为电源管理而设计的LTC3105
SEMTECH公司简介
双输入低漏失调整器
EZ1582
双输入低漏失调整器
EZ1584C
7.0 A 低漏失调整器 s
EZ1585C
4.6 A 正电压调整器
EZ1587C
3 A 正电压调整器
LP2951
0.8 A 正电压调整器
SC1202(A)
300 mA 和 500 mA 低漏失 电压 调 SC1540A
整器(带使能)
双输入低漏失调整器 7.0 A 低漏失调整器 s 4.6 A 正电压调整器 3 A 正电压调整器 100 mA 可调电压调整器 600 mA 低漏失正电压调整器 300 mA 和 500 mA 低漏失电压调整器 (带使能)
Multi-Output Switching Regulators
SC2441 超低输入电压,2-相位同步 Step-Down SC24 49 双相位/双控制器
控制器带 Step-Up 反向器
SC2442 高性能,宽输入范围,双同步降压控制器 SC2450 双相位/双控制器
SC2446 双相位,单或两输出同步 Step-Down 控 SC2453 高性能,4 输出转换调整器
2 电源管理产品
2.1 电源管理器件概述
Semtech 的电源管理器件是世界上领先的台式电脑、电信系统、笔记本电脑及手持设备 解决方案。Semtech International 是台式电脑电源处理产品的领导者,如工业上第一个组合调 整器以用于 Pentium 系统所需的三种电源,第一个多相位控制器。电流产品包括一套用于 Intel 和 AMD 处理器提供的电源管理产品。快速的面向和适应市场的做法使我们成为计算 机工业的优良的供应商。我们提供全线的开关调整器,线性调整器,FET 控制器,MOSFET 驱动器和基准用于台式电脑。Semtech International 的手持设备产品设计的目标是增加电池寿 命并减少 PCB 面积。Semtech International 完整的电源管理方案适应不断变化的市场,比如: 蜂窝电话,PDA,GPS,寻呼机,无线电话,网络电话及小灵通.拥有全线的从 CMOS LDO 到小如充电泵之类的开关产品。如电源管理,电池管理,用户输入接口,外设接口和静电防 护器件,单端或双端输出开关调整器,线性调整器,MOSFET 驱动器和精密参考。
液晶常用电源管理芯片
液晶常⽤电源管理芯⽚1200AP40 1200AP60、1203P60200D6、203D6 DAP8A 可互代203D6/1203P6 DAP8A2S0680 2S08803S0680 3S08805S0765 DP104、DP7048S0765C DP704加24V得稳压⼆极管ACT4060 ZA3020LV/MP1410/MP9141ACT4065 ZA3020/MP1580ACT4070 ZA3030/MP1583/MP1591MP1593/MP1430ACT6311 LT1937ACT6906 LTC3406/A T1366/MP2104AMC2576 LM2576AMC2596 LM2596AMC3100 LTC3406/AT1366/MP2104AMC34063A AMC34063AMC7660 AJC1564AP8012 VIPer12AAP8022 VIPer22ADAP02 可⽤SG5841 /SG6841代换DAP02ALSZ SG6841DAP02ALSZ SG6841DAP7A、DP8A 203D6、1203P6DH321、DL321 Q100、DM0265RDM0465R DM/CM0565RDM0465R/DM0565R ⽤cm0565r代换(取掉4脚得稳压⼆极管) DP104 5S0765 DP704 5S0765DP706 5S0765DP804 DP904FAN7601 LAF0001LD7552 可⽤SG6841代(改4脚电阻)LD7575PS 203D6改1脚100K电阻为24KOB2268CP OB2269CPOB2268CP SG6841改4脚100K电阻为2047KOCP1451 TL1451/BA9741/SP9741/AP200OCP2150 LTC3406/AT1366/MP2104OCP2160 LTC3407OCP2576 LM2576OCP3601 MB3800OCP5001 TL5001OMC2596 LM2596/AP1501PT1301 RJ9266PT4101 AJC1648/MP3202PT4102 LT1937/AJC1896/AP1522/RJ9271/MP1540SG5841SZ SG6841DZ/SG6841DSM9621 RJ9621/AJC1642SP1937 LT1937/AJC1896/AP1522/RJ9271/MP1540STRG5643D STRG5653D、STRG8653DTEA1507 TEA1533TEA1530 TEA1532对应引脚功能接⼊THX202H TFC719THX203H TFC718STOP246Y TOP247YV A7910 MAX1674/75 L6920 AJC1610VIPer12A VIPer22A[audio01]ICE2A165(1A/650V、31W);ICE2A265(2A/650V、52W);ICE2B0565(0、5A/650V、23W):ICE2B165(1A/650V、31W);ICE2B265(2A/650V、52W);ICE2A180(1A/800V、29W);ICE2A280(2A/800、50W)、KA5H0365R, KA5M0365R, KA5L0365R, KA5M0365RN# u) t! u1 W1 B) R, PKA5L0365RN, KA5H0380R, KA5M0380R, KA5L0380R1、KA5Q1265RF/RT(⼤⼩两种体积)、KA5Q0765、FSCQ1265RT、KACQ1265RF、FSCQ0765RT、FSCQ1565Q这就是⼀类得,这些型号得引脚功能全都⼀样,只就是输出功率不⼀样。
LTC3605资料
PVIN, SVIN, SW Voltage.............................. –0.3V to 15V PVIN, SW Transient Voltage ........................ –2V to 17.5V BOOST Voltage .......................... –0.3V to PVIN + INTVCC RUN Voltage ............................................. –0.3V to SVIN VON Voltage............................................... –0.3V to SVIN INTVCC Voltage.......................................... –0.3V to 3.6V ITH, RT, CLKOUT, PGOOD Voltage ......... –0.3V to INTVCC CLKIN, PHMODE, MODE Voltage .......... –0.3V to INTVCC TRACK/SS, FB Voltage .......................... –0.3V to INTVCC Operating Temperature Range (Note 2)....–40°C to 85°C
1
60
50
40 30
VOUT = 3.3V VOUT = 1.2V
0
20
10
0
0.1
10
100
1000
10000
OUTPUT CURRENT (mA)
LTC3225中文资料
13225fTYPICAL APPLICATIONFEATURESAPPLICATIONSDESCRIPTIONChargerThe L TC ®3225 is a programmable supercapacitor charger designed to charge two supercapacitors in series to a fi xed output voltage (4.8V/5.3V selectable) from a 2.8V/3V to 5.5V input supply. Automatic cell balancing prevents overvoltage damage to either supercapacitor . No balancing resistors are required.Low input noise, low quiescent current and low external parts count (one fl ying capacitor , one bypass capacitor at V IN and one programming resistor) make the L TC3225 ideally suited for small battery-powered applications.Charging current level is programmed with an external resistor . When the input supply is removed, the L TC3225 automatically enters a low current state, drawing less than 1μA from the supercapacitors.The L TC3225 is available in a 10-lead 3mm × 2mm DFN package.nLow Noise Constant Frequency Charging of T wo Series Supercapacitorsn Automatic Cell Balancing Prevents Capacitor Overvoltage During Chargingn Programmable Charging Current (Up to 150mA)n Selectable 2.4V or 2.65V Regulation per Cell n Automatic Recharge n I VIN = 20μA in Standby Mode n I COUT < 1μA When Input Supply is Removed n No Inductorsn Tiny Application Circuit (3mm × 2mm DFN Package, All Components <1mm High)nCurrent Limited Applications with High Peak Power Loads (LED Flash, PCMCIA Tx Bursts, HDD Bursts, GPRS/GSM T ransmitter)n Backup SuppliesCharging Profi le with 30% Mismatchin Output Capacitance, C TOP < C BOTL , L T , L TC and L TM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.OUTV IN2.8V/3V TO 5.5VSHDN 5V/DIV V COUT 2V/DIVV TOP -V BOT 200mV/DIVI VIN300mA/DIV5s/DIV 3225 TA01bV SEL = V INR PROG = 12k C TOP = 1.1F C BOT = 1.43FC TOP INITIAL VOL TAGE = 0V C BOT INITIAL VOL TAGE = 0V23225fPIN CONFIGURATIONABSOLUTE MAXIMUM RATINGSV IN , C OUT to GND .........................................–0.3V to 6V SHDN , V SEL ......................................–0.3V to V IN + 0.3VC OUT Short-Circuit Duration .............................Indefinite I VIN Continuous (Note 2) ......................................350mA I OUT Continuous (Note 2) .....................................175mA Operating Temperature Range (Note 3)....–40°C to 85°C Storage Temperature Range ...................–65°C to 125°C(Note 1)TOP VIEW 11DDB PACKAGE10-LEAD (3mm s 2mm) PLASTIC DFN C +C –CX SHDN PGOOD C OUT V IN GND PROG V SEL68791054231T JMAX = 125°C, θJA = 76°C/WEXPOSED PAD (PIN 11) MUST BE SOLDERED TO LOW IMPEDANCE GND PLANE (PIN 8) ON PCBORDER INFORMATIONELECTRICAL CHARACTERISTICS SYMBOL PARAMETERCONDITIONS MIN TYP MAX UNITSV IN-UVLO Input Supply Undervoltage LockoutHigh-to-Low ThresholdV SEL = V IN V SEL = 0l l2.652.42.752.5 2.852.6V V V IN-UVLO-HYS Input Supply Undervoltage Lockout Hysteresis V SEL = V IN V SEL = 0150140mV mVV IN Input Voltage RangeV SEL = V IN V SEL = 0V l l 32.8 5.55.5V V V COUT Charge Termination VoltageSleep Mode Threshold (Rising Edge)V SEL = V IN V SEL = 0Vl l 5.24.75.34.8 5.44.9V V V COUT-HYS Output Comparator Hysteresis 100mV V TOP/BOT Maximum Voltage Across Each of the Supercapacitors After Charging V SEL = V IN V SEL = 0V l l 2.752.5V V I Q-VIN No Load Operating Current at V IN I OUT = 0mAl 2040μA I SHDN-VIN Shutdown Current SHDN = 0V , V OUT = 0Vl 0.11μA I COUTC OUT Leakage CurrentV OUT = 5.6V , SHDN = 0VV OUT = 5.6V , Charge Pump in Sleep Mode V OUT = 5.6V , SHDN Connected to V IN with Input Supply Removedl l12341μA μA μA I VINInput Charging Current V IN = 3.6V , R PROG = 12k, C TOP = C BOT 306mA V IN = 3.6V , R PROG = 60k, C TOP = C BOT55mAThe l denotes the specifi cations which apply over the full operatingtemperature range, otherwise specifi cations are at T A = 25°C. V IN = 3.6V , C IN = 2.2μF , C FL Y = 1μF , unless otherwise specifi ed.Lead Free FinishTAPE AND REEL (MINI)TAPE AND REELPART MARKINGPACKAGE DESCRIPTIONTEMPERATURE RANGE L TC3225EDDB#TRMPBF L TC3225EDDB#TRPBF LCYR 10-Lead (3mm × 2mm) Plastic DFN –40°C to 85°CTRM = 500 pieces.Consult L TC Marketing for parts specifi ed with wider operating temperature ranges.Consult L TC Marketing for information on lead based fi nish parts.For more information on lead free part marking, go to: http://www.linear .com/leadfree/For more information on tape and reel specifi cations, go to: http://www.linear .com/tapeandreel/33225fSYMBOL PARAMETERCONDITIONSMIN TYP MAX UNITS I OUTOutput Charging CurrentV IN = 3.6V , R PROG = 12k, V OUT = 4.5V ,C TOP = C BOT125150175mA V IN = 3.6V , R PROG = 60k, V OUT = 4.5V , C TOP = C BOT26mAV PGOOD PGOOD Low Output VoltageI PGOOD = –1.6mA l 0.4V I PGOOD-LEAK PGOOD High Impedance Leakage Current V PGOOD = 5Vl 10μA V PG PGOOD Low-to-High Threshold Relative to Output Voltage Threshold l 929496%V PG-HYS PGOOD Threshold Hysteresis Relative to Output Voltage Threshold l0.251.22.5%R OL Effective Open-Loop Output Impedance (Note 4)V IN = 3.6V , V OUT = 4.5V8Ωf OSC CLK Frequencyl 0.60.9 1.5MHz V SEL , SHDN V IH Input High Voltage l 1.3VV IL Input Low Voltage l 0.4V I IH Input High Current l –11μA I ILInput Low Currentl–11μAELECTRICAL CHARACTERISTICS The l denotes the specifi cations which apply over the full operatingtemperature range, otherwise specifi cations are at T A = 25°C. V IN = 3.6V , C IN = 2.2μF , C FL Y = 1μF , unless otherwise specifi ed.Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliabilty and lifetime.Note 2: Based on long-term current density limitations.Note 3: The L TC3225 is guaranteed to meet performance specifi cations from 0°C to 85°C. Specifi cations over the –40°C to 85°C operatingtemperature range are assured by design, characterization and correlation with statistical process controls. Note 4: Output not in regulation; R OL ≡ (2 • V IN – V OUT )/I OUTTYPICAL PERFORMANCE CHARACTERISTICSI OUT vs R PROGEffi ciency vs V IN(T A = 25°C, C FL Y = 1μF , C IN = 2.2μF , C TOP = C BOT , unless otherwise specifi ed)I OUT vs V OUT (R PROG = 12k)R PROG (kΩ)010I O U T (m A )60801004070603225 G0140200203050120140160V OUT (V)0I O U T (m A )2060801002451803225 G0240130.52.5 4.51.53.5120140160V IN (V)2.5E F F I C I E N C Y (%)10304050 4.5100903525 G0320 3.5354 5.560708043225fOscillator Frequency vs Supply VoltageCharge Pump Open-Loop Output Resistance vs Temperature (2V IN – V COUT )/I OUTTYPICAL PERFORMANCE CHARACTERISTICS(T A = 25°C, C FL Y = 1μF , C IN = 2.2μF , C TOP = C BOT , unless otherwise specifi ed)I OUT (mA)020457801203225 G04324060100140160106E X T R A I I N (m A )V IN (V)2.50I I N (μA )5101520303 3.54 4.53225 G055 5.525V IN20mV/DIV I VIN200mA/DIV200ns/DIV3225 G06R PROG = 12k0mACharging Profi le with Unequal Initial Output Capacitor Voltage (Initial V TOP = 1.3V , V BOT = 1V)V IN (V)2.50.88F R E Q U E N C Y (M H z )0.890.910.9233.54 4.53225 G0750.930.940.90 5.5TEMPERATURE (°C)–40R O L (Ω)6810603225 G0842579310–15103585SHDN 5V/DIV V COUT 2V/DIV V TOP -V BOT 500mV/DIVI VIN300mA/DIV2s/DIV 3225 G09V SEL = V INR PROG = 12kC TOP = C BOT = 1.1FExtra Input Current vs OutputCurrent (I VIN – 2 • I OUT )No-Load Input Current vs Supply VoltageInput Ripple and Input CurrentCharging Profi le with Unequal Initial Output Capacitor Voltage (Initial V TOP = 1V , V BOT = 1.3V)SHDN 5V/DIV V COUT 2V/DIV V TOP -V BOT 500mV/DIVI VIN300mA/DIV2s/DIV3225 G10V SEL = V INR PROG = 12kC TOP = C BOT = 1.1FSHDN 5V/DIV V COUT 2V/DIV V TOP -V BOT 200mV/DIVI VIN300mA/DIV5s/DIV 3225 G11V SEL = V INR PROG = 12k CTOP = 1.43F C BOT = 1.1FC TOP INITIAL VOL TAGE = 0V C BOT INITIAL VOL TAGE = 0VSHDN 5V/DIV V COUT 2V/DIV V TOP -V BOT 200mV/DIVI VIN300mA/DIV5s/DIV 3225 G12V SEL = V INR PROG = 12k CTOP = 1.1F C BOT = 1.43FC TOP INITIAL VOL TAGE = 0V C BOT INITIAL VOL TAGE = 0VCharging Profi le with 30%Mismatch in Output Capacitance (C TOP > C BOT )Charging Profi le with 30%Mismatch in Output Capacitance (C TOP < C BOT )PIN FUNCTIONSC+ (Pin 1): Flying Capacitor Positive Terminal. A 1μF X5R or X7R ceramic capacitor should be connected from C+ to C–.C– (Pin 2): Flying Capacitor Negative Terminal.CX (Pin 3): Midpoint of T wo Series Supercapacitors. This pin voltage is monitored and forced to track C OUT (CX = C OUT/2) during charging to achieve voltage balancing of the top and bottom supercapacitors.SHDN (Pin 4): Active Low Shutdown Input. A low on SHDN puts the L TC3225 in low current shutdown mode. Do not fl oat the SHDN pin.PGOOD (Pin 5): Open-Drain Output Status Indicator. Upon start-up, this open-drain pin remains low until the output voltage, V OUT, is within 6% (typical) of its fi nal value. Once V OUT is valid, PGOOD becomes Hi-Z. If V OUT falls 7.2% (typical) below its correct regulation level, PGOOD is pulled low. PGOOD may be pulled up through an external resistor to an appropriate reference level. This pin is Hi-Z in shutdown mode.V SEL (Pin 6): Output Voltage Selection Input. A logic low at V SEL sets the regulated C OUT to 4.8V; a logic high sets the regulated C OUT to 5.3V. Do not fl oat the V SEL pin. PROG (Pin 7): Charging Current Programming Pin. A resis-tor connected between this pin and GND sets the charging current. (See Applications Information section).GND (Pin 8): Charge Pump Ground. This pin should be connected directly to a low impedance ground plane.V IN (Pin 9): Power Supply for the L TC3225. V IN should be bypassed to GND with a low ESR ceramic capacitor of more than 2.2μF.C OUT (Pin 10): Charge Pump Output Pin. Connect C OUT to the top plate of the top supercapacitor. C OUT provides charge current to the supercapacitors and regulates the fi nal voltage to 4.8V/5.3V.Exposed Pad (Pin 11): This pad must be soldered to a low impedance ground plane for optimum thermal performance.53225fSIMPLIFIED BLOCK DIAGRAMTOPBOT3225 F01Figure 163225fOPERATIONThe L TC3225 is a dual cell supercapacitor charger. Its unique topology maintains a constant output voltage with programmable charging current. Its ability to maintain equal voltages on both cells while charging protects the supercapacitors from damage that is possible with other charging methods, without the use of external balancing resistors. The L TC3225 includes an internal switched capacitor charge pump to boost V IN to a regulated output voltage. A unique architecture maintains relatively constant input current for the lowest possible input noise. The basic charger circuit requires only three external components. Normal Charge CycleOperation begins when the SHDN pin is pulled above 1.3V. The C OUT pin voltage is sensed and compared with a preset voltage threshold using an internal resistor divider and a comparator. The preset voltage threshold is 4.8V/5.3V selectable with the V SEL pin. If the voltage at the C OUT pin is lower than the preset voltage threshold, the oscillator is enabled. The oscillator operates at a typical frequency of 0.9MHz. When the oscillator is enabled, the charge pump operates charging up C OUT. The input current drawn by the internal charge pump ramps up at approximately 20mA/μs each time the charge pump starts up from shutdown. Once the output voltage is charged to the preset voltage threshold, the part shuts down the internal charge pump and enters into a low current state. In this state, the L TC3225 consumes only about 20μA from the input supply. The current drawn from C OUT is approximately 2μA. Automatic Cell BalancingThe L TC3225 constantly monitors the voltage across both supercapacitors while charging. When the voltage across the supercapacitors is equal, both capacitors are charged with equal currents. If the voltage across one supercapacitor is lower than the other, the lower supercapacitor’s charge current is increased and the higher supercapacitor’s charge current is decreased. The greater the difference between the supercapacitor voltages, the greater the difference in charge current per capacitor. The charge currents can increase or decrease as much as 50% to balance the volt-age across the supercapacitors. When the cell voltages are balanced, the supercapacitors are charged at a rate of approximately:I ICOUT VIN=12•If the leakage currents or capacitances of the two su-percapacitors are mismatched enough that varying the charging current is not suffi cient to balance their volt-ages, the L TC3225 stops charging the capacitor with the higher voltage until they are again balanced. This feature protects either capacitor from experiencing an overvoltage condition.Shutdown ModeAsserting SHDN low causes the L TC3225 to enter shut-down mode. When the charge pump is fi rst disabled, the L TC3225 draws approximately 1μA of supply current from V IN and C OUT. After V OUT is discharged to 0V, the current from V IN drops to less than 1μA. With SHDN connected to V IN, the output sinks less than 1μA when the input sup-ply is removed. Since the SHDN pin is a high impedance CMOS input, it should never be allowed to fl oat. Output Status Indicator (PGOOD)During shutdown, the PGOOD pin is high impedance. When the charge cycle starts, an internal N-channel MOSFET pulls the PGOOD pin to ground. When the output voltage, V OUT, is within 6% (typical) of its fi nal value, the PGOOD pin becomes high impedance, but charge current continues to fl ow until V OUT crosses the charge termination voltage. When V OUT drops 7% below the charge termination volt-age, the PGOOD pin again pulls low.Current Limit/Thermal ProtectionThe L TC3225 has built-in current limit as well as overtem-perature protection. If the PROG pin is shorted to ground, a protection circuit automatically shuts off the internal charge pump. At higher temperatures, or if the input voltage is high enough to cause excessive self-heating of the part, the thermal shutdown circuitry shuts down the charge pump once the junction temperature exceeds approximately 150°C. It will enable the charge pump once the junction temperature drops back to approximately 135°C. The L TC3225 is able to cycle in and out of thermal shutdown indefi nitely without latch-up or damage until the overcurrent condition is removed.73225f83225fAPPLICATIONS INFORMATIONProgramming Charge CurrentThe charging current is programmed with a single resistor connecting the PROG pin to ground. The program resistor and the input/output charge currents are calculated using the following equations:I V R I IVIN PROGOUTVIN ==36002(with matched outp p ut capacitors)An R PROG resistor value of 2k or less (i.e., short circuit) causes the L TC3225 to enter overcurrent shutdown mode. This mode prevents damage to the part by shutting down the internal charge pump.Power Effi ciencyThe power effi ciency (η) of the L TC3225 is similar to that of a linear regulator with an effective input voltage of twice the actual input voltage. In an ideal regulating voltage doubler the power effi ciency is given by:η222xIDEAL OUT IN OUT OUT IN OUT OUTI P P V I V I V V ===••NAt moderate to high output power the switching losses and quiescent current of the L TC3225 are negligible and the above expression is valid. For example, with V IN = 3.6V , I OUT = 100mA and V OUT regulated to 5.3V , the measured effi ciency is 71.2% which is in close agreement with the theoretical 73.6% calculation.Effective Open-Loop Output Resistance (R OL )The effective open-loop output resistance (R OL ) of a charge pump is an important parameter that describes the strength of the charge pump. The value of this parameter depends on many factors including the oscillator frequency (f OSC ), value of the fl ying capacitor (C FL Y ), the non-overlap time,the internal switch resistances (R S ) and the ESR of the external capacitors. Output Voltage ProgrammingThe L TC3225 has a V SEL input pin that allows the user to set the output threshold voltage to either 4.8V or 5.3V by forcing a low or high at the V SEL pin respectively.Charging Time EstimationThe estimated charging time when the initial voltage across the two output supercapacitors is equal is given by the equation:t C V V I CHRG OUT COUT INIOUT=()•–where C OUT is the series output capacitance, V COUT is thevoltage threshold set by the V SEL pin, V INI is the initial voltage at the C OUT pin and I OUT is the output charging current given by:I V R OUT PROG=1800When the charging process starts with unequal initialvoltages across the output supercapacitors, only the ca-pacitor with the lower voltage level is charged; the other capacitor is not charged until the voltages equalize. This extends the charging time slightly. Under the worst-case condition, whereby one capacitor is fully depleted while the other remains fully charged due to signifi cant leakage current mismatch, the charging time is about 1.5 times longer than normal. Thermal ManagementFor higher input voltages and maximum output current, there can be substantial power dissipation in the L TC3225. If the junction temperature increases above approximately150°C, the thermal shutdown circuitry automatically deactivates the output. To reduce the maximum junction temperature, a good thermal connection to the PC board is recommended. Connecting the GND pin (Pin 8) and the Exposed Pad (Pin 11) of the DFN package to a ground plane under the device on two layers of the PC board can reduce the thermal resistance of the package and PC board considerably.V IN Capacitor SelectionThe type and value of C IN controls the amount of ripple present at the input pin (V IN). To reduce noise and ripple, it is recommended that low equivalent series resistance (ESR) multilayer ceramic chip capacitors (MLCCs) be used for C IN. Tantalum and aluminum capacitors are not recommended because of their high ESR.The input current to the L TC3225 is relatively constant dur-ing both the input charging phase and the output charging phase but drops to zero during the clock non-overlap times. Since the non-overlap time is small (~40ns) these missing “notches” result in only a small perturbation on the input power supply line. Note that a higher ESR capacitor, such as a tantalum, results in higher input noise. Therefore, ceramic capacitors are recommended for their exceptional ESR performance. Further input noise reduction can be achieved by powering the L TC3225 through a very small series inductor as shown in Figure 2.A 10nH inductor will reject the fast current notches, thereby presenting a nearly constant current load to the input power supply. For economy, the 10nH inductor can be fabricated on the PC board with about 1cm (0.4") of PC board trace.Flying Capacitor SelectionWarning: Polarized capacitors such as tantalum or alumi-num should never be used for the fl ying capacitor since it s volt age can reverse upon st art-up of t he LTC3225. Low ESR ceramic capacitors should always be used for the fl ying capacitor.The fl ying capacitor controls the strength of the charge pump. In order to achieve the rated output current, it is necessary to use at least 0.6μF of capacitance for the fl ying capacitor.The effective capacitance of a ceramic capacitor varies with temperature and voltage in a manner primarily determined by its formulation. For example, a capacitor made of X5R or X7R material retains most of its capacitance from –40°C to 85°C whereas a Z5U or Y5V type capacitor loses considerable capacitance over that range. X5R, Z5U and Y5V capacitors may also have a poor voltage coeffi cient causing them to lose 60% or more of their capacitance when the rated voltage is applied. Therefore, when com-paring different capacitors, it is often more appropriate to compare the amount of achievable capacitance for a given case size rather than comparing the specifi ed capacitance value. For example, over rated voltage and temperature conditions, a 4.7μF 10V Y5V ceramic capacitor in a 0805 case may not provide any more capacitance than a 1μF 10V X5R or X7R capacitor available in the same 0805 case. In fact, over bias and temperature range, the 1μF 10V X5R or X7R provides more capacitance than the 4.7μF 10V Y5V capacitor. The capacitor manufacturer’s data sheet should be consulted to determine what value of capacitor is needed to ensure minimum capacitance values are met over operating temperature and bias voltage.V INFigure 2. 10nH Inductor Used for Input Noise Reduction APPLICATIONS INFORMATION93225f103225fTYPICAL APPLICATIONTable 1 contains a list of ceramic capacitor manufacturers and how to contact them.Table 1. Capacitor ManufacturersAVX Kemet Murata Taiyo Yuden Vishay TDKLayout ConsiderationsDue to the high switching frequency and high transient currents produced by the L TC3225, careful board layout is necessary for optimum performance. An unbroken ground plane and short connections to all the external capacitors improves performance and ensures proper regulation under all conditions.The voltages on the fl ying capacitor pins C + and C – have very fast rise and fall times. The high dv/dt values on these pins can cause energy to capacitively couple to adjacent printed circuit board traces. Magnetic fi elds can also be generated if the fl ying capacitors are far from the part (i.e. the loop area is large). To prevent capacitive energy transfer , a Faraday shield may be used. This is a grounded PC trace between the sensitive node and the L TC3225 pins. For a high quality AC ground it should be returned to a solid ground plane that extends all the way to the L TC3225.Table 2. Supercapacitor ManufacturersCAP-XX NESS CAP Maxwell Bussmann AVXAPPLICATIONS INFORMATION5V Supercapacitor Backup SupplyO VLTC3225113225fInformation furnished by Linear Technology Corporation is believed to be accurate and reliable. However , no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.PACKAGE DESCRIPTIONDDB Package10-Lead Plastic DFN (3mm × 2mm)(Reference L TC DWG # 05-08-1722 Rev Ø)NOTE:1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-2292. DRAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDEMOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGEBOTTOM VIEW—EXPOSED PAD(DDB10) DFN 0905 REV ØPIN 1R = 0.20 OR 0.25s 45o CHAMFERRECOMMENDED SOLDER PAD PITCH AND DIMENSIONSLTC3225123225fLinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 ● FAX: (408) 434-0507 ● © LINEAR TECHNOLOGY CORPORA TION 2008LT 0508 • PRINTED IN USARELATED PARTSTYPICAL APPLICATIONPART NUMBERDESCRIPTIONCOMMENTSL TC1751-3.3/L TC1751-5Micropower 5V/3.3V Doubler Charge Pumps I Q = 20μA, Up to 100mA Output, SOT-23 Package L TC1754-3.3/L TC1754-5Micropower 5V/3.3V Doubler Charge Pumps I Q = 13μA, Up to 50mA Output, SOT-23 Package L TC3200Constant Frequency Doubler Charge Pump Low Noise, 5V Output or AdjustableL TC3203/L TC3203B/L TC3203B-1/L TC3203-1500mA Low Noise High Effi ciency Dual Mode Step-Up Charge PumpsV IN : 2.7V to 5.5V , 3mm × 3mm 10-Lead DFN Package L TC3204/L TC3204B-3.3/L TC3204-5Low Noise Regulating Charge Pumps Up to 150mA (L TC3204-5), Up to 50mA (L TC3204-3.3)L TC3221/L TC3221-3.3/L TC3221-5Micropower Regulated Charge Pump Up to 60mA OutputL TC3240-3.3/L TC3240-2.5Step-Up/Step-Down Regulated Charge Pumps Up to 150mA OutputL T ®3420/L T3420-1 1.4A/1A Photofl ash Capacitor Charger with Automatic Top-Off Charges 220μF to 320V in 3.7 Seconds from 5V , V IN : 2.2V to 16V , I SD < 1μA, 10-Lead MS PackageL T3468/L T3468-1/L T3468-21.4A/1A/0.7A, Photofl ash Capacitor Charger V IN :2.5V to 16V , Charge Time = 4.6 Seconds for the L T3468 (0V to 320V , 100μF , V IN =3.6V), I SD < 1μA, ThinSOT TM PackageL TC3484-0/L TC3484-1/ L TC3484-21.4A/0.7A/1A, Photofl ash Capacitor ChargerV IN : 1.8V to 16V , Charge Time = 4.6 Seconds for the L T3484-0 (0V to 320V , 100μF , V IN = 3.6V), I SD < 1μA, 2mm × 3mm 6-Lead DFN PackageL T3485-0/L T3485-1/ L T3485-2/L T3485-31.4A/0.7A/1A/2A Photofl ash Capacitor Chargerwith Output Voltage Monitor and Integrated IGBTV IN : 1.8V to 10V , Charge Time = 3.7 Seconds for the L T3485-0 (0V to 320V , 100μF , V IN = 3.6V), I SD < 1μA, 3mm × 3mm 10-Lead DFN Driver L T3750Capacitor Charger Controller Charges Any Size Capacitor , 10-Lead MS PackageThinSOT is a trademark of Linear Technology Corporation.V BIAS 3.3V V IN 12VGNDGNDL T3740HIGH EFFICIENCY D1CSHD6-40C 12V Supercapacitor Backup Supply。
直流可调电压源
立题的目的和意义: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计 步骤,培养综合设计与调试能力。 2.学会直流稳压电源的设计方法和性能指标测试方法。 3.培养实践技能,提高分析和解决实际问题的能力。
技术要求与主要内容: 1.正负可调双路直流稳压电源的技术指标; 2.电压源的正负可调范围:+2V~+12V;-2V~-12V; 3.双路跟踪可调; 4.6 位数码管显示。
直流可调电压源 月 1 日起 2009 年 6 月 20 日止
指导教师对毕业设计(论文)进行情况,完成质量及评分意见: _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ ___________________________________________________________________
指导教师签字:
指导教师职称:
评阅人评阅意见: _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________ __________________________________________________________________________
LTC3855设计要点
双路输出降压型控制器可产生准确、高效和可靠的高电流轨 – 设计要点 478Mike Shriver 和 Theo Phillips07/10/478引言LTC ®3855 能够以上佳的准确度和效率来产生高电流轨,旨在满足当今最先进的网络、电信和服务器应用极其苛刻的要求。
这款两相、双路输出、同步降压型控制器内置强大的栅极驱动器,这些栅极驱动器支持每相电流高于 20A 的操作。
准确的 0.6V ±0.75% 基准及其集成差分放大器实现了关键电源轨输出的远端采样。
该控制器具有一个 0.6V 至 12.5V (未采用差分放大器时) 和 0.6V 至 3.3V (采用差分放大器时) 的输出电压范围。
LTC3855 运用了可靠的峰值电流模式架构,以实现快速和准确的电流限制以及实时均流。
其电流检测比较器专为采用检测电阻器或电感器 DCR 检测法来检测电感器电流而设计。
DCR 检测法的优点是传导图 1:运作于 f SW = 325kHz 频率的 1.5V/20A 和 1.2V/20A 双通道转换器。
在电路板双面安装的情况下,整个电路的占板面积不超过 1.7 平方英寸功率损失有所减少,因为电流是采用已有电感器 DC 电阻两端的电压降来测量的,从而免除了由于增设一个检测电阻器所引起的损失。
不过,与采用一个专用检测电阻器相比,DCR 检测的准确度稍逊一筹,这是由于各个组件的 DCR 存在差异,并且会随着温度而发生变化。
LTC3855 采用了一种创新型方案,通过对 DCR 随温度而出现的变化进行补偿来改善 DCR 检测的准确度。
具远端采样和 NTC 补偿 DCR 检测功能的 1.5V/20A 和 1.2V/20A 降压型转换器图 1 示出了一款具 DCR 检测功能和 325kHz 工作频率的 1.5V/20A 和 1.2V/20A 双相转换器。
利用强大的、LT 、LTC 、LTM 、Burst Mode 、PolyPhase 、Linear Technology 和 Linear 标识是凌力尔特公司的注册商标。
LTC3115宽范围输入降压升压型
新闻发布 40V IN/OUT、2A 同步降压-升压型 DC/DC 转换器提供 2.7V 至 40V 的输入和输出范围加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2011 年 11 月 21 日– 凌力尔特公司(Linear Technology Corporation) 推出同步降压-升压型转换器LTC3115-1 ,该器件可使用从单节锂离子电池、24V/28V工业电源轨到 40V 汽车输入的多种电源,提供高达 2A 的连续输出电流。
LTC3115-1 具 2.7V 至 40V 的输入和输出范围,在输入高于、低于或等于输出时,可提供稳定的输出。
LTC3115-1 采用的低噪声降压-升压型拓扑在降压和升压模式之间提供连续和无抖动转换,从而非常适用于 RF 以及其他噪声敏感型应用,这类应用在使用可变输入电源时,必须保持低噪声恒定输出电压。
在许多应用中,相比于专门的降压型解决方案,这款器件可显著延长电池的运行时间。
LTC3115-1 的开关频率范围为 100kHz 至 2MHz,是用户可编程的,并可同步至一个外部时钟。
专有的第三代降压-升压型 PWM 电路确保低噪声和高效率,同时最大限度地减小了外部组件的尺寸。
纤巧的外部组件与 4mm x 5mm DFN 或 TSSOP-20E 封装相结合,可组成占板面积紧凑的解决方案。
LTC3115-1 采用 4 个内部低 R DS(ON) N 沟道 MOSFET,以提供高达 95% 的效率。
用户可选的突发模式 (Burst Mode®) 工作使静态电流降至仅为 50uA,从而提高了轻负载效率,并延长了电池运行时间。
就噪声敏感型应用而言,可禁止突发模式工作。
其他特点包括内部软启动、可编程欠压保护、短路保护以及输出断接。
LTC3115EDHD-1 采用 16 引线 4mm x 5mm DFN 封装,LTC3115EFE-1 采用耐热增强型 20 引线 TSSOP 封装。
LINEAR LTC3855 说明书
6mm × 6mm DC/DC Controller for High Current DCR Sensing ApplicationsEric Gu, Theo Phillips, Mike Shriver and Kerry Holliday“lossless” method is less accurate than using a sense resistor, in large part because as the inductor heats up, its resistance increases with a temperature coeffi-cient of resistivity (TCR) of 3930ppm/°C. Therefore as the temperature rises, the current limit decreases. When DCR sensing is used, the current limit for the LTC3855 is determined by the peak sense voltage as measured across the inductor’s DCR. The LTC3855 includes a temperature sensing scheme designed to compensate for the TCR of copper by effectively raising the peak sense voltage at high temperature.MONITORING THE TEMPERATUREWhen current is sensed at the inductor, either a sense resistor is placed in series with the inductor, or an R-C network across the inductor is used to infer the current information across the induc-tor’s DC resistance (DCR sensing). ThisThe LTC3855 is a versatile 2-phase synchronous buck controller IC with on-chip drivers, remote output voltage sensing and inductor temperature sensing. These features are ideal for high current applications where cycle-by-cycle current is measured across the inductor (DCR sensing). Either channel is suitable for inputs up to 38V and outputs up to 12.5V , further increasing the controller’s versatility. The LTC3855 is based on the popular LTC3850, described in the October 2007 issue of Linear Technology .C C OUT2: SANYO 2R5TPE330M9R NTC : MURATA NCP18WB473J03RBINOUT Figure 1. A 1.2V , 50A, 2-phase converter. The two channels operate 180º out-of-phase to minimize output ripple and component sizes.design ideasDIFFERENTIAL SENSINGAt high load current, an offset candevelop between the power ground, where V OUT is sensed, and the IC’s local ground. To overcome this load regulation error, the LTC3855 includes a unity gain differ-ential amplifier for remote output voltage sensing. Inputs DIFFP and DIFFN are tied to the point of load, and the difference between them is expressed with respect to local ground from the DIFFOUT pin. Measurement error is limited to the input offset voltage of the differential amplifier, which is no more than 2mV.SINGLE OUTPUT CONVERTER WITH REMOTE OUTPUT VOLTAGE SENSING AND INDUCTOR DCR COMPENSATIONFigure 1 shows a high current DCR appli-cation with temperature sensing. The nominal peak current limit is determined by the sense voltage (30mV, set by ground-ing the ILIM pins) across the DC resistance of the inductor (typically 0.83mΩ), or 36A per phase. This sense voltage can be raised by biasing the ITEMP pins below 500mV. Since each ITEMP pin sources10µA, peak sense voltage can be increased by inserting a resistance of less than 25k from ITEMP to ground. By using an inexpensive NTC thermistor placed near the inductors (with series and parallelresistance for linearization), the cur-rent limit can be maintained above the nominal operating current, even at elevated temperatures (Figure 2). The circuit also maintains precise regula-tion by differentially sensing the output voltage. The measurement is not contami-nated by the difference between power ground and local ground. As a result, output voltage typically changes less than 0.2% from no load to full load.MULTIPHASE OPERATIONThe LTC3855 can be configured for dual outputs, or for one output with both power stages tied together, as shown in Figure 1. In the single output configura-tion, both channels’ compensation (ITH), feedback (V FB ), enable (RUN) and track /soft-start (TRK /SS) pins are tied together, and both PGOOD 1 and PGOOD2 will indicate the power good status of the output voltage. By doubling the effective switching frequency, the single output configuration minimizes the required input and output capacitance and volt-age ripple, and allows for fast transient response (Figure 3). The LTC3855 provides inherently fast cycle-by-cycle current sharing due to its peak current mode architecture plus tight DC current sharing.1allowing the user to set the switchingfrequency with a single resistor to ground. The frequency can be set anywhere from 250kHz to 770kHz. If an external fre-quency source is available, a phase-locked loop enables the LTC3855 to sync with frequencies in the same range. A mini-mum on-time of 100ns allows low duty cycle operation even at high frequencies. If the external sync signal is momentarily interrupted, the LTC3855 reverts to the frequency set by the external resistor. Its internal phase-locked loop filter is prebiased to this frequency. An internal switch automatically changes over to the sync signal when a clock train is detected. Since the PLL filter barely has to charge or discharge during this transition, syn-chronization is achieved in a minimum number of cycles, without large swings in switching frequency or output voltage.The LTC3855 is also useful for designsusing three or more phases. Its CLKOUT pin can drive the MODE /PLLIN pins of addi-tional regulators. The PHASMD pin tai-lors the phase delays to interleave all the switch waveforms.D C C U R RE N T L I M I T (A )INDUCTOR TEMP (°C)14020406080100120Figure 2. The converter of Figure 1 can deliver the current whether hot or cold, with its calculatedworst-case current limit remaining above the target 50A, even well above room temperature.I L110A/DIV I L210A/DIV I LOAD 20A/DIVV OUT(AC COUPLED)100mV/DIV50µs/DIVV IN = 12VI LOAD = 30A–50AFigure 3. V OUT is stable in the face of a of 30A to 50A load step for the converter of Figure 1, and the inductor current sharing is fast and precise.E F F I C I E N C Y (%)957090858075(continued on page 35)product briefsULTRALOW VOLTAGE STEP-UPCONVERTER AND POWER MANAGER FOR ENERGY HARVESTINGThe LTC3108 is a highly integrated DC /DC converter ideal for harvest-ing and managing surplus energy from extremely low input voltage sources such as TEG (thermoelectric generators), thermopiles and small solar cells. The step-up topology operates from input voltages as low as 20mV. Using a small step-up transformer, the LTC3108 provides a complete power management solution for wireless sensing and data acquisition. The 2.2V LDO powers an external micro-processor, while the main output isprogrammed to one of four fixed voltages to power a wireless transmitter or sen-sors. The power good indicator signals that the main output voltage is within regulation. A second output can beenabled by the host. A storage capacitor provides power when the input volt-age source is unavailable. Extremely low quiescent current and high efficiency design ensure the fastest possible charge times of the output reservoir capacitor.POWERFUL SYNCHRONOUSN-CHANNEL MOSFET DRIVER IN A 2MM × 3MM DFNThe LTC4449 is high speed synchro-nous MOSFET driver designed to maximize efficiency and extend the operating voltage range in a wide vari-ety of DC /DC converter topologies, from buck to boost to buck-boost.The LTC4449’s rail-to-rail driver out-puts operate over a range of 4V to6.5V and can sink up to 4.5A and source up to 3.2A of current, allowing it to easily drive high gate capacitance and /or multiple MOSFETs in parallel for high current applications. The high side driver can withstand voltages up to 38V. Adaptive shoot-through protec-tion circuitry is integrated to prevent MOSFET cross-conduction current. With 14ns propagation delays and 4ns to 8ns transition times driv-ing 3nF loads, the LTC4449 minimizes power loss due to switching losses and dead time body diode conduction.The LTC4449 features a three-statePWM input for power stage control and shutdown that is compatible with all con-trollers that employ a three-state output feature. The LTC4449 also has a separate supply input for the input logic to match the signal swing of the controller IC. Undervoltage lockout detectors monitor both the driver and logic supplies and dis-able operation if the voltage is too low. nsense comparator looks across the cur-rent sense element (here the inductor’s DC resistance, implied from the associ-ated R-C network). If a short circuit occurs, current limit foldback reduces the peak current to protect the power components. Foldback is disabled dur-ing start-up, for predictable tracking.CONCLUSIONThe LTC3855 is ideal for converters using inductor DCR sensing to provide high cur-rent outputs. Its temperature compensa-tion and remote output voltage sensing ensure predictable behavior from light load to high current. From inputs up to 38V it can regulate two separate outputs from 0.6V to 12.5V, and can be configured for higher currents by tying its channels together, or by paralleling additionalLTC3855 power stages. At low duty cycles, the short minimum on-time ensures con-stant frequency operation, and peak cur-rent limit remains constant even as duty cycle changes. The LTC3855 incorporates these features and more into 6mm × 6mm QFN or 38-lead TSSOP packages. nThe MOSFET drivers and control circuits are powered by INTV CC , which by default is powered through an internal low dropout regulator from the main input supply, V IN . If lower power dissipation in the IC is desired, a 5V supply can be connected to EXTV CC . When a supply is detected on EXTV CC , the LTC3855 switches INTV CC over to EXTV CC , with a drop of just 50mV. The strong gate drivers with optimized dead time provide high effi-ciency. The full load efficiency is 86.7% and the peak efficiency is 89.4% (Figure 4).The LTC3855 features a RUN and TRACK /SS pin for each channel. RUN enables the output and INTV CC , while TRACK /SS acts as a soft-start or allows the outputs to track an external reference. If a multiphase out-put is desired, all RUN and TRACK /SS pins are typically tied to one another.Peak current limiting is used in this application, with the peak sense volt-age set by the three-state ILIM pin. Ahigh speed rail-to-rail differential current(LTC 3855 continued from page 29)CONCLUSIONThe LT3029 is a dual 500mA/500mA mono-lithic LDO with a wide input voltage range and low noise. The two channels are fully independent, allowing for flexible power management. It is ideal for battery-pow-ered systems because of its low quiescent current, small package and integra-tion of battery protection features. nFigure 2. Start-up time vs bypass capacitor valueS T A R T -U P T I M E (m s )BYPASS CAPACITANCE (pF)10k101000.011001k 1 0.1 10(LT 3029 continued from page 35)。
小发明(七彩阳光罐说明书)
七彩阳光罐说明书有没有幻想过把阳光装在罐子里储存起来,然后晚上拿出来照明?不过的确有人做出了这样的东东。
Sun Jar可以实现你的梦想!这是一个设计独特的光能储存器,白天在充足的阳光下照射3小时,晚上便可以持续5小时释放柔和的光芒。
Tobias Wong 设计了上面这个看上去普普通通的瓶子,在里面装配了太阳能的电池和LED的灯。
白天,把小瓶子放在阳光或是人造光源下,它会自动搜集能量给电池充电。
等到天黑了,瓶子会自动发出柔和的光。
好象是个不错的“玩具”! 也许还是个很让人感动的东东。
兴许我们可以把和爱的人一起欣赏的月光也收集起来^_^。
制作原理:罐子内部安装了太阳能电池板,白天在阳光的照射下使光能转化为电能,存储到镍氢充电电池中,到了晚上,自动控制模板就会将电池中的电能释放出来,点亮小灯。
使用说明:阳光罐平时可以储存饼干,果酱,调料,等到夜幕降临时可以当照明使用,可以放蓝光、黄光等,光彩可以调节。
上面这个看上去普普通通的瓶子,在里面装配了太阳能电池和LED的灯白天,把小瓶子放在阳光或是人造光源下,它会自动搜集能量给电池充电。
等到天黑了,就能发出柔和的阳光(黄光)或者月光(蓝光),如果要调换光的颜色,请打开盖子,把开关位置移动下就可以了。
产品描述说明:罐口有一片太阳能板收集太阳能,把光能转化为电能,然后储存到下面的可充电电池中(忌用普通干电池充电,后果自负)。
罐子充电必须接受阳光直射(透过窗户的折射阳光或者昏黄的钨丝灯也可以),使用USB充电线充电时请将开关置于OFF状态。
每次充电时间大约为5-6小时。
之后每次照射或者USB直充6小时,都可以使用10个小时左右。
与此同时,罐口还有一个自动感光装置,当环境光线变暗时就会自动连通,罐子内部的LED灯就能发光了。
所以说,在太阳光下或者强光的环境下,即使你打开电源开关,阳光罐也不会发光;你也可以通过手动开关来控制灯是否打开,以便节约电能。
单色的阳光罐没有颜色选择,双色的阳光罐有三档开关(CH1、OFF、CH2),根据你自己的喜好手动切换光源颜色,七彩阳光罐会有规律的自动变换出七彩光芒。
太阳能光伏电能的完整单芯片解决方案
太阳能光伏电能的完整单芯片解决方案为了简化仪器、监视和控制应用的无线通信所需的配电系统,电源设计师努力寻找不依赖电网的器件。
电池显然是不依赖电网的解决方案,但是电池需要更换或再充电,这意味着最终还是要连接到电网上,而且需要昂贵的人工干预和维护。
我们提出用能量收集的方法,使用这种方法时,能量是从紧挨着仪器的环境中收集的,无需连接到电网就可以使仪器永久运行,而且最大限度地削减或消除了维护需求。
可以收集各种环境能源以产生电能,包括机械振动、温度差和入射光。
其中,光伏能量收集有广泛的适用范围,因为光几乎到处都有,光伏(PV)电池价格相对较低,而且与其他环境能量收集解决方案相比,能产生相对较高的功率。
因为光伏能量收集方法提供相对较高的能量输出,所以可用来给无线传感器节点供电,还可用来给较高功率的电池充电应用供电,以延长电池寿命,从而在某些情况下完全无需有线充电。
串联连接的高压光伏电池组能提供充足的功率,但单节光伏电池解决方案却很少见,因为单节光伏电池在有负载情况下产生的电压很低,从这么低的电压难以产生有用的电源轨。
几乎没有升压型转换器能从电压很低、阻抗相对较高的单节光伏电池产生输出。
不过,LTC3105是专门为应对这类挑战而设计。
该器件具有超低的250mV启动电压和可编程最大功率点控制,能从富有挑战性的光伏电源产生大多数应用所需的典型电压轨(1.8~5V)。
了解光伏电池电源可以用一个电流源与一个二极管并联来建立光伏电源的电模型,如图1所示。
更复杂的模型可显示一些次要影响,但是就我们的目的而言,这个模型足够充分了。
反映光伏电池特性的两个常见参数是开路电压和短路电流。
光伏电池的典型电流和电压曲线如图2所示。
请注意,短路电流是该模型电流发生器的输出,而开路电压是该模型二极管的正向电压。
随着光照射量的增加,该发生器产生的电流也增加,同时 IV 曲线向上移动。
为了从光伏电池抽取最大功率,电源转换器的输入阻抗必须与电池的输出阻抗匹配,从而使系统能在最大功率点上工作。
LTC3108或3109常见问题
1、问:LTC3108 与LTC3109 的主要应用是什么?正如在数据手册中说到的一样,这些部分针对于要求低平均功率的应用(在毫瓦级甚至更低),他们可能是持续工作的微控制器,或以低占空比运行的无线传感器/发射器。
LTC3108 和LTC3109被设计成可以任何能提供最低输入约25mV的能量源供电,具有很低的电源内阻(理想值3Ω或更低)。
LTC3109可以在任意极性的输入电压下良好运行(或低频交流输入)。
2、问:我启动LTC3108 与LTC3109 需要多少温度差?用40mm方形TEG和适当的散热器,LTC3108 和LTC3109可以在温差低至1℃甚至更低时被启动并能调节VLDO 和VOUT(无负载),但是对于小型TEG和散热器,典型的温差可能要达到5℃。
3、问:我可以从LTC3108 或LTC3109 可以得到多少能量?这取决于输入电压和电源内阻(比如你选择的TEG型号、提供的散热器数量及可能的温差大小),在数据手册中有曲线显示了对不同输入电压和不同变比的电流输出能力。
总的来说,平均输出功率呗限制在最大约15mW,哪怕再高的输入电压。
相反在另一个极端,对于极低的输入电压,平均输出功率可能低于50μW4、问:所以我的用户甚至不能用LTC3108 或LTC3109 给一个LED供电?不,可能不会持续供电,那样要求的平均输出功率太高了(我们必须遵循物理定律啊孩子),但是它可以使LED很漂亮地闪烁!5、问:如果我的用户想要获得的能量输出比LTC3108 可提供的更多呢?LTC3109可以通过一个变压器配置为单极性运行。
在这种配置中,它能提供比LTC3108多两倍的电流,输入电阻为1Ω,因此这是一种更好的匹配低至1Ω或更低的负载电阻的电压源。
6、问:TEC(热电冷却器)与TEG(热电发生器)的区别是什么?通常没什么区别,在某些情况下,当制作作为能量发生器的热电装置时,厂商会用更高温度的焊料来适应高运行温度和输出功率(当我使用数据手册的TEG组时,我仅考虑到我们正在使用帕尔贴组件来产生电能这种实际情况,不会太冷)。
便携式军事应用中的电源管理解决方案
便携式军事应用中的电源管理解决方案随着数字技术的进步,战场上士兵的背包设计迅速发展。
一方面,部队需要有效的通信和即时访问战略信息。
另一方面,设备需要在极端条件下存活,同时保持便携性而不影响性能。
图1:对于数字战场上的现代士兵来说,可靠的电子设备同样重要有效的武器。
锂电池长期以来一直被认为是军事战场上便携式设备的最佳电源。
虽然专业的军用级一次锂电池不易用于商业用途,但有一些商业级单元被指定用于满足极端温度,并且可以用于类似的坚固应用。
Tadiran电池的TL系列就是一个例子。
然而,随着功率密度的增加和成本的降低,可充电锂电池现在变得更加可行。
一个关键优势是它们可以从各种电源进行充电,包括便携式和可穿戴式太阳能电池板以及其他能量收集源。
更轻的锂电- 随着GPS,先进传感器和无线网络等技术的发展,现在战场上部署的军事人员可以使用的便携式电子设备种类繁多。
越来越多的专用军用级可穿戴计算设备正在利用商业技术。
尽管在背包和现场总部中为士兵使用的坚固耐用的便携式计算机的开发做出了相当大的努力,但今天的商用智能手机的剪切功能性能具有巨大的吸引力,尽管尚未得到广泛部署。
同时,为士兵的背包充满电子设备维持电源需要仔细设计和考虑。
低功耗操作和移动充电能力是关键考虑因素。
在所有电池技术中,锂已被证明是小巧轻便的,适用于manpack应用。
当高性能军事系统需要时,它们可以快速释放足够高的功率。
此外,他们可以在长期存储或休眠活动中维持其充电水平。
更重要的是,它们坚固耐用,可在极端温度下工作,同时在损坏时也不会爆炸或点燃,例如用子弹。
直到最近,充电电池还不适合许多军事系统,主要是因为他们没有功率密度,使电池组更大更重。
成本也是一个因素。
然而,可充电设备的性能已得到改善,并且它们在现在部署的越来越多的便携式军用电子系统中被证明特别有用,例如夜视设备,紧急定位信标和基于GPS的跟踪器,以及便携式战术计算机和通信系统。
与非可充电电池相比,它们的较。
LTC3105:同步升压型转换器
能 ( 1 z的典型值为 6 d c 6 k zI 在 MH 4 B 、1 5 H F带宽 ) .
L I A 66 S S 1 0交换机通过嵌入式 S Si 理器 ( D S A 揩 S M)
A DM提供了端口 娥 实用程序提供了完整的 S S域管理功能 S
多3 2个 S S 20端u,也 可通过两个带冗余数据路径蚺 A .
交换 机盘 持应州 暖固 曩皿
C R 0 0连 接平 台 S 8 0:
CS R公司推 出下一代连接平 台CS 0 0 R8 0 .通过无线
L Sl
¨y IL o 慨 s c m
连 接进备提高音质并扩展连接 殳备的生态系统,包括新 必
S S S 高灵敏度器件 ( 典型值 -0 d m,1k p n h s r 实现分尼存储解决方案 结合主动式线缆支持 .L I A 19 B 0 B sMa c e t e 数据速率、F K搁制频率偏差值为 ±1 k z 6 k zI S 0 H 、1 5 H F带 变换机之间的距离达 2 m 5
C 80 SR 0 0系 列 产 乜 括 :为车 裁 应 川 『 打 造 的 f l i CS 8 1 R 3 1,为平板电脑 ,笔 c簿 、 h 州本和 P C应J 而打 I j
性能概要有 :低启动 电压 : 5 mV; 20 面向商阻抗电源 的最大功率点挖制 ; V 范【 02 宽 匐为 V一5 辅助 6 V; mA
L DO稳压器 : 突发模式工作为 I =2 p 输出新接 和浪 O 2 A;
涌电流限制 ; 可在 V .>VoT u 时工作 ; 防振铃控制 ; 软启动 :
造的 CS 8 1 R 5 0:为手 机,P ND和 P MP打造 的 C 8 1 自动功牢 涧节 ;电源 良好指 示器 ;1 线 3 mm SR 8 0 0 qI mm x3
LTC1859CG中文资料
WU
U
CO VERTER A D ULTIPLEXER CHARACTERISTICS
The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. MUXOUT connected to ADC inputs. (Notes 5, 6)
LINES
10µF
10µF
1µF
10µF
3V TO 5V 5V 5V 10µF
2.5V
INL (LSB)
LTC1859 Typical INL Curve
2.0
1.5
1.0
0.5
0
– 0.5
–1.0
–1.5
–2.0 –32768 –16384
0 CODE
16384 32767
1859 TA02h performance sample-and-hold and precision reference minimize external components. The low 40mW power dissipation is made even more attractive with two user selectable power shutdown modes. DC specifications include ±3LSB INL for the LTC1859, ±1.5LSB INL for the LTC1858 and ±1LSB for the LTC1857.
ORDER PART NUMBER
高性能、同步升压型转换器 LTC31
高性能、同步升压型转换器LTC31凌力尔特公司(Linear Technology CorporaTIon) 推出高性能、同步升压型转换器LTC3105,该器件含有最大功率点控制(MPPC),并以低至250mV 的输入启动。
LTC3105 在0.2V 至5V 的极宽输入范围内工作,从而非常适用于从高阻抗可替代电源收集能量,包括了光伏电池、热电发生器(TEG) 和燃料电池。
LTC3105 的内部400mA 同步开关最大限度地提高了效率,同时其突发模式(Burst Mode®) 工作提供仅为22uA 的静态电流,从而进一步优化转换器在所有工作条件下的效率。
一个可由用户设置的MPPC 设定点尽量增加了在不导致其内部电压骤降情况下从任何电源吸取的能量。
L TC3105 非常适用于为无线传感器和数据采集应用供电。
可以将多余的能量或环境能量收集起来,然后用于产生系统电源,以替代可能十分昂贵或缺乏实用性的传统有线电源或电池电源。
通常,这些应用只需要非常低的平均功率,但也需要周期性的较高负载电流脉冲。
例如:LTC3105 可在无线传感器应用中使用,在此类应用中,当传感器处于待机模式时电源负载极低,而在电路上电以进行测量或数据传输时则被周期性的高负载脉冲所中断。
LTC3105 具有一个可提供高达6mA 输出电流的辅助LDO,用于在主输出处于充电状态的情况下给外部微控制器及传感器供电。
当满充电时,主输出能够提供高达 5.25V 的电压以及高至100mA 的输出电流。
甚至在VIN 高于或等于VOUT 时,该器件也可以调节VOUT,从而提供了进一步的设计灵活性。
停机时,LTC3105 提供输出断接,隔离了VIN 和VOUT,从而仅需要4uA 的静态电流。
LTC3105 的3mm x 3mm DFN 封装(或MSOP-12) 与非常小的外部组件相结合,可为能量收集应用提供一个非常紧凑的解。
毫微功率降压-升压DCDC转换器及能量收集电源LTC3330
GND
20 LDO_OUT
UV1 6
19 IPK2
UV0 7
18 IPK1
AC1 8
17 IPK0
9 10 11 12 13 14 15 16
AC2 VIN CAP SW VOUT SWB SWA BAT
UH PACKAGE 32-LEAD (5mm × 5mm) PLASTIC QFN
TJMAX = 125°C, θJA = 44°C/W EXPOSED PAD (PIN 33) IS GND, MUST BE SOLDERED TO PCB
A low noise LDO post regulator and a supercapacitor balancer are also integrated, accommodating a wide range of output storage configurations. Voltage and current settings for both inputs and outputs are programmable via pin-strapped logic inputs. The LTC3330 is available in a 5mm × 5mm QFN-32 package.
47µF 6.3V
1µF 6.3V
1.2V TO 3.3V 50mA
22µF 6.3V
3330 TA01a
OUTPUT VOLTAGE 50mV/DIV
AC-COUPLED
Extended Battery Life with Energy Harvesting
EH_ON 2V/DIV
0V
IBAT 100mA/DIV
基于BP3105芯片的高效一体式LED筒灯设计
基于BP3105芯片的高效一体式LED筒灯设计作者:冯薇尤利沙张丽丽来源:《电子世界》2012年第20期【摘要】文章结合LED照明发展现状,设计了一种基于BP3105恒流驱动芯片的小功率LED筒灯。
该设计提出了将驱动控制电源与灯具外壳连接在一起的一体式设计方案。
实现了功率因数校正,提高了功率因数。
文章对反激式驱动电源电路、散热器进行了理论设计和参数估算。
经测试,各项光电指标符合设计要求,性能稳定,成本较低。
【关键词】LED筒灯;驱动电源电路;反激式;BP31051.引言在全球能源日益短缺、环保要求不断提高的情况下,LED灯具正逐渐成为当下及未来照明市场的发展方向。
LED照明具有光效高、易控制、寿命长、节能环保等显著优势,是人类继白炽灯、荧光灯之后新的照明革命。
目前LED灯具已广泛应用于室内、室外、景观照明,在室内照明LED灯具中使用较普遍的是筒灯、射灯、平板灯、球泡灯。
随着LED技术的迅猛发展,LED在照明市场被业界认为在未来10年成为最被看好的市场以及最大的市场,LED灯具也将是取代白炽灯、荧光灯的最大潜力商品。
2.LED筒灯市场分析筒灯是在工程建设中用量最大的室内工程灯具,它广泛用于在商场、宾馆、写字楼和家庭装修中,它是一种点光源灯具,通常是嵌入在天花上作为空间照明使用。
筒灯的光源主要是节能灯、LED两大类。
相比较而言,LED除了价格较贵外,其他主要性能都明显高于节能灯,例如光效方面:螺旋节能灯为60lm/W、2010白光LED为120lm/W;寿命方面:螺旋节能灯筒灯根据安装方式主要分为嵌入式和明装式,其中嵌入式占据近95%的市场;根据灯杯尺寸主要可分为2.5、3、4英寸(民用)和3、4、5、6、8、10英寸(工程),其中4英寸使用最多;根据结构可分为自带控制装置式(即一体式)和控制装置分离式,其中一体式LED筒灯市场很少见。
3.LED筒灯设计方案结合市场分析和成本控制,本设计任务确定为一款4英寸一体式LED筒灯。
BP3105 PDF资料
启动电阻对 Vcc 的电容进行充电,当 Vcc 电压达
CS 比较器的输出还包括一个 500ns(典型)消隐时
到芯片开启阈值时(典型 14V)时,芯片内部控制 间。
电路开始工作。系统启动后,Vcc 由辅助绕组进行 LED 输出电流通过计算得到,其表达式为:
供电。
I
OUT
=
I P
4
N ×P
NS
page8-5
PRELIMI 典型应用
图 1 典型应用
page8-1
管脚封装
BP3105高精度原边反馈LED恒流控制芯片
管脚描述
管脚号 1 2 3 4 5
定购信息
定购型号
ARY 管脚名称 N VCC
GND
I GATE M CS I FB
描述
电源端 信号和功率地 外部 NMOS 管驱动 电流采样端,采样电阻接在 CS 和 GND 端之间 辅助绕组的反馈端
试。建议最大工作频率小于 80kHz,最小工作频率大
L 于 20kHz。工作频率的计算式为:
旁路电容 Vcc 的旁路电容需要紧靠芯片 Vcc 和 GND 引脚。
CS 采样电阻 Cs 采样电阻的地线与芯片地线需尽量靠近,这样 可以降低耦合噪声,提高采样精度。
RE f =
N P 2 *V LED
P8*
N
V
FB
辅助绕组信号采样端
-0.3~6
V
Drain
内部功率管的漏极
-0.3~6VCS电流采源自端-0.3~25V
PDMAX
功耗(注 3)
0.3
W
PTR
热阻, SOT23-5(θJA)
300
TJ
工作结温范围
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为电源管理而设计的LTC3105
超低功率解决方案可用于众多的无线系统,包括交通运输基础设施、医疗设备、轮胎压力检测、工业检测、楼宇自动化和贵重物品追踪。
此类系统通常在其服役生涯的大部分时间里都处于待机睡眠模式,仅需极低的W级功率。
当被唤醒时,传感器将测量诸如压力、温度或机械偏转等参数并以无线的方式把这些数据传送至一个远程控制系统。
整个测量、处理和传送时间通常只有几十ms,但在此短暂期间内有可能需要几百mW 的功率。
由于这些应用的占空比很低,因此必须收集的平均功率也会相对较低。
电源可能就是一节电池而已。
然而,电池将不得不以某种方式进行再充电,最终还得更换。
在许多此类应用中,实际更换电池的成本之高使其缺乏可行性。
这使得环境能量源成为了一种更具吸引力的替代方案。
新兴的毫微功率无线传感器应用就楼宇自动化而言,诸如占有传感器、温度自动调节器和光控开关等系统能够免除通常所需的电源或控制线路,而代之以一个机械或能量收集系统。
除了可以免除首先进行线路安装(或在无线应用中定期更换电池)的需要之外,这种替代方法还能减低有线系统往往存在的例行维护成本。
类似地,运用能量收集技术的无线网络能够将一幢建筑物内任何数目的传感器链接到一起,以通过在建筑物内无人居住时关断非紧要区域的供电来降低采暖、通风和空调(HV AC)以及照明成本。
典型的能量收集配置或无线传感器节点由4个模块组成(见图1)。
它们是:1、一个环境能量源,比如:太阳能电池;2、一个用于给节点的其余部分供电的功率转换组件;3、一个将节点链接到现实世界的感测组件以及一个计算组件(由微处理器或微控制器组成,负责处理测量数据并将这些数据存贮到存储器中);4、一个由短程无线单元组成的通信组件,用于实现与相邻节点及外部世界的无线通信。
环境能量源的实例包括连接到某个发热源(例如:HV AC管道)的热电发生器(TEG)或热电堆,抑或是连接至某个机械振动源(如:窗玻璃)及太阳能电池的压电换能器。
在存。