次函数y mx n =+的“不动点”为(2,1)n -,求m 、n 的值.(3)若直线3(0)y kx k =-≠与x 轴交于点A ,与y 轴交于点B ,且直线3y kx =-上没有“不动点”,若P 点为x 轴上一个动点,使得3ABP ABO S S =,求满足条件的P 点坐标. 22.【问题背景】学校数学兴趣小组在专题学习中遇到一个几何问题:如图1,已知等边△ABC ,D 是△ABC 外一点,连接AD 、CD 、BD ,若△ADC =30°,AD =3,BD =5,求CD 的长.该小组在研究如图2中△OMN △△OPQ 中得到启示,于是作出图3,从而获得了以下的解题思路,请你帮忙完善解题过程.解:如图3所示,以DC 为边作等边△CDE ,连接AE .△△ABC 、△DCE 是等边三角形,△BC =AC ,DC =EC ,△BCA =△DCE =60°.△△BCA +△ACD = +△ACD ,△△BCD =△ACE ,△ ,△AE =BD =5.△△ADC=30°,△CDE=60°,△△ADE=△ADC+△CDE=90°.△AD=3,△CD=DE=.【尝试应用】如图4,在△ABC中,△ABC=45°,AB BC=4,以AC为直角边,A为直角顶点作等腰直角△ACD,求BD的长.【拓展创新】如图5,在△ABC中,AB=4,AC=8,以BC为边向外作等腰△BCD,BD=CD,△BDC=120°,连接AD,求AD的最大值.参考答案:1.B【解析】【分析】根据无理数的定义,“无限不循环的小数是无理数”逐项分析即可.【详解】解:A. 3.14是有理数,故该选项不符合题意;B. π是无理数,故该选项符合题意;C. 3是有理数,故该选项不符合题意;8D. 3=是有理数,故该选项不符合题意;故选B【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:△开方开不尽的数,△无限不循环小数,△含有π的数.2.C【解析】【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】P m-在第三象限内,解:△点(,2)m<△0∴m的值可以是2-故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:△第一象限的点:横坐标>0,纵坐标>0;△第二象限的点:横坐标<0,纵坐标>0;△第三象限的点:横坐标<0,纵坐标<0;△第四象限的点:横坐标>0,纵坐标<0.3.C【分析】根据二次根式的加减法以及二次根式的乘法运算进行计算即可.【详解】A.A选项不正确;B. 3与B选项不正确;C. =,计算正确,故C选项正确D. 2不是同类二次根式不能合并,故D选项不正确;故选C【点睛】本题考查了二次根式的加减法以及二次根式的乘法,掌握二次根式的运算法则是解题的关键.4.D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、△32+42=52,△能作为直角三角形的三边,故本选项不符合题意;B、△22+2=32,△能作为直角三角形的三边,故本选项不符合题意;C、△82+152=172,△能作为直角三角形的三边,故本选项不符合题意;D、△(32)2+(42)2=337≠625=(52)2,△不能作为直角三角形的三边,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.5.B【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.6.C【解析】【分析】根据平行线的性质可得,EPA PAC EPB PBD ∠=∠∠=∠,进而根据APB APE BPE ∠=∠+∠即可求解【详解】 解:,PF AC PF BD ∥∥∴,EPA PAC EPB PBD ∠=∠∠=∠∴APB APE BPE ∠=∠+∠αβ=+故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.7.D【解析】【分析】根据数轴上的点与实数一一对应可对A 选项进行判断;根据方差的意义可对B 选项进行判断;根据三角形外角性质可对C 选项进行判断;根据关于x 轴对称的点的坐标特征可对D 选项进行判断.【详解】解:A .数轴上的每一个点都表示一个实数,所以A 选项不符合题意;B .甲、乙两人五次考试平均成绩相同,且S 甲2=0.9,S 乙2=1.2,则甲的成绩更稳定,所以B 选项不符合题意;C .三角形的一个外角大于与之不相邻的任意一个内角,所以C 选项不符合题意;D .在平面直角坐标系中,点(4,﹣2)与点(4,2)关于x 轴对称,所以D 选项符合题意.故选:D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.D【解析】【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.9.A【解析】【分析】利用路程=速度×时间,结合“如果反向而行,那么他们每隔20s相遇一次;如果同向而行,那么每隔50s乙就追上甲一次”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:△如果反向而行,那么他们每隔20s相遇一次,△20(x+y)=250;△如果同向而行,那么每隔50s乙就追上甲一次,△50(y﹣x)=250.△所列方程组为()()20250 50250x yy x⎧+=⎪⎨-=⎪⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10.A【解析】【分析】作点E关于y轴的对称点F,连接DF,交y轴于点Q,则QE QF=,进而根据对称性求得当点P与Q重合时,PED的周长最小,通过求直线DF的解析式,即可求得P点的坐标【详解】解:如图,作点E关于y轴的对称点F,连接DF,交y轴于点Q,则QE QF=,连接PF,PED的周长PD PE DE PF PE PD DF DE=++=++≥+,点,D E是定点,则DE的长不变,∴当PQ重合时,PED的周长最小,由443y x=-+,令0,x=4y=,令0y=,则3x=(3,0),(0,4)B C∴D是BC的中点3(,2)2D∴(1,0)E,点F是E关于y轴对称的点(1,0)F∴-设直线DF的解析式为:y kx b=+,将3(,2)2D,(1,0)F-代入,322k bk b=-+⎧⎪⎨=+⎪⎩解得4545kb⎧=⎪⎪⎨⎪=⎪⎩∴直线DF的解析式为:44+55y x=令0x=,则45y=即4(0,)5P故选A【点睛】本题考查了轴对称的性质求最值,求一次函数解析式,求直线与坐标轴的交点,求线段中点坐标,掌握根据轴对称的性质求线段和的最值是解题的关键.11.3.【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】△239=,△9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12.93【解析】【分析】根据题意求这组数据的加权平均数即可.【详解】解:七(1)班的综合成绩为9540%9040%9520%93⨯+⨯+⨯=分故答案为:93【点睛】本题考查了求加权平均数,掌握加权平均数的计算是解题的关键,加权平均数计算公式为:1122()1k k x x f x f x f n=++⋯+,其中12k f f f ⋯,,,代表各数据的权.13.11【解析】【分析】根据勾股定理求得BD ,进而根据数轴上的两点距离即可求得点E 在数轴上所表示的数.【详解】 解:四边形ABCD 是长方形,A 、B 两点在数轴上对应的数分别为1-和1,1BC =, 1,2AD BC AB ∴===依题意BE BD ==.设点E 在数轴上所表示的数为x ,则1x -=解得1x =-故答案为:1【点睛】本题考查了勾股定理,实数与数轴,掌握勾股定理求得BD 是解题的关键.14.12x y =⎧⎨=⎩【解析】【分析】先将点(1,)m 代入正比例函数2y x =求得m ,则交点的坐标即为方程组的解.【详解】解:将点(1,)m 代入正比例函数2y x =,得2m =∴点()1,2为一次函数3y kx =+与正比例函数2y x =的图象的交点∴320kx y x y -=-⎧⎨-=⎩的解为12x y =⎧⎨=⎩故答案为:12x y =⎧⎨=⎩【点睛】本题考查了两直线交点与二元一次方程组的关系,理解交点的坐标即为方程组的解是解题的关键.15.94【解析】【分析】根据折叠的性质可得'AM AM =,''90MA D A ∠=∠=︒,设'AM A M x ==,则9BM x =-,由线段中点可得''11322A B AC BC AD ====,在'Rt A BM 中,利用勾股定理可得'5A M =,4MB =,利用相似三角形的判定定理及性质可得''A BM ECA ,'''A E AC A M BM=,代入求解,同时根据线段间的数量关系即可得出结果.【详解】解:将长方形纸片ABCD 沿着MN 折叠,使点A 落在BC 边上点'A 处,△'AM AM =,''90MA D A ∠=∠=︒,设'AM A M x ==,则9BM x =-,△'A 是BC 的中点, △''11322A B AC BC AD ====, 在'Rt A BM 中,'22'2A B BM AM+=, 即()22239+-=x x ,解得:5x =,△'5A M =,4MB =,△''90MA B EAC ∠+∠=︒,''90A EC EAC ∠+∠=︒, △''MA B A EC ∠=∠,△'90B ACE ∠=∠=︒,△''A BM ECA , △'''A E AC A M BM =,即'354A E =, △'154A E =, △'''''159644ED A D A E AD A E =-=-=-=, 故答案为:94 【点睛】题目主要考查长方形中的折叠问题,包括勾股定理,相似三角形的判定及性质等,结合图形,熟练掌握运用折叠的性质及相似三角形的性质是解题关键.16.3【解析】【分析】根据二次根式的乘法运算以及求一个数的立方根进行计算即可【详解】解:3=63=-=3【点睛】本题考查了二次根式的乘法运算以及求一个数的立方根,掌握二次根式的乘法运算是解题的关键.17.91015x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】根据加减消元法解二元一次方程组即可【详解】解:22263x y x y -=⎧⎨-=⎩①② △-△得:623y y -+=- 解得15y =- 将15y =-代入△ 1225x =- 解得910x = ∴原方程组的解为:91015x y ⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了加减消元法解二元一次方程组,掌握加减消元法是解题的关键.18.(1)50;统计图见解析(2)B ;A(3)1890【解析】【分析】(1)根据A:非常满意的人数除以所占的百分比即可求得总人数,进而根据总人数减去,,A B D等级的人数即可求得C等级的人数,进而补全统计图;(2)根据中位数的定义可知该组数据的中位数为第25和26个的平均数,根据条形统计图即可求得位于B等级,根据条形统计图即可求得人数最多的位于A等级;(3)根据总人数乘以20151050++即可求得答案(1)解:该校抽样调查的学生人数为:2040%50÷=(人)C等级的人数为502015510---=(人)补全统计图如图,(2)按满意度从大到小排列,根据中位数的定义可知,中位数为第25和26个的平均数,则样本中,学生对课后延时服务满意情况的“中位数”所在等级为BA的人数最多,则“众数”所在等级为A故答案为:,B A(3)该校共有学生2100人,据此调查估计全校学生对延时服务满意(包含A、B、C三个等级)的学生有2015102100189050++⨯=(人)故答案为:1890【点睛】本题考查了扇形统计图与条形统计图信息关联,根据样本估计总体,求中位数和众数,求条形统计图,从统计图中获取信息是解题的关键.19.全自动红外体温检测仪和人工测量测温的平均时间分别是1.5秒和3.5秒【解析】【分析】设全自动红外体温检测仪的平均测温用时为x 秒,人工测量的平均测温用时为y 秒,根据“全自动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒”列出方程组,解方程求组解即可【详解】解:设全自动红外体温检测仪的平均测温用时为x 秒,则人工测量的平均测温用时为y 秒,则6050402x y x y+=⎧⎨+=⎩ 解得 1.53.5x y =⎧⎨=⎩答:全自动红外体温检测仪和人工测量测温的平均时间分别是1.5秒和3.5秒.【点睛】本题考查了二元一次方程组的应用,根据题意列出等量关系是解题的关键.20.(1)3(2)4(3)36【解析】【分析】(1)根据函数图象可知12,l l 的交点的横坐标即为所求;(2)根据函数图象分别求得2l 对应的解析式2y ,令6x =即可求解;(3)根据销售收入减去生产成本即可求得利润,根据题意列一元一次不等式求解即可.(1)解:根据函数图象可知12,l l 的交点的横坐标为3,此时,销售收入等于生产成本, 故答案为:3(2)解:设2l 的解析式为2y 22k x b =+,将点()()0,2,3,3代入得222233b k b =⎧⎨=+⎩解得22132k b ⎧=⎪⎨⎪=⎩ 2123y x ∴=+ 令6x =,2224y =+=故答案为:4(3)解:设直线1l 的解析式为1y kx =,将点()3,3代入得1y x =根据题意,1222y y -≥ 即12223x x ⎛⎫-+≥ ⎪⎝⎭解得36x ≥ x 为正整数,36x ∴=答:若星月公司要想获得不低于22万元的利润,那么销售量至少为36件.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,根据函数图象获取信息是解题的关键.21.(1)()1,1-- (2)1,32m n =-= (3)(6,0)-或()12,0【解析】【分析】(1)联立一次函数解析式32y x =+与正比例函数y x =,解二元一次方程组即可; (2)将“不动点”为(2,1)n -,代入y x =求得n ,进而代入y mx n =+求得m 即可; (3)根据题意可得1k =,进而设(,0)P x ,根据三角形面积公式求解即可.(1)解:由定义可知,一次函数32y x =+的“不动点”为一次函数解析式32y x =+与正比例函数y x =的交点,即32y x y x =+⎧⎨=⎩解得11x y =-⎧⎨=-⎩∴一次函数32y x =+的“不动点”为()1,1--(2)解:根据定义可得,点(2,1)n -在y x =上,12n ∴-=解得3n =点(2,1)n -又在y mx n =+上,12n m n ∴-=+,又3n =3123m ∴-=+ 解得12m =- 123m n ⎧=-⎪∴⎨⎪=⎩ (3)直线3y kx =-上没有“不动点”,∴直线3y kx =-与y x =平行1k ∴=∴3y x =-,令0x =,3y =-令0y =,则3x =()()3,0,0,3A B ∴-3,3OA OB ∴==设(,0)P x3ABP ABO S S =11322AP OB OA OB ∴⋅⋅=⨯⋅⋅ ∴3AP OA =333x ∴-=⨯即39x -=或39x -=-解得6x =-或12x =()6,0P ∴-或()12,0【点睛】本题考查了一次函数的性质,一次函数与坐标轴围成的三角形的面积,两直线交点问题,掌握一次函数的性质是解题的关键.22.【问题背景】DCE ∠;BCD ACE ≅;4;【尝试应用】BD =【拓展创新】AD的最大值为【解析】【分析】问题背景:根据所给思路,结合图形进行求证即可得;尝试应用:以点A 为旋转中心,将ABD 绕点A 顺时针旋转90︒,得AEC ,连接BE ,根据各角之间的数量关系可得90EBC ∠=︒,在在Rt ABE 与Rt BEC 中,利用两次勾股定理求解即可得拓展创新:以点D 为旋转中心,将ACD 绕点D 顺时针旋转120︒,得BDF ,连接AF ,由旋转的性质可得AD DF =,120ADF ∠=︒,AC BF =,利用等边对等角得出,30DAF DFA ∠=∠=︒,结合图形当A 、B 、F 三点共线时,AF 最大,此时 12AF =,过点D 作DE AF ⊥,得出12DE AD =, 12AE AF =,利用勾股定理可得AD AF =,当AF 取得最大值时,AD 取得最大值,代入求解即可得.【详解】问题背景:解:如图3所示,以DC 为边作等边三角形CDE ,连接AE ,∵ABC ,CDE 是等边三角形,∴CB AC =,CD EC =,60BCA DCE ∠=∠=︒,∴BCA ACD DCE ACD ∠+∠=∠+∠,∴BCD ACE ∠=∠,在BCD 与ACE 中,BC AC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴BCD ACE ≅,∴5AE BD ==,∵30ADC ∠=︒,60CDE ∠=︒,∴90ADE ADC CDE ∠=∠+∠=︒,∵3AD =,5AE =,在Rt ADE 中,4DE ==,∴4DE CD ==,故答案为:DCE ∠;BCD ACE ≅;4;尝试应用:解:以点A 为旋转中心,将ABD 绕点A 顺时针旋转90︒,得AEC ,连接BE ,∴AB AE =,90BAE ∠=︒,∴45EBA ∠=︒,∵45ABC ∠=︒,∴90EBC ∠=︒,在Rt ABE 中,∵AB AE ==∴2BE ==,在Rt BEC 中,∵4BC =,∴EC =∴BD EC ==拓展创新:以点D 为旋转中心,将ACD 绕点D 顺时针旋转120︒,得BDF ,连接AF ,∴AD DF =,120ADF ∠=︒,AC BF =,∴30DAF DFA ∠=∠=︒,当A 、B 、F 三点共线时,AF 最大,∵4AB =,8AC =,∴12AF AB BF AB AC =+=+=,如图ADF 中,过点D 作DE AF ⊥,且30DAF DFA ∠=∠=︒,∴12DE AD =, 12AE AF =,∵AD ==化简得:AD AF=,当AF取得最大值时,AD取得最大值,∴AD==12∴AD的最大值为【点睛】题目主要考查全等三角形的判定和性质,三角形旋转的性质,勾股定理解三角形等,理解题意,作出相应图形,综合运用这些知识点是解题关键.。

广东省深圳市宝安区宝安中学(集团)2021-2022学年八年级上学期期末数学试题(解析版)

广东省深圳市宝安区宝安中学(集团)2021-2022学年八年级上学期期末数学试题(解析版)

宝安区2021-2022学年第一学期学情调查问卷八年级数学第一部分(选择题)一、选择题1. 下列各数中,是无理数的是( )A.3.14B. πC. 38D. 【答案】B【解析】【分析】根据无理数的定义,“无限不循环的小数是无理数”逐项分析即可.【详解】解:A. 3.14 是有理数,故该选项不符合题意;B. π是无理数,故该选项符合题意;C.38是有理数,故该选项不符合题意; D. 3=是有理数,故该选项不符合题意;故选B【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2. 若点(,2)P m −在第三象限内,则m 的值可以是( )A. 2B. 0C. 2−D. 2±【答案】C【解析】【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】解:∵点(,2)P m −在第三象限内,∴0m < ∴m 的值可以是2−故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0. 3. 下列计算中,正确的是( )A.B. 3+C.D. 2−【答案】C【解析】【分析】根据二次根式的加减法以及二次根式的乘法运算进行计算即可.【详解】A.A 选项不正确;B. 3与B 选项不正确;C. ,计算正确,故C 选项正确D. 与2不同类二次根式不能合并,故D 选项不正确;故选C【点睛】本题考查了二次根式的加减法以及二次根式的乘法,掌握二次根式的运算法则是解题的关键. 4. 下列各组数中,不能作为直角三角形的三边的是( )A. 3,4,5B. 2,3C. 8,15,17D. 23,24,25【答案】D【解析】【分析】由题意直接根据勾股定理的逆定理即如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形,如果没有这种关系,这个就不是直角三角形进行分析判断即可.【详解】解:A 、32+42=52,符合勾股定理的逆定理,故选项错误;B、22223+=,符合勾股定理的逆定理,故选项错误;C 、82+152=172,符合勾股定理的逆定理,故选项错误;D 、∵(32)2+(42)2=81+256=337,(52)2=625,∴(32)2+(42)2≠(52)2,不符合勾股定理的逆定理即此时三角形不是直角三角形,故选项正确. 故选:D.【点睛】本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 5. 如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( ) 是A. 60°B. 75°C. 90°D. 105°【答案】B【解析】 【分析】根据三角尺可得45,30EDB ABC ∠=°∠=°,根据三角形的外角性质即可求得1∠【详解】解: 45,30EDB ABC ∠=°∠=°175EDB ABC ∴∠=∠+∠=°故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.6. 生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P 点照射到抛物线上的光线,PA PB 等反射以后沿着与直线PF 平行的方向射出,若CAP α∠=°,DBP β∠=°,则APB ∠的度数为( )°A. 2αB. 2βC. αβ+D. 5()4αβ+ 【答案】C【解析】 【分析】根据平行线的性质可得,EPA PAC EPB PBD ∠=∠∠=∠,进而根据APB APE BPE ∠=∠+∠即可求解【详解】解: ,PF AC PF BD ∥∥∴,EPA PAC EPB PBD ∠=∠∠=∠∴APB APE BPE ∠=∠+∠αβ=+【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.7. 下列命题正确的是( )A. 数轴上的每一个点都表示一个有理数B. 甲、乙两人五次考试平均成绩相同,且20.9S =甲,21.2S =乙,则乙的成绩更稳定C. 三角形的一个外角大于任意一个内角D. 在平面直角坐标系中,点(4,2)−与点(4,2)关于x 轴对称【答案】D【解析】【分析】根据数轴上的点与实数一一对应即可判断A ;根据平均数相同的情形下,方差越小,成绩越稳定即可判断B ;根据三角形的外角与内角的关系即可判断C ;根据关于x 轴对称的点的坐标特征即可判断D【详解】A. 数轴上的每一个点都表示一个实数,故该选项不正确,不符合题意;B. 甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则甲的成绩更稳定,故该选项不正确,不符合题意;C. 三角形的一个外角不一定大于任意一个内角,故该选项不正确,不符合题意;D. 在平面直角坐标系中,点(4,2)−与点(4,2)关于x 轴对称,故该选项正确,符合题意;故选D【点睛】本题考查了实数与数轴,方差的意义,三角形的外角的性质,关于x 轴对称的点的坐标特征,掌握以上知识是解题的关键. 8. 如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A. 0,0k b >>B. y 随x 的增大而增大C. 当0x >时,0y <D. 关于x 的方程2kx b +=的解是1x =【答案】D【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.9. 某学校体育场的环形跑道长250m ,甲、乙分别以一定的速度练习长跑和骑自行车,同时同地出发,如果反向而行,那么他们每隔20s 相遇一次.如果同向而行,那么每隔50s 乙就追上甲一次,设甲的速度为x m/s ,乙的速度为y m/s ,则可列方程组为( )A. ()()2025050250x y y x += −=B. ()()2025050250y x x y −= +=C. ()()2050050250x y x y −= +=D. ()()2025050500x y y x += −=【答案】A【解析】 【分析】利用路程=速度×时间,结合“如果反向而行,那么他们每隔20s 相遇一次;如果同向而行,那么每隔50s 乙就追上甲一次”,即可得出关于x ,y 二元一次方程组,此题得解.【详解】解:∵如果反向而行,那么他们每隔20s 相遇一次,∴20(x +y )=250;∵如果同向而行,那么每隔50s 乙就追上甲一次,∴50(y ﹣x )=250.∴所列方程组为()()2025050250x y y x += −=. 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10. 如图,直线443y x =−+与x 轴交于点B ,与y 轴交于点C ,点(1,0)E ,D 为线段BC 的中点,P 为y 轴上的一个动点,连接PD 、PE ,当PED V 的周长最小时,点P 的坐标为( ) A. 40,5B. (0,1)C. (1,0)D. 30,2【答案】A【解析】 【分析】作点E 关于y 轴的对称点F ,连接DF ,交y 轴于点Q ,则QE QF =,进而根据对称性求得当点P 与Q 重合时,PED V 的周长最小,通过求直线DF 的解析式,即可求得P 点的坐标【详解】解:如图,作点E 关于y 轴的对称点F ,连接DF ,交y 轴于点Q ,则QE QF =,连接PF ,的PED V 的周长PD PE DE PF PE PD DF DE =++=++≥+,点,D E 是定点,则DE 的长不变, ∴当PQ 重合时,PED V 的周长最小, 由443y x =−+,令0,x =4y =,令0y =,则3x = (3,0),(0,4)B C ∴D Q 是BC 的中点3(,2)2D ∴ (1,0)E ,点F 是E 关于y 轴对称的点(1,0)F ∴−设直线DF 的解析式为:y kx b =+,将3(,2)2D ,(1,0)F −代入, 0322k b k b =−+ =+解得4545k b = =∴直线DF 的解析式为:44+55y x =令0x =,则45y =即4(0,)5P故选A【点睛】本题考查了轴对称的性质求最值,求一次函数解析式,求直线与坐标轴的交点,求线段中点坐标,掌握根据轴对称的性质求线段和的最值是解题的关键. 第二部分(非选择题)二、填空题11. 9的算术平方根是 .【答案】3【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239=,∴9算术平方根为3.故答案为:3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12. 为了庆祝中国共产党成立100周年,某校举行“歌唱祖国”班级合唱比赛,评委将从“舞台造型、合唱音准和进退场秩序”这三项进行打分,各项成绩均按百分制计算,然后再按舞台造型占40%,合唱音准占40%,进退场秩序占20%计算班级的综合成锁.七(1)班三项成绩依次是95分、90分、95分,则七(1)班的综合成绩为________.【答案】93【解析】【分析】根据题意求这组数据的加权平均数即可.【详解】解:七(1)班的综合成绩为9540%9040%9520%93×+×+×=分故答案为:93 【点睛】本题考查了求加权平均数,掌握加权平均数的计算是解题的关键,加权平均数计算公式为:1122()1k k x x f x f x f n++…+,其中12k f f f …,,,代表各数据的权. 13. 如图,长方形ABCD 的边AB 落在数轴上,A 、B 两点在数轴上对应的数分别为1−和1,1BC =,连接BD ,以B 为圆心,BD 为半径画弧交数轴于点E ,则点E 在数轴上所表示的数为_________.【答案】11+【解析】【分析】根据勾股定理求得BD ,进而根据数轴上的两点距离即可求得点E 在数轴上所表示的数.【详解】解: 四边形ABCD 是长方形,A 、B 两点在数轴上对应的数分别为1−和1,1BC =,1,2AD BC AB ∴===依题意BE BD =.设点E 在数轴上所表示的数为x ,则1x −解得1x =−故答案为:1【点睛】本题考查了勾股定理,实数与数轴,掌握勾股定理求得BD 是解题的关键.14. 如图,若一次函数3y kx =+与正比例函数2y x =的图象交于点(1,)m ,则方程组320kx y x y −=− −=的解为_________.【答案】12x y = =【解析】【分析】先将点(1,)m 代入正比例函数2y x =求得m ,则交点的坐标即为方程组的解.【详解】解:将点(1,)m 代入正比例函数2y x =,得2m =∴点()1,2为一次函数3y kx =+与正比例函数2y x =的图象的交点∴320kx y x y −=− −=的解为12x y = = 故答案为:12x y = =【点睛】本题考查了两直线交点与二元一次方程组的关系,理解交点的坐标即为方程组的解是解题的关键.15. 如图,将长方形纸片ABCD 沿MN 折叠,使点A 落在BC 边上点A ′处,点D 的对应点为D ¢,连接A D ′′交边CD 于点E ,连接CD ′,若9AB =,6AD =,A ′点为BC 的中点,则线段ED ′的长为________.【答案】94##2.25 【解析】【分析】连接NA ′,勾股定理求得DN ,进而证明A D N NCA ′′′ ≌,设,EC a A E b ′==,根据6NC =,以及Rt A EC ′ 三边关系建立方程组,解方程组求解即可.【详解】解:如图,连接NA ′,折叠DN D N ′∴=,AD A D ′′=,A D N D ′′∠=∠四边形ABCD 是长方形,9AB =,6AD =,9DC AB ∴==,6BC AD ==,90D BCD ∠=∠=°设DN x =则9NC DC DN x =−=−A ′是BC 的中点,6BC AD == ∴132CA BC ′== 在Rt A CN ′ 中, 222A N CN A C ′′=+在Rt A D N ′′ 中,222A N ND AD ′′′=+∴22CN A C ′+22ND AD ′′+ 即()2222936x x −+=+解得3x =ND ND A C ′′∴==3=,6NC A D ′′==又∵90ND A A CD ′′′∠=∠=°A D N NCA ′′′∴ ≌NA D A NC ′′′∴∠=∠A E NE ′∴=A D CN ′′=CE ED ′∴=设,EC a A E b ′== 在Rt A EC ′ 中222A E EC A C ′′−=即2223b a −=①又6CE EN CN +==6EC A E EC EN a b ′∴+=+=+=②由①可得()()9b a b a +−=③ 将②代入③得32b a −=④②-④得922a =解得94a =即94EC = 94ED CE ′∴== 故答案为:94【点睛】本题考查了勾股定理,折叠问题,因式分解,三角形全等的性质与判定,解二元一次方程组,掌握折叠的性质是解题的关键. 三、解答题16.计算:++【答案】3+【解析】【分析】根据二次根式的乘法运算以及求一个数的立方根进行计算即可【详解】解:++3=+63=+−=3+【点睛】本题考查了二次根式的乘法运算以及求一个数的立方根,掌握二次根式的乘法运算是解题的关键.17. 解方程组:22263x yx y−=−=【答案】91015xy==−【解析】【分析】根据加减消元法解二元一次方程组即可详解】解:22263x yx y−=−=①②①-②得:623y y−+=−解得15y=−将15y=−代入①1225x=−解得910x=【∴原方程组的解为:91015 xy==−【点睛】本题考查了加减消元法解二元一次方程组,掌握加减消元法是解题的关键.18. 深圳市教育局印发的《深圳市义务教育阶段学校课后服务实施意见》明确中小学课后延时服务从2021年3月5日开始实施某校积极开展课后延时服务活动,提供了“有趣的生物实验、经典影视欣赏、虚拟机器人竞赛、趣味篮球训练、国际象棋大赛……”等课程供学生自由选择.一个学期后,该校现为了解学生对课后延时服务的满意情况,随机对部分学生进行问卷调查,并将调查结果按照“A.非常满意;B.比较满意;C.基本满意;D.不满意”四个等级绘制成了如图所示的两幅不完整的统计图:请你根据图中信息,解答下列问题:(1)该校抽样调查的学生人数为人,请补全条形统计图;(2)样本中,学生对课后延时服务满意情况的“中位数”所在等级为,“众数”所在等级为;(填“A、B、C或D”)(3)若该校共有学生2100人,据此调查估计全校学生对延时服务满意(包含A、B、C三个等级)的学生有人.【答案】(1)50;统计图见解析(2)B;A(3)1890【解析】【分析】(1)根据A:非常满意的人数除以所占的百分比即可求得总人数,进而根据总人数减去,,A B D等级的人数即可求得C等级的人数,进而补全统计图;(2)根据中位数的定义可知该组数据的中位数为第25和26个的平均数,根据条形统计图即可求得位于B 等级,根据条形统计图即可求得人数最多的位于A等级;(3)根据总人数乘以20151050++即可求得答案 【小问1详解】 解:该校抽样调查的学生人数为:2040%50÷=(人)C 等级的人数为502015510−−−=(人) 补全统计图如图,【小问2详解】按满意度从大到小排列,根据中位数的定义可知,中位数为第25和26个的平均数,则样本中,学生对课后延时服务满意情况的“中位数”所在等级为BA 的人数最多,则“众数”所在等级为A故答案为:,B A【小问3详解】该校共有学生2100人,据此调查估计全校学生对延时服务满意(包含A 、B 、C 三个等级)的学生有2015102100189050++×=(人) 故答案为:1890【点睛】本题考查了扇形统计图与条形统计图信息关联,根据样本估计总体,求中位数和众数,求条形统计图,从统计图中获取信息是解题的关键.19. 列方程组解应用题:全自动红外体温检测仪是一种非接触式人体测温系统,通过人体温度补偿、温度自动校正等技术实现准确、快速测温工作,具备人体非接触测温、高温报警等功能.为了提高体温检测效率,某医院引进了一批全自动红外体温检测仪.通过一段时间使用发现,全自动红外体温检测仪的平均测温用时比人工测温快2秒,全自动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒,请计算全自动红外体温检测仪和人工测量测温的平均时间分别是多少秒?【答案】全自动红外体温检测仪和人工测量测温的平均时间分别是1.5秒和3.5秒【解析】【分析】设全自动红外体温检测仪的平均测温用时为x 秒,人工测量的平均测温用时为y 秒,根据“全自的动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒”列出方程组,解方程求组解即可【详解】解:设全自动红外体温检测仪的平均测温用时为x 秒,则人工测量的平均测温用时为y 秒,则6050402x y x y += +=解得 1.53.5x y = =答:全自动红外体温检测仪和人工测量测温的平均时间分别是1.5秒和3.5秒.【点睛】本题考查了二元一次方程组的应用,根据题意列出等量关系是解题的关键.20. 如图,1l 表示星月公司某种电子产品的销售收入与销售量之间的关系,2l 表示该电子产品的生产成本与销售量之间的关系.(1)当销售量为 件时,销售收入等于生产成本.(2)当6x =时,生产成本= 万元.(3)若星月公司要想获得不低于22万元的利润,那么销售量至少为多少件?【答案】(1)3 (2)4(3)36【解析】【分析】(1)根据函数图象可知12,l l 的交点的横坐标即为所求;(2)根据函数图象分别求得2l 对应的解析式2y ,令6x =即可求解;(3)根据销售收入减去生产成本即可求得利润,根据题意列一元一次不等式求解即可.【小问1详解】解:根据函数图象可知12,l l 的交点的横坐标为3,此时,销售收入等于生产成本,故答案为:3【小问2详解】解:设2l 的解析式为2y 22k x b +,将点()()0,2,3,3代入得222233b k b = =+解得22132k b = = 2123y x ∴=+ 令6x =,2224y =+=故答案为:4【小问3详解】解:设直线1l 的解析式为1y kx =,将点()3,3代入得1y x =根据题意,1222y y −≥ 即12223x x −+≥解得36x ≥x 为正整数,36x ∴=答:若星月公司要想获得不低于22万元的利润,那么销售量至少为36件.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,根据函数图象获取信息是解题的关键.21. 定义:我们把一次函数(0)y kx b k =+≠与正比例函数y x =的交点称为一次函数(0)y kx b k =+≠的“不动点”.例如求21y x =−的“不动点”;联立方程21y x y x =− = ,解得11x y = =,则21y x =−的“不动点”为(1,1). (1)由定义可知,一次函数32y x =+“不动点”为 . (2)若一次函数y mx n =+的“不动点”为(2,1)n −,求m 、n 的值. 的(3)若直线3(0)y kx k =−≠与x 轴交于点A ,与y 轴交于点B ,且直线3y kx =−上没有“不动点”,若P 点为x 轴上一个动点,使得3ABP ABO S S = ,求满足条件的P 点坐标.【答案】(1)()1,1−−(2)1,32m n =−= (3)(6,0)−或()12,0【解析】 【分析】(1)联立一次函数解析式32y x =+与正比例函数y x =,解二元一次方程组即可; (2)将“不动点”为(2,1)n −,代入y x =求得n ,进而代入y mx n =+求得m 即可; (3)根据题意可得1k =,进而设(,0)P x ,根据三角形面积公式求解即可.【小问1详解】解:由定义可知,一次函数32y x =+的“不动点”为一次函数解析式32y x =+与正比例函数y x =的交点,即32y x y x=+ = 解得11x y =− =−∴一次函数32y x =+的“不动点”为()1,1−−【小问2详解】解:根据定义可得,点(2,1)n −在y x =上,12n ∴−=解得3n =点(2,1)n −又在y mx n =+上, 12n m n ∴−=+,又3n =3123m ∴−=+ 解得12m =−123m n =− ∴ = 【小问3详解】直线3y kx =−上没有“不动点”,∴直线3y kx =−与y x =平行1k ∴=∴3y x =−,令0x =,3y =−令0y =,则3x =()()3,0,0,3A B ∴−3,3OA OB ∴==设(,0)P x3ABP ABO S S =11322AP OB OA OB ∴⋅⋅=×⋅⋅ ∴3AP OA =333x ∴−=×即39x −=或39x −=−解得6x =−或12x =()6,0P ∴−或()12,0【点睛】本题考查了一次函数的性质,一次函数与坐标轴围成的三角形的面积,两直线交点问题,掌握一次函数的性质是解题的关键.22. 【问题背景】学校数学兴趣小组在专题学习中遇到一个几何问题:如图1,已知等边ABC ,D 是ABC 外一点,连接AD 、CD 、BD ,若30ADC ∠=°,3AD =,5BD =,求CD 的长.该小组在研究如图2中OMN OPQ ≅ 中得到启示,于是作出如图3,从而获得了以下的解题思路,请你帮忙完善解题过程.解:如图3所示,以DC 为边作等边CDE △,连接AE .∵ABC ,DCE 是等边三角形,∴BC AC =,DC EC =,60BCA DCE ∠=∠=°.∴BCA ACD ∠+∠= ACD +∠,∴BCD ACE ∠=∠,∴ ,∴5AE BD ==,∵30ADC ∠=°,60CDE ∠=°,∴90ADE ADC CDE ∠=∠+∠=°.∵3AD =,∴CD DE == .【尝试应用】如图4,在ABC 中,45ABC ∠=°,AB =,4BC =,以AC 为直角边,A 为直角顶点作等腰直角ACD △,求BD 的长.【拓展创新】如图5,在ABC 中,4AB =,8AC =,以BC 为边向往外作等腰BCD △,BD CD =,120BDC ∠=°,连接AD ,求AD 的最大值.【答案】[问题背景]DCE ∠;BCD ACE ≌;4;[尝试应用][拓展创新]【解析】【分析】[问题背景]根据等式的性质,三角形全等的判定与性质,勾股定理填空即可;[尝试应用]以AB 为直角边,A 为直角顶点作等腰Rt ABF ,连接,,AF BF CF ,进而证明BAD FAC △≌△,根据勾股定理求得FC ,即可求得BD 的长;[拓展创新] 以DA 为腰,作等腰DAG △,DA DG =,120ADG ∠=°,过点D 作DH AG ⊥,同理证明ABD GCD ≌,进而根据含30度角的直角三角形的性质,勾股定理求得,DH AH ,根据三角形三边关系确定AD 最大值时,,,A C G 三点共线,进而即可求得AD 的最大值.【详解】[问题背景] 解:如图3所示,以DC 为边作等边CDE △,连接AE .∵ABC ,DCE 是等边三角形,∴BC AC =,DC EC =,60BCA DCE ∠=∠=°.∴BCA ACD ∠+∠=DCE ∠ACD +∠,∴BCD ACE ∠=∠,∴BCD ACE ≌,∴5AE BD ==,∵30ADC ∠=°,60CDE ∠=°,∴90ADE ADC CDE ∠=∠+∠=°.∵3AD =,∴CD DE ==4.[尝试应用] 解:如图4所示,以AB 为直角边,A 为直角顶点作等腰Rt ABF ,连接,,AF BF CF .∵DAC △,FAB 是等腰直角三角形,∴AF AB =,AD AC =,90FAB DAC ∠=∠=°.∴BAF FAD CAD FAD ∠+∠=∠+∠,∴FAC BAD ∠=∠,∴BAD FAC △≌△,∴AF AB ==,2FB ∴=∵45ABC ∠=°,45ABF ∠=°, ∴90FBC ABF ABC ∠=∠+∠=°.∵4BC =,∴BD FC ==[拓展创新]解:如图,以DA 为腰,作等腰DAG △,DA DG =,120ADG ∠=°,过点D 作DH AG ⊥,90,30DHA HAD ∴∠=°∠=°,12AH HG AG == 12HD AD ∴=AH AD ∴=即AD =AG = ∵DBC △,DAG △是等腰三角形,,DC DB DG DA ∴==∴GDA CDA CDB CDA ∠−∠=∠−∠ GDC ADB ∴∠=∠∴ABD GCD ≌∴==CG AB4=AD=AG则当AG取得最大值时,AD取得最大≤+=+=AG CG AC AB AC12A C G三点共线时,AD取得最大值,如图,当,,∴ADAG【点睛】本题考查了等腰三角形的性质与判定,三角形全等的性质与判定,勾股定理,线段最值问题,从题干部分理解作等腰三角形辅助线是解题的关键.。

宝安区八年级上册期末数学试卷.docx

宝安区八年级上册期末数学试卷.docx

宝安区2007-2008学年第一学期期末调研测试卷八年级数学一、选择题(每小题3分,共30分。

)每小题有四个选项,其中只有一个是正确的,请把答案填到答题卷上的表格中。

1.在0.3, J25 , Vl 1 , 0, -------------------- ,7A. 2个B.3个2.下列说法正确的是()oA,四边相等的四边形是正方形C.对角线相等的四边形是矩形定7七个数中,无理数的个数有()o C.4个 D.5个B.四角相等的四边形是矩形D.对角线互相垂直的四边形是正方形3.数据10, 30, 20, 50, 20, 50, 20, 30 中的中位数是( )。

A. 50B. Z2C. 20D. 2524.关于x、y的方程组]2工+"5的解是( )。

= 0A. !X = 2B. F = 2 c. !X = ~2 D. F = 2[y = i [y = -2 [y = -2 [y = 25.下列各点在直线y = -2x + 3上的是( )。

A. (2, 1)B. (2, -1)C. (1, 3)D. (3, 0)8.下列四组数,分别以卷组数中的宣个数据为边长海建三角形,术能组成直角三角形的一组是()oA. 7, 24, 25;B. 12, 16, 20;C.4, 6, 8;D. 3, 4,5,9.如图一 (9),已知正方形ABCD 的顶点都在坐标轴上, 且对角线长为2,则正方形的边长为()。

A. V5B. V3C. V2D. 1 10.已知一个多边形的内角和等于它的外角和的3倍, 那么它的边数是()。

A. 5 B.6 C.7 D.812.打开计算器依次按键后,屏幕显示的结果是 (答案填在表格内)(保留2 位小数)。

13. 如已知菱形的两条对角线长为8和6,则它的边长为(答案填在表格内)。

月平均工资是(答案填在表格内)元O月工资/元 50004000 2000 人数1 2 7 15. 在直角坐标系中,点A (2, 3)向右平移一个单位,再向下平移3个单位后到达点B (a, b ),贝(答案填在表格内)。

初中数学 2021-2022学年广东省深圳市宝安区八年级(上)期末数学试卷

初中数学 2021-2022学年广东省深圳市宝安区八年级(上)期末数学试卷

2021-2022学年广东省深圳市宝安区八年级(上)期末数学试卷一、选择题(共8小题,每题3分,计24分)A .40°B .140°C .40°或140°D .不能确定1.(3分)已知∠1与∠2是同位角,若∠1=40°,则∠2的度数是( )A .4B .6C .8D .162.(3分)已知三角形的两边分别为4和10,则此三角形的第三边可能是( )A .x 3+x 3=x 6B .x 3÷x 4=1x C .(m 5)5=m 10D .x 2y 3=(xy )53.(3分)下列计算正确的是( )A .B .C .D .4.(3分)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是()A .(-27x 2y 3)2B .(-3x 3y 2)3C .-(3x 2y 3)3D .(-3x 3y 6)35.(3分)-27x 6y 9等于( )A .互相垂直B .互相平行C .互相重合D .以上均不正确6.(3分)如果两条平行线被第三条直线所截,那么一组内错角的平分线( )A .16B .9C .40D .447.(3分)若a x =6,a y =4,则a 2x -y 的值为( )二、填空题(共10小题,每题3分,计30分)A .2B .3C .4D .58.(3分)如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( )9.(3分)已知a m =8,a n =3,则a m +n = .10.(3分)一个三角形三个内角度数比为11:7:3,这个三角形是 三角形(填“锐角、直角或钝角”).11.(3分)一个n 边形,除了一个内角外,其余(n -1)个内角和为2770°,则这个内角是 度.12.(3分)计算:(-0.25)2014×42013= .13.(3分)一个三角形的两边长分别是2和7,另一边长a 为偶数,且2<a <8,则这个三角形的周长为 .14.(3分)如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有 个.15.(3分)在△ABC 中,高BD 和CE 所在直线相交于O 点,若△ABC 不是直角三角形,且∠A =60°,则∠BOC = .16.(3分)如图,六边形ABCDEF 纸片剪去四边形BCDG 后,得到∠A +∠ABG +∠GDE +∠E +∠F =490°,则∠BGD = 度.17.(3分)下面是一列单项式x ,-2x 2,4x 3,-8x 4,…则第8个单项式是 .18.(3分)如图,在△ABC 中,已知点D 、E 、F 分别是BC 、AD 、BE 上的中点,且△ABC 的面积为12cm 2,则△BCF 的面积为 cm 2.三、解答题(共8小题,计66分,解答时应写出文字说明、推理过程或演算步骤).19.(8分)计算:(1)2(a2)3-a2•a4+(2a4)2÷a2(2)[(a-b)•(b-a)2]2+(b-a)3•(a-b)3.20.(6分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.21.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;(2)若连接AA′,CC′,则这两条线段之间的关系是..22.(6分)先化简,再求值,x2•x2n•(y n+1)2,其中x=-3,y=1323.(8分)如图,AB∥CD,∠B=72°,∠D=32°,求∠F的度数.24.(8分)基本事实:若a m=a n(a>0且a≠1,m、n是正整数),则m=n.试利用上述基本事实分别求下列各方程中x的值:①2×8x=27;②2x+1×3x+1=36x-2;③2x+2+2x+1=24.25.(12分)(1)如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.①若∠B=32°,∠C=72°,则∠DAE=.②若∠C-∠B=34°,则∠DAE=.③若∠C-∠B=α(∠C>∠B),则∠DAE=(用含α的代数式表示).(2)在△ABC中∠B=40°,AD⊥BC于D,AE平分∠BAC,且∠DAE=10°,求∠C的度数.26.(12分)已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°,则∠OGA=(2)若∠GOA=13∠BOA,∠GAD=13∠BAD,∠OBA=30°,则∠OGA=(3)将(2)中“∠OBA=30°”改为“∠OBA=α”,其余条件不变,则∠OGA=(用含α的代数式表示)(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度数(用含α的代数式表示)。

2023-2024学年广东省深圳市八年级(上)数学期末试题含答案解析

2023-2024学年广东省深圳市八年级(上)数学期末试题含答案解析

广东省深圳市2023-2024学年八年级(上)期末考试数学模拟卷02答案与解析一.选择题(共10小题,满分30分,每小题3分)1.若3、4、a为勾股数,则a的值为()A.﹣5B.5C.﹣5或D.5或【分析】根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数求解即可.【解答】解:∵3、4、a为勾股数,∴当a最大时,此时a==5,当4时最大时,a==,不能构成勾股数,故选:B.2.在实数3.1415926,,1.010010001…,2﹣,,,2.中,无理数的个数是()A.1B.2C.3D.4【分析】根据无理数的定义求解即可.【解答】解:3.1415926是有限小数,属于有理数;=4,是整数,属于有理数;是分数,属于有理数;2.是循环小数,属于有理数;无理数有:1.010010001…,2﹣,,共3个.故选:C.3.如图,小手盖住的点的坐标可能为()A.(3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(﹣3,2)【分析】根据点的坐标特征,可得答案.【解答】解:小手盖住的点位于第三象限,第三象限内点的横坐标、纵坐标均是负数,故选:B.4.一次函数y=x+4的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k,b的符号判断一次函数y=x+4的图象所经过的象限.【解答】解:由题意,得:k>0,b>0,故直线经过第一、二、三象限.即不经过第四象限.故选:D.5.2022年,第19届亚运会将在中国浙江杭州举办,很多运动员为参加比赛进行了积极的训练.在选拔训练中,甲、乙、丙、丁四名射击运动员各射击10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如折线图所示.请你从平均数和方差两个角度分析,更有优势的运动员是()甲乙平均数/环98方差11A.甲B.乙C.丙D.丁【分析】求出丙的平均数、方差,乙的平均数,即可判断.【解答】解:丙的平均数==9,丙的方差=[1+1+1=1]=0.4,丁的平均数==8.2,丁的方差为[0.04×5+0.64×2+1.44×2+3.24]=0.76,∵在甲、乙、丙、丁四名射击运动员中,丙的方差最小,平均成绩最高,∴更有优势的运动员是丙,故选:C.6.下列各命题中,是假命题的是()A.对顶角相等B.两直线平行,内错角相等C.同旁内角相等,两直线平行D.全等三角形的对应边相等【分析】根据平行线的性质可得判断A;根据对顶角的性质可以判断B;根据平行线的判定可以判断C;根据全等三角形的性质可以判断D.【解答】解:A、对顶角相等,原选项说法正确,是真命题,不符合题意;B、两直线平行,内错角相等,原选项说法正确,是真命题,不符合题意;C、同旁内角互补,两直线平行,原选项说法错误,是假命题,符合题意;D、全等三角形的对应角相等,原选项说法正确,是真命题,不符合题意.故选:C.7.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°【分析】根据同位角相等、内错角相等、同旁内角互补,两直线平行即可判断.【解答】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.8.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则二元一次方程组的解是()A.B.C.D.【分析】两个一次函数图象的交点坐标就是两函数组成的方程组的解.【解答】解:∵一次函数y=kx和y=﹣x+3的图象交于点(1,2),∴二元一次方程组的解为.故选:A.9.我国古代数学经典著作《九章算术》中有这样一题,原文是:今有共买物,人出七,盈二;人出六,不足三.问人数、物价各几何?”意思是:今有人合伙购物,每人出七钱,会多二钱;每人出六钱,又差三钱,问人数、货物总价各多少?设人数为x人,货物总价为y钱,可列方程组为()A.B.C.D.【分析】根据“今有人合伙购物,每人出七钱,会多二钱;每人出六钱,又差三钱”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵今有人合伙购物,每人出七钱,会多二钱,∴y=7x﹣2;∵每人出六钱,又差三钱,∴y=6x+3.∴根据题意可列方程组.故选:A.10.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离乙地的距离y(单位:km)与慢车行驶时间x(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是()A.h B.h C.h D.2h【分析】根据图象得出,慢车的速度为=60km/h,快车的速度为=180km/h.从而得出快车和慢车对应的y与x的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.【解答】解:根据图象可知,慢车的速度为=60(km/h).对于快车,由于往返速度大小不变,总共行驶时间是(9﹣3)h,故其速度为=180(km/h).所以对于慢车,y与t的函数表达式为y=540﹣60x(0≤x≤9)①.对于快车,设当3≤x≤6时,y与x的函数表达式为y=kx+b,由题意得:,解得:,∴对于快车,当3≤x≤6时,y与x的函数表达式为y=﹣180x+1080②,对于快车,设当6<x≤9时,y与x的函数表达式为y=kx+b,由题意得:,解得:,∴对于快车,当3≤x≤6时,y与x的函数表达式为y=180x﹣1080③,联立①②,可解得交点横坐标为x=,联立①③,可解得交点横坐标为x=,因此,两车先后两次相遇的间隔时间是﹣=(h),故选:B.二.填空题(共5小题,满分15分,每小题3分)11.代数式有意义,则字母x的取值范围是x≤1且x≠﹣2.【分析】根据分母不为零分式有意义,被开方数是非负数,可得到答案.【解答】解:由题意,得1﹣x≥0且x+2≠0,解得x≤1且x≠﹣2,故答案为:x≤1且x≠﹣2.12.若点P(m,m﹣3)在x轴上,则点P的坐标为(3,0).【分析】依据x轴上的点的纵坐标等于0,即可得到m的值,进而得出点P的坐标.【解答】解:∵点P(m,m﹣3)在x轴上,∴m﹣3=0,解得m=3,∴点P的坐标为(3,0).故答案为:(3,0).13.将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为75° .【分析】根据三角板的特点我们可以得到∠CBA、∠DEC的度数,要求∠AFC的度数,我们发现∠AFC为△EF A的一个外角,由此可得∠AFC=∠AEF+∠EAF,此时问题就转化为求∠EAF.【解答】解:∵△ABC为等腰直角三角形,∴∠CBA=∠ACB=45°,在Rt△CDE中,∠DEC=30°,∠EDC=60°,∵BC∥DE,∠CBA=45°,∴∠EAB=∠CBA=45°.∵∠AFC为△EF A的外角,∴∠AFC=∠AEF+∠EAF.∵∠AEF=30°,∠EAF=45°,∠AFC=∠AEF+∠EAF,∴∠AFC=30°+45°=75°.故答案为:75°.14.若关于x,y的二元一次方程组的解也是二元一次方程x+2y=8的解,则k的值为k=2.【分析】据题意得知,二元一次方程组的解也是二元一次方程x+2y=8的解,也就是说,它们有共同的解,及它们是同一方程组的解,故将其列出方程组解答即可.【解答】解:根据题意,得由(1)+(2),得2x=4k即x=2k(4)由(1)﹣(2),得2y=2k即y=k(5)将(4)、(5)代入(3),得2k+2k=8,解得k=215.如图,在Rt△ABC中,∠ACB=90°,AC=2BC,AB=BD,AB⊥BD,若BC=,则CD的长为2.【分析】过D作DE⊥CB交CB的延长线于E,根据余角的性质得到∠A=∠DBE,根据全等三角形的判定和性质定理以及勾股定理即可得到结论.【解答】解:过D作DE⊥CB交CB的延长线于E,∵AB⊥BD,∴∠BED=∠ABD=∠ACB=90°,∴∠A+∠ABC=∠ABC+∠DBE=90°,∴∠A=∠DBE,在△ACB与△BED中,,∴△ACB≌△BED(AAS),∴DE=CB=,BE=AC=2,∴CE=3,∴CD===2,故答案为:2.三.解答题(共7小题,满分55分)16.(5分)计算:(1+)(﹣)+(2﹣1)2.【分析】先算乘方,再算乘法,最后算加减即可.【解答】解:(1+)(﹣)+(2﹣1)2=﹣+﹣3+12﹣4+1=13﹣2﹣4.17.(7分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?【分析】根据平均数、中位数、众数的概念计算和判断.【解答】解:(1)由题意知:男生鞋号数据的平均数==24.55;男生鞋号数据的众数为25;男生鞋号数据的中位数==24.5.∴平均数是24.55,中位数是24.5,众数是25.(2)厂家最关心的是众数.18.(8分)如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.(3)在直线MN上求作一点P,使P A+PB最小.【分析】(1)根据轴对称的性质即可画△ABC关于直线MN的对称图形;(2)根据网格上的每个小正方形的边长为1,即可求△ABC的面积;(3)根据两点之间线段最短即可在直线MN上求作一点P,使P A+PB最小.【解答】解:(1)如图,△A′B′C′即为所求;(2)△ABC的面积=4×5﹣1×4﹣1×4﹣3×5=20﹣2﹣2﹣7.5=8.5.(3)如图,点P即为所求.19.(8分)已知一个正数的平方根是a﹣2和7﹣2a,3b+1的立方根是﹣2,c是的整数部分,d 的平方根是它本身.(1)求a,b,c,d的值;(2)求5a+2b﹣c﹣11d的算术平方根.【分析】(1)利用平方根,立方根的意义可求出a,b,d的值,然后再估算出的值的范围,从而求出c的值;(2)把a,b,c,d的值代入式子中,进行计算即可解答.【解答】解:(1)∵一个正数的平方根是a﹣2和7﹣2a,∴a﹣2+7﹣2a=0,解得:a=5,∵3b+1的立方根是﹣2,∴3b+1=﹣8,解得:b=﹣3,∵36<39<49,∴6<<7,∴的整数部分是6,∴c=6,∵d的平方根是它本身,∴d=0,∴a的值为5,b的值为﹣3,c的值为6,d的值为0;(2)当a=5,b=﹣3,c=6,d=0时,5a+2b﹣c﹣11d=5×5+2×(﹣3)﹣6﹣11×0=25+(﹣6)﹣6﹣0=19﹣6﹣0=13,∴5a+2b﹣c﹣11d的算术平方根为.20.(8分)如图,点D,E分别在AB和AC上,DE∥BC,点F是AD上一点,FE的延长线交BC 延长线BH于点G.(1)若∠DBE=40°,∠EBC=35°,求∠BDE的度数;(2)若点E是AC的中点,△AFE与△CEG全等吗?请说明理由.【分析】(1)根据平行线的性质得出∠DEB=∠EBC=35°,再根据三角形内角和定理即可得出结论;(2)只有一边一角不能证两个三角形全等.【解答】解:(1)∵DE∥BC,∠EBC=35°,∴∠DEB=∠EBC=35°,又∵∠BDE+∠DEB+∠DBE=180°,∠DBE=40°,∴∠BDE=105°;(2)不全等,理由如下:∵点E是AC的中点,∴AE=EC,∵∠AEF=∠GEC,只确定了这两个条件,无法证明全等.21.(9分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元.(1)求文具袋和圆规的单价.(2)学校准备购买文具袋20个,圆规100个,文具店给出两种优惠方案:方案一:每购买一个文具袋赠送1个圆规.方案二:购买10个以上圆规时,超出10个的部分按原价的八折优惠,文具袋不打折.学校选择哪种方案更划算?请说明理由.【分析】(1)设文具袋的单价为x元,圆规的单价为y元.根据题意列出方程即可求出答案.(2)分别计算两种方案的总费用即可求出答案.【解答】解:(1)设文具袋的单价为x元,圆规的单价为y元.依题意,得解得答:文具袋的单价为15元,圆规的单价为3元.(2)选择方案一的总费用为20×15+3×(100﹣20)=540(元),选择方案二的总费用为20×15+10×3+3×80%×(100﹣10)=546(元),∵540<546,∴选择方案一更划算.22.(10分)综合与探究如图,在平面直角坐标系xOy中,直线与直线l2交于点A,且点A的横坐标为2,直线l1与x轴交于点B,直线l2与x轴、y轴分别交于点C(4,0),点D.(1)求直线l2的函数表达式和点D的坐标;(2)设P(x,y)是直线上一点,当△BCP的面积为10时,求点P的坐标;(3)直线l2上是否存在一点Q,使得△BCQ是以CQ为腰的等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)求出A点坐标,再用待定系数法求函数的解析式即可;(2)由P(x,y)是直线l1:y=x+上一点,根据△BCP的面积为10,可得S△BCP=×5×|x+|=10,求出x=7或﹣9,即可得点P的坐标;(3)设Q(m,﹣m+3),分两种情况讨论,①当CQ=CB时,②当CQ=BQ时,分别求解即可即可.【解答】解:(1)当x=2时,y=x+=,∴A(2,),设直线l2的函数表达式为y=kx+b,将点C(4,0),A(2,)代入y=kx+b得,∴,∴直线l2的函数表达式为y=﹣x+3,当x=0时,y=3,∴D(0,3);(2)当y=0时,0=x+,解得x=﹣1,∴B(﹣1,0),∵C(4,0),∴BC=5,∵P(x,y)是直线l1:y=x+上一点,∴y=x+,∵△BCP的面积为10,∴S=×5×|x+|=10,△BCP∴x=7或﹣9,∴点P的坐标为(7,4)或(﹣9,﹣4);(3)设Q(m,﹣m+3),∵B(﹣1,0),C(4,0),∴BC2=52=25,BQ2=(m+1)2+(﹣m+3)2=m2﹣m+10,CQ2=(m﹣4)2+(﹣m+3)2=m2﹣m+25,①当CQ=CB时,m2﹣m+25=25,解得m=0或8,∴点Q的坐标为(0,3)或(8,﹣3);②当CQ=BQ时,m2﹣m+25=m2﹣m+10,解得m=,∴点Q的坐标为(,);综上所述:点Q的坐标为(0,3)或(8,﹣3)或(,).。

2023-2024学年广东省深圳市宝安区八年级(上)期末数学试卷

2023-2024学年广东省深圳市宝安区八年级(上)期末数学试卷

2023-2024学年广东省深圳市宝安区八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)(2023秋•宝安区期末)下列各数中,是无理数的是( ) A .2023B .0.17⋅⋅C .√43D .√92.(3分)(2024春•沐川县期末)在平面直角坐标系中,点(3,﹣2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.(3分)(2023秋•宝安区期末)下列运算正确的是( ) A .√2+√4=√6B .√18−√8=√2C .√9=±3D .√5÷√15=154.(3分)(2024•宁乡市模拟)如图,直线a ∥b ,直角三角形的直角顶点在直线b 上,已知∠1=35°,则∠2的度数是( )A .35°B .45°C .55°D .65°5.(3分)(2023秋•宝安区期末)在△ABC 中,若AC =b ,AB =c ,BC =a ,则下列条件不能判定△ABC 是直角三角形的是( ) A .a 2=c 2﹣b 2B .∠B ﹣∠C =∠A C .a =1,b =√3,c =4D .∠B =45°,∠C =45°6.(3分)(2023秋•宝安区期末)直线y =12x +b 与y =−12x 相交于点A (a ,1),则方程组{y =12x +by =−12x的解为( ) A .{x =−2y =1B .{x =2y =1C .{x =2y =−1D .{x =−2y =−17.(3分)(2023秋•宝安区期末)张明在对一组数据“6■,15,28,63,39,28”进行分析时,发现第一个两位数的个位数字被墨水弄脏看不到了,此时统计结果不受影响的统计量是( ) A .方差B .众数C .平均数D .中位数8.(3分)(2023秋•宝安区期末)在新年来临之际,梅梅打算去花店为妈妈挑选新年礼物.已知康乃馨每枝6元,百合每枝5元.梅梅购买这两种花18枝恰好用去100元,设她购买x 枝康乃馨,y 枝百合,可列出方程组为( ) A .{6x +5y =100x +y =18B .{5x +6y =100x +y =18C .{x +y =1006x +5y =18D .{x +y =1005x +6y =189.(3分)(2023秋•宝安区期末)下列命题: ①在同一平面内,若a ∥b ,b ∥c ,则a ∥c ; ②若x 2=y 2,则|x |=|y |;③立方根等于本身的数有0和±1; ④两直线平行,同旁内角相等. 其中真命题有( )个. A .1B .2C .3D .410.(3分)(2023秋•宝安区期末)如图,在平面直角坐标系中,直线y =﹣2x +6分别与x 轴,y 轴交于A ,B 两点,将直线AB 绕点A 逆时针旋转45°得到直线AC ,过点B 作BD ⊥AC 于点D ,则点D 的坐标是( )A .(﹣1,1)B .(−32,32)C .(−53,53)D .(−52,52)二、填空题(本题共5小题,每小题3分,共15分)11.(3分)(2023秋•宝安区期末)在平面直角坐标系中,点A 在y 轴的左侧,在x 轴的上侧,距离每个坐标轴都是3个单位长度,则点A 的坐标是 .12.(3分)(2023秋•宝安区期末)某绿化公司准备选购一批高度大约在1.8米左右的某种树苗用于绿化街道,有四个树苗生产基地投标(单株树苗的价格都相同).采购小组从四个基地中各任意抽查了100株树苗的高度,得到的数据如下:树苗平均高度(单位:m ) 方差A 基地树苗 1.6 0.05B 基地树苗 1.8 0.32C 基地树苗 1.8 0.05D 基地树苗1.90.32请你帮助采购小组出谋策划,应选购 基地的树苗.13.(3分)(2023秋•宝安区期末)点A (x 1,y 1)和点B (x 2,y 2)是一次函数y =kx (k ≠0)图象上两点,当x 1<x 2时,有y 1>y 2,则k 0.(填“>”或“<”)14.(3分)(2024•双峰县模拟)如图,在平面直角坐标系中,已知点O (0,0),A (0,5),B (2,1).若我们将横纵坐标均为整数的点叫做“整点”,则落在△AOB 边上的“整点”共有 个.15.(3分)(2023秋•宝安区期末)如图,在△ABC 中,AB =3,BC =5,CD 垂直∠ABC 的平分线BD 于点D ,连接AD .若点D 正好在线段AC 的垂直平分线上,则AD 的长为 .三、解答题(本题共7小题,其中第16题8分,第17题5分,第18题8分,第19题7分,第20题8分,第21题10分,第22题9分,共55分) 16.(8分)(2023秋•宝安区期末)计算: (1)√24×√6√3−√12;(2)√75−(2023−π)0+|2−√3|.17.(5分)(2023秋•宝安区期末)解方程组:{2x −y =34x +y =21.18.(8分)(2023秋•宝安区期末)在清风中学八年级某一次测试中,为了解某题(满分为4分)的答题情况,随机调查了部分同学的得分数据,整理并绘制成如下两幅不完整的统计图,请根据图中的信息完成下列问题:(1)这次抽样调查共调查了名同学;(2)这道题得分的平均数是;(3)请补全条形统计图;(4)得分3分及3分以上为达标,若该中学八年级共有学生500人,则八年级达标的学生大约共有人.19.(7分)(2023秋•宝安区期末)列方程解应用题:党的十八大以来,在以习近平同志为核心的党中央引领推动下,全民阅读工作深入推进,书香社会建设进展明显,读书学习蔚然成风.小超和小红是两位热爱阅读的同学,他们正在共读《钢铁是怎样炼成的》.已知小超平均每天阅读的页数比小红平均每天阅读的页数的2倍少12页,小红4天里阅读的总页数与小超5天里阅读的总页数一样多,请求出小红、小超平均每天分别阅读多少页?20.(8分)(2023秋•宝安区期末)如图,已知点A,B为直线MN外两点,且在MN异侧,连接AB,分别过点A作AC⊥MN于点C,过点B作BD⊥MN于点D,点F是线段BD上一点,连接CF交AB于点E.(1)下列条件:①点F是DB的中点;②点E是AB的中点;③点E是CF的中点.请从中选择一个能证明AC=BF的条件,并写出证明过程;(2)若AC=BF,且AC=5,BD=13,CE=6,求CD的长.21.(10分)(2023秋•宝安区期末)“宝安新跨越,领湾向未来”是2023深圳宝安马拉松的主题,该赛事设有马拉松和半程马拉松两个项目,参赛规模达到2万人.湖滨学校的小明同学计划参加下一届的半程马拉松,爸爸鼓励小明积极训练,并且作为陪练帮助记录训练数据.某日,小明从家出发,匀速跑向与家相距4800米的公园,10分钟后爸爸从家里出发沿着相同的路线骑共享单车追上小明后,继续往前途经公园,再往前骑行到达还车点,然后立即以平均150米/分的速度跑了1200米返回公园,刚好与小明同时到达公园门口.假设家、公园和还车点均在同一条笔直的公路上,设小明出发时间为x(分),如图所示为爸爸离家的距离y(米)与x(分)的关系的部分图象,如表所示为小明离家的距离g(米)与x(分)的部分数据,请解答下列问题:x(分)…515t…g(米)…80024004800…(1)t=;(2)请在图中把爸爸离家的距离y(米)与小明出发时间x(分)关系的图象补充完整;(3)请问小明出发后多少分钟与爸爸第一次相遇?(4)若用s(米)表示小明、爸爸两人之间的距离,请直接写出两人第一次相遇后,s关于x的函数表达式,并求出两人相距1800米时的时间.22.(9分)(2023秋•宝安区期末)如图1,在平面直角坐标系中,直线y=﹣x+8的图象分别交x,y轴于A,B两点,直线y=3x+m的图象分别交x,y轴于C,D两点,且两条直线2相交于点E,已知点C的坐标为(﹣2,0).(1)m=,点E的坐标为;(2)若点G为y轴正半轴上一点,且△EGC的面积为20,请求出点G的坐标;(3)如图2,直线l过点C且垂直于x轴,点F是直线l上的一个动点,连接EF,是否存在点F使得2∠EFC+∠ACE=90°?若存在,请直接写出点F的坐标;若不存在,请说明理由.2023-2024学年广东省深圳市宝安区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)(2023秋•宝安区期末)下列各数中,是无理数的是()A.2023B.0.17⋅⋅C.√43D.√9【解答】解:2023,0.1⋅7⋅是分数,√9=3是整数,它们都不是无理数;√43是无限不循环小数,它是无理数;故选:C.2.(3分)(2024春•沐川县期末)在平面直角坐标系中,点(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(3,﹣2)所在象限是第四象限.故选:D.3.(3分)(2023秋•宝安区期末)下列运算正确的是()A.√2+√4=√6B.√18−√8=√2C.√9=±3D.√5÷√15=15【解答】解:A.√2+√4=√2+2,所以A选项不符合题意;B.√18−√8=3√2−2√2=√2,所以B选项符合题意;C.√9=3,所以C选项不符合题意;D.√5÷√15=√5×5=5,所以D选项不符合题意;故选:B.4.(3分)(2024•宁乡市模拟)如图,直线a∥b,直角三角形的直角顶点在直线b上,已知∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°【解答】解:∵直线a∥b,∠1=35°.∴∠3=∠1=35°.∵直角三角形的直角顶点在直线b上.∴∠2=180°﹣90°﹣35°=55°.故选:C.5.(3分)(2023秋•宝安区期末)在△ABC中,若AC=b,AB=c,BC=a,则下列条件不能判定△ABC是直角三角形的是()A.a2=c2﹣b2B.∠B﹣∠C=∠AC.a=1,b=√3,c=4D.∠B=45°,∠C=45°【解答】解:A、∵a2=c2﹣b2.∴a2+b2=c2.∴△ABC是直角三角形.故A不符合题意;B、∵∠B﹣∠C=∠A.∴∠B=∠A+∠C.∵∠A+∠B+∠C=180°.∴2∠B=180°.∴∠B=90°.∴△ABC是直角三角形.故B不符合题意;C、∵a2+b2=12+(√3)2=4,c2=42=16.∴a2+b2≠c2.∴△ABC不是直角三角形.故C符合题意;D、∵∠B=45°,∠C=45°.∴∠A=180°﹣∠B﹣∠C=90°.∴△ABC是直角三角形.故D不符合题意;故选:C.6.(3分)(2023秋•宝安区期末)直线y =12x +b 与y =−12x 相交于点A (a ,1),则方程组{y =12x +by =−12x的解为( ) A .{x =−2y =1B .{x =2y =1C .{x =2y =−1D .{x =−2y =−1【解答】解:∵直线y =−12x 过点A (a ,1). ∴1=−12a ,解得a =﹣2.∴直线y =12x +b 与y =−12x 相交于点A (﹣2,1).∴方程组{y =12x +b y =−12x的解为{x =−2y =1.故选:A .7.(3分)(2023秋•宝安区期末)张明在对一组数据“6■,15,28,63,39,28”进行分析时,发现第一个两位数的个位数字被墨水弄脏看不到了,此时统计结果不受影响的统计量是( ) A .方差B .众数C .平均数D .中位数【解答】解:这组数据的平均数、方差和众数都与被涂污数字有关,而这组数据的中位数为28与39的平均数,与被涂污数字无关. 故选:D .8.(3分)(2023秋•宝安区期末)在新年来临之际,梅梅打算去花店为妈妈挑选新年礼物.已知康乃馨每枝6元,百合每枝5元.梅梅购买这两种花18枝恰好用去100元,设她购买x 枝康乃馨,y 枝百合,可列出方程组为( ) A .{6x +5y =100x +y =18B .{5x +6y =100x +y =18C .{x +y =1006x +5y =18D .{x +y =1005x +6y =18【解答】解:由题意得:{x +y =186x +5y =100. 故选:A .9.(3分)(2023秋•宝安区期末)下列命题: ①在同一平面内,若a ∥b ,b ∥c ,则a ∥c ; ②若x 2=y 2,则|x |=|y |;③立方根等于本身的数有0和±1;④两直线平行,同旁内角相等.其中真命题有()个.A.1B.2C.3D.4【解答】解:①在同一平面内,若a∥b,b∥c,则a∥c,正确,符合题意;②若x2=y2,则|x|=|y|,正确,符合题意;③立方根等于本身的数有0和±1,正确,符合题意;④两直线平行,同旁内角互补,故原说法错误,不合题意.故选:C.10.(3分)(2023秋•宝安区期末)如图,在平面直角坐标系中,直线y=﹣2x+6分别与x轴,y轴交于A,B两点,将直线AB绕点A逆时针旋转45°得到直线AC,过点B作BD⊥AC 于点D,则点D的坐标是()A.(﹣1,1)B.(−32,32)C.(−53,53)D.(−52,52)【解答】解:将直线AB绕点A逆时针旋转45°后得到直线AC,则∠BAC=45°,如图,过点D作DE⊥x轴于E,DF⊥y轴于点F.∵直线y=﹣2x+(6分)别与x轴,y轴交于A,B两点.∴A(3,0),B(0,6).∴OA=3,OB=6.∵BD⊥AC于点D,∠BAC=45°.∴∠DBA=45°.∴BD=AD.∵∠BFD=∠AED=90°,∠OAD=∠DBF.∴△BDF≌△ADE(AAS).∴DF=DE,BF=AE.∴四边形DEOF是正方形.∴OE=OF=DE=DF.∴OB﹣OE=OA+OE.∴6﹣OE=3+OE.∴OE=32.∴D(−32,32).故选:B.二、填空题(本题共5小题,每小题3分,共15分)11.(3分)(2023秋•宝安区期末)在平面直角坐标系中,点A在y轴的左侧,在x轴的上侧,距离每个坐标轴都是3个单位长度,则点A的坐标是(﹣3,3).【解答】解:点A在y轴的左侧,在x轴的上侧,距离每个坐标轴都是3个单位长度,则A点的坐标为(﹣3,3).故答案为:(﹣3,3).12.(3分)(2023秋•宝安区期末)某绿化公司准备选购一批高度大约在1.8米左右的某种树苗用于绿化街道,有四个树苗生产基地投标(单株树苗的价格都相同).采购小组从四个基地中各任意抽查了100株树苗的高度,得到的数据如下:树苗平均高度(单位:m)方差A基地树苗 1.60.05B基地树苗 1.80.32C基地树苗 1.80.05D基地树苗 1.90.32请你帮助采购小组出谋策划,应选购C基地的树苗.【解答】解:由S2B=S2D>S2A=S2C,故A、C的方差小,波动小,树苗较整齐;又因为C基地的树苗高于A基地的树苗.所以应选购C基地的树苗.故答案为:C.13.(3分)(2023秋•宝安区期末)点A(x1,y1)和点B(x2,y2)是一次函数y=kx(k≠0)图象上两点,当x1<x2时,有y1>y2,则k<0.(填“>”或“<”)【解答】解:∵点A(x1,y1)和点B(x2,y2)是一次函数y=kx(k≠0)图象上两点,且当x1<x2时,有y1>y2.即y随x的增大而减小.∴k<0.故答案为:<.14.(3分)(2024•双峰县模拟)如图,在平面直角坐标系中,已知点O(0,0),A(0,5),B(2,1).若我们将横纵坐标均为整数的点叫做“整点”,则落在△AOB边上的“整点”共有8个.【解答】解:在OA边上的“整点”有:(0,0),(0,1),(0,2),(0,3),(0,4),(0,5);在AB边上不重复的“整点”有:(1,3),(2,1);在OB的中间没有“整点”.∴落在△AOB边上的“整点”共有8个.故答案为:8.15.(3分)(2023秋•宝安区期末)如图,在△ABC中,AB=3,BC=5,CD垂直∠ABC的平分线BD于点D,连接AD.若点D正好在线段AC的垂直平分线上,则AD的长为√5.【解答】解:如图,BA的延长线交CD的延长线于点M,过点D作DE⊥AM于点E,DF ⊥BC于点F.∵BD平分∠ABC.∴DE=DF,∠ABD=∠CBD.∵点D在线段AC的垂直平分线上.∴AD=CD.在Rt△ADE和Rt△CDF中..{AD=CDDE=DF∴Rt△ADE≌Rt△CDF(HL).∴AE=CF.在Rt△BDE和Rt△BDF中..{BD=BDDE=DF∴Rt△BDE≌Rt△BDF(HL).∴BE=BF.∵BC=BF+CF,BE=AB+AE.∴BC=AB+2AE.∵AB=3,BC=5.∴AE=CF=1.∵CD⊥BD.∴∠BDC =∠BDM =90°. 在△BDM 和△BDC 中.{∠MBD =∠CBDBD =BD ∠BDM =∠BDC. ∴△BDM ≌△BDC (ASA ). ∴BM =BC =5.∴ME =BM ﹣BE =1=AE . ∴AD =MD =CD .∴∠M =∠MAD ,∠DAC =∠DCA . ∴∠MAD +∠DAC =90°=∠MAC . ∴∠BAC =90°. ∴AC =√BC 2−AB 2=4.∴CM =√AM 2+AC 2=√22+42=2√5. ∴AD =12CM =√5. 故答案为:√5.三、解答题(本题共7小题,其中第16题8分,第17题5分,第18题8分,第19题7分,第20题8分,第21题10分,第22题9分,共55分) 16.(8分)(2023秋•宝安区期末)计算: (1)√24×√6√3−√12;(2)√75−(2023−π)0+|2−√3|. 【解答】解:(1)√24×√6√3−√12=2√6×√6√3−2√3 =12√32√3 =4√3−2√3 =2√3;(2)√75−(2023−π)0+|2−√3| =5√3−1+2−√3 =4√3+1.17.(5分)(2023秋•宝安区期末)解方程组:{2x −y =34x +y =21. 【解答】解:{2x −y =3①4x +y =21②.①+②得:6x =24. 解得:x =4.将x =4代入①得:8﹣y =3. 解得:y =5.故原方程组的解为{x =4y =5.18.(8分)(2023秋•宝安区期末)在清风中学八年级某一次测试中,为了解某题(满分为4分)的答题情况,随机调查了部分同学的得分数据,整理并绘制成如下两幅不完整的统计图,请根据图中的信息完成下列问题:(1)这次抽样调查共调查了 80 名同学; (2)这道题得分的平均数是 2.45分 ; (3)请补全条形统计图;(4)得分3分及3分以上为达标,若该中学八年级共有学生500人,则八年级达标的学生大约共有 275 人.【解答】解:(1)8÷10%=80(名). 故答案为:80;(2)得分为“1分”的学生人数为80×20%=16(名). 样本中学生得分的平均数为1×16+2×12+3×20+4×2480=2.45(分).故答案为:2.45分; (3)补全条形统计图如下:(4)500×20+24=275(人).80故答案为:275.19.(7分)(2023秋•宝安区期末)列方程解应用题:党的十八大以来,在以习近平同志为核心的党中央引领推动下,全民阅读工作深入推进,书香社会建设进展明显,读书学习蔚然成风.小超和小红是两位热爱阅读的同学,他们正在共读《钢铁是怎样炼成的》.已知小超平均每天阅读的页数比小红平均每天阅读的页数的2倍少12页,小红4天里阅读的总页数与小超5天里阅读的总页数一样多,请求出小红、小超平均每天分别阅读多少页?【解答】解:设小红平均每天阅读为x页,则小超平均每天阅读(2x﹣12)页.由题可知,4x=5(2x﹣12).解得x=10.则2x﹣12=8(页).答:小红每天平均每天阅读10页,小超平均每天阅读8页.20.(8分)(2023秋•宝安区期末)如图,已知点A,B为直线MN外两点,且在MN异侧,连接AB,分别过点A作AC⊥MN于点C,过点B作BD⊥MN于点D,点F是线段BD上一点,连接CF交AB于点E.(1)下列条件:①点F是DB的中点;②点E是AB的中点;③点E是CF的中点.请从中选择一个能证明AC=BF的条件,并写出证明过程;(2)若AC=BF,且AC=5,BD=13,CE=6,求CD的长.【解答】解:(1)选择②③. 选②时:∵BD ⊥MN ,AC ⊥MN . ∴BD ∥AC .∴∠ACE =∠BFE ,∠B =∠A . ∵E 是AB 中点. ∴AE =BE .在△ACE 和△BFE 中.{∠ACE =∠BFE∠B =∠A AE =BE.∴△ACE ≌△BFE (AAS ). ∴AC =BE ;选③时:∵BD ⊥MN ,AC ⊥MN . ∴BD ∥AC .∴∠ACE =∠BFE ,∠B =∠A . ∵点E 是CF 中点. ∴CE =EF .在△ACE 和△BFE 中.{∠ACE =∠BFE∠B =∠A CE =EF.∴△ACE ≌△BFE (AAS ). ∴AC =BF ;(2)∵△ACE ≌△BFE ,AC =5,BD =13,CE =6. ∴BF =AC =5,EF =CE =6.∴DF=BD﹣BF=8,CF=CE+EF=12.∵∠BDC=90°.∴CD=√CF2−DF2=√122−82=4√5.21.(10分)(2023秋•宝安区期末)“宝安新跨越,领湾向未来”是2023深圳宝安马拉松的主题,该赛事设有马拉松和半程马拉松两个项目,参赛规模达到2万人.湖滨学校的小明同学计划参加下一届的半程马拉松,爸爸鼓励小明积极训练,并且作为陪练帮助记录训练数据.某日,小明从家出发,匀速跑向与家相距4800米的公园,10分钟后爸爸从家里出发沿着相同的路线骑共享单车追上小明后,继续往前途经公园,再往前骑行到达还车点,然后立即以平均150米/分的速度跑了1200米返回公园,刚好与小明同时到达公园门口.假设家、公园和还车点均在同一条笔直的公路上,设小明出发时间为x(分),如图所示为爸爸离家的距离y(米)与x(分)的关系的部分图象,如表所示为小明离家的距离g(米)与x(分)的部分数据,请解答下列问题:x(分)…515t…g(米)…80024004800…(1)t=30;(2)请在图中把爸爸离家的距离y(米)与小明出发时间x(分)关系的图象补充完整;(3)请问小明出发后多少分钟与爸爸第一次相遇?(4)若用s(米)表示小明、爸爸两人之间的距离,请直接写出两人第一次相遇后,s关于x的函数表达式,并求出两人相距1800米时的时间.【解答】解:(1)小明的速度为8005=160(米/分).∴t=4800160=30(分).故答案为:30.(2)小明爸爸返回公园所需要的时间为1200150=8(分).∴小明爸爸返回公园时x=22+8=30(分).∴当22≤x≤30时,y=6000﹣150(x﹣22)=﹣150x+9300.∴y=﹣150x+9300(22≤x≤30).补充图象如图所示:(3)由图y 关于x 的函数图象可知,当10≤x <22时,爸爸的速度为600022−10=500(米/分).设小明出发后t 分钟与爸爸第一次相遇. 根据题意,得160t =500(t ﹣10). 解得t =25017. ∴小明出发后25017分钟与爸爸第一次相遇.(4)根据题意,g =160x (0≤x ≤30);当10≤x <22时,设y =kx +b (k 、b 为常数,且k ≠0). ∵当x =10时,y =0;当x =22时,y =6000. ∴{10k +b =022k +b =6000,解得{k =500b =−5000.∴y =500x ﹣5000(10≤x <22); ∴两人第一次相遇后,g =160x (25017<x ≤30),y ={500x −5000(25017<x ≤22)−150x +9300(22<x ≤30).∴当25017<x ≤22时,s =500x ﹣5000﹣160x =340x ﹣5000;当22<x ≤30时,s =﹣150x +9300﹣160x =﹣310x +9300;综上,s ={340x −5000(25017<x ≤22)−310x +9300(22<x ≤30).当340x ﹣5000=1800时,解得x =20;当﹣310x +9300=1800时,解得x =75031;∴两人第一次相遇后,s 关于x 的函数表达式为s ={340x −5000(25017<x ≤22)−310x +9300(22<x ≤30),两人相距1800米时的时间为20分或75031分.22.(9分)(2023秋•宝安区期末)如图1,在平面直角坐标系中,直线y =﹣x +8的图象分别交x ,y 轴于A ,B 两点,直线y =32x +m 的图象分别交x ,y 轴于C ,D 两点,且两条直线相交于点E ,已知点C 的坐标为(﹣2,0).(1)m = 3 ,点E 的坐标为 (2,6) ;(2)若点G 为y 轴正半轴上一点,且△EGC 的面积为20,请求出点G 的坐标;(3)如图2,直线l 过点C 且垂直于x 轴,点F 是直线l 上的一个动点,连接EF ,是否存在点F 使得2∠EFC +∠ACE =90°?若存在,请直接写出点F 的坐标;若不存在,请说明理由.【解答】解:(1)把C (﹣2,0)代入y =32x +m 得:0=﹣3+m .解得m =3.∴直线CD 解析式为y =32x +3.联立{y =32x +3y =−x +8.解得{x =2y =6.∴E (2,6).故答案为:3,(2,6);(2)如图:∵△EGC 的面积为20.∴S △EGD +S △CGD =20.∵C (﹣2,0),E (2,6).∴12×GD ×2+12×GD ×2=20. 解得GD =10.在y =32x +3中,令x =0得y =3.∴D (0,3).∵G 为y 轴正半轴上一点.∴G 的坐标为(0,13);(3)存在点F 使得2∠EFC +∠ACE =90°,理由如下: 过E 作EH ⊥直线l 于H ,当F 在C 下方时,如图:∵∠HCE+∠ACE=90°,2∠EFC+∠ACE=90°.∴∠HCE=2∠EFC.∵∠HCE=∠EFC+∠CEF.∴∠CEF=∠EFC.∴CE=CF.∵C(﹣2,0),E(2,6).∴CE=√(−2−2)2+(0−6)2=2√13=CF.∴F(﹣2,﹣2√13);当F'在C上方时.同理可得,∠EF'C=1∠ECH=∠EFC.2∵EH⊥直线l.∴F,F'关于EH对称,FH=F'H.∵E(2,6).∴H(﹣2,6).∴HF=6+2√13=HF;∴CF'=12+2√13.∴F'(﹣2,12+2√13).综上所述,F是坐标为(﹣2,﹣2√13)或(﹣2,12+2√13).。

广东省深圳市宝安区2024-2025学年上学期八年级期末数学模拟训练试卷(含答案)

广东省深圳市宝安区2024-2025学年上学期八年级期末数学模拟训练试卷(含答案)

2024-2025学年第一学期广东省深圳市宝安区八年级期末数学模拟训练试卷(含解答)一.选择题(共8小题,每题3分,共24分)1. 下列说法正确的是( )A .两条直线被第三条直线所截,内错角相等B .同旁内角相等的两条直线平行C .没有公共点的两条直线平行D .同一平面内不相交的两条直线必平行2. 若函数是正比例函数,则下列叙述正确的是( )A .B .C .D .y 随x 的增大而增大3. 下列各组数据中,能作为直角三角形的三边长的是( )A .2,3,4B .3,4,5C .5,6,7D .7,8,94. 如图,在ΔABC 中,,在同一平面内,将ΔABC 绕点逆时针旋转到 的位置,使得∥,则等于( )A .B .C .D .5. 甲、乙、丙、丁四人进行射击测试,每人次射击成绩的平均数都是环,方差分别为,,,,则射击成绩最稳定的是( )A .甲B .乙C .丙D.丁2(2)4y m x m =-+-2m =±2m =2m =-065CAB ∠=A ''AB C ∆'C C AB 'B AB ∠050060065070109.220.54S =甲20.61S =乙20.7S =丙20.63S =丁6. 如图,直线与相交于点,则方程组的解为( )A .B .C .D .7 . 从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km , 平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需54min , 从乙地到甲地需42min .设从甲地到乙地上坡与平路分别为xkm ,ykm ,依题意,所列方程组正确的是( )A .B .C .D .8. 如图,在平面直角坐标系中,直线分别与轴,轴交于,两点,将直线绕点逆时针旋转得到直线,过点作于点,则点的坐标是( )A .(−1,1)B .C .D .二.填空题(共5小题,每题3分,共15分)9. 已知和关于x 轴对称,则的值为.12y x b =+12y x =-(),1A a 1212y x b y x ⎧=+⎪⎪⎨⎪=-⎪⎩21x y =-⎧⎨=⎩21x y =⎧⎨=⎩21x y =⎧⎨=-⎩21x y =-⎧⎨=-⎩543460{425460x y x y +=+=543460{424560x y x y +=+=5434{4254x y x y +=+=5434{4245x y x y +=+=26y x =-+x y A B AB A 45︒AC B BD AC ⊥D D 33,22⎛⎫- ⎪⎝⎭55,33⎛⎫- ⎪⎝⎭55,22⎛⎫- ⎪⎝⎭()115P a -,()221P b -,()2022a b +10 . 某单位计划招聘一名管理人员、对甲、乙、丙三名候选人进行了笔试和面试两项测试.三人测试成绩如表所示;根据录用程序,单位将笔试、面试两项测试得分按的比例确定个人成绩,成绩最高的将被录用,那么甲、乙、丙三人中被录用的候选人是 .测试成绩/分测试项目甲乙丙笔试708090面试90807011. 已知是方程的解,则 .12 . 如图,已知A 地在B 地正南方3千米处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (千米)与所行时间t (小时)之间的函数关系图象如图所示的AC 和BD 给出,当他们行走3小时后,他们之间的距离为 千米.13 . 新定义:若点,点,如果,那么点与点就叫作“和等点”,,称为等和.例如:点,点,因,则点与点就是和等点,为等和.如图在长方形中,点,点,轴,轴,若长方形的边上存在不同的两个点、,这两个点为和等点,等和为,4:623x y =⎧⎨=⎩21x y k -+=k =(),P m n (),Q p q m n p q +=+P Q m n p q k +=+=k ()4,2P ()1,5Q 42156+=+=P Q 6GHMN ()2,3H ()2,3N --MN y ⊥HM x ⊥GHMN P Q 4则的长为 .三.解答题(共7小题,共61分)14. 计算(1)(2).15 . 如图,在平面直角坐标系中,的三个顶点都在格点上,点A 的坐标为,请回答下列问题.PQ 21)2)++ABC V 24(,)(1)画出关于x 轴对称的,并写出点的坐标( , )(2)点P 是x 轴上一点,当的长最小时,点P 坐标为 ;(3)点M 是直线上一点,则的最小值为 .15. 解方程组(1)(2)17.2024年6月26日是第37个国际禁毒日,学校开展了禁毒知识讲座和知识竞赛,从全校1800名学生中随机抽取部分学生的竞赛试卷进行调查分析,并将成绩(满分:100分)制成如图所示的扇形统计图和条形统计图.请根据统计图回答下列问题:(1) 求出随机被抽查的学生总数,并补全上面不完整的条形统计图;(2) 这些学生成绩的中位数是______分;众数是______分;(3) 根据比赛规则,96分以上的学生有资格进入第二轮知识竞赛环节,ABC V 111A B C △1C PB PC +BC AM 212y x x y =⎧⎨+=⎩35212511x y x y +=⎧⎨-=-⎩请你估计全校1800名学生进入第二轮环节的人数是多少?18 . 某教育科技公司销售A ,B 两种多媒体,这两种多媒体的进价与售价如表所示:A B进价(万元/套)3 2.4售价(万元/套) 3.3 2.8(1)若该教育科技公司计划购进两种多媒体共50套,共需资金132万元,该教育科技公司计划购进A ,B 两种多媒体各多少套?(2)若该教育科技公司计划购进两种多媒体共50套,其中购进A 种多媒体m套,\当把购进的两种多媒体全部售出,求购进A 种多媒体多少套时,能获得最大利润,最大利润是多少万元?19 .问题情境:如图1,,,,求度数.小明的思路是:过作,如图2,通过平行线性质来求.()1020m ≤≤AB CD ∥130PAB ∠=︒120PCD ∠=︒APC ∠P PE AB P APC ∠(1)按小明的思路,易求得的度数为 ;请说明理由;问题迁移:(2)如图3,,点在射线上运动,当点在、两点之间运动时,,,则、、之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你直接写出、、间的数量关系.20.如图1,在平面直角坐标系中,直线:过点和,与互相垂直,且相交于点,D 为x 轴上一动点.(1) 求直线与直线的函数表达式;(2) 如图2,当D 在x 轴负半轴上运动时,若的面积为8,求D 点的坐标;(3) 如图3,直线上有一动点P .若,请直接写出P 点坐标.答案一.1.D 2.C 3.B 4 .A 5 .A 6.A 7 . A 8 .BAPC ∠AD BC ∥P OM P A B ADP α∠=∠BCP β∠=∠CPD ∠α∠∠βP A B P A B O CPD ∠α∠∠β1l y kx b =+()10,0A ()0,5B 1l 2l ()2,C a 1l 2l BCD △2l 45BAP ∠=︒二.9. 10 . 甲 11.三、14.计算(1)解:原式(2)解:原式15 . (1)如图所示:C 1的坐标;故答案为:5;−2;(2)连接,交x 轴于点P ,此时的长最小如图所示:由于四边形是正方形,所以点P 是线段的中点,即;10==()11243+=--()131=--131=-12=-52(,-)1B C PB PC +11BB C C 1B C 30P (,)故答案为:;(3)过点A ,作,此时的值最小,;故答案为:2.16.(1)解:将①代入②中得,解得,将代入①中有,原方程组的解为.(2)解:得,解得,将代入①中,有,原方程组的解为.17.(1)解:由图象可知:分数为92分的人数为:6,其所占比为:.∴随机被抽查的学生总数:(人),∵分数为94分的人数所占比为:.()30,AM BC ⊥AM 2AM =212y x x y =⎧⎨+=⎩①②312x =4x =4x =8y =∴48x y =⎧⎨=⎩35212511x y x y +=⎧⎨-=-⎩①②①②+510x =2x =2x =6521y +=515y =3y =∴23x y =⎧⎨=⎩10%610=60%÷20%∴分数为94分的人数为:人,补充条形统计图如下:(2)解:由(1)中的条形统计图可知出现次数最多的分数是98分,按从小到大的顺序可知:第30和31个人的成绩在96分所在的那一组,∴中位数为96,众数为98,故答案为:96,98.(3)解:由图象可知:96分以上的学生人数所占比为:.进入第二轮环节的人数是人.18 . (1)设种多媒体套,种多媒体套,由题意可得:,解得 ,答:购进种多媒体套,种多媒体套;(2)设利润为元,由题意可得:,∴随的增大而减小,,6020=12%⨯189=4560%+180045=810%⨯A a B b 503 2.4132a b a b +=⎧⎨+=⎩2030a b =⎧⎨=⎩A 20B 30w ()()()3.33 2.8 2.4500.120w m m m =-+-⨯-=-+w m 1020m ≤≤∴当 时,取得最大值,此时 ,答:购进种多媒体10套时,能获得最大利润,最大利润是19万元.19 .解:(1)过点作,如图2所示,,,,, ,,,,.(2),理由是:如图3,过作交于,,,,,;(3)当在延长线时,如图所示,10m =w 19w =A P PE AB ∥ AB CD ∥∴PE AB CD ∥∥∴180A APE ∠+∠=︒180C CPE ∠+∠=︒ 130PAB ∠=︒120PCD ∠=︒∴50APE ∠=︒60CPE ∠=︒∴110APC APE CPE ∠=∠+∠=︒CPD αβ∠=∠+∠P PE AD ∥CD E AD BC ∥ ∴AD PE BC ∥∥DPE α∴∠=∠CPE β∠=∠CPD DPE CPE αβ∴∠=∠+∠=∠+∠P BA,,, .当在延长线时,如图所示,,,, .20.(1)解:直线与过点和,,解得,直线的函数表达式为:,与互相垂直,且相交于点,AD PE BC ∥∥∴DPE α∠=∠CPE β∠=∠∴CPD CPE DPE βα∠=∠-∠=∠-∠P AB AD PE BC ∥∥∴DPE α∠=∠CPE β∠=∠∴CPD αβ∠=∠-∠ 1:l y kx b =+()10,0A ()0,5B ∴1005k b b +=⎧⎨=⎩125k b ⎧=-⎪⎨⎪=⎩∴1l 152y x =-+1l 2l ()2,C a,,设直线的函数表达式为,,解得,直线的函数表达式为:;(2)解:设,、,,,,点的坐标为;(3)解:设点 的坐标为,,等腰直角三角形,,即,,,,,,,解得或,12542a ∴=-⨯+=()2,4C ∴2l y k x '=24k '∴=2k '=∴2l 2y x =(),0D m ()10,0A ()0,5B ()2,4C ()()11510410822BCD ABD ACD S S S m m ∴=-=⨯--⨯-=V V V 6m ∴=-D ∴()6,0-P (),2b b 45BAP ∠=︒ ACP ∴△AC PC ∴=22AC PC =()10,0A ()2,4C 2228480AC ∴=+=()()22222452020PC b b b b =-+-=-+22AC PC = 25202080b b ∴-+=6b =2b =-或.()6,12P ∴()2,4P --。

广东省深圳市宝安区八年级(上)期末数学试卷

广东省深圳市宝安区八年级(上)期末数学试卷

D.第四象限D.直角三角形AB D的度数为(9.(3分)下列四个命题中,真命题有(①两条直线被第三条直线所截,内错角相等;②无理数是无限不循环小数;D.8A.(3﹣3,0)B.(3,0)二、填空题(每题3分,共12分)13.(3分)计算(5﹣3)(5+3)=三、解答题(共7题,共计52分)17.(8分)计算:18.(8分)解方程组(1)(2)抽查学生跑步时间的众数是(3)抽查学生跑步时间的平均数是小时,中位数是小时.(1)求证:AD∥B C;(2)当A D=5,DE=3时,求CE的长度.A Ba b节省的油量(万升/年)2.42经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.1212(1)高铁的速度为(2)动车的速度为(4)两车出发经过多长时间相距50千米?广东省深圳市宝安区八年级(上)期末数学试卷参考答案一、选择题(每题3分,共36分)1.A;2.D;3.B;4.D;5.C;6.A;7.B;8.D;9.C;10.B;11.C;12.A;二、填空题(每题3分,共12分)13.16;14.乙;15.25;16.14;三、解答题(共7题,共计52分)17.;18.;19.4;4;3.7;20.;21.;22.200;150;23.;第7页(共7页)广东省深圳市宝安区八年级(上)期末数学试卷参考答案一、选择题(每题3分,共36分)1.A;2.D;3.B;4.D;5.C;6.A;7.B;8.D;9.C;10.B;11.C;12.A;二、填空题(每题3分,共12分)13.16;14.乙;15.25;16.14;三、解答题(共7题,共计52分)17.;18.;19.4;4;3.7;20.;21.;22.200;150;23.;第7页(共7页)。

宝安区期末八上数学试卷

宝安区期末八上数学试卷

1. 下列各数中,不是有理数的是()A. -5/3B. √4C. πD. 0.252. 若a、b是方程x^2 - 5x + 6 = 0的两个根,则a + b的值为()A. 5B. 6C. 2D. 13. 在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且a=5,b=7,c=8,则△ABC的周长为()A. 20B. 22C. 24D. 264. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^25. 若x是方程2x^2 - 4x + 3 = 0的解,则x的取值范围是()A. x < 1B. x > 1C. 0 < x < 2D. x > 26. 在直角坐标系中,点P(2,-3)关于x轴的对称点坐标为()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)7. 下列各数中,属于正数的是()A. -1/2B. 0C. -√4D. √98. 若一个数的平方等于它本身,则这个数是()A. 0或1B. 0或-1C. 0或2D. 0或-29. 在△ABC中,若∠A、∠B、∠C的对边分别为a、b、c,且a=8,b=10,c=6,则△ABC的面积是()A. 24B. 30C. 36D. 4210. 下列各函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = x^4D. y = x^511. 5的平方根是__________,-5的平方根是__________。

12. 若a、b是方程2x^2 - 4x + 3 = 0的两个根,则a^2 + b^2的值为__________。

13. 在△ABC中,若∠A、∠B、∠C的对边分别为a、b、c,且a=5,b=7,c=8,则△ABC的面积是__________。

八年级上册期末考试数学试卷含答案(共5套,深圳市)

八年级上册期末考试数学试卷含答案(共5套,深圳市)

广东省深圳市宝安区八年级上学期期末数学试卷一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.14152.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.75.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.76.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时二、填空题(3*4=12分)13.9的算术平方根是.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x 轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于.三、解答题17.计算(1)(2).18.(1)(2).19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有名同学;(2)该班同学捐款金额的众数是元,中位数是元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是,每台电脑的销售价是万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.广东省深圳市宝安区八年级上学期期末数学试卷参考答案一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.1415【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、=5是整数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、3.1415是有限小数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离【考点】坐标确定位置.【分析】直接利用点的坐标确定位置需要知道其方向与距离进而得出答案.【解答】解:利用雷达跟踪某一“敌方”目标,需要确定该目标的方向与距离.故选:D.【点评】此题主要考查了点的坐标确定位置,正确利用点的位置确定方法是解题关键.3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】由k=>0,可知图象经过第一、三象限,又b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,由此得解即可.【解答】解:∵y=x﹣1,∴k=>0,图象经过第一、三象限,b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,即一次函数y=x﹣1的图象经过第一、三、四象限,不经过第二象限.故选B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.7【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【解答】解:由题意得,a=4,b=3,则a+b=7,故选:D.【点评】本题考查的是关于x、y轴对称点的坐标特点,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.7【考点】二元一次方程的解.【分析】根据解方程解的定义,将x=1,y=2代入方程ax+y=5,即可求得a的值.【解答】解:根据题意,将x=1,y=2代入方程ax+y=5,得:a+2=5,解得:a=3,故选:C.【点评】本题考查了二元一次方程的解,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.6.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【考点】勾股定理的应用.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【解答】解:∵△ABC是直角三角形,BC=6m,AC=10m∴AB===8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选:C.【点评】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【解答】解:∵S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,∴S甲2>S乙2>S2丁>S2丙,∴成绩最稳定的是丙.故选:C.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°【考点】平行线的性质.【分析】由题可直接求得∠BEF,然后根据两直线平行,同旁内角互补可知∠DFE,根据角平分线的性质可求得∠EFP,最后根据三角形内角和求出∠EPF.【解答】解:∵EP⊥EF,∴∠PEF=90°,∵∠BEP=40°,∴∠BEF=∠PEF+∠BEP=130°,∵AB∥CD,∴∠EFD=180°﹣∠BEF=50°,∵FP平分∠EFD,∴∠EFP=0.5×∠EFD=25°,∴∠P=180°﹣∠PEF﹣∠EFP=65°;故选:B.【点评】本题考查了平行线的性质、三角形内角和定理、角平分线的定义;熟记:两直线平行,同旁内角互补;求出∠EFD的度数是解决问题的突破口.9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角【考点】命题与定理.【分析】利用平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,两直线平行,故错误,是假命题;B、等腰三角形的两个底角相等,正确,是真命题;C、同角(等角)的补角相等,正确,为真命题;D、三角形的一个外角大于任何一个与它不相邻的内角,正确,为真命题.故选A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质,难度不大.10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设小李预定了小组赛和淘汰赛的球票各x张,y张,根据10张球票共5600元,列方程组求解.【解答】解:设小李预定了小组赛和淘汰赛的球票各x张,y张,由题意得,,故选C【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.【考点】实数与数轴.【分析】根据勾股定理求出长方形ABCD的对角线AC的长,即为AP的长,进而求出点P所表示的数.【解答】解:∵长方形ABCD的边AB=1,BC=2,∴AC==,∴AP=AC=,∴点P所表示的数为﹣.故选D.【点评】本题考查了实数与数轴,利用勾股定理求出长方形ABCD的对角线AC的长是解题的关键.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时【考点】一次函数的应用.【分析】直接利用函数图象得出汽车行驶3小时一共行驶210km,再利用开始1小时的行驶速度是60千米/时,进而得出1小时后的平均速度.【解答】解:由题意可得:汽车行驶3小时一共行驶210km,则一小时后的平均速度为:(210﹣60)÷2=75(km/h),故选:B.【点评】此题主要考查了一次函数的应用,根据图象得出正确信息是解题关键.二、填空题(3*4=12分)13.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣2,﹣1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣2,﹣1),即x=﹣2,y=﹣1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】此题考查一次函数与方程组问题,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是(,0).【考点】轴对称-最短路线问题;坐标确定位置.【分析】可先找点A关于x轴的对称点C,求得直线BC的解析式,直线BC与x轴的交点就是所求的点.【解答】解:作A关于x轴的对称点C,则C的坐标是(﹣2,﹣2).设BC的解析式是y=kx+b,则,解得:,则BC的解析式是y=x﹣.令y=0,解得:x=.则派送点的坐标是(,0).故答案是(,0).【点评】本题考查了对称的性质以及待定系数法求函数的解析式,正确确定派送点的位置是关键.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于3.【考点】翻折变换(折叠问题).【分析】首先证明∠B=90°,设PB=PB′=x,在RT△PB′C中利用勾股定理求出x,再在RT△APB中利用勾股定理求出AP即可.【解答】解:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠B=90°∵△APB′是由APB翻折,∴AB=AB′=6,PB=PB′,∠B=∠AB′P=∠PB′C=90°设PB=PB′=x,在RT△PB′C中,∵B′C=AC﹣AB=4,PC=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴AP===3,故答案为3.【点评】本题考查勾股定理的逆定理、勾股定理、翻折不变性等知识,证明∠B=90°是解题的关键,属于2016届中考常考题型.三、解答题17.计算(1)(2).【考点】实数的运算;零指数幂.【分析】(1)直接利用二次根式乘法运算法则结合零指数幂的性质化简求出答案;(2)首先化简二次根式,进而合并求出答案.【解答】解:(1)=+2+1=+3;(2)=3﹣2﹣1=﹣1.【点评】此题主要考查了实数运算以及二次根式的化简,正确化简二次根式是解题关键.18.(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:x+4x﹣6=14,解得:x=5,把x=5代入①得:y=7,则方程组的解为;(2),①×3+②得:11x=﹣11,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有50名同学;(2)该班同学捐款金额的众数是10元,中位数是12.5元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为86.4度.【考点】众数;扇形统计图;中位数.【分析】(1)由于知道捐款金额为10元的人数为全班人数的36%,由此即可求出该班共有多少人;(2)首先利用(1)的结果计算出捐15元的同学人数,然后利用中位数、众数的定义即可求出捐款金额的众数和中位数;(3)由于捐款金额为20元的人数为12人,由此求出捐款金额为20元的人数是总人数的百分比,然后乘以360°就知道扇形的圆心角.【解答】解:(1)∵18÷36%=50,∴该班共有50人;(2)∵捐15元的同学人数为50﹣(7+18+12+3)=10,∴学生捐款的众数为10元,又∵第25个数为10,第26个数为15,∴中位数为(10+15)÷2=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为360°×=86.4°.故答案为:50,10,12.5,86.4.【点评】此题考查了一组数据的众数、中位数和扇形统计图等知识,解题的关键是从统计表中整理出有关解题信息,难度不大.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.【考点】全等三角形的判定与性质.【分析】(1)根据AAS即可判定△ABF≌△ECF.(2)利用平行四边形对角相等即可证明.【解答】(1)证明:在△ABF和△ECF中,,∴△ABF≌△ECF(AAS).(2)解:∵∠1=∠2(已知),∴AB∥ED(内错角相等,两直线平行),∵AD∥BC(已知),∴四边形ABCD是平行四边形(两组对边平行的四边形是平行四边形),∴∠D=∠B=125°(平行四边形的对角相等).【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质,利用平行四边形的性质证明角相等是解题的关键.属于2016届中考常考题型.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.【考点】二元一次方程组的应用.【分析】设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意列出两个二元一次方程,解方程组求出x和y的值即可.【解答】解:设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意可得:,整理得:,由①×1.2﹣②得.答:A商品原来的价格为20元,B商品价格为40元.【点评】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系列出二元一次方程组,此题难度不大.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是y=0.8x,每台电脑的销售价是0.8万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:y2=0.4x+3;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.【考点】一次函数的应用.【分析】(1)由函数图象知,y与x成正比例函数关系且过(5,4),待定系数法可求得直线l1对应的函数表达式,再根据每台电脑售价=每天销售收入÷销售量可得;(2)根据:每天总成本=电脑的总成本+每天的固定支出,可列函数关系式;(3)根据(2)中函数关系式,确定两点(0,3),(5,5),作射线即可;(4)根据:商场每天利润=电脑的销售收入﹣每天的总成本,列出函数关系式,根据题意得到不等式、解不等式即可.【解答】解:(1)设y=kx,将(5,4)代入,得k=0.8,故y=0.8x,每台电脑的售价为:=0.8(万元);(2)根据题意,商场每天的总成本y2=0.4x+3;(3)如图所示,(3)商场每天的利润W=y﹣y2=0.8x﹣(0.4x+3)=0.4x﹣3,当W>0,即0.4x﹣3>0时商场开始盈利,解得:x>7.5.答:每天销售量达到8台时,商场可以盈利.【点评】本题主要考查一次函数的实际应用,熟悉一次函数解析式的求法、图象的画法及根据实际问题列函数关系式是一次函数的基础.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.【考点】一次函数综合题.【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由相似三角形的性质找到BM的长度,再结合OM=OB﹣BM得出OM的长,根据勾股定理即可得出线段AM的长;(3)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标.【解答】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有,解得:,∴对角线AB所在直线的函数关系式为y=﹣x+4.(2)∵四边形AOBC为长方形,且MN⊥AB,∴∠AOB=∠MNB=90°,又∵∠ABO=∠MBN,∴△AOB∽△MNB,∴.∵AO=CB=4,OB=AC=8,∴由勾股定理得:AB==4,∵MN垂直平分AB,∴BN=AN=AB=2.===,即MB=5.OM=OB﹣MB=8﹣5=3,由勾股定理可得:AM==5.(3)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=﹣x+4.∵点P在直线AB:y=﹣x+4上,∴设P点坐标为(m,﹣m+4),点P到直线AM:x+y﹣4=0的距离h==.△PAM的面积S△PAM=AM•h=|m|=S OABC=AO•OB=32,解得m=±,故点P的坐标为(,﹣)或(﹣,).【点评】本题考查了坐标系中点的意义、相似三角形的判定及性质、勾股定义、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由相似三角形的相似比找出BM的长度;(3)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程.本题属于中等题,难度不大,(1)小问容易得出结论;(2)没有直接找OM长度,而是利用相似三角形找出BM的长度,此处部分学生可能会失分;(3)难度不大,运算量不小,这里尤其要注意点P有两个.广东省深圳市龙岗区八年级(上册)期末数学试卷一、选择题(每小题3分,共36分)1.数学,,π,,0.中无理数的个数是( )A.1 B.2 C.3 D.42.下列长度的线段不能构成直角三角形的是( )A.8,15,17 B.1.5,2,3 C.6,8,10 D.5,12,133.如图,笑脸盖住的点的坐标可能为( )A.(5,2)B.(3,﹣4)C.(﹣4,﹣6)D.(﹣1,3)4.点M(2,1)关于x轴对称的点的坐标是( )A.(1,﹣2)B.(﹣2,1)C.(2,﹣1)D.(﹣1,2)5.下列各式中,正确的是( )A.=±4 B.±=4 C.=﹣3 D.=﹣46.若函数y=(k﹣1)x|k|+b+1是正比例函数,则k和b的值为( )A.k=±1,b=﹣1 B.k=±1,b=0 C.k=1,b=﹣1 D.k=﹣1,b=﹣17.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.B.C.D.8.下列命题中,不成立的是( )A.两直线平行,同旁内角互补B.同位角相等,两直线平行C.一个三角形中至少有一个角不大于60度D.三角形的一个外角大于任何一个内角9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A.中位数B.平均数C.众数 D.加权平均数10.2016年“龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来,同时小丽也往回走,遇到妈妈后聊了一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为t,小丽与体育馆的距离为S,下面能反映S与t的函数关系的大致图象是( )A. B.C.D.11.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为( )A.α﹣β B.β﹣α C.180°﹣α+βD.180°﹣α﹣β12.如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是( )A.3 B. C.2D.2二、填空题(每小题3分,共12分)13.16的平方根是__________.14.数据3,4,6,8,x,7的众数是7,则数据4,3,6,8,2,x的中位数是__________.15.观察下列各式:=﹣1,=,=2﹣…请利用你发现的规律计算:(+++…+)×(+)=__________.16.如图,在矩形ABCD中,AB=3,BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分△AEF的面积=__________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:﹣||﹣4+.18.解方程组:.19.每年9月举行“全国中学生数学联赛”,成绩优异的选手可参加“全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入“国家集训队”.第31界冬令营已于2015年12月在江西省鹰谭一中成功举行.现将脱颖而出的50名选手分成两组进行竞赛,每组25人,成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)请你将表格补充完整:平均数中位数众数方差一组74 __________ __________ 104二组__________ __________ __________ 72(2)从本次统计数据来看,__________组比较稳定.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳市宝安区八年级(上)期末数学试卷
一、选择题(每题3分,共36分)
1.(3分)的值为()
A.2B.﹣2C.4D.±2
2.(3分)在直角坐标中,点P(2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列计算正确的是()
A.×=6B.﹣=C.+=D.÷=4 4.(3分)在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形5.(3分)我县今年4月某地6天的最高气温如下(单位℃):32,29,30,32,30,32.则这个地区最高气温的众数和中位数分别是
()
A.30,32B.32,30C.32,31D.32,32
6.(3分)小明解方程组x+y=■的解为x=5,由于不小心滴下了两滴墨水,刚好把两个数■和★遮住了,则这个数■和★的值为()
A.B.C.D.
7.(3分)如图,梯形ABCD中,AD∥BC,AB=BD=BC,若∠C=50°,则∠ABD的度数为()
A.15°B.20°C.25°D.30°
8.(3分)在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了10%,乙班比去年多种了12%,结果甲班比乙班还是多种100树棵.设甲班去年植树x棵,乙去年植树y棵,则下列方程组中正确的是()
A.
B.
C.
D.
9.(3分)下列四个命题中,真命题有()
①两条直线被第三条直线所截,内错角相等;
②无理数是无限不循环小数;
③三角形的一个外角大于任何一个不相邻的内角;
④平面内点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称.
A.1个B.2个C.3个D.4个
10.(3分)若弹簧的总长度y(cm)是所挂重物x(千克)的一次函数图象如图,则不挂重物时,弹簧的长度是()
A.5cm B.8cm C.9cm D.10cm
11.(3分)如图,在长方形ABCD中,AB=8,BC=4,将长方形的一角沿AC 折叠,则重叠阴影部分△AFC的面积为()
A.14B.12C.10D.8
12.(3分)如图,已知直线y=x+3与x轴交于点A,与y轴交于点B,以点A 为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为()
A.(3﹣3,0)B.(3,0)C.(0,3﹣3)D.(3,0)
二、填空题(每题3分,共12分)
13.(3分)计算(5﹣3)(5+3)=.
14.(3分)甲、乙两名同学投掷实心球,每人投10次,平均成绩为7米,方差分别为S=0.1,S=0.04,成绩比较稳定的是.
15.(3分)如图,台阶A处的蚂蚁要爬到B处搬运食物,它爬的最短距离是.
16.(3分)如图,在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),以AB为边作正方形ABCD,连接OD,DB.则△DOB的面积是.
三、解答题(共7题,共计52分)
17.(8分)计算:
(1)﹣+|﹣1|
(2)﹣×.
18.(8分)解方程组
(1)
(2).
19.(6分)2016年深圳宝安国际马拉松赛于12月4日上午8:00在宝安区政府南大门鸣枪开炮,我区某校为了了解学生对本次马拉松赛的关注程度和锻炼情况,随机调查了部分学生每周跑步的时间,绘制成如下两幅不完整的统计图如图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;
(2)抽查学生跑步时间的众数是小时,中位数是小时;
(3)抽查学生跑步时间的平均数是小时.
20.(6分)如图,四边形ABCD中,∠ADC的角平分线DE与∠BCD的角平分线CA相交于E点,DE交BC于点F,连结AF,已知∠ACD=32°,∠CDE =58°.
(1)求证:AD∥BC;
(2)当AD=5,DE=3时,求CE的长度.
21.(8分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:
A B
价格(万元/台)a b
节省的油量(万升/年) 2.42
经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.
(1)请求出a和b;
(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?
22.(8分)厦深铁路开通后,直线l1与l2分别表示从深圳北开往潮阳站的动车和从潮阳站开往深圳的高铁,两车同时出发,设动车离深圳北的距离为y1(千米),高铁离深圳的距离为距离y2(千米),行驶时间为t(小时),与t的函数关系如图所示:
(1)高铁的速度为km/h;
(2)动车的速度为km/h;
(3)动车出发多少小时与高铁相遇?
(4)两车出发经过多长时间相距50千米?
23.(8分)如图,正方形ABOD的边长为2,OB在x轴上,OD在y轴上,且AD∥OB,AB∥OD,点C为AB的中点,直线CD交x轴于点F.
(1)求直线CD的函数关系式;
(2)过点C作CE⊥DF且交于点E,求证:∠ADC=∠EDC;
(3)求点E坐标;
(4)点P是直线CE上的一个动点,求PB+PF的最小值.
广东省深圳市宝安区八年级(上)期末数学试卷
参考答案
一、选择题(每题3分,共36分)
1.A;2.D;3.B;4.D;5.C;6.A;7.B;8.D;9.C;10.B;
11.C;12.A;
二、填空题(每题3分,共12分)
13.16;14.乙;15.25;16.14;
三、解答题(共7题,共计52分)
17.;18.;19.4;4;3.7;20.;21.;22.200;
150;23.;。

相关文档
最新文档