线性代数第五章

合集下载

线性代数第五章

线性代数第五章

又因为c1 c 2 即
1 2
0
1 0 2 0
这与1 , 2 互异矛盾,所以假设不成立 即 c1 1 c 2 2 不是 A 的特征向量.
5. 实对称矩阵不相等的特征值所对应的特征向量正交 例 设3阶实对称矩阵 A 的特征值为6,3,3,特征值6对应 的特征向量为 p1
关于实对称矩阵的特征值和特征向量有非常好的 性质,尤其是实对称矩阵正交相似对角阵的过程, 综合考查了求行列式、求解齐次线性方程组、求特 征值和特征向量、正交化及规范化、相似对角化等 内容,加之有二次型的应用背景,非常重要,应熟 练掌握.
典型题目
1. 求方阵的 k 次方

2 设A 0 4 1 2 1 1 0 3
A 的 2 重特征值刚好有两个线性无关的特征向量, 所以 A 可以对角化. 即存在可逆的矩阵
1 P ( p1 , p 2 , p 3 ) 0 1 2 1 4 0 0 1 1
使得
1 1 P AP
2
以上就是判断 A 是否可对角化,以及求相似变换 矩阵的过程。这一过程在实对称矩阵和二次型里还 经常用到。
证明 反证法 假设 c1 1 c 2 2 是 A 的特征向量,所对应的特征值为 则有 展开
A ( c1 1 c 2 2 ) ( c1 1 c 2 2 )
Α ( c 1 1 c 2 2 ) c 1 ( Α 1 ) c 2 ( Α 2 ) c 1 1 1 c 2 2 2
det A 1 2 n
1 2 n a11 a 22 a nn
② 设 Ax x ,则有 f ( A ) x f ( ) x 这个式子说明 f ( A ) 的特征值是 f ( ) ,特征向 量不变.

线性代数第五章特征值和特征向量矩阵的对角化

线性代数第五章特征值和特征向量矩阵的对角化
的特征值;
(5)若f(x)是x的多项式,则f()是f(A)的特征值
特征向量保持不变
10
证:(2)∵AX=X A(AX)=A(X) =(AX)=(X)
A2X=2X
再继续施行上述步骤m2次,就得
AmX=mX m是矩阵Am的特征值,且X是Am的对应于 m的特征向量.
(4)当A可逆时, 0 ∵AX=X A1(AX)=A1(X) =A1X
1
1
1
1
3 2
3 1
3
3
1 3
2 3
5100 2
1 3
5100
5100
1 1
5100 1 5100 2 5100 1
5100 1 5100 1 5100 2
33
5.3 实对称矩阵的对角化 1.实对称矩阵特征值的相关性质 2.求正交矩阵的方法
34
共轭矩阵 如果A=(aij)为复矩阵时,用 aij 表示aij的
1=5: 解方程组 (5IA)X=0
4 2 2 1 0 1 5IA= 2 4 2 →0 1 1
2 2 4 0 0 0
1 基础解系: P1 1
1
对应于1=5的全部特征向量为: k1P1 (k10)
2=3= 1 : 解方程组 (IA)X=0
2 2 2 1 1 1 IA= 2 2 2 →0 0 0
k11+k22=0 (2) (2)2(1)k1(12)=0 ∵12 ,0 ∴k1=0 同理可得k2=0
∴与线性无关
推广 设1,2,,r是矩阵A的对应于不同特 征值1,2,,r的特征向量,则1,2,,r线性
无关.
定理 如果1,2,,r是矩阵A的不同特征值, 而(i=1i,12,,i2,,r)的, 线是性ikAi无的关对的应特于征特向征量值,则i向量组 也11线,性12,无,关1.k1,21,22,, 2k2,,r1,r2,,rkr

线性代数第五章答案

线性代数第五章答案

0 0 1

| AE|
0 0
1 1
0 0
( 1)2( 1)2
1 0 0
故 A 的特征值为121 341 对于特征值121 由
A E 1100
0 1 1 0
0 1 1 0
1100 ~ 1000
0 1 0 0
0 1 0 0
1000
得方程(AE)x0 的基础解系 p1(1 0 0 1)T p2(0 1 1 0)T 向量 p1 和 p2 是对应于特征值 121 的线性无关特征值向量
k1a1k2a2 knranrl1b1l2b2 lnrbnr0

k1a1k2a2 knranr(l1b1l2b2 lnrbnr)
则 k1 k2 knr 不全为 0 否则 l1 l2 lnt 不全为 0 而
l1b1l2b2 lnrbnr0 与 b1 b2 bnt 线性无关相矛盾
因此 0 是 A 的也是 B 的关于0 的特征向量 所以 A 与 B 有公共的特征值 有公
a2,
a3)
1
0 1
1
1 1
0
1
0111
解 根据施密特正交化方法
b1
a1
0111
b2
a2
[b1,a2] [b1,b1]
b1
1 3
2311
b3
a3
[b1,a3] [b1,b1]
b1
[b2,a3] [b2,b2]
b2
1 5
4331
2 下列矩阵是不是正交阵:
1
(1)
1 2 1 3
对于特征值39 由
A
9E
8 2 3
2 8
3
333

线性代数ppt 第五章 二次型

线性代数ppt 第五章 二次型

a11 a 21 a n1
a12 a 22 an2
a1n a2n , a nn
x =
x1 x2 , xn
则 二 次 型 可 记 作 f = xT Ax, 其 中 A为 对 称 矩 阵 .
(3)
此时A 此时A称为二次型 f 的矩阵, f 称为对称矩阵A 的矩阵, 称为对称矩阵A 对应的二次型. 对应的二次型. 对矩阵A的秩叫做二次型 的秩 二次型f的秩 二次型 的秩. f(x1,x2)=3x12+3x22+2x1x2 )=3x +3x +2x
k1 0 TAP = P … 0
0 k2 … 0
… … … …
0 0 … kn
第五章 二次型
§5.1 二次型及其矩阵表示
三. 矩阵的合同 可逆矩阵P, 使得PTAP = B. 记为: A B. 可逆矩阵 使得P 矩阵P 记为: 矩阵间的合同关系也是一种等价关系. 矩阵间的合同关系也是一种等价关系. An与Bn合同(congruent): 合同(congruent):
(1) 反身性: A A; 反身性: A; (2) 对称性: A B B A; 对称性: (3) 传递性: A B, B C A C. 传递性:
定理5.1. 实对称矩阵与对角矩阵合同. 定理5.1. 实对称矩阵与对角矩阵合同.
作业 P151 1. (B) 1(1), (3); 2
本章主要内容 (1) 二次型矩阵表示 (2) 标准二次型,规范二次型 标准二次型, 二次型 (3) 将二次型化为标准形 (4)二次型的正定型的判定—主要是利用顺序 (4)二次型的正定型的判定 主要是利用顺序 二次型的正定型的判定— 主子式判定 主子式判定 作业: 作业: P152 7(1); 20(1)

线性代数第五章 正交性

线性代数第五章 正交性

b = (-1, -1, 2, 2),
中每一个正交.
c = (3, 2, 5, 4),
20
练 习:
设 q1=
1 2
(1,1,1,1)T, q2=
1 2
(1,1,1,
1)T,
用两种方法将它们扩充成 4的一组规范正交基.
作业:
5.1节练习: 1. 2.
5.4节练习: 1. 2.
5.6节练习: 8.
课后练习:
在欧氏空间 4里找出两个单位向量,使它们同时与向量
a = (2, 1, -4, 0),
v2 ||v2||
正 交

vn=
xn
xn, v1,
v1 v1
v1
xn, v2,
v2 v2
v2

xn, vn1 vn1, vn1
vn1
un
=
vn ||vn||
Span(x1, x2, . . . , xn ) = Span(v1, v2, . . . , vn )
例5
设V = span(x1, x2, x3, x4),求 V的一组规范正交基. 其中x1= (1,−1, 1,−1)T, x2 = (1, 1, 3,−1) T , x3= (2,0, 4,−2)T , x4 = (3, 7, 1, 3)T .
||x|| ||y||
定 理 1 | xTy | ||x|| ||y|| 柯西-施瓦兹不等式 定 理 2 x y xT y = 0 称 x 和 y 正交 .
推广至更一般 向量空间 V
3
内积(P213 5.4 内积空间)
定 义 在向量空间V上定义一种运算,在这种运算下,V 中任意 一对向量 x 和 y,都对应一个实数,记作 x, y,若还满足: 对任意的 x, y, z ∈ V 及 s, t ∈ R,成立 (1) x, x 0 , 取等号当且仅当 x = 0 .

线性代数第五章释疑解难

线性代数第五章释疑解难
误和舍入误差,同时要检验解的合理性。
例题二:矩阵的逆与行列式的计算
问题描述
给定一个矩阵,如何计算其逆矩阵和行列式值?
解题思路
首先,利用行列式的性质计算行列式的值。然后,利用逆矩阵的定义和性质求解。
例题二:矩阵的逆与行列式的计算
解题步骤
1
2
1. 利用行列式的性质,计算给定矩阵的行列式值。
3
2. 利用逆矩阵的定义和性质,求解给定矩阵的逆 矩阵。
线性代数第五章释疑 解难
目录
CONTENTS
• 第五章基本概念回顾 • 第五章中的难点解析 • 常见错误解析与纠正 • 习题解答与解析 • 综合例题解析
01
第五章基本概念回

向量与矩阵的定义
向量
由n个实数组成的有序数列称为n维 向量。
矩阵
由m×n个数按m行n列排列成的数表称 为m行n列矩阵。
向量与矩阵的运算
根据二阶行列式的定义,行列式等于 主对角线上的元素乘积减去副对角线 上的元素乘积。
习题二解答与解析
问题
判断矩阵A是否为正定矩阵。
解答
矩阵A为正定矩阵当且仅当其所有特征值都大于0。
解析
正定矩阵的定义是其所有特征值都大于0,因 此判断矩阵是否为正定矩阵,需要计算其所有 特征值并比较。
习题三解答与解析
向量数乘
标量与向量的每个 分量相乘。
矩阵数乘
标量与矩阵的每个 元素相乘。
向量加法
对应分量相加。
Байду номын сангаас
矩阵加法
对应元素相加。
矩阵乘法
前矩阵的列数等于 后矩阵的行数,按 元素相乘并求和。
线性方程组与矩阵的关系
01

线性代数:第五章二次型

线性代数:第五章二次型

线性代数:第五章⼆次型第五章⼆次型§1 ⼆次型及其矩阵表⽰⼀、⼆次型及其矩阵表⽰设是⼀个数域,⼀个系数在数域中的的⼆次齐次多项式称为数域上的⼀个元⼆次型,简称⼆次型.定义1 设是两组⽂字,系数在数域P中的⼀组关系式(2)称为由到的⼀个线性替换,或简称线性替换.如果系数⾏列式,那么线性替换(2)就称为⾮退化的.线性替换把⼆次型变成⼆次型.令由于所以⼆次型(1)可写成把(3)的系数排成⼀个矩阵(4)它称为⼆次型(3)的矩阵.因为所以把这样的矩阵称为对称矩阵,因此,⼆次型的矩阵都是对称的.令或应该看到⼆次型(1)的矩阵A的元素,当时正是它的项的系数的⼀半,⽽是项的系数,因此⼆次型和它的矩阵是相互唯⼀决定的.由此可得,若⼆次型且,则.令,于是线性替换(4)可以写成或者经过⼀个⾮退化的线性替换,⼆次型还是变成⼆次型,替换后的⼆次型与原来的⼆次型之间有什么关系,即找出替换后的⼆次型的矩阵与原⼆次型的矩阵之间的关系.设(7)是⼀个⼆次型,作⾮退化线性替换(8)得到⼀个的⼆次型,⼆、矩阵的合同关系现在来看矩阵与的关系.把(8)代⼊(7),有易看出,矩阵也是对称的,由此即得.这是前后两个⼆次型的矩阵的关系。

定义2 数域P上两个阶矩阵,称为合同的,如果有数域P上可逆的矩阵,使得.合同是矩阵之间的⼀个关系,具有以下性质:1) ⾃反性:任意矩阵都与⾃⾝合同.2) 对称性:如果与合同,那么与合同.3) 传递性:如果与合同,与合同,那么与合同.因此,经过⾮退化的线性替换,新⼆次型的矩阵与原来⼆次型的矩阵是合同的。

这样把⼆次型的变换通过矩阵表⽰出来,为以下的讨论提供了有⼒的⼯具。

最后指出,在变换⼆次型时,总是要求所作的线性替换是⾮退化的。

从⼏何上看,这⼀点是⾃然的因为坐标变换⼀定是⾮退化的。

⼀般地,当线性替换是⾮退化时,由上⾯的关系即得.这也是⼀个线性替换,它把所得的⼆次型还原.这样就使我们从所得⼆次型的性质可以推知原来⼆次型的⼀些性质.§2 标准形⼀、⼆次型的标准型⼆次型中最简单的⼀种是只包含平⽅项的⼆次型. (1)定理1 数域上任意⼀个⼆次型都可以经过⾮化线性替换变成平⽅和(1)的形式.易知,⼆次型(1)的矩阵是对⾓矩阵,反过来,矩阵为对⾓形的⼆次型就只包含平⽅项.按上⼀节的讨论,经过⾮退化的线性替换,⼆次型的矩阵变到⼀个合同的矩阵,因此⽤矩阵的语⾔,定理1可以叙述为:定理2 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.定理2也就是说,对于任意⼀个对称矩阵都可以找到⼀个可逆矩阵使成对⾓矩阵.⼆次型经过⾮退化线性替换所变成的平⽅和称为的标准形.例化⼆次型为标准形.⼆、配⽅法1.这时的变量替换为令,则上述变量替换相应于合同变换为计算,可令.于是和可写成分块矩阵,这⾥为的转置,为级单位矩阵.这样矩阵是⼀个对称矩阵,由归纳法假定,有可逆矩阵使为对⾓形,令,于是,这是⼀个对⾓矩阵,我们所要的可逆矩阵就是.2. 但只有⼀个.这时,只要把的第⼀⾏与第⾏互换,再把第⼀列与第列互换,就归结成上⾯的情形,根据初等矩阵与初等变换的关系,取⾏显然.矩阵就是把的第⼀⾏与第⾏互换,再把第⼀列与第列互换.因此,左上⾓第⼀个元素就是,这样就归结到第⼀种情形.3. 但有⼀与上⼀情形类似,作合同变换可以把搬到第⼀⾏第⼆列的位置,这样就变成了配⽅法中的第⼆种情形.与那⾥的变量替换相对应,取,于是的左上⾓就是,也就归结到第⼀种情形.4.由对称性,也全为零.于是,是级对称矩阵.由归纳法假定,有可逆矩阵使成对⾓形.取,就成对⾓形.例化⼆次型成标准形.§3 唯⼀性经过⾮退化线性替换,⼆次型的矩阵变成⼀个与之合同的矩阵.由第四章§4定理4,合同的矩阵有相同的秩,这就是说,经过⾮退化线性替换后,⼆次型矩阵的秩是不变的.标准形的矩阵是对⾓矩阵,⽽对⾓矩阵的秩就等于它对⾓线上不为零的平⽅项的个数.因之,在⼀个⼆次型的标准形中,系数不为零的平⽅项的个数是唯⼀确定的,与所作的⾮退化线性替换⽆关,⼆次型矩阵的秩有时就称为⼆次型的秩.⾄于标准形中的系数,就不是唯⼀确定的.在⼀般数域内,⼆次型的标准形不是唯⼀的,⽽与所作的⾮退化线性替换有关.下⾯只就复数域与实数域的情形来进⼀步讨论唯⼀性的问题.设是⼀个复系数的⼆次型,由本章定理1,经过⼀适当的⾮退化线性替换后,变成标准形,不妨假定化的标准形是. (1)易知就是的矩阵的秩.因为复数总可以开平⽅,再作⼀⾮退化线性替换(2)(1)就变成(3)(3)就称为复⼆次型的规范形.显然,规范形完全被原⼆次型矩阵的秩所决定,因此有定理3 任意⼀个复系数的⼆次型经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.定理3 换个说法就是,任⼀复数的对称矩阵合同于⼀个形式为的对⾓矩阵.从⽽有两个复数对称矩阵合同的充要条件是它们的秩相等.设是⼀实系数的⼆次型.由本章定理1,经过某⼀个⾮退化线性替换,再适当排列⽂字的次序,可使变成标准形(4)其中是的矩阵的秩.因为在实数域中,正实数总可以开平⽅,所以再作⼀⾮退化线性替换(5)(4) 就变成(6)(6)就称为实⼆次型的规范形.显然规范形完全被这两个数所决定.定理4 任意⼀个实数域上的⼆次型,经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.这个定理通常称为惯性定理.定义3 在实⼆次型的规范形中,正平⽅项的个数称为的正惯性指数;负平⽅项的个数称为的负惯性指数;它们的差称为的符号差.应该指出,虽然实⼆次型的标准形不是唯⼀的,但是由上⾯化成规范形的过程可以看出,标准形中系数为正的平⽅项的个数与规范形中正平⽅项的个数是⼀致的,因此,惯性定理也可以叙述为:实⼆次型的标准形中系数为正的平⽅项的个数是唯⼀的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.定理5 (1)任⼀复对称矩阵都合同于⼀个下述形式的对⾓矩阵:.其中对⾓线上1 的个数等于的秩.(2)任⼀实对称矩阵都合同于⼀个下述形式的对⾓矩阵:,其中对⾓线上1的个数及-1的个数(等于的秩)都是唯⼀确定的,分别称为的正、负惯性指数,它们的差称为的符号差..§4 正定⼆次型⼀、正定⼆次型定义4 实⼆次型称为正定的,如果对于任意⼀组不全为零的实数都有.实⼆次型是正定的当且仅当.设实⼆次型(1)是正定的,经过⾮退化实线性替换(2)变成⼆次型(3)则的⼆次型也是正定的,或者说,对于任意⼀组不全为零的实数都有.因为⼆次型(3)也可以经⾮退化实线性替换变到⼆次型(1),所以按同样理由,当(3)正定时(1)也正定.这就是说,⾮退化实线性替换保持正定性不变.⼆、正定⼆次型的判别定理6 实数域上⼆次型是正定的它的正惯性指数等于.定理6说明,正定⼆次型的规范形为(5)定义5 实对称矩阵A称为正定的,如果⼆次型正定.因为⼆次型(5)的矩阵是单位矩阵E,所以⼀个实对称矩阵是正定的它与单位矩阵合同.推论正定矩阵的⾏列式⼤于零.定义6 ⼦式称为矩阵的顺序主⼦式.定理7 实⼆次型是正定的矩阵的顺序主⼦式全⼤于零.例判定⼆次型是否正定.定义7 设是⼀实⼆次型,如果对于任意⼀组不全为零的实数都有,那么称为负定的;如果都有,那么称为半正定的;如果都有,那么称为半负定的;如果它既不是半正定⼜不是半负定,那么就称为不定的.由定理7不难看出负定⼆次型的判别条件.这是因为当是负定时,就是正定的.定理8 对于实⼆次型,其中是实对称的,下列条件等价:(1)是半正定的;(2)它的正惯性指数与秩相等;(3)有可逆实矩阵,使其中;(4)有实矩阵使.(5)的所有主⼦式皆⼤于或等于零;注意,在(5)中,仅有顺序主⼦式⼤于或等于零是不能保证半正定性的.⽐如就是⼀个反例.证明 Th8,设的主⼦式全⼤于或等于零,是的级顺序主⼦式,是对应的矩阵其中是中⼀切级主⼦式之和,由题设,故当时,,是正定矩阵.若不是半正定矩阵,则存在⼀个⾮零向量,使令与时是正定矩阵⽭盾,故是半正定矩阵.Th8记的⾏指标和列指标为的级主⼦式为,对应矩阵是,对任意,有,其中⼜是半正定矩阵,从⽽.若,则P234,12T,存在使与⽭盾,所以.◇设为级实矩阵,且,则都是正定矩阵.◇设为实矩阵,则都是半正定矩阵.证明是实对称矩阵,令,则是维实向量是半正定矩阵,同理可证是半正定矩阵.◇设是级正定矩阵,则时,都是正定矩阵.证明由于正定,存在可逆矩阵,使,,从⽽为正定矩阵.正定⼜正定, ,正定,正定.对称当时,,从⽽正定.当时,所以与合同,因⽽正定.第五章⼆次型(⼩结)⼀、⼆次型与矩阵1. 基本概念⼆次型;⼆次型的矩阵和秩;⾮退化线性替换;矩阵的合同.2. 基本结论(1) ⾮退化线性替换把⼆次型变为⼆次型.(2) ⼆次型可经⾮退化的线性替换化为⼆次型.(3) 矩阵的合同关系满⾜反⾝性、对称性和传递性.⼆、标准形1. 基本概念⼆次型的标准形;配⽅法.2. 基本定理(1) 数域上任意⼀个⼆次型都可经过⾮退化的线性替换化为标准形式.(2) 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.三、唯⼀性1. 基本概念复⼆次型的规范形;实⼆次型的规范形,正惯性指数、负惯性指数、符号差.2. 基本定理(1) 任⼀复⼆次型都可经过⾮退化的线性替换化为唯⼀的规范形式的秩.因⽽有:两个复对称矩阵合同它们的秩相等.(2) 惯性定律:任⼀实⼆次型都可经过⾮退化线性替换化为唯⼀的规范形式的秩,为的惯性指数.因⽽两个元实⼆次型可经过⾮退化线性替换互化它们分别有相同的秩和惯性指数.(4) 实⼆次型的标准形式中系数为正的平⽅项的个数是唯⼀确定的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.四、正定⼆次型1. 基本概念正定⼆次型,正定矩阵;顺序主⼦式,负定⼆次型,半正定⼆次型,半负定⼆次型,不定⼆次型.2. 基本结论(1) ⾮退化线性替换保持实⼆次型的正定性不变.(2) 实⼆次型正定①与单位矩阵合同,即存在可逆矩阵,使得;②的顺序主⼦式都⼤于零.③的正惯性指数等于.。

线性代数第五章知识要点

线性代数第五章知识要点

(3) An×n 的对角化
(i) A 能对角化的充要条件是 A 有 n 个线性
无关的特征向量.
(ii) 若 A 有 n 个互异的特征值,则 A 与对角
矩阵相似 , 即 A 可对角化.
4. 实对称矩阵的相似矩阵
(1) 实对称矩阵的特征值为实数. (2) 实对称矩阵的对应于不同特征值的特征 向量必正交. (3) 若 是实对称矩阵 A 的 r 重特征值, 则 对应于 的特征向量必有 r 个, 且它们线性无关. (4) 实对称矩阵必可对角化. 即若 A 为 n 阶 实对称矩阵, 则必有正交矩阵 P, 使得 P-1AP = , 其中 是以 A 的n个特征值为对角元素的对角矩 阵.
(7) 定义 4 若 n 阶方阵 A 满足
ATA = E ( 即 A-1 = AT),
则称 A 为正交矩阵.
A = (aij)n×n 为正交矩阵的充要条件是
1, i j; aik a jk δij 0, i j k 1
n

a
k 1
n
ki
akj δ ij .
(8) 定义 5 若 P 为正交矩阵, 则线性变换
6. 正定二次型 (1) 定义 9 设有实二次型 f(x) = xTAx,如
果对任何 x 0, 都有 f(x) > 0 (显然 f(0) = 0), 则称 f 为正定二次型, 并称对称矩阵 A 是正定的, 记作 A > 0 ; 如果对任何 x 0 都有 f(x) < 0, 则称 f 为 负定二次型, 并称对称矩阵 A 是负定的, 记作 A < 0.
称为二次型.
二次型可记为 f = xTAx,其中 AT = A. A 称为
二次型 f 的矩阵, f 称为对称矩阵 A 的二次型.对

线性代数第五章答案

线性代数第五章答案
k1a1k2a2 knranrl1b1l2b2 lnrbnr0 记 k1a1k2a2 knranr(l1b1l2b2 lnrbnr) 则k1 k2 knr不全为0 否则l1 l2 lnt不全为0 而
l1b1l2b2 lnrbnr0 与b1 b2 bnt线性无关相矛盾
因此 0 是A的也是B的关于0的特征向量 所以A与B有公共的特征值 有 公共的特征向量
8 设A23A2EO 证明A的特征值只能取1或2 证明 设是A的任意一个特征值 x是A的对应于的特征向量 则
(A23A2E)x2x3x2x(232)x0 因为x0 所以2320 即是方程2320的根 也就是说1或2
9 设A为正交阵 且|A|1 证明1是A的特征值 证明 因为A为正交矩阵 所以A的特征值为1或1 (需要说明) 因为|A|等于所有特征值之积 又|A|1 所以必有奇数个特征值为1 即1 是A的特征值
10 设0是m阶矩阵AmnBnm的特征值 证明也是n阶矩阵BA的特征值 证明 设x是AB的对应于0的特征向量 则有
(AB)xx 于是 B(AB)xB(x) 或 BA(B x)(Bx) 从而是BA的特征值 且Bx是BA的对应于的特征向量
11 已知3阶矩阵A的特征值为1 2 3 求|A35A27A| 解 令()3527 则(1)3 (2)2 (3)3是(A)的特征值 故
|A35A27A||(A)|(1)(2)(3)32318
12 已知3阶矩阵A的特征值为1 2 3 求|A*3A2E| 解 因为|A|12(3)60 所以A可逆 故
A*|A|A16A1 A*3A2E6A13A2E 令()6132 则(1)1 (2)5 (3)5是(A)的特征值 故 |A*3A2E||6A13A2E||(A)|
6 设A为n阶矩阵 证明AT与A的特征值相同 证明 因为

线性代数第五章 相似矩阵

线性代数第五章 相似矩阵
l1 (k 1 1 ) X 1 l2 (k 1 2 ) X 2 L lk (k 1 k ) X k 0 l1 (k 1 1 ) l2 (k 1 2 ) L lk (k 1 k ) 0 1 ,L , k 1是互不相等的k+1个特征值,则
AX1 1 X1
, AX n 1 X 1 , 2 X 2 , L , n X n
AX 2 2 X 2
L
AX n n X n
由于P X 1 , X 2 ,L , X n 是可逆矩阵, X 1 , X 2 ,L , X n 都不是零向量,它们线性无关。所以, A有n个线性无关的特征向量。证毕
所以kX 2 (k 0)是对应于2 3 1的全部特征向量.
求特征值和特征向量的步骤
(1) 解特征方程 E - A 0, 求得特征值1,2, ,n L (2) 对每一个i,求解方程组
(i E - A) X = 0 的基础解系
基础解系为X i1 , X i 2 ,L , X iri , 则k1 X i1 k2 X i 2 L kri X iri 为A 的属于 特征值 i 的全部特征向量
当1 2时, 解方程(2 E A) X 0
3 1 0 1 行变换 2 E A 4 1 0 0 1 0 0 0
0 1 0
0 0
0
x1 0 x2 0 x c 3
得基础解系:
0 X1 0 , 1
当s 1时,X1 0, 结论成立;
假设s k时结论成立; 当s k 1时, k+1个数l1 , L , lk , lk 1满足 设有
l1 X 1 l2 X 2 L lk X k lk 1 X k 1 0

线性代数第五章

线性代数第五章

1.内积 2.向量旳范数 3.许瓦兹不等式
x x1 , x2 , , xn T , y y1 , y2 , , yn T
称 xT y x1 y1 x2 y2 xn yn
为向量 x与 y 旳内积,记为 x , y.
2
内积满足下列运算规律:
⑴ x, y y, x
⑵ kx , y kx ,y
15
三.正交矩阵与正交变化
1. 正交矩阵
1.正交矩阵 2.正交变换
定义5.2 假如 n阶方阵 A 满足AT A I
则称 A 为正交矩阵.
定理5.3 假如 A , B均为 n 阶正交矩阵,
那么:⑴ A1 AT
⑵ AT 即 A1 为正交矩阵

1 2
A A
A A

2n
阶正交矩阵
⑷ AB,BA 都是正交矩阵
8
定理5.2 若 1 , 2 , , r为 n 维正交向
量组,且 r n ,则必有非零 n 维向量 x , 使 x 与 1 , 2 , , r 两两正交.
推论:对 rr n个两两正交旳 n 维非零向量,总
能够添上 n r个 n 维非零向量,使 n 个向
量两两正交,从而这 n 个向量就构成了向量空
第五章 特征值 特征向量 二次型
第一讲 正交向量组与正交矩阵 第二讲 方阵旳特征值与特征向量 第三讲 相同矩阵与实对称矩阵旳对角化 第四讲 二次型及其原则形 第五讲 惯性定理和正定二次型 第六讲 习题课
1
第一讲 正交向量组与正交矩阵
一.向量旳内积与许瓦兹
(Schwarz)不等式
1.内积
内积定义:对 n维列向量
19
第二讲 方阵旳特征值和特征向量
1.定义

同济大学线性代数课件__第五章相似矩阵及二次型

同济大学线性代数课件__第五章相似矩阵及二次型

p3
0 4
30

1 0 1
P ( p1, p2 , p3 ) 0 1 0
1 1 4

1
P 1AP 2
2
31
性质:若l 是 A 的特征值, 即 Ax = lx (x≠0),则
(1) kl 是 kA 的特征值(k是常数),且 kAx = klx (2) lm 是 Am 的特征值(m是正整数),且 Amx = lmx (3) 若 A可逆,则l-1是 A-1的特征值, 且 A-1x = l-1x
16
定义4 若 n 阶矩阵 A 满足 A A E 则称 A 为正交矩阵, 且 A1 A
令 A (1,2 , ,n )
A
A
1
2
(1
,
2
,
n
,n
)
11
21
n1

[i , j ] i j
ij
1, 0,
i i
j j
1 2 2 2
n 2
1 n 2 n
nn
17
特征值及二次型问题是线性代数的重要问题。
[ x ty, x ty] 0, t [ x, x] 2[ x, y]t [ y, y]t 2 0
(1) [ x, y ] = [ y, x ]; [ x, y]2 [x, x][ y, y]
(2) [lx, y] = l[ x, y ];
(3) [ x + y, z ] = [ x, z ] + [ y, z ];
解: (1) A2 2A 3E 有特征值 l 2 2l 3
(2) 3阶阵 A有特征值 1, -1, 2,故 | A | 2,A可逆。 A 3A 2E 有特征值 -1,-3,3

线性代数 第五章 向量空间

线性代数 第五章 向量空间

称为n元向量空间。
,an P
向量空间---基和维数
向量空间V中若向量组 1 ,2 , ,k 为极大
向 线性无关组,则称其为向量空间V的一组基
量 维数:基中所含向量的个数,dimV k.
空 Pn 的基和维数:由n个n元向量组成的极大

线性无关组。故基不唯一。
1,2, ,n , i 0,0, ,1, ,0T
m2 n 2

mn1n , mn2n ,
m11
M=

m21

mnnn .

mn1
m12 m22
mn2
m1n
m2
n


mnn

1 2
n 1 2
n M
M称为基(I)到基(II)的过渡矩阵。(M可逆?)
向量空间---过渡矩阵
(I ) 1,2, ,n; (II) 1, 2, , n 是 Pn

Байду номын сангаас
k31 3 , 1 / 1, 1 ; k32 3 , 2 / 2 , 2 ;
3 3
3 , 2 2 , 2
2
3, 1 1, 1
1.
向量空间---作业
向 P139 6 量 P142 3(1), 3(2) 空 P147 6,7
, , , ;
, 0, 且 , 0 O.
, , 是 Rn 中任意向量,k为任意实数。
向量空间---内积和标准正交基
向量的长度:|| || ,

单位向量: || || 1
向 的两组基,向量 在基(I)、(II)的坐标分

线性代数课件PPT第五章 线性变换 S1 线性变换的定义

线性代数课件PPT第五章 线性变换 S1 线性变换的定义

由于T1(p+q)=1, 但T1(p)+T1(q)=1+1=2,
所以
T1(p+q)T1(p)+T1(q).
18
5
T(kp1)=A(kp1)=kAp1=kT(p1).
所以, 变换T是线性变换.
y P'

x y
r cos r sin
, 于是
T
x y
x cos x sin
y sin y cos
p
o
x
r r
cos cos
cos sin
r sin sin r sin cos
r r
cos( sin(
)),
例5 设V是数域F上的线性空间,k是F中的某个数 , 定义V的变换如下:
k
这是一个线性变换,称为由数k决定的数乘变换.
当k=1时,便得恒等变换,当k=0时,便得零变换 .
8
例6: 在R3中定义变换: T(x1, x2, x3)= (x12, x2+x3, 0),
则T不是R3的一个线性变换.
证明: 对任意的=(a1, a2, a3), =(b1, b2, b3)R3, T( + )=T(a1+b1, a2+b2, a3+b3)
上式表明: 变换T把任一向量按逆时针方向旋转角.
一般地, 在线性空间Rn中, 设A为n阶方阵, xRn, 变换 T(x)=Ax是本节所定义的线性变换.
事实上, 对任意的x, xRn,
T(x+x) =A(x+x) =Ax+Ax =T(x)+T(x),
T(kx) =A(kx)=kAx =kT(x).
6

线性代数第5章课件

线性代数第5章课件

内积是向量的一种运算,用矩阵的记号表示,当 x与 y 都是列向量时,有
[x,y] = x' y
例 计算[x, y],其中x, y如下 : (1)x = (0,1,5,-2), y = (-2,0,-1,3); (2)x = (-2,1,0,3), y = (3,-6,8,4),
解 (1) [ x, y] = 0 • (-2) 1• 0 5• (-1) (-2) • 3 = -11
第五章
特征值与二次型
第五章主要内容
第一节 向量的内积 第二节 方阵的特征值与特征向量 第三节 相似矩阵 第四节 化二次型为标准型 第五节 正定二次型
第一节 向量的内积
定义1 设有n 维向量
x1
y1
x = x2 , y = y2
....
xn
yn
令 [x,y] = x1 y1+ x2 y2 +…+ xn yn, 则 [x,y] 称为向量x与 y 的 内积
定义2 令 x = [x, x] = x12 x22 xn2
称为 n 维向量 x 的长度(或范数)
x
若向当量xx
=10时,则, 称xxx为是单单位位向量向.量.
向量的长度具有下述性质:
(i)非负性:当x 0时,x 0;当x = 0时,x =0;
(ii)齐次性: x = x ;
(iii)三角不等式 : x y x y ;
上述从线性无关向量组a1 , …,ar 导出 1, 2 ,K , r 的 过程称为施密特正交化过程。它不仅满足1, 2 ,K , r 与a1 , …,ar 等价,还满足:对任何k ( 1≤ k ≤r ) ,向量组 1, 2 ,K , k 与a1 , …,ak 等价。

线性代数第五章特征值

线性代数第五章特征值

3.若n阶实对称矩阵A满足A2 O , 则A O . ( 组线性无关. 5.若n阶实对称矩阵A (a ij )
nn
) )
4.若齐次线性方程组 0只有零解, 则A的列向量 Ax ( 正定, 则aii 0( i 1,2, ( )
, n). 二、填空题(每小题3分,共12分):
第五节 二次型及其标准形
第六节 用配方法化二次型成标准形
第七节 正定二次型
常见问题
1.将线性无关向量组化为正交单位向量组 2.求方阵的特征值与特征向量
3.已知A的特征值,求A的“多项式”的特征值 和行列式
4.方阵的对角化(WHEN & HOW) 5.对称阵的正交对角化 6.二次型的矩阵、秩、标准形、规范形、正惯性 指数、正定性 7.矩阵的相似、正交阵、正定性
则 y C x 0,

i -1
f x f Cy ki yi2 .
n
x ki yi2 0. f
n i 1
必要性
假设有 ks 0, 则当y es (单位坐标向量) 时,
f Ces k s 0.
. 显然 Ces 0, 这与 f 为正定相矛盾
第五章 相似矩阵及二次型
正交向量组,施密特正交化过程把一 组向量规范正交化,特征值及相关性 质,正交矩阵的概念,求正交矩阵将 实对称矩阵化成对角阵,二次型的矩 阵与二次型的秩,二次型的标准形 (利用正交变换)
模拟试题(一)
一、是非、选择题(每小题3分,共15分):
1.设A与B均为n阶方阵, 则下列结论中 成立. ( A) det( AB) 0, 则A O, 或B O; ( B ) det( AB) 0, 则det A 0, 或 det B 0; (C ) AB O, 则A O, 或B O; ( D) AB O, 则det A 0, 或 det B 0.

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

Ak
( PP 1 )k
Pk P1
0 P
k
5
P1
上例中,对二阶方阵AP,存在可逆矩阵P, 使得P1AP .
对角阵的对角元是A的特征值,可逆阵P 即为相应对角元位置的特征值的线性无关的特 征向量组成.
接下来,主要研究方阵化对角阵的问题.
定义 设 A, B 都是 n 阶矩阵,若存在可逆矩阵P,使得 P1AP B
特征值, A 为 A 的一个特征值.
问题( :1)已知是A的特征值,求f (A)特征值
(2)已知f (A)=O,求A的特征值
例6 设3阶矩阵A的一个特征值是-3,则-A2必有 一个特征值 ___
例7
设A=
1 0
2 3
,求B=A2
-2A+3E 的所有特征值 2
例8 设三阶矩阵A的特征值分别为1,2,3, 则 A 2E __
4 1 3
( 1) 22 ,
令 ( 1) 22 0
得A的特征值为1 1,2 3 2.
当1 1时,解方程E A x 0.由
1 1 1 1 0 1
E
A
0
3
0
0
1
0
,
4 1 4 0 0 0
得基础解系
1 p1 0, 1
故对应于1 1的全体特征向量为
k p1
E A
a21
L
a22 L
LL
an1
an2 L
a1n
a2n
L
ann
称E A 为A的特征方阵 .
记 f E A ,它是 的 n 次多项式,
称其 为方阵 A的 特征多项式 .
称以 为未知数的一元n 次方程 E A 0
为A的特征方程 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称性: [x, y] = [y, x]. 证:
[x, y] x1 y1 x2 y2 L xn yn y1 x1 y2 x2 L yn xn [y, x]
线性性: [l x, y] = l[x, y].
[x + y, z] = [x, z] + [y, z] 证:
[l x, y] (l x)T y l xT y l( xT y) l[ x, y]
( || x || + || y ||)2=(x,x)+2(|| x |||| y ||)+(y,y) 由施瓦兹不等式|(x,y)|≤ || x |||| y || || x + y || ≤ || x || + || y ||
x + yx y
y x
三、向量间的夹角
由施瓦兹(Schwarz)不等式
[l x, l x] l[x, l x] l[l x, x] l 2[ x, x]
|| l x || [l x,l x] l 2[x, x] | l | [x, x] | l |43; y || ≤ || x || + || y ||. 证: ∵ || x + y||2=(x+y,x+y)=(x,x)+2(x,y)+(y,y)
0

x1 x2
0
x3
1
1
从而有基础解系
0
,令
a3
0
则a3即为所求.
1
1
五、规范正交基与施密特正交化过程
定义: n 维向量e1, e2, …, er是向量空间 V R中n 的向量, 满足
✓ e1, e2, …, er 是向量空间 V 中的一个基(最大无关组); ✓ e1, e2, …, er 两两正交; ✓ e1, e2, …, er 都是单位向量, 则称 e1, e2, …, er 是V 的一个规范正交基.
[a2, a3] = a2T a3 = x1 - 2 x2 + x3 = 0
Ax
1 1
1 2
1 1
x1 x2 x3
0
0
1
Ax
1
1 2
1 1
x1 x2 x3
0
0
1 1 1 r 1 1 1 r 1 1 1 r 1 0 1
1
2
1
~
0
3
0
~
0
1
0
~
0
1
= k1 [a1, a1] + k2 [a1, a2] + … + kr [a1, ar] = k1 [a1, a1] + 0 + … + 0 = k1 ||a1||2 从而 k1 = 0. 同理可证,k2 = k3 = … = kr =0. 综上所述, a1, a2, …, ar 线性无关.
1
1
P(x1, x2)
x2
在二维空间中,若令 x = (x1, x2)T,则
| OP | x12 x22 [x, x]
O
x1
P x1
在三维空间中,若令 x = (x1, x2, x3)T,则
x3
x2 O
| OP | x12 x22 x32 [ x, x]
二、向量的长度
定义:令
|| x || [ x, x] x12 x22 L xn2 0
[x, y]2 ≤ [x, x] [y, y] = || x || ·|| y ||
当 x ≠ 0 且 y ≠ 0 时,
[x, y] 1
|| x || || y ||
定义:当 x ≠ 0 且 y ≠ 0 时,
arccos [ x, y]
|| x || || y ||
称为 n 维向量 x 和 y 的夹角.
[ x y, z] ( x y)T z ( xT yT ) z ( xT z) ( yT z) [ x, z] [ y, z]
当 x = 0(零向量) 时, [x, x] = 0; 当 x ≠ 0(零向量) 时, [x, x] > 0. [x, x] = x12 + x22 + … + xn2 ≥ 0
9
施瓦兹(Schwarz)不等式 [x, y]2 ≤ [x, x] [y, y]
证:对 lR [x+ly, x+ly]0
即[x, x]+2l[x, y]+l2 [y, y] 0 于是:(2[x, y])2-4[x, x][y, y]0 [x, y]2 ≤ [x, x] [y, y]
回顾:线段的长度
线性代数第五章
相似矩阵及二次型
第五章二次型理论是一个独立的 内容与前面四章的联系不是太大, 但求特征向量需要涉及求齐次线 性方程组的解,因此也可以看成 是方程组理论、矩阵理论、向量 组理论的一个应用。
§1 向量的内积、长度及正交性
一、向量的内积 二、向量的长度 三、向量间的夹角 四、正交向量组及其性质 五、规范正交基与施密特正交化过程 六、正交阵
称 || x ||为 n 维向量 x 的长度(或范数). 当 || x || = 1时,称 x 为单位向量.
向量的长度具有下列性质:
• 非负性:当 x = 0(零向量) 时, || x || = 0; 当 x≠0(零向量) 时, || x || > 0.
• 齐次性: || lx || = | l| · || x || .
例:已知3
维向量空间R3中两个向量
a1
1
,
a2
2
1
1
正交,试求一个非零向量a3 ,使a1, a2, a3 两两正交.
分析:显然a1⊥a2 .
解:设a3 = (x1, x2, x3)T ,若a1⊥a3 , a2⊥a3 ,则
[a1, a3] = a1T a3 = x1 + x2 + x3 = 0
当 [x, y] = 0,称向量 x 和 y 正交.
y
x
显然:若 x = 0,则 x 与任何向量都正交.
四、正交向量组及其性质
定义:两两正交的非零向量组成的向量组称为正交向量组. 定理:若 n 维向量a1, a2, …, ar 是一组两两正交的非零向量, 则 a1, a2, …, ar 线性无关. 证明:设 k1a1 + k2a2 + … + kr ar = 0(零向量),那么 0 = [a1, 0] = [a1, k1a1 + k2a2 + … + kr ar]
1 0 0 0
例:
e1
0 0
,
e2
1 0
,
e3
0 1
,
e4
0
0
0
0
0
1
是 R4 的一个规范正交基. e1, e2, e3是R4 中由e1, e2, e3生成的 向量空间的一个规范正交基。
相关文档
最新文档