圆柱体积公式推导(动画演示好)PPT课件

合集下载

圆柱体积公式推导完整(动画演示好)ppt课件

圆柱体积公式推导完整(动画演示好)ppt课件
(1)已知圆的半径和高,怎样求圆柱的体积? (2)已知圆的直径和高,怎样求圆柱的体积? (3)已知圆的周长和高,怎样求圆柱的体积?
可编辑课件
64
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d)2h
2
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
可编辑课件
65
12×12×50=7200(立方厘米) 7200 ÷90=80(厘米)
答:这根钢材长80厘米。
可编辑课件
61
3.14 ×0.42×5=2.512(立方米)
答:它的体积是2.512立方米。
可编辑课件
62
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
可编辑课件
63
讨论
的( )相等。长方体的高就是圆柱体的(
),长方体的底面积就是圆柱体的(
)
,因为长方体的体积=(
底面积×高
),所以圆柱体的体积=(底面积×高)。用 字母“V”表示( ),“S”表示( ),“h”表示( ),那么,圆柱体体积 用字母表示为( )
可编辑课件
57
圆柱体积=底面积×高
1.5米=150厘米
50×150=7500(立方厘米)
可编辑课件
1
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
可编辑课件
2
可编辑课件
3
可编辑课件
4
可编辑课件
5
可编辑课件
6
可编辑课件
7
可编辑课件
8
可编辑课件
9
可编辑课件

可编辑课件
11

圆柱体体积的公式推导

圆柱体体积的公式推导

想一想、填一填:
把圆柱体切割拼成近似( 长方体 ,它们 的( 体积 )相等。长方体的高就是圆柱体的 ( 高 ),长方体的底面积就是圆柱体的 (底面积 ),因为长方体的体积=(底面积×高), 所以圆柱体的体积=( 底面积×高 )。用 字母V表示( 体积),S表示( 底,面h积表示 ( )高,那么,圆柱体体积用字母表示为 ( V)=Sh
例 一根圆柱形的钢材,底面积是50平方厘米, 高是2.1米。它的体积是多少
2.1米=210厘米 50 ×210=10500(立方厘米) 答:它的体积是10500立方厘米。
50平方厘米=0.005平方米
0.005 ×2.1=0.0105(立方米) 答:它的体积是0.0105立方米。
练习: 1、求下面圆柱体的体积。(单位:厘米)
3
12
10周长是12.56厘米,高
是10厘米。它的体积是多少
一个圆柱的体积是80立方厘米, 底 面积是16平方厘米。它的高是多 少厘米
2、过把瘾,我是小判官。
(1)一根圆钢所占空间的大小
是指它的体积。
(√ )
(2)长方体、正方体和圆柱体
都可用底面积乘高来计算
它们的体积。
圆柱体体积的公式推导
It is applicable to work report, lecture and teaching

宽 长
棱长
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
底面积
用S表示底面积,正方体、长方体的体积计算公式都可以 写成:
V=sh
圆的面积推导
r
c 2
S=πr2
(√ )
(3)体积相等的两个圆柱体, 它们的底面积一定相等。( × )

北师大版小学六年级下册数学《圆柱的体积》课件PPT

北师大版小学六年级下册数学《圆柱的体积》课件PPT

分享收获!
作业:
寻找生活中的圆柱形物体,
测量出相关数据,并计算出体积。
ห้องสมุดไป่ตู้
高是9厘米,它的体积是多少?(只列式不计算)
3.14×(15.5÷3.14÷2) ×9 =体积
2
底面半径 底面积
6dm
如果将这根木料的高锯掉4分 米,剩下部分的体积是多少? r: 6÷2=3(分米) 2 S: 3.14×3 =28.26(平方分米) h: 10-4=6 (分米) V: 28.26×6=169.56(立方分米) 答:剩下部分的体积是 169.56立方分米。
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
v =a b h

v
V=s底 h

=a
3
底面积

求出下面圆柱的体积。
S=60cm2
V=Sh=60X4=240(cm )
3
3.14 ×0.42×5=2.512(立方米) 答:它的体积是2.512立方米。
一个圆柱形瓶子,底面周长是15.5厘米,
北师大版六年级数学下册
教学目标
1.通过切割圆柱体,拼成近似的长方体, 从而推导出圆柱的体积公式这一教学过程, 向同学们渗透转化思想。 2.通过圆柱体体积公式的推导,培养同学 们的分析推理能力。 3.理解圆柱体体积公式的推导过程,掌握 计算公式;会运用公式计算圆柱的体积。
高h 长a 宽 b 棱长a

圆柱体积公式推导课件(动画演示)

圆柱体积公式推导课件(动画演示)
利用率。
圆柱体的局限性
由于圆柱体的形状限制,它可能 不适合所有应用场景。例如,在 需要更复杂形状或特定功能的场
合,其他形状可能更适合。
02
圆柱体积公式推导
圆柱体积公式推导的背景
圆柱体是三维空间中常见的几何形状之一,其体积计算在数学、物理、工程等领域 具有广泛的应用。
圆柱体积公式推导的目的是为了解决实际问题,如计算圆柱形物体的容积、液体或 气体的体积等。
圆柱体积公式的推导过程。
圆柱体积公式的应用
圆柱体积公式可以应用于计算 圆柱形物体的容积,如水桶、 油罐等。
圆柱体积公式也可以用于计算 液体或气体的体积,如在化学 实验、流体动力学等领域的应 用。
圆柱体积公式还可以用于计算 圆柱形物体的质量、密度等物 理量,如在物理学、工程学等 领域的应用。
03
动画演示
未来圆柱体积公式推导的应用前景
随着数学教育的不断深入和普及,圆柱体积公式的推导将会被广泛应用于各个领 域。同时,随着虚拟现实技术的不断发展,未来的圆柱体积公式推导将会更加真 实、生动和有趣。
THANKS
感谢观看
圆柱体与球体的关系
球体的体积是圆柱体的2/3,但它们的 表面积相等。
05
总结与展望
总结圆柱体积公式推导的过程
圆柱体积公式推导过程
通过动画演示,将圆柱体切割成无数个小的长方体,然后 分别求出这些小长方体的体积,最后将这些体积相加,得 到圆柱体的总体积。
动画演示的优点
通过动画演示,可以直观地展示圆柱体被切割和重组的过 程,帮助学生更好地理解圆柱体积公式的推导过程。
圆柱体积公式推导课件(动画演示)
目 录
• 圆柱体介绍 • 圆柱体积公式推导 • 动画演示 • 圆柱体积公式的实际应用 • 总结与展望

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

教学新知
例二:计算圆柱的表面积。(单位:cm)(π取3.14)
S=2π×0.8+2π≈11.304 S=2π×0.5×3.5+2π×0.5²≈12.56
教学新知
例三:一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油桶至少 需要铁皮多少平方米?(得数保留两位小数)
S=2π×0.3×1+2π×0.3²≈2.45(㎡)
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
【讲解】根据“水桶的容积是80立方分米”和“里 面装了 2/5的水”这两个条件,我们可以求出水桶 内水的体积,然后用水的体积除以水桶底面积得出 水桶内水的深度。 80× =32(立方分米)……水桶内水的体积 32÷10=3.2(分米)……水桶平均剖成两片,其中一片如图所示。(单位:厘米) (1)剖面面积是多少平方厘米? (2)这片木料的表面积和体积各是多少?
(1)S1=20×12=240(cm²) (2)S2=πrh+πr²+S1=3.14×6×20+3.14×6²+240=792.84(cm²)
V=1/2S3h=1/2×3.14×6²×20=1130.4(cm³)
课后习题
7.把一根长2.4米的圆柱形状的木料锯成4段,表面积增加了 0.18平方米。
这根木料原来的体积是多少立方米?
S=0.18÷6=0.03(m²)
V=sh=0.03×2.4=0.072(m³)
8.一个圆柱高4厘米,底面半径是2厘米。如果将它的底面平均分成若干份,

圆柱体体积公式推导PPT课件

圆柱体体积公式推导PPT课件
(体积 )。
3、这个长方体的底面积就等于圆柱体的
(底面积 )。 4、这个长方体的高就是圆柱体的(高 )
5、因为 长方体的体积=底面积×高,
所以 圆柱体的体积( 底面积×高 )
公式推导
圆柱的体积
分成的份数越多, 就越接近长方体。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
70
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
讲师:XXXXXX XX年XX月XX日
二、自主探究阶段
如果 圆柱的体积用V表示,底面积
用S表示,高用h表示,则圆柱的体积
计算公式是 v=( sh
)
二、自主探究阶段
例:一根圆柱形钢材,底面积是50平 方厘米,高是2.1米。它的体积是多少?
二、自主探究阶段
同步练习:完成课本37页“做一做” 的第1题。
二、自主探究阶段
1、如果已知圆柱底面的半径r和高h,圆柱
圆柱的体积
第一课时
一、探究准备阶段
1、圆的面积计算公式( s r 2 )
2、一个圆的半径是3分米,它的面积是
( 28.26)平方分米;圆的直径是2厘米, 它的面积是( 3.14 )平方厘米。
3、 长方体的体积=( 长×宽×高 ) 或 长方体的体积=( 底面积×高 )
4、一个长方体的底面积是12平方米,高
一台压路机的前轮是圆柱形,轮宽2米,半径1 米.它的体积是多少立方米?
4、求下面圆柱的体积.(单位:厘米)
三、应用深化阶段
5.发展练习。

北师大版数学第十二册《圆柱的体积》优秀教学课件PPT

北师大版数学第十二册《圆柱的体积》优秀教学课件PPT
北师大版六年级数学下册
教学目标
• 1.通过切割圆柱体,拼成近似的长方体, 从而推导出圆柱的体积公式这一教学过程, 向同学们渗透转化思想。 • 2.通过圆柱体体积公式的推导,培养同学 们的分析推理能力。 • 3.理解圆柱体体积公式的推导过程,掌握 计算公式;会运用公式计算圆柱的体积。
高h 长a 宽 b 棱长a
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
v =a b h

v
V=s底 h正=a3 Nhomakorabea 底面积

求出下面圆柱的体积。
S=60cm2
V=Sh=60X4=240(cm )
3
3.14 ×0.42×5=2.512(立方米) 答:它的体积是2.512立方米。
一个圆柱形瓶子,底面周长是15.5厘米,
分享收获!
作业:
寻找生活中的圆柱形物体,
测量出相关数据,并计算出体积。
高是9厘米,它的体积是多少?(只列式不计算)
3.14×(15.5÷3.14÷2) ×9 =体积
2
底面半径 底面积
6dm
如果将这根木料的高锯掉4分 米,剩下部分的体积是多少? r: 6÷2=3(分米) 2 S: 3.14×3 =28.26(平方分米) h: 10-4=6 (分米) V: 28.26×6=169.56(立方分米) 答:剩下部分的体积是 169.56立方分米。

圆柱体积公式ppt课件

圆柱体积公式ppt课件

02
圆柱体积公式
V=πr2hpi r^2 hπr2h(其中 r 是圆柱的底面半径,h 是圆柱的高)。
03
比较
球体体积公式和圆柱体积公式在形式上有所不同,但它们都涉及到半径
的平方和高的乘积。在某些情况下,可以通过调整球体和圆柱的半径和
高,使它们的体积相等。
圆柱体积公式与长方体体积公式的比较
长方体体积公式
V=lwhtext{V} = l w hV=lwh(其中 l 是长方体的长度,w 是宽度,h 是高度)。
圆柱体积公式
V=πr2hpi r^2 hπr2h(其中 r 是圆柱的底面半径,h 是圆柱的高)。
比较
长方体体积公式和圆柱体积公式在形式上有所不同,但它们都涉及到三个维度的乘积。长 方体的三个维度可以看作是圆柱底面半径、高和任意一个垂直于底面的直径。
圆柱体与球体的组合
圆柱体与平面体的组合
在机械工程中,经常将圆柱体和球体 组合使用,如轴承、滚珠丝杠等。
在电子、通信等领域中,经常将圆柱 体和平面体组合使用,如微波传输线 、天线等。
圆柱体与圆锥体的组合
在建筑工程中,经常将圆柱体和圆锥 体组合使用,如混凝土桩基、隧道设 计等。
THANKS
感谢观看
圆柱体的基本属性
总结词
圆柱体的基本属性包括底面半径、高 、底面周长和表面积等。
详细描述
圆柱体的底面半径是底面圆的半径, 高是旋转轴到圆柱体底面的距离。底 面周长是圆的周长,表面积是圆柱体 侧面积和两个底面积的总和。
圆柱体的应用
总结词
圆柱体的应用广泛,包括建筑、机械、化工等领域。
Байду номын сангаас
详细描述
在建筑领域,圆柱体常用于支撑结构,如桥梁和高层建筑的立柱。在机械领域, 圆柱体用于各种旋转机械的主体结构,如电机转子、泵和涡轮机等。在化工领域 ,圆柱形容器常用于存储液体和气体,如储罐和反应釜。

圆柱体积公式推导课件(动画演示)

圆柱体积公式推导课件(动画演示)
例如,圆柱体体积的概念可以应用于容器的设计、建筑材料的储存以及流体 力学中的问题。
圆柱体积相关的思考题和练习题
在这个部分,我们将提供一些思考题和练习题,帮助你巩固对圆柱体积公式的理解和应用。 这些问题将挑战你的思维,并帮助你更深入地理解圆柱体积公式的原理。
总结和结论
通过这个演示课件,我们深入学习了圆柱体积公式的定义、意义、推导过程 以及实际应用。 掌握圆柱体积公式将使你在解决几何问题和应用数学中更具自信。
ห้องสมุดไป่ตู้
公式的应用示例:计算圆柱体 的体积
了解圆柱体积公式的应用是学习和掌握该公式的关键。在这个部分,我们将 通过实际的计算示例来展示如何使用该公式计算圆柱体的体积。
通过运用所学的知识,你可以轻松地计算出任意大小的圆柱体的体积。
实际应用:圆柱体体积在日常 生活中的应用
圆柱体体积在我们的日常生活中发挥了重要作用。在这个部分,我们将探索 一些实际应用场景。
圆柱体积公式推导课件 (动画演示)
欢迎来到我们的圆柱体积公式推导课件!在这里,我们将一起探索圆柱体积 公式的定义和意义,并通过动画演示推导过程。让我们开始吧!
圆柱体积公式的定义和意义
了解圆柱体积公式的定义和意义是理解它在几何学中的重要性的关键。圆柱体积公式为我们提供了计算圆柱体 体积的方法。 通过计算圆柱体的体积,我们可以衡量其容纳能力、储存空间,甚至是流体在其中的容纳量。
圆柱体积公式的推导过程
圆柱体积公式的推导过程是理解和应用该公式的关键。在这个部分,我们将通过演示动画来推导圆柱体积公式。 我们将探讨不同直径和高度的圆柱体,并考虑它们如何构成一个整体,从而得到圆柱体积公式的结果。
演示动画:推导圆柱体积公式
在这个部分,我们将通过演示动画的形式展示圆柱体积公式的推导过程。通 过图示和动画,你将看到不同步骤的推导过程。 这种可视化的方式将帮助你更好地理解圆柱体积公式的来源和原理。

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)
(打结处大约用彩带15厘米) (1)S=2πrh+2πr²=2×3.14×15×20+2×3.14×15²=3297(cm²)
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径 2米的半圆形。
(1)搭建这个大棚大约要用多少 平方米的塑料薄膜?
(1)V=sh=4²π×3.5=175.84(m³) 175.84m³=175.84t (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.16(m²)
教学新知
试一试:一个圆柱形蛋糕盒,底面半径是15厘米,高是20厘米。 (1)做这个蛋糕盒大约要用硬纸板多少平方厘米? (2)用彩带捆扎这个蛋糕盒(如下图),至少需要彩带多少厘米?
18.84dm
2m
282.6cm² 157cm³
244.92dm² 282.6dm³
37.68m² 15.7m³
教学新知
算一算:一个圆柱形油桶,从里面量,底面直径是40厘米,高是50厘米。 (1)它的容积是多少升? (2)如果1升柴油重0.85千克,这个油桶可装柴油多少千克? (3)做这样一个油桶,至少需要铁皮多少平方分米?(得数保留一位
教学新知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了 4厘米,你
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
教学新知

圆柱体积公式推导课件动画演示68页PPT

圆柱体积公式推导课件动画演示68页PPT

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
圆柱体积公式推导课件动画演示
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 Nhomakorabea下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

《圆柱的体积》PPT课件

《圆柱的体积》PPT课件

面测量得到的。)
8cm
杯子的容积。
杯子的容积: 50.24 ×10 =502.4(cm3)
10cm
杯子的底面积: 3.14 ×(8÷2)2
=3.14 ×16 =50.24(cm2)
=502.4(mL) 牛奶的体积: 240×2=480(mL) 502.4>480 答:杯子能装下2袋这样的牛奶。
课堂练习
小明和妈妈出去游玩,带了一个圆柱形保温壶,从里 面量底面直径是8cm,高是15cm。如果两人游玩期间 要喝1L水,带这壶水够喝吗?
保温壶的底面积:
3.14×(8÷2)2 =3.14×16 =50.24(cm2)
保温壶的容积:
50.24×15=753.6(cm3) =0.7536(L)
1L>0.7536L
答:带这壶水不够喝。
课堂练习
一根圆柱形木料底面直径是0.4m,长5m。如果做一张 课桌用去木料0.02m3,这根木料最多能做多少张课桌?
木料的体积:
3.14×(0.4÷2)2×5 =3.14×0.2 =0.628(m3)
“退一”法。
0.628÷0.02=31.4(张)
答:这根木料最多能做31张课桌。
已知底面直径和高求圆柱体积。 V=π(d2 )2h =3.14×(1÷2)2×10 =7.85(立方米) 答:挖出的土有7.85立方米。
探究新知
下图的杯子能不能装下2袋这样的牛奶?(数据是从杯子 里面测量得到的。)
思考:
8cm
1.已知什么?
10cm
2.要求什么?
3.要注意什么?
探究新知
下图的杯子能不能装下2袋这样的牛奶?(数据是从杯子里
)
于土的高度有关。
两个花坛的体积

圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)

圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)

统一公式:V=( Sh )
新知讲解
根据长方体、正方体的体 积计算公式以及左图叠硬 币过程,你能大胆猜想一 下圆柱体的体积应该怎样 求吗?
从叠硬币来看,用“底积 ×高”能计算出圆柱的体积。
新知讲解
你还记我们是如何推导出圆的面积计算公式的吗?
转化的思想
C r
2
新知讲解
a.你准备把圆柱体转化成什 么立体图形?
新知讲解

笑笑了解到一根柱子 从水杯里面量,水
的底面半径为0.4m,高 杯的底面直径是6cm,
为5m。你能算出它的 高是16cm,这个水
体积吗?
杯能装多少毫升水?
柱子的体积: 3.14×0.42×5
=0.5024×5 =2.512(m3)
杯子的容积:
3.14×(6÷2)2×16
=28.26×16 =452.16(cm3) 452.16 cm3=452.16 mL
04
会计算只给底面半径或直径和高的圆柱体的体积。
长方体体积=长×宽×高 正方体体积=边长³ 长(正)方体的体积=底面积×高
新知讲解
回忆了老朋友, 我们再来认识一 位新朋友。
老朋友
新朋友 (圆柱体)
新知讲解
他们在讨论什么问题呢?
一个圆柱体所占空间的大小叫做圆柱的体积。
新知讲解
你能根据已有知 识补充完整并用 语言来叙述吗?
V=( abh)
V=( a3 )
新知讲解
1. 想一想,填一填。 (1)7.8立方米=( 7800 )立方分米
3升56毫升=( 3056 )毫升=( 3056 )立方厘米 (2)一个圆柱形水杯(水杯厚度忽略不计),它的底面积是10 cm2, 高是12 cm,则这个水杯可以装水 ( 0.12 )升。 (3)一个圆柱的体积是62.8立方厘米,底面半径是2厘米,则高是 ( 5 )厘米。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体的体积=圆柱体的体积
12×12×50=7200(立方厘米) 7200 ÷90=80(厘米)
答:这根钢材长80厘米。
CHENLI
61
3.14 ×0.42×5=2.512(立方米)
答:它的体积是2.512立方米。
CHENLI
62
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
CHENLI
65
CHENLI
66
13
CHENLI
14
CHENLI
15
CHENLI
16
CHENLI
17
CHENLI
18
CHENLI
19
CHENLI
20
CHENLI
21
CHENLI
22
CHENLI
23
CHENLI
24
CHENLI
25
CHENLI
26
CHENLI
27
CHENLI
28
CHENLI
29
CHENLI
底面积
CHENLI
55
长方体的体积=底面积×高
圆柱体的体积= 底面积 ×高
CHENLI
56
想一想、填一填:
把圆柱体切割拼成体的
( ),长方体的底面积就是圆柱体的
(
),因为长方体的体积=( 底面积×高
),所以圆柱体的体积=(底面积×高)。用
字母“V”表示( ),“S”表示
30
CHENLI
31
CHENLI
32
CHENLI
33
CHENLI
34
CHENLI
35
CHENLI
36
CHENLI
37
CHENLI
38
CHENLI
39
CHENLI
40
CHENLI
41
CHENLI
42
CHENLI
43
CHENLI
44
CHENLI
45
CHENLI
46
CHENLI
CHENLI
九 潮 中 心 小 学 : 杨 秀 苏
1
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
CHENLI
2
CHENLI
3
CHENLI
4
CHENLI
5
CHENLI
6
CHENLI
7
CHENLI
8
CHENLI
9
CHENLI
10
CHENLI
11
CHENLI
12
CHENLI

),“h”表示( ),那么,圆柱
体体积用字母表示为( )
CHENLI
57
圆柱体积=底面积×高
1.5米=150厘米
50×150=7500(立方厘米)
答:它的体积是7500立方厘米。
CHENLI
58
CHENLI
努 力 吧 !
59
练一练: 1、计算下面圆柱的体积。
8dm
2
CHENLI
4cm
2
60
2、 一根方钢长50厘米,底面是边长 12厘米的正方形。如果把它锻造成底 面面积是90平方厘米的圆柱形钢材, 这根钢材长多少厘米?
CHENLI
63
讨论
(1)已知圆的半径和高,怎样求圆柱的体积? (2)已知圆的直径和高,怎样求圆柱的体积? (3)已知圆的周长和高,怎样求圆柱的体积?
CHENLI
64
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
47
CHENLI
48
CHENLI
49
长方体的体积=底面积×高
底面积
CHENLI
50
长方体的体积=底面积×高
底面积
CHENLI
51
长方体的体积=底面积×高
底面积
CHENLI
52
长方体的体积=底面积×高
底面积
CHENLI
53
长方体的体积=底面积×高
底面积
CHENLI
54
长方体的体积=底面积×高
相关文档
最新文档