卧式容器(JB4731-2005)
孟传亨JB4730-2005标准简介
JB/T4730.1~.2-2005《承压设备无损检测》(通用要求及射线检测部分)简介讲课稿孟传亨JB/T4730-2005标准共有6个标准组成:JB/T 4730.1-2005是5种常规检测方法的通用要求,JB/T 4730.2-2005是对射线检测的规定,以下顺次为UT、MT、PT和ET。
JB/T 4730标准是机械行业的标准,经主管部门批准后,适用于涉及承压设备的所有行业。
JB/T 4730标准将“压力容器”改为“承压设备”扩大了范围。
承压设备应包括锅炉、压力容器和承压管道。
§1 JB/T4730.1—2005中有关射线检测的规定1.1 JB/T4730.1-2005标准的适用范围本标准第1节“范围”规定了JB/T4730标准所涉及的内容,即5种常规检测方法的一般要求和使用原则。
本节明确了JB/T4730标准的适用范围,即凡金属材料的在制和在用的承压设备的无损检测均适用。
每种检测方法都包括了两方面的内容,即检测方法和缺陷等级评定。
1.2规范性引用文件第2节中规定:“下列文件中的条款,通过JB/T4730的本部分的引用而成为本部分的条款.凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分。
然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本部分。
”涉及射线检测规的范性引用文件有如下几个:GB/T 12604.2无损检测术语射线检测GB 17925—1999气瓶对接焊缝X射线实时成像检测JB/T 4730.2—2005 承压设备无损检测第2部分:射线检测GB/T 19293—2003 对接焊缝X射线实时成像检测法国家质量监督检验检疫总局国质锅检字[2003]248号文特种设备无损检测人员考核与监督管理规则1.3术语和定义第3节中规定:除引用国标GB/T12604.1~12604.6的术语适用于本标准外,对下列术语重新作了明确的定义。
JBT4731-2005钢制卧式容器讲稿
JBT 4731-2005 钢制卧式容器讲稿1.适用范围JB/T 4731—2005《钢制卧式容器》相对于原来GB l50—1989第8章作了部分修订,如:取消圈座支承,增加鞍座轴向弯曲强度校核及附录A《有附加载荷作用时卧式容器的强度汁算》等。
JB/T 4731适用于设计压力不大于35MPa,在均布载荷作用下,由两个对称的鞍式支座支承的常压及受压卧式容器,它不适用于:——直接火焰加热及受核辐射作用的卧式容器;——经常搬运的卧式容器;——带夹套的卧式容器;一一作疲劳分析的卧式容器:卧式容器设计是先根据操作压力(内压、外压)确定壁厚,再依据自重、风、地震及其他附加载荷来校核轴向、剪切、周向应力及稳定性,卧式容器设计还包括支座位置的确定及支座本身的设计。
2.术语和定义.操作压力.设计压力.计算压力.试验压力设计温度工作温度试验温度计算厚度设计厚度名义厚度有效厚度3设计的一般规定3.1 设计压力的确定:(a)设计压力值应不低于操作压力;(b)装有超压泄放装置时,设计压力按GB150附录B确定设计压力;(c)液化气体,液化石油气的卧式容器,按《容规》规定确定设计压力;(d)真空容器的设计压力按承受外压考虑,当装用安全控制装置时,设计压力取 1.25倍的最大内外压差或0.1Mpa两者的较低值;当无安全控制装置时,设计压力取0.1Mpa。
3.2设计温度的确定:(a)设计温度不低于元件金属在工作时可能达到的最高温度。
对于0度以下的金属温度,设计温度不应高于元件金属在工作时可能达到的最低温度。
铭牌上应标志设计温度。
(b)低温卧式容器的设计温度按GB150附录C规定确定。
3.3元件金属温度确定(a)传热计算;(b)在已使用的同类容器上测定;(C)在使用过程中,金属温度接近介质温度时按内部介质温度确定。
3.4 对于有不同工况的卧式容器,应按最苛刻的工况设计,并在图样或技术文件中注明各工况的操作压力和操作温度。
3.5设计载荷(a).长期载荷设计压力——内压、外压;液体静压力;容器质量载荷——自身质量,容器所容纳的物料质量,保温层、梯子平台、接管等附件质量载荷。
卧式容器资料重点
一、主 要变化
1、适用范围的变化
NB/T47024
JB/T4731-2005
二、材料
三、强度计算
双鞍座卧式容器可简化为对称分布的承受均布载荷的双铰支点外伸梁。当 外伸长度等于两支点间距离为0.207L时,其支座处和两支点间的中间点的 弯矩相等,故鞍座设置时要求A不宜大于0.2L。
加强圈靠近鞍座平面内时,对内加强圈σ8位于鞍座截面靠近水平线加 强圈内环处,对外加强圈σ8位于鞍座截面靠近水平线加强圈外环处,主 要影响因素:加强圈的形状及尺寸、筒体有效厚度δe;
“加强圈位于鞍座平面内”---加强圈位于图中所示“鞍座平面”两侧各 小于或等于b2/2的范围内,b2=b+1.56(Ra.δn)1/2,
加强圈靠近鞍座平面内时,对内加强圈σ7位于鞍座截面靠近水 平线加强圈外壁处,对外加强圈σ7位于鞍座截面靠近水平线筒体 内壁处,主要影响因素:加强圈的形状及尺寸、筒体有效厚度δe; σ8---加强圈在鞍座平面内时,对内加强圈σ8位于鞍座截面加强圈 内环处,对外加强圈σ8位于鞍座截面加强圈外环处,主要影响因 素:加强圈的形状及尺寸、筒体有效厚度δe;
3.圆筒周向应力
σ5---鞍座处圆筒横截面的最低点处,影响因素: L(A) 、鞍座包 角、鞍座轴向宽度和有效厚度δe ;
σ6---垫板不起加强作用时,在鞍座边角处,影响因素: L(A) 、 鞍座包角、鞍座轴向宽度、筒体有效厚度δe ;
σ6’---垫板起加强作用时,鞍座垫板边角处,影响因素:L(A) 、 筒体有效厚度δe、鞍座包角、鞍座轴向宽度、垫板厚度;
2.圆筒切向应力τ及封头应力τh
τ---圆筒切向剪应力:当圆筒未被封头加强时,当在鞍座平面有加强圈时, 其最大剪应力位于截面的水平中心线处A、B点,当在鞍座平面上无加强 圈或靠近座截面有加强圈时,其最大剪应力位于靠近鞍座边角处C、D点, 影响因素L(或A)和筒体有效厚度δe 及鞍座包角。
卧式容器(JB4731-2005)教材
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
σ7 ,σ8 有加强圈时,承受F/4,Mφ是由加强圈,故第一项分母为A0 (加强圈组合截面面积)。第二项分母为I0 (加强圈组合截面惯性)。
σ7 是当有外加强圈时筒体内表面处的应力, 当有内加强圈时筒体外表面处的应力。
2013年陕西省压力容器设计人员培训班
《钢制卧式容器》
----JB/T 4731-2005
淡 勇
(教授)
西北大学化工学院 College of Chemical Engineering Northwest University
一. 前言
《钢制卧式容器》 ----JB/T 4731-2005
JB/T4731是1993年开始编写。1998年完成2000年版。后因
《钢制卧式容器》JB/T 47312005
2)地震及地震影响系数 考虑地震主要是为校核鞍座的强度。(请参见JB/T4731 P44 2节)
1)σ9 增加垫板起加强作用,此时由垫板承受部分Fs力(使鞍座腹板分开的), 即分母改为 Hsbo+brδre
这里有几点说明:
-地震力不考虑垂直地震力,取水平地震力; -地震力对鞍座的作用,其作用力取筒体轴线方向,因鞍座该方向抗弯性差; -卧式容器按放位置一般不高,风载相对地震较小,计算中没考虑,但对于按放
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
7.3.4 圆筒周向应力
它是由切向剪应力使筒体产生周向弯矩(切向剪力的水平、垂直分量对筒体取 矩)。其弯矩图如JB/T4731图7—5或下面图22.4.5-1。无加强圈或加强圈位于鞍 座平面内时,最大弯矩发生在鞍座边角处;加强圈靠近鞍座平面内时最大弯矩发
卧式容器(JB4731-2005)讲解
τh≤1.25[σ]t-σh
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 4731-
7.3.4 圆筒周向应力
2005
它是由切向剪应力使筒体产生周向弯矩(切向剪力的水平、垂直分量对筒体取 矩)。其弯矩图如JB/T4731图7—5或下面图22.4.5-1。无加强圈或加强圈位于鞍 座平面内时,最大弯矩发生在鞍座边角处;加强圈靠近鞍座平面内时最大弯矩发 生在筒体水平中心线靠下一点处。
内压容器 外压容器
正常操作 σ2,σ3 σ1,σ4,
水压试验 σT2,σT3 σT2,σT3
冲水不加压 σT1,σT4, σT1,σT4,
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 4731-
7.3 切向剪应力
2005
它是由支座反力在支座处筒体上引起的切向剪应力。
1)当鞍座平面处有加强圈时最大剪应力发生在筒体水平中心线处(见下a) 。 2)当鞍座平面处无加强圈时最大剪应力发生在筒体水平中心线下鞍座边角处(见
最近网上有人认为按表5-1选材要求太严,而且在计算实例中用的是Q235-A,前后 不一致,故昨早秘书长同有关编审人员协商处理意见如下:
设计温度(环境温度加上+20℃)
鞍座材料
>0~250℃(相当环境温度-20℃~250℃)
Q235-A
0~-20℃(相当环境温度-20℃~-40℃)
16MnR,
20R
对受介质温度影响的按介质温度另行选取。对 表5-1鞍座材料的选取将在 JB/T4712鞍座标准确定后作适当修改及通知。
卧式容器
JB/T4731-2005 <<钢制卧式容器>>1.适用范围JB/T 4731—2005《钢制卧式容器》相对于原来GB l50—1989第8章作了部分修订,如:取消圈座支承,增加鞍座轴向弯曲强度校核及附录A《有附加载荷作用时卧式容器的强度汁算》等。
JB/T 4731适用于设计压力不大于35MPa,在均布载荷作用下,由两个对称的鞍式支座支承的常压及受压卧式容器,它不适用于:——直接火焰加热及受核辐射作用的卧式容器;——经常搬运的卧式容器;——带夹套的卧式容器;一一作疲劳分析的卧式容器:卧式容器设计是先根据操作压力(内压、外压)确定壁厚,再依据自重、风、地震及其他附加载荷来校核轴向、剪切、周向应力及稳定性,卧式容器设计还包括支座位置的确定及支座本身的设计。
2.术语和定义.操作压力.设计压力.计算压力.试验压力设计温度工作温度试验温度计算厚度设计厚度名义厚度有效厚度3设计的一般规定3.1 设计压力的确定:(a)设计压力值应不低于操作压力;(b)装有超压泄放装置时,设计压力按GB150附录B确定设计压力;(c)液化气体,液化石油气的卧式容器,按《容规》规定确定设计压力;(d)真空容器的设计压力按承受外压考虑,当装用安全控制装置时,设计压力取1.25倍的最大内外压差或0.1Mpa两者的较低值;当无安全控制装置时,设计压力取0.1Mpa。
3.2设计温度的确定:(a)设计温度不低于元件金属在工作时可能达到的最高温度。
对于0度以下的金属温度,设计温度不应高于元件金属在工作时可能达到的最低温度。
铭牌上应标志设计温度。
(b)低温卧式容器的设计温度按GB150附录C规定确定。
3.3元件金属温度确定(a)传热计算;(b)在已使用的同类容器上测定;(C)在使用过程中,金属温度接近介质温度时按内部介质温度确定。
3.4 对于有不同工况的卧式容器,应按最苛刻的工况设计,并在图样或技术文件中注明各工况的操作压力和操作温度。
JB-T 4730-2005 标准释义--前言
JB-T 4730-2005 标准释义--前言目次前言..................................................................................................................218 引言..................................................................................................................222 第1章 JB/T4730.1通用要求..............................................................................225 第2章 JB/T4730.2射线检测..............................................................................231 第3章 JB/T4730.3超声检测..............................................................................247 第4章 JB/T4730.4磁粉检测..............................................................................271 第5章 JB/T4730.5渗透检测..............................................................................282 第6章 JB/T4730.6涡流检测..............................................................................290 第7章参考文献................................................................................................293 第8章使用实例 (295)217前言JB 4730—1994《压力容器无损检测》标准是《压力容器安全技术监察规程》(以下简称《容规》)及有关的产品标准等的配套标准,由全国压力容器标准化技术委员会(以下简称“容标委”)提出,全国压力容器标准化技术委员会制造分会归口,原机械部、化工部、劳动部和中国石油化工总公司联合发布的强制性行业标准。
(19)JB4731-2005钢制卧式容器(英)
JB/T 4731-2005ContentsForeword (2)1. Scope (3)2. Normative references (3)3. Terms and definitions (3)4. General rules (4)5. Material (12)6. Structure (13)7. Strength calculation (14)8. Manufacturing, inspection and acceptance (46)Appendix A (Informative Exhibit) Calibration and Calculation of Strength and Stability of Horizontal Vessels under Additional Load (49)Interpretations to JB/T 4731-200 (62)JB/T 4731-2005ForewordThis standard is stipulated based on Chapter 8: “Horizontal Vessels”of GB 150-1989---Steel Pressure Vessels through incorporation and revision of some contents in design calculation and supplement of requirements for manufacturing, inspection and acceptance of horizontal vessels. Such contents as horizontal vessels of normal pressure, manufacturing conditions as well as calculation of load as incurred by centralized mass and strength verification are supplemented simultaneously with the stipulation of this standard.This standard is compiled in reference to PD 5500-2003 Pressure Vessels of Indirect Fired Process and JIS B 8278-1993 Saddle supported horizontal pressure vessels based on practice in design, manufacturing and inspection of horizontal vessels in China in recent years.Appendix A to this standard belongs to normative exhibit.This standard will substitute JB/T 4731-2000 from the date of implementation. JB/T 4731-2000 has not been published due to references. The standard as substantially substituted is Chapter 8 of GB 150-1989---Steel Pressure Vessels.This standard is proposed by China Standardization Committee on Boilers and Pressure Vessels (SAC/TC 262)This standard is under the jurisdiction of China Standardization Committee on Boilers and Pressure Vessels (SAC/TC 262).This standard is drafted by Hualu Engineering & Technology Co., LtdMajor drafters of this standard: Pei Deyu, Liu Shaojuan and Wang XinjingPersonnel participating in compilation of this standard:Economics & Development Research Institute, SINOPEC: Shou Binan, Gu Zhenming, Li Jianguo, Wang Weiguo and Chen Chaohui.Hualu Engineering & Technology Co., Ltd: Li Zhaoliu Yang YongchengSinopec Engineering Incorporation: Li Shiyu and Yu CunyiNational Technology Center of Process Equipment: Huang Zhenglin and Qin ShujingLanzhou Petroleum Machinery Research Institute: Song BingtangSteel Horizontal Vessels1. ScopeThis standard specifies requirements for design, manufacturing, inspection and acceptance of steel horizontal vessels (hereinafter referred to as horizontal vessels).This standard is applicable to horizontal vessels with design pressure no more than 35MPa as supported by two symmetrical saddle supports under the uniformly distributed load.This standard is not applicable to the following horizontal vessels:a)Vessels subjecting to fired process and nuclear radiation;b)Horizontal vessels frequently transported;c)Vessels requiring fatigue analysis;d)Vessels with sleeves2. Normative referencesThe following standards contain provisions which, through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to applicanes based on this standard encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. GB 150: Steel Pressure VesselsGB/T 700-1988: Carbon Structural SteelsGB/T 1804-2000: General Tolerances---Tolerances for Linear Dimensions without Individual Tolerance IndicationsGB/T 1591-1994: Low-alloy High-Strength Structural SteelsGB 50017-2003: Code for Design of Steel StructuresJB/T4712: Saddle SupportsJB 4733-1996: Explosive Stainless Clad Steel Plate for Pressure VesselsJB/T 4735-1997: Steel welded atmospheric pressure vesselsTechnologic Supervision Regulations On Safety Of Pressure Vessels (issued by formal State Administration of Quality and Technological Supervision in 1999)3. Terms and DefinitionsThe following terms and definitions are applicable to this standard.3.1 PressurePressure indicates gage pressure, if not specified.3.2 Working pressureWorking pressure is defined as the maximum pressure that may occur at the top of the vessel under normal operating conditions.3.3 Design pressureDesign pressure is defined as the maximum set pressure at the top of the vessel and shall be applied as the conditions of design load with the coincident design temperature. The design pressure shall be not less than the working pressure.3.4 Calculating pressureCalculating pressure is defined as the pressure used to determine the thickness of the vessel parts with the coincident design temperature.3.5 Test pressureTest pressure is defined as the pressure on the top of the vessel during pressure test for horizontal vessel.3.6 Design temperatureDesign temperature is defined as the set metal temperature of element under normal operating conditions of the vessel (the mean metal temperature through the cross section of the element). The design temperature shall be applied as the conditions of design load with the coincident design pressure.3.7 Test temperatureTest temperature is defined as the metal temperature of the shell during test.3.8 Thickness3.9 Calculated thicknessCalculated thickness refers to the thickness as obtained by using formula in GB 150 or JB/T 4735 and this standard. If necessary, thickness as required by other load shall be incorporated.3.10 Design thicknessDesign thickness refers to the sum of calculated thickness and corrosion allowance.3.11 Nominal thicknessNominal thickness is defined as the sum of the design thickness and the minus deviation of steel material thickness, then rounded off to the nearest greater thickness specified.3.12 Effective thicknessEffective thickness is defined as the nominal thickness minus the sum of the corrosion allowance and the minus deviation of steel material thickness.4. General rules4.1 The design, fabrication, testing and inspection, and acceptance of horizontal vessels must fully comply with all the applicable requirements of this standard, and be necessary to meet the requirements of appropriate laws, decrees and regulations issued by the Government.4.2 Scope of vessels4.2.1 Horizontal vessels connected with external pipelinesa) The first ring as connected through welding should be oriented towards the bevel end;b) The first threaded joint should be oriented towards the joint end;c) The first flanged sealing face;d) The first sealing face as connected with special connectors or pipe fittings.4.2.2 Bearing end seal and flat cap on connecting tube of horizontal vessel and fasteners.4.2.3 Welded joint between non-load bearing element and horizontal vessel.Elements other than joints, such as saddle support and saddle stiffener should also in compliance with provisions as stipulated in this standard or relevant standards.4.2.4 Overpressure discharging devices as directly connected with horizontal vessel should be in compliance with relevant provisions as stipulated in GB 150. Accessories, such as instruments connected to the horizontal vessel, should be selected as per relevant standards.4.3 Qualifications and responsibilities4.3.1 Qualifications4.3.1.1 The designer and the manufacturer of horizontal vessels shall maintain a sound quality control system.4.3.1.2 The designer must hold an appropriate designer certificate of horizontal vessels. The manufacturer must hold a fabrication license of horizontal vessels.4.3.1.3 Qualifications of manufacturer and inspector of horizontal vessels should be in compliance with relevant provisions as stipulated in JB/T 4735.4.3.2 Responsibilities4.3.2.1 Responsibilities of designera) The designer shall be responsible for the correctness and completeness of all design documents.b)The design documents of horizontal vessels shall at least consists of design calculation sheets and engineering drawings.c) Design drawings of horizontal vessels should be provided with seal of design certificate for pressure vessels.4.3.2.2 Responsibilities of manufacturer4.3.2.2.1 The manufacturer shall ensure the constructed horizontal vessels in conformity with the requirements as prescribed on the design drawings.4.3.2.2.2 The Inspection Department of the manufacturer shall make all of the inspections and tests in details as specified by the provisions of this standard and in accordance with the requirements as prescribed on drawings during the whole course of manufacturing process as well as after completion of construction. After that, the Inspection Department shall provide inspection report, and be responsible for their correctness and completeness.4.3.2.2.3 For each horizontal vessel, the manufacturer shall at least provide the following technical documents for review, which shall be well retained for a period of seven years at least:a) Fabricating procedure drawings or fabricating process cards;b) Material certificates and bills;c) Data sheets of welding procedures and heat treatment process cards;d) Records of those items at the manufacturer’s option permitted by applicable Standards;e) Testing and inspection records during the course of fabricating process and after completion;f) As-built drawings.4.3.2.2.4 The manufacturer shall fill a product certificate and submit it to the user after the safety authority has verified that the vessel was constructed in accordance with the requirements of this standard and the corresponding drawings.4.4 General design requirements4.4.1 Definition of design pressure4.4.1.1 Design pressure shall not be lower than the working pressure.4.4.1.2 For horizontal vessel provided with pressure relief device, the design pressure shall be determined in accordance with Appendix B to GB 150.4.4.1.3 For horizontal vessel filling with liquefied gases and liquefied petroleum gas, design pressure should be in compliance with relevant provisions as stipulated in Technologic Supervision Regulations On Safety Of Pressure Vessels.4.4.1.4 For horizontal vessels under vacuum conditions, the design pressure shall be considered as external pressure. When the vessel is provided with the safety device like vacuum relief valve, the design pressure may be taken as 1.25 times the maximum difference in pressure between inside and outside of a vessel, or the value of 0.1MPa, whichever is lesser. When there is no safety device, the design pressure shall be defined as 0.1MPa.4.4.2 Determination of design temperature4.4.2.1 Design temperature shall not be less than the probable maximum metal temperature of element under operating conditions. For metal temperature below 0℃, the design temperatureshall be equal to or less than the probable minimum metal temperature of the vessel. Design temperature should be indicated on the nameplate.4.4.2.2 For different metal temperatures for elements of horizontal vessels at working status, it is applicable to set design temperature for each element.4.4.2.3 Design temperature of low-temperature horizontal vessel is to be determined as per Appendix C to GB 150.4.4.2.4 The metal temperature of element may be determined by the calculation of heat transfer, or measured on the similar vessel in-service, or be determined in accordance with the inside medium temperature.4.4.3 For horizontal vessel under different operating conditions, the design of vessel shall conform to the most severe operating condition. The corresponding pressures and temperatures of different operating conditions shall be indicated on the drawings or other technical documents.4.4.4. LoadThe following loads and combined loads should be consider for design:a) Pressure;b) Static head of liquids;c) Weight of horizontal vessel (including internal parts) and the contents under the normal operating or testing conditions;d) Centralized and uniformly distributed gravity load of attached equipments, platforms, insulations and liningse) Seismic load;f) Acting force from supports;g) Friction to supports and other acting forces as incurred by thermal expansion;The following loads should be considered if necessary:h) Acting force from connected pipelines and other parts;i) Impact load incurred by violent fluctuation of pressure;j) Impact reactions such as those due to fluid shock;k) Impact from changes to pressure and temperature;l) Acting force incurred during lifting and transportation.4.4.5 Additions to the thicknessAdditions to the thickness shall be determined by Formula (4-1):Where C-thickness addition, mm;C1-minus deviation of material thickness, mm;C2-corrosion allowance, mm4.4.5.1 Minus deviation of steel C1The minus deviation of steel plate or pipe thickness shall be in compliance with the requirements as specified in corresponding steel standards. The minus deviation may be neglected, when it is not greater than 0.25mm, and not exceeds 6% of the nominal thickness.4.4.5.2 Corrosion allowance C2The corrosion allowance shall be considered to protect vessel elements subjected to thinning by corrosion, erosion or mechanical abrasion. Specific provisions are stipulated as follows:a) For elements subjected to corrosion or abrasion, the corrosion allowance shall be determined inaccordance with the specified life of the vessel and the corrosive rate of the medium relative to the material.b) It is applicable to select different corrosion allowance in view of varied degree of corrosion to elements in horizontal vessels;c) For horizontal vessels constructed of carbon steels or low-alloy steels, the corrosion allowance shall be provided not less than 1mm.4.4.6 Minimum thickness of shells after forming, exclusive of any corrosion allowance shall be:a) No less than 3mm for horizontal vessels constructed of carbon steels or low-alloy steels;b) No less than 2mm for horizontal vessels constructed of high-alloy steels.4.5 Allowable stress4.5.1 Allowable stress for load-bearing elements and bolts for horizontal pressure vessels under different temperatures should be selected as per GB 150. Basis for determination of allowable stress is stated as follows: Refer to Table 4-1 for steels other than bolts. Refer to Table 4-2 for bolts. Allowable stress for materials of common horizontal pressure vessels should be selected as per JB/T 4735., but not exceedTable 4-2 Basis for Determination of Allowable Stress (2)In the Table 4-1 and 4-2:Lower limit for typical tensile strength of steels, MPa;Yield strength or 0.2% non-proportional extension strength of steel materials under normal temperature, MPa;Yield strength or 0.2% non-proportional extension strength of steel materials under design temperature, MPa;Mean value of creep rupture strength at design temperature for rupture after 10, 000 hours, MPa;Creep limit at design temperature for 1% of the creep rate after 10, 000 hours, MPa.4.5.2 The allowable stress at 20℃shall be applied for those with the design temperature below 20℃.4.5.3 The allowable stress for stainless steel clad plate:When the bond area between the cladding and the base metal are constructed to meet the requirements of Class B2 in JB4733 or even better, and should the strength of cladding be taken into account in design, the allowable stress for the stainless steel clad plate at design temperature may be determined by Formula (4-2):In the formula:Allowable stress for the stainless steel clad plate at design temperature, MPa;Allowable stress for the base metal at design temperature, MPa;Allowable stress for the cladding at design temperature, MPa;Nominal thickness of the base metal, mmNominal thickness of the cladding, exclusive of corrosion allowance, mm.4.5.4 For antiseptic lining not connected with the shell of horizontal vessel to form an integral part, strength of antiseptic lining can be neglected during design calculation.4.5.5 For the combination of seismic or other loads as stipulated in 4.4.4, the wall stress of vessel shall not exceed 1.2 times the allowable stress.4.5.6 Steel materials other than those as stipulated in GB150 as selected for horizontal vessel should be in compliance with relevant provisions as stipulated in Appendix A to GB 150.4.5.7 Allowable axial compressive stressSmaller value of and B for allowable stress of materials under design temperature is to be selected as the allowable axial compressive stress of drum or the tube. Value B is to be calculated according to the following procedures:a) Calculation coefficient A with Formula (4-3):Where:A---Coefficient;Inner radius of drum or tube, mm;Effective thickness of drum or tube, mm.b) Refer to corresponding charts in GB 150 as per specific materials. If value B is on the right side of material line under design temperature, just cross this point to shift upward for intersection with material line under design temperature (use inset method for intermediate temperature). After that, further shift to the right side by crossing this intersection point to obtain value B. If coefficient A is on the left side of material line under design temperature, value B should be calculated with Formula (4-4):Where:Elastic modulus of materials under design temperature, MPa.4.5.8 Allowable stress for non-load bearing elements other than saddle support shall be selected as per Article 5.4. Allowable stress for critical internal parts and supporting ring as welded on the load-bearing shell shall be selected in reference to bearing elements; whereas that for other shall be determined as per provisions as stipulated in GB 50017.4.6 Coefficient of welded joint4.6.1 For horizontal vessels, coefficient of welded joints Φshould be determined as per welding procedures (single-side or double-side welding; with or without gasket) and NDE length for load-bearing elements.a) For double-welded butt joints or other butt joints of full penetration equivalent to a double welded joint:100% NDE: ;Spot NDE:b) For single-welded butt joints with backing strip fitted on the base metal along the whole length of weld root:100% NDE:Spot NDE:4.6.2 For common horizontal pressure vessels, coefficient of welded joint Φshould be determined as per relevant provisions in JB/T 4735.4.7 Pressure testHorizontal pressure vessels as fabricated should subject to pressure test Types, requirements and testing pressure for pressure test should be indicated on the drawings.4.7.1 Pressure test for horizontal pressure vesselsNormally, pressure test for horizontal pressure vessels is represented by hydraulic test. Testing liquids should be in compliance with provisions as stipulated in GB 150. It is applicable to proceed with air pressure test for horizontal vessels unavailable for hydraulic test. Horizontal pressure vessels should satisfy relevant requirements as stipulated in GB 150 during air pressure test.Horizontal vacuum vessels should subject to pressure test under internal pressure.4.7.1.1 Testing pressureMinimum value of testing pressure for horizontal pressure vessels should be in compliance with the following requirements. Upper limit of testing pressure should satisfy limitations on calibrated stress in Article 4.7.1.2.4.7.1.1.1 Internal horizontal pressure vesselsHydraulic test pressure should be determined as per Formula (4-5):Air pressure test pressure should be determined as per Formula (4-6):Where:Test pressure, MPa;Design pressure, MPa;Allowable stress of vessel part material at test temperature, MPA;Allowable stress of vessel part material at design temperature, MPa;Note:1. When the maximum allowable working pressure is specified on the vessel nameplate, the design pressure p in the formula above shall be replaced by the maximum allowable working pressure.2. When the materials of pressure vessel parts are different, the minimum value of willbe selected.4.7.1.1.2 Horizontal vacuum vesselsTest pressure shall be determined with Formula (4-7):Where:Test pressure, MPa;Design pressure, MPa4.7.1.2 Stress verification before pressure testCalculate stress of drum with Formula (4-8) before pressure test:Where:Stress of drum under testing pressure, MPa;Inner diameter of drum, mm;Test pressure, MPa.Effective thickness of drum, mm;should be verified as per Formula (4-9) and (4-10):For hydraulic test:For air pressure test:Where:Yield strength or 0.2% non-proportional extension strength of drum material at testing temperature, MPa;Coefficient of welded joint for drum.4.7.2 Pressure test for horizontal atmospheric pressure vesselsHorizontal atmospheric pressure vessels as fabricated should subject to hydraulic test. For specific testing requirements, please refer to relevant provisions as stipulated in JB/T 4735.4.7.2.1 Test pressureHydraulic test pressure should be determined with Formula (4-11):select the bigger value of the twoWhere:Test pressure, MPa;Design pressure, MPa;Allowable stress of vessel part material at normal temperature, MPa;Allowable stress of vessel part material at design temperature, MPa;4.7.2.2 Stress verification before pressure testCalculate stress of drum with Formula (4-12) before pressure test:Where:Stress of drum under testing pressure, MPa;Inner diameter of drum, mm;Test pressure, MPa.Effective thickness of drum, mm;should be verified as per Formula (4-13):Where:Yield strength or 0.2% non-proportional extension strength of drum material at testing temperature, MPa;Coefficient of welded joint for drum.4.7.3 For horizontal pressure vessels unavailable for pressure test as per provisions in Article 4.7.1, designer shall submit measures for safe operation of vessels to the technical official for approval and indications on drawings.4.8 Leak testIf vessels contain extremely toxic or highly toxic substances, a leak test shall be conducted on those vessels after pressure test.4.8.1 Airtight testAirtight test should be carried out as per relevant provisions in Technologic Supervision Regulations On Safety Of Pressure Vessels.4.8.2 Other leak testExcept for airtight test, other leak tests can be carried out by using such mediums as ammonia, halogen and helium. Testing methods and items should be indicated on drawings.Note: Grading of toxicity of medium should be in compliance with relevant provisions in Technologic Supervision Regulations On Safety Of Pressure Vessels.5. Material5.1 Steel material for pressure elements of horizontal pressure vessel, steel grade, heat treatment status and allowable stress should be in compliance with provisions as stipulated in GB 150.5.2 Steel material for pressure elements of horizontal atmospheric pressure vessel, steel grade, heat treatment status and allowable stress should be in compliance with provisions as stipulated inJB/T 4735.5.3 Steels for non-load bearing elements should be those as incorporated into the material standards. Steel materials for welded pieces should have perfect welding performance. Steels for critical internal parts and stiffening rings as welded on the pressure shell should be in compliance with provisions in Article 5.1.5.4 Selected saddle materials are listed in Table 5-1.5.5 Base plate for connection of saddle with drum should be of the same material as the drum.5.6 Select Q235 anchor bolts as stipulated in GB/T 700 or Q345 anchor bolts as stipulated inGB/T 159. Allowable stress for Q235 and Q345 anchor bolts should be up to 147 andrespectively. For other carbon steels, ; for other low-alloy steels,.6. Structure6.1 SupportsSelect saddle support for horizontal vessels (See Figure 7-1). When supports are welded to the vessel, one of support should be slide one or in rolling structure.6.1.1 Arrangement of supportsMake sure that distance A between support center and end seal tangent line is below or equal to 0.5Ra. If it is impossible, value A should be over 0.2L.6.1.2 Saddle supportIf saddle support for horizontal vessel is selected as per JB/T 4712, verification of strength of saddle support can be omitted if conditions as stipulated in JB/T 4712 can be satisfied. Otherwise, it is necessary to proceed with strength verification as per Article 7.4.6.2 Perforation and connecting tubeHorizontal vessel should be provided with manhole, manual hole or access hole in addition to technical connecting tubes as required. Outlet should be arranged at the lowest point at vessel bottom. If it is impossible to arrange outlet at drum bottom, it is applicable to arrange bottom insert tube as shown in Figure 6-1. The minimum liquid discharge clearance B1 on the bottom insert tube end should be able to ensure adequate discharge space.All holes and stiffeners on the horizontal vessel should be in compliance with relevant provisions in GB 150.All holes and stiffeners on the horizontal atmospheric pressure vessel should be in compliance with relevant provisions in JB/T 4735.6.3 Arrangement of stiffening ringFigure 6-1: Structure of Outlet on Horizontal Vessel6.3 Arrangement of stiffening ringStiffening ring should be complete or nearly complete. Connection structure between stiffening ring and shell should be in compliance with relevant provisions in GB 150.6.3.1 In view of the fact that horizontal vessel is under local stress, it is applicable to set internal and external stiffening rings on the saddle plane (See Figure 7-8) or at the periphery of saddle plane (See Figure 7-9).6.3.2 In view of instability of horizontal vessel under external force, setting and calculation of stiffening ring should be in compliance with provisions as stipulated in GB 150.7. Strength calculation7.1 Calculate the strength of pressure elements of horizontal vessel as per relevant provisions in GB 150 or JB/T 4735 before checking calculation of strength and stability as per Article 7.3 and 7.4.In view of centralized load as incurred by accessory equipments (4.4.4d), it is applicable to proceed with checking calculation of strength and stability as per Appendix A (Informative Exhibit).7.2 Symbol descriptionDistance between center line of saddle base plate and end seal tangent line (See Figure 7-1), mm;切线Tangent line鞍式支座边角处Saddle support cornerThe sum of combined cross sectional area of all stiffening rings and effective stiffening sections of drum on one saddle, mm2Value as determined in reference to design external pressure as stipulated in GB 15 at design temperature, MPa;Value as determined with external pressure design methods as stipulated in GB 150 atnormal temperature, MPa;Inner diameter of drum, mm;Outer diameter of drum, mm;Counterforce of each support, N;The sum of inertia moment combined cross sectional area of all stiffening rings andeffective stiffening sections of drum on one saddle to sectional spindle X-X (See Figure 7-8, 7-9), mm4Load combination coefficient,Coefficient, refer to Table 7-1 and Table 7-9;Distance of end seal tangent line (See Figure 7-1), mm;Axial bending moment at the drum center, N-mm;Axial bending moment of drum at the saddle, N-mm;Average radius of drum, , mm;Inner radius of spherical part of disk end seal, mm;Inner radius of drum, mm;Axial width of drum, mmWidth of stiffening ring (See Figure 7-8 and 709), mmEffective width of drum, , mm;Effective width of drum when calculating combined cross sectional area of drumandstiffening rings, , mm;Width of saddle base plate (See Figure 7-6), mm;Gravitational acceleration, ;Depth of end seal camber, mm;Coefficient, when the vessel is not welded to the saddle; when the vessel is welded to the saddle;Mass of vessel (including mass of vessel itself, mass of water and medium filled as well as accessories and heat-insulation layer), kg;Design pressure, MPaCalculated pressure, MPa;。
JBT4731-2005钢制卧式容器讲稿
(c)鞍座垫板材料应与壳体材料相同;
(d)地脚螺栓宜选用符合 GB/T700 规定的 Q235 或符合 GB/T1591 规定的 Q345。
如采用其他碳素钢,则 ns=1,6; 如采用其他低合金钢,则 ns≥2.0。
3.14 鞍式支座
卧式容器支座采用 JB/T4712 标准鞍座时,在满足 JB/T4712 所规定的条件时,可免去对 鞍座的强度校核;否则应按 JB/T4731-7.4 进行强度校核。
a)对有腐蚀或磨损的元件, 应根据预期的设计寿命和介质对金属材料的腐蚀速 率确定腐蚀裕量;
b)卧式容器各元件受到的腐蚀程度不同时,可采用不同的腐蚀裕 量;c)碳素钢或低合金钢卧式容器,腐蚀裕量不小于 1mm。 3.7 卧式容器筒体加工成形后不包括腐蚀裕量的最小厚度按下列规定: a)对碳素钢或低合金钢制卧式容器,不小于 3 mm; b)对高合金钢制卧式容器,不小于 2 mm。 3.8 不锈钢复合钢板的许用应力:
3.13 材料
(a) 卧式压力容器材料应 GB150 规定;卧式常压容器材料应 JB/T4735 规定
(b) 鞍座,焊在受压壳体上的重要内件,加强圈等非受压元件用钢应符合下列表中规 定:
使用温度℃
选用材料
许用应力 [σ]sa Mpa
0~250
Q235-B
147
-20~250
Q345
170
≤-20
16MnR
3.6 厚度附加量 C C=C1+C2 C1----钢材厚度负偏差, mm; C2----腐蚀裕量, mm.
钢板或钢管的厚度负偏差按相应钢材标准的规定。当钢材的厚度负偏差不大于 0.25mm,且不超过名义厚度的 0.6%时,在计算中负偏差可忽略不计。 3.6.1 腐蚀裕量 C2
JB4730.1-2005通用要求介绍
承压设备法规标准体系
4、技术法规(第四层次) 安全监察规程类:《蒸汽锅炉安全技术监察规 程》、《热水锅炉安全技术监察规程》、《压力容 器安全技术监察规程》、《超高压容器安全监察规 程》、《气瓶安全监察规程》、《液化气体汽车罐 车安全监察规程》、《压力管道安全管理与监察规 定 》、《医用氧舱安全管理规定 》、《有机热载 体炉安全技术监察规程》等.
该标准94年1月29日正式发布,94年 5月1日实施。1995年2月原劳动部下达 1995年第65号文“关于贯彻执行JB473094《压力容器无损检测》标准的通知”, 要求压力容器行业的设计、选材、制造、 安装、使用、检验和修理等一律执行 JB4730-94标准。
JB4730-94标准贯彻执行近10年来,对规 范压力容器的管理,保障压力容器产品质量, 提高压力容器行业设计、选材、制造、使用、 检验水平,减少爆炸事故等方面起到了积极的 作用。但是在贯彻执行中也发现了不少问题, 如:有些《容规》中包括的有色金属材料制压 力容器的检测方法在标准中尚没有反映;压力 管道的检测内容缺口比较大;与锅炉行业的关 系不够明确;射线检测部分尚有一些条款不尽 完善,此外在用锅炉、压力容器及压力管道的 无损检测内容尚无标准规范可循等等。
承压设备法规标准体系
1、法律:《特种设备安全监察法》(第一层次) 2、法规:《特种设备安全监察条例》 (第二层次) 3、规章(管理规定、办法):《特种设备事故处理 规定》、《进出口特种设备监督管理办法》、《特 种设备质量监督与安全监察规定》、《特种设备检 验检测机构管理规定 》、《特种设备行政许可实施 办法》、《特种设备注册登记与使用管理规则 》等。 (第三层次)
承压设备标准体系(锅炉)
一、锅炉产品标准:JB/T10094-99《工业锅炉 通用技术条件》、JB/T6696-93《电站锅炉技 术条件》、JB/T7985-95《常压热水锅炉通用 技术条件》、JB/T6503-92《烟道式余热锅炉 通用技术条件》、GB/T1921-98《热水锅炉参 数系列》、GB/T3166-88《工业蒸气锅炉参数 系列》、 JB/T7090-93《余热锅炉参数系列 氧气转炉余热锅炉》JB/T6508-92氧气转炉余 热锅炉技术条件》等。
JB-T_4730.1~4730.6-2005承压设备无损检测
JB/T 4730.1-2005 承压设备无损检测第1部分:通用要求 (2)JB/T 4730.2-2005承压设备无损检测第2部分:射线检测 (12)JB/T 4730.3-2005承压设备无损检测第3部分:超声检测 (45)JB/T 4730.4-2005承压设备无损检测第4部分:磁粉检测 (114)JB/T 4730.5-2005承压设备无损检测第5部分:渗透检测 (130)JB/T 4730.6-2005承压设备无损检测第6部分:涡流检测 (141)JB/T 4730.1~4730.6—2005 标准释义 (157)《编制说明》 (161)第1章JB/T 4730.1通用要求 (161)第2章JB/T 4730.2 射线检测 (165)第3章JB/T 4730.3超声检测 (177)第4章JB/T 4730.4磁粉检测 (194)第5章JB/T 4730.5渗透检测 (201)第6章JB/T 4730.6涡流检测 (206)第7章参考文献 (208)第8章使用实例 (210)JB/T 4730.1-2005 承压设备无损检测第1部分:通用要求1 范围JB/T 4730的本部分规定了射线检测、超声检测、磁粉检测、渗透检测和涡流检测五种无损检测方法的一般要求和使用原则。
本部分适用于在制和在用金属材料制承压设备的无损检测。
2 规范性引用文件下列文件中的条款,通过JB/T 4730的本部分的引用而成为本部分的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本部分。
GB/T 12604.1 无损检测术语超声检测GB/T 12604.2 无损检测术语射线检测GB/T 1 2604.3 无损检测术语渗透检测GB/T 12604.4 无损检测术语声发射检测GB/T 12604.5 无损检测术语磁粉检测GB/T 12604.6 无损检测术语涡流检测GB 17925—1999 气瓶对接焊缝x射线实时成像检测GB/T 18182—2000 金属压力容器声发射检测及结果评价方法GB/T 19293—2003 对接焊缝x射线实时成像检测法JB/T 4730.2 承压设备无损检测第2部分:射线检测JB/T 4730.3 承压设备无损检测第3部分:超声检测JB/T 4730.4 承压设备无损检测第4部分:磁粉检测JB/T 4730.5 承压设备无损检测第5部分:渗透检测JB/T 4730.6 承压设备无损检测第6部分:涡流检测国家质量监督检验检疫总局国质锅检字[2003]248号文特种设备无损检测人员考核与监督管理规则。
JBT4730.1-2005通用
承压设备无损检测JB/T4730.1-2005JB4730标准修订工作情况1、2000年1月成立标准修订组,3月完成了JB4730 标准(征求意见稿)。
上报锅炉局以及全国压力容器标委会和全国锅炉标委会,并发至行业近80个单位征求意见。
2、标准修订组根据回函意见并广泛地征求了有关方面的意见,在此基础上提出了JB4730标准(征求意见讨论稿),根据锅炉局及锅容标会的要求,修订稿的适用范围包括锅炉、压力容器及压力管道。
3、2001年9月按锅容委标会暨制造分会要求,标准修订组在合肥经讨论修改,并提出JB4730《征求意见修订稿》。
4、2002年3月根据锅炉局和锅容标会要求,在JB4730《征求意见修订稿》加入在用检测内容,完成送审稿(草稿)。
5、2002年9月根据锅炉局和锅容标委会的指示精神,将送审稿分为6个部分(包括通用要求、射线、超声、磁粉、渗透、涡流等)。
6、送审稿于2002年10月在张家界经制造分会初审通过。
7、2003年3月在锅炉局和锅容标委会直接领导下,对标准修进行讨论,取得共识。
会后又分别在南昌、北京等地对标准的六个部分分别讨论定稿。
8、2003年9月在全国锅容标委员会的组织下,在北京进行标准汇稿。
9、2004年5月在全国锅炉压力容器无损检测Ⅲ级人员考核换证班上对送审稿进行征求意见。
10、 2004年8月在全国锅容标委会的组织下,在沈阳进行标准汇稿和统稿。
11、2004年9月在全国锅容标委会的组织下,在北京进行标准的定稿,标准更名为JB4730-《承压设备无损检测》,并报全国锅容标委会委员审查。
12、2005年3月11~16日在北京根据全国锅容标委会审查情况,召开JB/T4730《承压设备无损检测》定稿会,并整理报批。
13、05年3月31日在北京将JB4730标准修订情况向特种设备安全监察局锅炉容器处、管道处和综合处作了汇报,获得共识和认可。
14 、国家发展与改革委员会2005年7月26日颁布JB4730-2005《承压设备无损检测》标准,并明确规定2005年11月1日正式执行。
JB/T4731讲稿
主讲内容:JB/T 4731-2005《钢制卧式容器》议程约3小时概述●钢制卧式容器的适用范围●材料的选用●支座●开孔及接管●钢制卧式容器的计算●钢制卧式容器的制造及检验●JB/T4731与GB150、NB/T47003.1之间的关系●新容规对JB/T4731的主要影响词汇●卧式容器●鞍式支座●法兰接管支座人孔手孔紧固件●圆筒轴向应力切向剪应力圆筒周向应力轴向弯矩压力温度均布载荷厚度材料试验压力制造及检验一. 钢制卧式容器的适用范围1●①本标准适用于设计压力不大于35MPa 是指●---。
--------------------。
--------------------。
---------------------。
---------●-0.1 -0.02 0.1 35MPa●卧式真空容器卧式常压容器卧式压力容器●GB150 NB/T47003.1 GB150●即:适用于钢制卧式常压容器与钢制卧式压力容器;一. 钢制卧式容器的适用范围2●②均布载荷,两个位置对称的鞍式支座支承的钢制卧式容器。
●③本标准不适用带夹套的卧式容器,主要是因有夹套后,夹套筒体的受力情况、抗弯断面系数等与假设不符。
二. 材料的选用1●①卧式容器的受压元件选材按GB150中的规定;●②鞍座与圆筒相连接的垫板与圆筒材料相同;●③地脚螺栓宜选用GB/T 700规定的Q235或符合GB/T 1591规定的Q345(设计温度≤-20℃时选用);●④螺母:选用与地脚螺栓材质相匹配;●⑤鞍座材料的选用按表5-1:P9二. 材料的选用2表5-1:鞍座材料的选用设计温度,℃(环境温度加20 ℃)鞍座材料许用应力[σsa],MPa0~250(-20~250 )Q235-A147 0~-20(-20~-40 )Q245R153三.支座●1.支座:卧式容器支座采用鞍式支座(P10图7-1)。
●当支座焊在容器上时,其中的一个支座应采用滑动●支座滚动支座。
第八章 钢制卧式容器
第八章 钢制卧式容器第一节 卧式容器受力分析【学习目标】 学习JB /T 4731-2005《钢制卧式容器》,掌握双鞍座支承卧式容器的受力状态分析和容器强度计算.一、JB /T 4731《钢制卧式容器》标准简介JB /T 4731-2005《钢制卧式容器》标准规定了钢制卧式容器的设计、制造、检验和验收的要求。
该标准适用于设计压力不大于35MPa ,在均布载荷作用下,由两个位置对称的鞍式支座支承的卧式容器。
二、双鞍座支承卧式容器结构1、支座卧式容器支座采用鞍式支座(见图8-1)。
当支座焊在容器上时,其中的一个支座应采用滑动支座或滚动结构。
卧式容器一般采用双鞍座支承,两个鞍座对称相向布置。
2、支座的配置支座的位置应尽量使支座中心到封头切线的距离A 小于或等于0.5R a (R a :圆筒的平均半径,R a =R i +δn /2),当无法满足这一要求时,A 值不宜大于0.2L 。
图8-1 鞍式支座支承的卧式容器三、双鞍座支承卧式容器受力分析1、支座反力 2mg F2、圆筒轴向弯矩圆筒轴向最大弯矩位于圆筒中间截面或鞍座平面上(见图8-2)。
图8-2 卧式容器载荷、支座反力、剪力及弯矩图(1)圆筒中间横截面上的轴向弯矩计算:()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+=L A L h L h R FL M iia 43412142221(2)鞍座平面上的轴向弯矩计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+---=L h AL h R L A FA M ii a 341211222 3、圆筒剪力最大剪力位于圆筒支座处横截面上(见图8-2),剪力计算:⎪⎪⎪⎪⎭⎫ ⎝⎛+-=342i h L A L F V 4、圆筒周向弯矩 圆筒鞍座平面上还存在周向弯矩的作用(见图8-3)。
图8-3 圆筒周向弯矩图 当无加强圈或加强圈在鞍座平面内时,其最大弯矩点在鞍座边角处,Mp =K 6FR a ;当加强圈靠近鞍座平面时,其最大弯矩点在靠近横截面水平中心线处,每个加强圈上的最大弯曲力矩Mp =K 6FR a /n (n 为加强圈个数)。
JBT 4731-2005 钢制卧式容器讲稿
JBT 4731-2005 钢制卧式容器讲稿1.适用范围JB/T 4731—2005《钢制卧式容器》相对于原来GB l50—1989第8章作了部分修订,如:取消圈座支承,增加鞍座轴向弯曲强度校核及附录A《有附加载荷作用时卧式容器的强度汁算》等。
JB/T 4731适用于设计压力不大于35MPa,在均布载荷作用下,由两个对称的鞍式支座支承的常压及受压卧式容器,它不适用于:——直接火焰加热及受核辐射作用的卧式容器;——经常搬运的卧式容器;——带夹套的卧式容器;一一作疲劳分析的卧式容器:卧式容器设计是先根据操作压力(内压、外压)确定壁厚,再依据自重、风、地震及其他附加载荷来校核轴向、剪切、周向应力及稳定性,卧式容器设计还包括支座位置的确定及支座本身的设计。
2.术语和定义.操作压力.设计压力.计算压力.试验压力设计温度工作温度试验温度计算厚度设计厚度名义厚度有效厚度3设计的一般规定3.1 设计压力的确定:(a)设计压力值应不低于操作压力;(b)装有超压泄放装置时,设计压力按GB150附录B确定设计压力;(c)液化气体,液化石油气的卧式容器,按《容规》规定确定设计压力;(d)真空容器的设计压力按承受外压考虑,当装用安全控制装置时,设计压力取1.25倍的最大内外压差或0.1Mpa两者的较低值;当无安全控制装置时,设计压力取0.1Mpa。
3.2设计温度的确定:(a)设计温度不低于元件金属在工作时可能达到的最高温度。
对于0度以下的金属温度,设计温度不应高于元件金属在工作时可能达到的最低温度。
铭牌上应标志设计温度。
(b)低温卧式容器的设计温度按GB150附录C规定确定。
3.3元件金属温度确定(a)传热计算;(b)在已使用的同类容器上测定;(C)在使用过程中,金属温度接近介质温度时按内部介质温度确定。
3.4 对于有不同工况的卧式容器,应按最苛刻的工况设计,并在图样或技术文件中注明各工况的操作压力和操作温度。
3.5设计载荷(a).长期载荷设计压力——内压、外压;液体静压力;容器质量载荷——自身质量,容器所容纳的物料质量,保温层、梯子平台、接管等附件质量载荷。
卧式容器设计
式中K为考虑扁塌效应使断面模数减少的系数。 式中M2为负值。对于筒体有加强的情况,K1=K2=1.0
22
卧式容器设计
二、筒体的应力计算与校核
(一)筒体的轴向应力
3.筒体轴向应力的校核 筒体上最大轴向应力为 1 ~4 , 其位置如上。 计算得到的轴向拉应力不得超过材 料的许用应力 t ,压应力不得超过轴 向许用临界应力 cr和材料的 t 。 计算 1 ~4 时,应根据操作和非操作时(指无操作压力装满物料或水 的情况)等不同工况,找出危险工况下可能产生的最大应力。例如对有加强 的筒体,当 M 1 M 2 时,只需校核跨中截面的应力,反之两个截面都要校 核;又如:正压操作的容器,在盛满物料而未升压时,其压应力有最大值, 故对稳定应取这种工况进行校核。 t
5
卧式容器设计 一、鞍座结构及载荷分析
(二) 载荷分析
• 载荷分类
长期载荷 设计压力——内压、外压; 液体静压力; 容器质量载荷——自身质量,容器所容纳的物料质量,保温层、梯子平 台、接管等附件质量载荷。 短期载荷 风载、地震载荷(一般取地震载荷),水压试验充水重。 附加载荷 在JB/T 4731的附录A中增加有卧式容器上的附加载荷。这是考虑卧式容 器上设有立式设备,如换热器、精馏柱、除氧头、液下泵、搅抖器等附 属设备(高度均小于10m)时,它对卧式容器圆筒体产生附加弯矩及支座 反力。实质上,附加载荷也是一种长期载荷。
11
卧式容器设计
一、鞍座结构及载荷分析
(二) 载荷分析
(2)竖直剪力V 和力偶M 对液体静压力进行积分运算,可得 到如下的结果: 将式(3—20)的m1与式(3—21)的m2 两个力偶合成一个力偶M:
显而易见,对于半球形封头,Ri=H, M=0; 而平封头,H=0,M=q/4×R2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计温度(环境温度加上+20℃)
>0~250℃(相当环境温度-20℃~250℃) 0~-20℃(相当环境温度-20℃~-40℃) 20R
鞍座材料
Q235-A 16MnR,
对受介质温度影响的按介质温度另行选取。对 表5-1鞍座材料的选取将在 JB/T4712鞍座标准确定后作适当修改及通知。
《钢制卧式容器》JB/T 47312005
有些引用的标准更改而使.2000版没发行。本标准的出版,从编制初 稿、征求意见稿到报批稿,在全国容标委的领导下经过多位专家、人 士的审查、修改后方定稿了2005年版。这是多个单位、专家共同努力
下完成的,应当向这些人表示感谢。一个新标准从编写、出版到应用,
难免会出现不当或错误的地方,希望各单位及各位专家提出指正或发 表文章,以使标准更完善、先进。JB/T4731-2005主要增加内容:卧
3.3.3条 …对焊接结构尚应具有碳含量的合格保证。
《钢制卧式容器》JB/T 47312005
根据此条Q235-A不能应用。因为BG700在1992年第1号修改单中说明“Q235-A中的
碳含量不作为交货条件” ,即在法律上碳含量是不能保证。因此JB/T4731中考虑
的是Q235-B。对于使用温度<-20℃的用16MnR主要是该材料在容器制造中用的较多。 最近网上有人认为按表5-1选材要求太严,而且在计算实例中用的是Q235-A,前后 不一致,故昨早秘书长同有关编审人员协商处理意见如下:
《钢制卧式容器》JB/T 47312005
JB/T4731-2000版
为Q235-A、Q235-AF、16Mn、16MnR。
JB/T4731-2005版选用是这样: GB50017-2003〈钢结构设计规范〉中 3.3.2条 下列情况下的承重结构和构件不应采用Q235沸腾钢:
焊接结构
定了。
2)…..承受静力荷载的受弯及受拉的重要承重结构。此条把Q235-AF的应用否
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
σ7 ,σ8 有加强圈时,承受F/4,Mυ是由加强圈,故第一项分母为A0 (加强圈组合截面面积)。第二项分母为I0 (加强圈组合截面惯性)。
σ7 是当有外加强圈时筒体内表面处的应力, 当有内加强圈时筒体外表面处的应力。
荷引起的剪力、弯矩进行组合,得出支座处组合剪力、两支座间的组合弯矩极
值代入均布载荷的相应公式进行强度校核。 图 A-2为均布载荷与集中载荷之剪力、弯矩的合成图
《钢制卧式容器》JB/T 47312005
2)考虑地震
即考虑筒体(受均布载荷)及附属设备(集中载荷)受地震力的作用(也可以 考虑外管作用力,本标准为简化计算没考虑配管作用力)后其剪力、弯矩与无 地震时剪力、弯矩进行组合。图A-3即为考虑附属设备(集中载荷)受地震力产 生的弯矩的作用后,其剪力、弯矩的组合图。并求出支座处组合剪力、两支座 间的组合弯矩极值代入均布载荷的相应公式进行强度校核。 考虑地震时许用应力应考虑载荷组合系数K0=1.2。 考虑附属设备(如除氧器、精馏拄、液下泵等)与筒体连接处筒体多被开孔削 弱,故均布载荷σ1,,σ2,公式中的后一项要考虑筒体抗弯断面被削的系数 K10 , K 11 。两个系数的来源及推导见编制说明。 在考虑地震与否的两种情况中,均有求支座跨中处弯矩极值的公式,来源于设
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
圆筒周向应力一节中的几点说明:
1) 关于 b , b2, b 4 b ---支座的轴向宽度,取鞍座腹板厚与筋板宽度之和,筋板宽度取大端宽。 b2, b 4---- b2为圆筒的有效宽度。b 4为鞍座垫板宽度。 本标准规定b 4≥b2 有人问:b 4<b2时垫板是否起加强作用?大家可以讨论。我看法是可以起加强 作用,但作用起的不充分。 2)关于鞍座平面的定义 加强圈位于“鞍座平面上”是指加强圈组合截面的中心线位于鞍座组合截面b2 的 宽度以内。 7.4 鞍座设计 σ9为筒体对鞍座产生的使鞍座腹板水平分开的应力,腹板承受此分开力的有效 高度为Ra/3或鞍座高度两者中之小者;(图22.5) 本节增加了一些新的内容:
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
7.3.4 圆筒周向应力
它是由切向剪应力使筒体产生周向弯矩(切向剪力的水平、垂直分量对筒体取 矩)。其弯矩图如JB/T4731图7—5或下面图22.4.5-1。无加强圈或加强圈位于鞍 座平面内时,最大弯矩发生在鞍座边角处;加强圈靠近鞍座平面内时最大弯矩发
7. 制造、检验及验收
将分别执行GB150及钢制焊接常压容器JB4735。这里仅将尺寸极限偏差、形位 公差予以规定。见JB/T4731 31页表8—1第2项,C级 系指尺寸小于4000mm的 按
GB1804—2000 C级 。
关于附录A 主要是卧式容器上有附属设备时(如除氧器、精馏拄、液下泵等),如何进行 强度校核。 分两种情况: 1)不考虑地震(及配管外力) 将附属设备的质量作为集中载核作用于均布载荷的简支梁上,对集中、均布载
2013年陕西省压力容器设计人员培训班
《钢制卧式容器》
----JB/T 4731-2005
淡 勇
(教授)
西北大学化工学院 College of Chemical Engineering Northwest University
一. 前言
《钢制卧式容器》 ----JB/T 4731-2005
JB/T4731是1993年开始编写。1998年完成2000年版。后因
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
σ6 ,σ‘6
σ6 是发生在鞍座边角处筒体上由周向弯矩引起的弯曲应力。而σ’6是发生在鞍 座垫板边角处筒体上的弯曲应力(见P18)。 这个应力由两部分组成(P17,18,19), σ6 ,σ’6公式7-16、7-17、7-19、7-20和7—21,7-22中第一项是认为鞍座
《钢制卧式容器》JB/T 47312005
2)地震及地震影响系数 考虑地震主要是为校核鞍座的强度。(请参见JB/T4731 P44 2节)
1)σ9 增加垫板起加强作用,此时由垫板承受部分Fs力(使鞍座腹板分开的), 即分母改为 Hsbo+brδre
这里有几点说明:
-地震力不考虑垂直地震力,取水平地震力; -地震力对鞍座的作用,其作用力取筒体轴线方向,因鞍座该方向抗弯性差; -卧式容器按放位置一般不高,风载相对地震较小,计算中没考虑,但对于按放
-筒体被封头加强时,τ公式中 的k3比无加强圈时为小。
-周向应力σ6 ,σ‘6公式中k6 当 A /Ra ≤0.5 时 k6= k7/4 1 >A/Ra≥0.5 时 k6= (1.5A/ Ra-0.5)k7 A/Ra≥1 2)增设鞍座垫板 垫板对σ5,σ6 ,σ9都有影响,特别是σ6 。但增设鞍座垫板后σ‘6不会下降。 3)增大包角使k3—k8值均下降。 4)设加强圈是调整σ6的最有效的办法,特别是大型薄壁卧式容器。 时 k6= k7
hi=0.388Ri
7.3.2.2 筒体轴向应力 σ1,σ2,σ3,σ4, 如把筒体视为D0厚的梁, 这4个应力即是发生在梁最外层的拉及压应力 ,可视为 一次膜应力。σ1,,σ2 分别发生在两支座中间段筒体的顶、底部。σ4发生在支座 处筒体的底部。而σ3,当筒体被封头或有加强圈
《钢பைடு நூலகம்卧式容器》JB/T 47312005
加强时,它位于筒体的顶部;不被加强时位于靠近水平中心线处。(主要
因为支座处顶部筒体发生瘪塌,见图22.4.2)
7.3.2.3 圆筒轴向应力校核 本节列出校核σ1,σ2,σ3,σ4的取值,这在计算机上计算是简单没问 题的,而手工计算时可以简化取其可能产生的较大值,见JB/T4731编制 说明第3条 表2 列出了可能出现的最大值(46页)
生在筒体水平中心线靠下一点处。
-----σ5 为支座对筒体产生的径向(法向)力在该处筒体内发生切向剪应力,该 剪应力的水平分量在筒体底部产生的压应力。(见图22.4.5.-2)原GB150第六章 没有考虑垫板的加强作用。本版增加了垫板的加强作用,即分母为(δe+δre)。
K5-径向力水平分量积分后的一个三角函数值
7 强度计算
简单介绍σ1,,σ2,σ3,σ4,σ5,σ6 ,σ‘6 ,σ7 ,σ8,σ9,及τ,τh 各应力的
性质及位置。 7.3.2.1 注意, 公式(7-2)(7-3)中的hi 对不同的封头,其应取不同值代入 标准椭圆封头 hi=0.5Ri
标准蝶型封头
浅蝶封头
r=0.15Di
r=0.10Di
hi=0.45Ri
σ8 是当有外加强圈时加强圈外表面处的应力,
当有内加强圈时加强圈内表面处的应力。 见 JB4735 图7—7
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
卧式容器的合理设计
一般的调节步骤:使A≤0.5Ra→增设鞍座垫板-→增加鞍座包角→增设加强圈。 1)A≤0.5Ra时封头对筒体有加强作用。 -M2抗弯断面为整圆。
内压容器
正常操作
水压试验
冲水不加压
σ2,σ3
外压容器 σ1,σ4,
σT2,σT3
σT2,σT3
σT1,σT4,
σT1,σT4,
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
7.3 切向剪应力
它是由支座反力在支座处筒体上引起的切向剪应力。 1)当鞍座平面处有加强圈时最大剪应力发生在筒体水平中心线处(见下a) 。 2)当鞍座平面处无加强圈时最大剪应力发生在筒体水平中心线下鞍座边角处(见