船舶操纵性
船舶操纵性能预报及改善
船舶操纵性能预报及改善简介:船舶操纵性是指船舶按照设计者的意图保持或者改变其运动状态的性能,即船舶保持或改变其航速、航向和位置的性能。
船舶的操纵性包括:航向稳定性、回转性、转首性、跟从性和停船性能。
船舶操纵性预报的主要内容:船舶操纵运动的水动力预报,船舶回转运动时回转轨迹及主要特征参数的预报,Z形操舵试验中的Z形曲线的预报和停船性能有关参数的预报重要性:船舶操纵性是船舶航行的重要性能之一,和船舶的航行安全性密切相关现状:1.由于操纵性问题本身的复杂性和船东从营运效率考虑,对操纵性的关心远不如对快速性等性能的关心,因而操纵性没有得到应有的重视2.近十多年来,国内外造船界对船舶操纵性越来越重视,国际上船舶操纵性研究突飞猛进,取得了惊人的进展。
发展:1.国际海事组织(Intemational Maritime Organization,IMO)在船舶操纵性评估和制定船舶操纵性标准方面的工作引起了人们对船舶操纵性的重视2.船舶水动力学学科及其相关数值和实验技术的进步使研究船舶操纵性这种复杂的问题成为了可能操纵性能预报的方法:1、数据库方法----限制较大;使用方便2、自由自航船模试验方法----尺度效应;费用昂贵;3、利用船舶运动数学模型进行仿真计算方法----精度达工程计算要求;方便实用4、基于CFD技术的数值模拟方法----纯数值;可模拟波浪中操纵性5、神经网络方法(人工神经网络和BP神经网络)----非线性动态系统改善操纵性能的措施:1、舵的设计正确----合适的种类和外形尺寸2、船体主要尺度和型线的正确选择(船长,主尺度比,方形系数,纵中剖面面积,首尾部形状对水动力导数的影响)----协调航向稳定性和回转性之间的矛盾3、设计特种操纵装置----推进、操纵合一装置;主动式转向装置;特种舵数据库方法自由自航船模试验方法----尺度效应;费用昂贵;利用船舶运动数学模型进行仿真计算方法----精度达工程计算要求;方便实用基于CFD技术的数值模拟方法----纯数值;可模拟波浪中操纵性神经网络方法(人工神经网络和BP神经网络)----非线性动态系统。
船舶操纵性与耐波性总结
船舶操纵性:是指船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变其航速、航向和位置的能力。
航向稳定性:表示船舶在水平面内的运动受扰动而偏离平衡状态,当扰动完全消除后能保持其原有平衡状态的性能。
回转性:表示船舶在一定舵角作用下作圆弧运动的性能。
转首性:表示船舶应舵转首并迅速进入新的稳定状态的性能. 运动稳定性与机动性制约:小舵角下的航向保持性 、中舵角下的航向机动性 、大舵角下的紧急规避性固定与运动坐标系的关系:漂角:速度V 与OX 轴正方向的夹角β。
舵角:舵与OX 轴之间的夹角δ。
舵速角:重心瞬时速度矢量与O 0X 0轴之间的夹角ψ0。
线性水动力导数意义:船舶作匀速直线运动,在其他参数不变时,改变某一运动参数所引起的作用于船舶的水动力或矩对该参数的变化率。
水动力导数:Xu= Yu= 通常可称对线速度分量u 的导数为线性速度导数.如:Xu 等。
对横向速度分量v 的导数为位置导数,如:Yv 、Nv 等。
对回转角速度r 的导数为旋转导数,如:Nr 、Yr 等。
对各加速度分量和角加速度分量的导数为加速度导数Xu 。
,对舵角δ的导数为控制导数,如:Y δ等。
稳定性:对处于定常运动状态的物体(或系统),若受到极小的外界干扰作用而偏离原定常运动状态;当干扰去除后,经过一定的过渡过程,看是否具有回复到原定常运动状态的能力。
若能回复,则称原运动状态是稳定的。
直线稳定性:船舶受到瞬时扰动以后,重心轨迹最终恢复成为一条直线,但航向发生了变化。
方向稳定性:船舶受到的瞬时扰动消失以后,重心轨迹最终成为原航线平行的另一直线。
位置稳定性:船舶受到瞬时扰动,当扰动消失以后,重心轨迹最终恢复成为与原来航线的延长线。
稳定衡准数:C=-Y V (mx G u 1-N r )+N V (mu 1-Y r );C>0 表示船舶在水平面的运动具有直线稳定性;C<0 则不具有直线稳定性。
影响航向稳定性的因素:(1)为改善其航向稳定性,应使Nr 、Yv 二者的负值增加,从C 的表达式可见,此二者之乘积的正值就越大,显然有利于改善稳定性。
船舶操纵性总结
2010年度操纵性总结1.船舶操纵性含义船舶操纵性是指船舶借助其控制装置来改变或保持其运动速率、姿态和方向的性能。
2.良好的操纵性应具备哪些特性具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。
3.4.分析操舵后船舶在水平面运动特点。
船的重心G做变速曲线运动,同时船又绕重心G做变角速度转动,船的纵中剖面与航速之间有漂角。
5.漂角β的特性(随时间和沿船长的变化)。
船长:船尾处的速度和漂角为最大,向船首逐渐减小,至枢心P点处速度为最小且漂角减小至零,再向首则漂角和速度又逐渐增大,但漂角变为负值。
6.7.作用在在船上的水动力是如何划分的。
船在实际流体中作非定常运动时所受的水动力,分为由于惯性引起的惯性类水动力和由于粘性引起的非惯性类水动力两类来考虑,并忽略其相互影响。
8.9.线性水动力导数的物理意义和几何意义。
物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它运动参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。
几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。
10.常见线性水动力导数的特点。
位置导数:(Yv,Nv)船以u和v做直线运动,有一漂角-β,船首部和尾部所受横向力方向相同,都是负的,所以合力Yv是较大的负值。
而首尾部产生的横向力对z轴的力矩方向相反,由于粘性的影响,使尾部的横向力减小,所以Nv为不大的负值。
所以,Yv<0, Nv<0。
控制导数:(Yδ,Nδ)舵角δ左正右负。
当δ>0时,Y(δ)>0,N(δ)<0。
(Z轴向下为正)所以Yδ>0,Nδ<0。
旋转导数:(Yr,Nr) 总横向力Yr数值很小,方向不定。
Nr数值较大,方向为阻止船舶转动。
所以,Nr<0。
11.12.13.14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。
第七章 船舶操纵性
一、船舶操纵性的基本概念
良好的航向稳定性十分重 要
一、船舶操纵性的基本概念
良好的航向改变能力十分重要
一、船舶操纵性的基本概念
操纵性好的船,实际路程短, 操纵性好的船,实际路程短,同样省油
二、试验研究
三体船模型操纵性自航模试验(江苏科技大学游泳池) 三体船模型操纵性自航模试验(江苏科技大学游泳池)
二、试验研究
回转试验
二、试验研究
Z形操舵试验得到的曲线
二、试验研究
潜艇与水面船不同, 潜艇与水面船不同,多了垂直面内的运动
二、试验研究
人操纵物理模型试验
二、试验研究
实艇( 实艇(船)试验
三、理论研究
船舶操纵性理论研究: 船舶操纵性理论研究: 基于统计理论, 1 基于统计理论 , 建立的一系列民船操纵性同船 舶主尺度之间的关系; 舶主尺度之间的关系; 基于水动力学理论, 2 基于水动力学理论 , 进行各种操纵性水动力问 题的计算,从而对船舶操纵运动进行计算; 题的计算,从而对船舶操纵运动进行计算; 基于系统辨识技术, 3 基于系统辨识技术 , 利用船舶操纵运动拟合动 态系统的数学模型, 态系统的数学模型,从而再用于实船预报及操纵 性分析。 性分析。
一、船舶操纵性的基本概念
船舶预定航线 船舶实际航线
航向稳定性好的船,可以节省很多燃料消耗。 航向稳定性好的船,可以节省很多燃料消耗。 船舶航行稳定性研究中,按照是否操舵(控制), 船舶航行稳定性研究中,按照是否操舵(控制), 将稳定性分为自动稳定性(船舶固有稳定性) 将稳定性分为自动稳定性(船舶固有稳定性)和 控制稳定性。 控制稳定性。 船舶固有稳定性取决于船体几何形状( 船舶固有稳定性取决于船体几何形状(例如一般 长宽比比较大的船稳定性好) 长宽比比较大的船稳定性好) 控制稳定性取决于控制系统的好坏。 控制稳定性取决于控制系统的好坏。这也是自动 操舵系统发展的意义所在。 操舵系统发展的意义所在。
船舶操纵性第1章4
(x,T
)
(1)船体上同一空间点上β(t)的变化: ( XT ,t) ∵
∴ d d d
dt dt dt
由理论力学知:
积分
Vdt Rd
d d V r V (t)
dt ∴ dt R
R
(2)在同一时刻沿船长各点上β(x)的变化:
(x,T
)
根据船的运动
特点:平动加转动,
(4)
Ix p L
四个自由度的水平面运动方程
(3)(4)两式均为坐标原点在重心的运动方程式。
§1-2 船舶运动方程式
以上公式中的各参数均是相对于原点在重心的坐 标系的。若水动力试验时所测得的参数是对于船舯 的,则力矩需要进行转换,将试验测得的对船舯
的力矩转换为对重心G的力矩: N N xY
G
x
x
y
Y
§1-2 船舶运动方程式
特别是,当坐标原点不在重心处,而是在船舯
处,则令重心的坐标为xG,有
u uG, v vG rxG
r rG X X G ,Y YG
N NG xGYG
I z IGZ xG2 m
§1-2 船舶运动方程式
§1-2 船舶运动方程式
m(u vr) X
在给定操舵规律δ(t)与推力(矩)的 情况后,上述参数如ψ(t),β(t),r(t)
等随时间的变化,这一问题只有通过受 力分析,建立方程求解后才能得到。
1.1.3 漂角β的特性(随时间和沿船长的变化)
考查:
(1)船体上同一空间点上β(t)的变化:
(XT ,t)
(2)在同一时刻沿船长各点上β(x)的变化:
IZ r mxG (v ur) N
§1-2 船舶运动方程式
船舶的操纵性能
船舶的操纵性能(旋回性、冲程、保向性、改向性以及船舶变速运动性能)船舶驾驶人员必须较好地掌握船舶操纵知识,了解本船的操纵性能以及各种外界条件对本船操纵性能的影响,才能正确操纵船舶;准确控制船舶的运动。
往往一艘操纵性能良好的船舶,具有稳定地保持运动状态和迅速准确地改变运动状态的性能。
一、旋回性能是船舶操纵中的重要部分,它包括的因素有偏移或反移量、进距、横距、旋回初径、漂角、转心、旋回时间、旋回中的降速和横倾等。
这些数值是在船舶满载,半载以及空载等不同的状态下实测所得,掌握这些要素,对避让船舶、狭窄区域旋回或掉头等情况下安全操纵船舶有着重要的作用,也是判定船舶是否处于安全操纵范围内的重要参数。
偏移或反移量(KICK)是船舶重心向转舵相反一舷横移的距离,满载时其最大值约为船长的1%左右,但船尾的反移量较大,其最大值约为船长的1/10—1/5,可趁利避害的加以运用,如来船已过船首,且可能与船尾有碰撞危险,紧急情况下可向来船一侧满舵利用反移量避免碰撞(有人落水时向人落水一舷操满舵也是利用该反移量);进距(ADVCNCE)是开始转舵到航向转过任一角度时中心所移动的纵向距离,旋回资料中提供的纵距通常特指转过90度的进距,即最大进距,其值约为旋回初径的0.85—1.0倍,熟练掌握可常帮助我们正确判断船首来船或危险的最晚避让距离;横距(TRANSPER)是开始转舵到航向90度时船舶中心所一定的横向距离,其值约为旋回初径的0.55倍;旋回初径(TACTICAL DIAMETER)是船舶开始转舵到航向180度时重心所移动的横向距离,其值约为3-6倍船长;旋回直径(PINAL IAMETER)是船舶做定常旋回运动时的直径,约为旋回初径的0.9-1.2倍。
漂角(DRIPT AUGTE)是船舶旋回中船首与重心G点处旋回圈切线的方向夹角,其值约在3度—15度之间,漂角约大,其旋回性能越好;转心P是旋回圈的曲率中心O到船舶首尾线所做垂线的垂点,该点处的漂角和横移速度为零,转心P约在船首柱后1/3-1/5船长处,因此,旋回中尾部偏外较船首里为大,操船是应特别注意;旋回时间是旋回360度所需要的时间,它与排水量有密切关系,排水量大,旋回时间增加,比如万吨船快速满舵旋回一周约为6MIN,而超大型船舶旋回时间几乎增加一倍;旋回中的降速系由船体斜航阻力增加,舵阻力以及推进效率降低而造成的,所降部分为航速的1/4-2/4不等;旋回产生的横倾,它是一个应注意的不安全因素,旋回初出现向用舵方向一侧的内倾,倾角较小,时间也较短,不久随着转头角度速度增加,将出现向用舵反侧的外倾,对于GM值较小的集装箱船等,在操纵中应特别注意。
船舶操纵性能
第一章船舶操纵性能第一节船舶变速运动性能船舶出于避碰、狭水道及港内航行或驶往泊地的需要而改变螺旋桨的转速和方向,进行启动、变速、停车、倒车操纵。
转速和方向改变后直至达到新的定常运动状态之前,存在着一段加速或减速运动的过程,该段过程称为变速运动过程,也称船舶惯性。
衡量船舶变速运动特性有两个重要指标,一是船舶完成变速运动所航进的路程,称为冲程;另一是完成变速运动所需的时间,称为冲时。
一、船舶启动性能船舶在静止状态中开进车,直至达到与主机输出功率相应的稳定船速前的变速运动,称为船舶起动变速运动。
在起动变速过程中,螺旋桨推力T与船舶阻力R之差,是船舶产生加速运动的动因。
由于启动后推力增加较快,而船速增加则较为缓慢,因此要注意合理用车。
即分段逐级加车,待达到相应转速的船速时,再提高用车的级别,以免主机超负荷工作。
完成启动变速运动所需的时间t和航进的路径s可用下列关系式估算。
W·V0t ≈0.004 ————R0W·V02s ≈0.101 ————R0式中,V0为最终定常速度,单位为kn;W为船舶实际排水量,单位为t;R0为达到最终定常速度V0时的船舶阻力;计算出的t单位为min;计算出的S单位为m。
根据经验,从静止状态逐级动车,直至达到海上速度,满载船舶约需航进20L左右的距离,轻载时约为满载的1/2~2/3。
二、船舶减速性能船舶以一定常速度(全速或半速)行驶中采取停车措施后,直至降到某一余速(2kn~4kn)前的变速运动称为船舶停车变速运动。
主机停车后,推力急剧下降到零。
开始时,船速较高,阻力也大,速降很快;但当速度减小后,阻力也随之减小,速降越来越慢,船很难完全停止下来,且在水中亦很难判断。
所以,通常以船速降至维持舵效的最小速度作为计算所需时间和船舶航进路程的标准。
主机停车后的时间、速度及航进路程存在如下关系。
达到速度V时所需的时间:W·V02 1 1t = 0.00105 —————(——-——)R0V V0达到速度V时所航进的路程:W·V02V0s = 0.075 —————ℓn (——)R0V式中:R0为速度V0时船舶所受阻力,单位为t;W为船舶实际排水量,单位为t;t 的单位为min;S为m;速度单位为kn。
3船舶操纵性指数k-t
.
7
二、船舶操纵性指数及其意义
❖ 当T>0时,e–t/T将随时间的延长而衰减下去,转头角速度最终逐
渐稳定于定值Kδ0,即定常旋回时,船舶以r0=Kδ0的角速度作旋
回,而船舶定常旋回时的切线速度Vt与r0的关系是: Vt = r0 R,故
R = Vt / r0= Vt / Kδ0 。因此,K值越大,则定常旋回角速度越大,
第二节 船舶操纵性指数
一、船舶操纵性指数K、T 二、船舶操纵性与指数K、T的关系 三、K、T指数的无因次化 四、影响K、T指数的因素 五、K、T指数的应用
.
1
一. 船舶操纵性指数K、T
1943年,英国人Kempf在1943年首先提出一种衡量船舶机动 性能的试验方法。1957年以来日本野本谦作和诺宾发展了一种对 Z型试验结果进行理论分析的新方法------K、T分析法。受到了广 泛的重视和应用。
❖ 这说明, T值是表示操舵后, 船舶对舵角响应的时间滞后 的一种指数。在数值上等于操舵后船舶旋回角速度达到
0.63 Kδ0(即63%定常旋回角速度)所需的时间。若T 为正值, 且T值越小, e–t/T趋于零的速度就越快, 船舶进入
定常旋回也就越快, 即船舶追随性越好;反之, T值越大, 追随性就差。所以称T为船舶追随性指数。
.
在旋δ回<阻10尼°的力条矩件N下(r),与角角速速度度及r角成加正速比度,均则减小,舵IG力r转==船Na力(·δ矩δ )N--b(Nδ·)r(与r)舵角成正比,
即:
IG ·
a
.
—— r + r = ——δ
Hale Waihona Puke bb.IG r+ b·r= a·δ (二边同除b4)
船舶操纵性_绪论
哈尔滨工程大学 船舶工程学院
哈尔滨工程大学 船舶工程学院
哈尔滨工程大学 船舶工程学院
哈尔滨工程大学 船舶工程学院
哈尔滨工程大学 船舶工程学院
三、影响船舶操纵性的因素:
2、操纵装置:舵:常规舵、襟翼舵、主动舵等 推进器:敞式推进器、导管推进器
隧道(槽道)推进器等
3、控制系统:航向自动驾驶系统、自动定位系统等。
哈尔滨工程大学 船舶工程学院
敞式螺旋桨推进器
哈尔滨工程大学 船舶工程学院
导管螺旋桨推进器
哈尔滨工程大学 船舶工程学院
槽道螺旋桨推进器
哈尔滨工程大学 船舶工程学院
航向自动驾驶系统的组成
反馈的航向信号
设定 航向 指令 显示仪
航向
误差
驾驶仪
舵角
指令
舵机
舵角
舵
舵的
水动力
船
实际航向反馈的舵角来自号哈尔滨工程大学 船舶工程学院
3、船员训练模拟器:可以缩短时间、减少危险, 同时便于设计海上环境。
哈尔滨工程大学 船舶工程学院
三、影响船舶操纵性的因素:
1、船型 船体水动力 阻力(矩) 惯性力(矩) 如船体受到的水动力 大,则改变位置或速 度就较困难 船舶操纵性
附加惯性力(矩)
常规船型,瘦长,肥大型等等,为了适应不同需要发展 起了各种船型:如水翼船,气垫船,掠海地效翼船型 , 小水线面船型 ,穿浪双体船型 ,多体船型 , 三体船 , 四体船 ,五体船型 等
舵是船舶的一种十分重要和不可缺少的专用舾 装设备。可以想象,如果船没有舵,或舵失灵, 就象汽车没有方向盘一样,将无法行驶。在大海 里任凭风浪摆布。
哈尔滨工程大学 船舶工程学院
舵对船舶操纵性的作用
集装箱船总体设计中的船舶操纵性能考量
集装箱船总体设计中的船舶操纵性能考量在集装箱船总体设计中,船舶操纵性能是一个重要的考量因素。
船舶操纵性能直接关系到集装箱船的操作灵活性、安全性和经济性等方面。
本文将从船舶操纵性能的定义、影响因素以及设计要求等方面进行论述。
1. 船舶操纵性能的定义船舶操纵性能是指船舶在各种操纵条件下的响应能力和稳定性。
船舶的操纵性能是船舶设计的一个重要指标,它直接关系到船舶的操纵灵活性和操作的安全性。
2. 影响船舶操纵性能的因素(1)船舶的船首形状:船首形状的设计直接影响到集装箱船的航行性能和操纵性能。
船首形状适应多种操纵工况,能够提供较小的阻力和较好的航行稳定性。
(2)船舶的船尾形状:船舶的船尾形状对船舶的操纵性能也有影响。
合理的船尾形状能够减小阻力,提高船舶的行驶速度和操纵性能。
(3)船舶的操纵设备:操纵设备包括舵机、操纵系统等,这些设备的设计和配置直接关系到船舶的操纵性能。
具有响应迅速、操纵灵敏的设备能够提高船舶的操纵性能。
(4)船舶的稳定性:船舶的稳定性是衡量船舶安全性的重要指标之一,也与船舶的操纵性能密切相关。
良好的稳定性能能够提高船舶的操纵性能。
3. 设计要求(1)船舶船首形状的设计:船首形状的设计应该符合流线型原则,减小水阻,提高船舶的操纵性能。
同时,也要考虑到船舶的结构强度和抗风浪能力等方面的要求。
(2)船舶船尾形状的设计:船尾形状的设计应该根据航行速度、航行工况等考虑,以减小阻力为目标,提高船舶的操纵性能和燃油经济性。
(3)操纵设备的设计:操纵设备的设计应该考虑到船舶的操纵要求和操作人员的使用习惯,具备响应迅速、操纵灵敏的特点。
(4)船舶稳定性的设计:船舶的稳定性设计应该符合国际和国内的相关规范要求,确保船舶在各种操纵条件下的稳定性。
4. 结论船舶操纵性能是集装箱船总体设计中必须考虑的因素之一。
通过合理设计船首形状、船尾形状、操纵设备以及稳定性,可以提高集装箱船的操纵灵活性、操作的安全性和经济性。
船舶操纵知识点归纳
{(1)定常旋回阶段第一章船舶操纵性基础1、定义:保向、改向、变速。
2、船舶操纵性能:①变速性能:(1)停船性能(2)启动性能(3)倒车性能②旋回性能③保向性能④航向稳定性能3、一些主要概念:①转心:转轴与船舶首位线交点(垂足)通常位于船首之后1/3L (船长)它的位置稍有移动②通常作用在船上的力及力矩:水动力、风动力、舷力、推力③漂角:船舶运动速度与船首位线的夹角4、①水动力及其力矩:水给予船舶的运动方向相反的力②特点:船前进时,水动力中心在船中前船后退时,水动力中心在船中后③附加质量:惯性质量及惯性矩大型船舶纵向附加质量≈0.07m (m 为船的质量)附加惯性矩≈1.0Iz (Iz 为船的惯性矩)④水动力角:水动力方向与船首位线的夹角它是漂角的函数,随它漂角的增大而增大⑤水动力中心大概位置:前进平吃水:漂角为0时,中心在船首之后1/4L (船速越低,越靠近船中,前进速度为0时,在船中)后退平吃水:漂角为0时,中心距船中1/4L⑥水动力距:与力矩系数水线下面积、船体形状有关力矩系数是漂角的函数5、船体阻力摩擦阻力→主要阻力占70%—90%速度越大,其值越大(与V 2成正比)兴波阻力(低速时:与V 2成正比;船高速时:急剧增大)涡流阻力空气阻力:约占2%附体阻力6、船舶的变速性能①停船性能(冲程):与惯性有关②冲程:往往是对水移动的距离(对水移动速度为0)③一般万吨船:倒车停船距离为6—8L倒车冲程:5万:8~10L 10万吨:10~13L 15—20万吨:13~16L④当船速降到60%~70%时,转速降到25%~35%倒车⑤换向时间:从前进三到后退三所需时间汽轮机:120s~180s 内燃机:90s~120s 蒸汽机:60s~90s7、船舶的旋回性:转船阶段①旋回圈:过渡阶段—变速旋回阶段{剩余阻力:附加阻力:{②旋回初径:操舵后航向转过180°时,重心移动的横向距离一般为3~6L③旋回直径:船定常旋回时,重心轨迹圆的直径通常为旋回初径的0.9~1.2倍④进距:开始操舵到航向转过任一角度,重心移动的纵向距离通常为旋回初径的0.6~1.2倍⑤横距:指操舵让航向转过任一角度,垂心所走的横向距离约为旋回初径的1/2倍⑥制距:操舵开始时的重心位置到定常旋回率重心的纵向距离1~2L(2)船舶旋回运动是舷力的横向分量、水动力横向分量共同作用的结果(3)船舶旋回运动中的性能:降速车旋回的初始阶段:内倾;定常旋回:外倾旋回时间:旋回360°所需的时间;万吨级船旋回时间约为:6min(4)影响旋回特性的因素:①方形系数大旋回性好旋回圈小②船首水线下面积多旋回性好旋回圈小③船尾有钝材或船首瘦削旋回性差旋回圈大④舵面积大旋回性好旋回圈小⑤吃水增大横距、旋回初径增大,反移量减小⑥横倾,影响较小:低速时,向底舷一侧旋回旋回性好高速时,向高舷一侧旋回旋回性好船速低于某一值时,旋回圈加大⑦浅水:水变浅阻力加大转船舵力作用小旋回圈大旋回性变差⑧旋回圈在实际操船中的应用:反移量(kick ):向操舵相反一舷移动的距离0.1~0.2L (10%~25%L )9、操纵指数:k r r T =+.(T :追随性指数.r :r 的导数角速度<r>的加速度k:旋回性指数)阻尼力矩惯性力矩=T (T 大,惯性大,实际操舵中T 越小越好)阻尼力矩转舵力矩=k (k 大,转舵效应好,实际操舵k 越大越好)无因次的k’、T’)(')('v L T T v L k k ==(k/T 表示舵效){{第二节航向稳定性及保向性1、船向稳定性定义:船受外力干扰,干扰消失后,不用舵的前提下,船能自动恢复直线运动①恢复到原航向平行的航向航向稳定性(方向稳定性)稳定性②彻底恢复到原航行完全相同的航向上③直线稳定航向稳定性:方形系数低,长/宽高的船航向稳定性好瘦船稳定性好船首侧面积大航行稳定性差(例如:球鼻首bulous)2、保向性概念:船首线运动受外力干扰通过用船纠正使其恢复到原航向与航迹上继续做直线运动一般来说:航向稳定性好的船保向性好3、影响保向性因素瘦船好浅吃水差船尾肥大(有钝材)好干舷高差尾倾较首倾好轻载比满载保向性好(如有风,另当别论)船速高好水深浅好逆风逆流好第三节变速性能补充1、启动性能:静止定常运动定常速度v、所需距离与排水量成正比,与v2成反比,与阻力成正比经验:满载启动距离20L轻载为满载的1/2~2/32、减速性能:停车冲程:对水速度为0通常对水移动能维持舵效的最低速度,即认为停船万吨级船2节、超大船3节,即认为停船一般货船停船冲程8~20L、超大船停船冲程20L3、制动性能:前进三后退三变螺距船CPP是FPP船紧急停船距离的60%~80%总结:排水量大停船距离大船速大停船距离大污底严重停船距离小主机功率大停船距离小顺流顺风停船距离大第四节船舶操纵性试验1、旋回试验:在直航情况下,左35°或右35°,使船旋回旋回试验的目的:测定旋回圈,评价船舶旋回性2、冲程试验冲程条件:风流小水深≥3Bd 采用投掷法测定倒车使船停下(这种试验)要求船首改变90°3、螺旋试验、逆螺旋试验该试验目的,判断船舶航向稳定性好坏逆螺旋试验:求取船舶达某一回旋角速度所需舵角4、Z 性试验该试验主要评价船舶首摇抑制性,也可测定旋回性,追随性,航向稳定性获得操纵性指数第五节IMO 要求1、①对旋回性:进距<4.5L 旋回初径<5L操10°舵角航向改变10°时的进距<2.5L②对停船性:全速倒车停船距离<15L超大船倒车停船距离<20L③对于首摇抑制性、保向性3、Z 型试验结果:左右10°舷角第一超越角:a 、当L/v <10s 时:<10°b 、当L/v >30s 时:<20°c 、当10s <L/v <30s 时:[5+21(L/v )]°第二超越角:a 、当L/v <10s 时:<25°b 、当L/v >30s 时:<40°c 、当10s <L/v <30s 时:<[17.5+0.75(L/v )]°第三章车、舵、锚、缆、拖船第一节螺旋桨(propeller )1、关于阻力的补充摩擦阻力占到70%~80%,它与大约船速1.852的次方成正比2、吸入流与排出流①进入螺旋桨的流吸入流:范围广、流速慢、流线平行②螺旋桨排出的流排出流:范围小、流速快、水流旋转3、推力有船速关系(还与滑失有关)推力:排出流对船的反作用力船速一定,螺旋桨转速高推力大螺旋桨转速一定,船速高推力小4、滑失:螺旋桨对水实际速度与理论上能前进速度之差理论速度滑失滑失比=螺旋桨推力主要取决于其转速及滑失比。
船舶操纵性总结
操纵性绪论操纵性定义:船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变航速、航向和位置的性能。
操纵性内容:1. 航向稳定性:表示船舶在水平面内的运动受扰动而偏离平衡状态,当扰动完全消除后能保持其原有平衡状态的性能。
2.回转性:表示船舶在一定舵角作用下作圆弧运动的性能。
3.转首性和跟从性:表示船舶应舵转首及迅速进入新的稳定运动状态的性能。
4. 停船性能:船舶对惯性停船和盗车停船的相应性能。
附加质量和附加惯性矩:作不定常运动(操纵和耐波运动)的船舶,除了船体本身受到愈加速度成比例的惯性力外,同时船体作用于周围的水,使之得到加速度。
根据作用力和反作用力,水对船体存在反作用力,这个反作用力称为附加惯性力。
附加惯性力是与船的加速度成比例的,其比例系数称为附加质量。
船舶操纵一、操纵运动方程1.1坐标系一、固定坐标系:固定坐标系是固结在地球表面,不随时间而变化的,如图所示。
首向角ψ:X 0与X 的夹角(由X 0转向X ,顺时针为正)。
二、运动坐标系:运动坐标系是固结在船体上的,随船一起运动的,如图所示。
重心坐标:X OG 、Y OG ; 船速:V 重心G 瞬时速度; 航速角ψ0:X0轴与船速V 夹角(顺时针为正);漂角:β船速与X 轴夹角(顺时针为正); 回转角速度:γ=dψdt;回转曲率:R 右舷为正; 舵角:δ左舷为正。
三、枢心:回转时漂角为零点、横向速度为零的点。
1.2线性运动方程一、坐标转换00cos sin sin cos ψψψψ=-=+G G x u v y u v二、简化方程当重心在原点处:X G =0 运动坐标系一般方程:三、对于给定船型、给定流体中的运动情况船型参数和流体特性为已知条件; 操纵运动为缓变过程,忽略高阶小量; 忽略推进器转速影响;操舵过程短暂,忽略转舵加速度。
则可将给定船型流体中受力情况表示如下:由泰勒展开式,用水动力导数表示如下:四、简化后的操纵运动线性方程式:2()()()ψψψψψψ=--=++=++G G Z G X m u v x Y m v u x N I mx vu 00cos sin ψψ=+G G X mx my 00cos sin ψψ=-G G Y mymx ()()ψψψ=-=+=z X m u v Y m v u NI (,,,,,,)(,,,,,,)(,,,,,,)X X u v r u v r Y Y u v r u v r N N u v r u v r δδδ===v r v r v r v r Y Y v Y r Y v Y r Y N N v N r N v N r N δδδδ=++++=++++11111()()()()()()()()v v G r r G v v z r G r v ur v u u r r v u rm Y v Y v mx Y r mu Y r Y mx N v N v I N r mx u N r N δδδδ+=++∆+∆=+--+-+-=--+-+-=1.3水动力导数一、定义:匀速直线运动时,只改变一个运动参数,其他不变引起的作用于船舶水动力对运动参数的变化率。
船舶运动学重要概念、简答(操纵性、耐波性)
首向角:船舶纵剖面与OoXo轴的交角。
漂角:重心速度与GX轴正方向夹角。
航速角:重心瞬时速度矢量与OoXo轴夹角。
船舶操纵性是指船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变其航速、航向和位置的性能。
包括小舵角的航向稳定性、中舵角的航向机动性和大舵角的紧急规避性。
内容如下:1. 航向稳定性:表示船舶在水平面内的运动受扰动而偏离平衡状态,当扰动完全消除后能保持其原有平衡状态的性能。
表示船舶在水平面内的运动受扰动而偏离平衡状态,当扰动完全消除后能保持其原有平衡状态的性能。
2.回转性:表示船舶在一定舵角作用下作圆弧运动的性能。
3.转首性和跟从性:表示船舶应舵转首及迅速进入新的稳定运动状态的性能。
4. 停船性能:船舶对惯性停船和盗车停船的相应性能。
枢心:回转时漂角为零点、横向速度为零的点。
附加惯性力:作不定常运动的船舶,除本身受到与加速度成比例的惯性力外,同时船体作用于周围的水,使之得到加速度,根据作用与反作用力原理,水对船体存在反作用力,这个力称为。
附加质量:附加惯性力是与船的加速度成比例的,其比例系数称为。
水动力导数:位置导数 Yv ,Nv:船体受到一个升力Yv,船体首部和尾部长力方向一致,v都都指向v的负方向,因此合力是一个较大的负值,Yv是一个较大的负值,而水动力矩由于首尾作用相抵消,其绝对值不会很大,因机翼的水动力中心在形成之前,首部作用占优,Nv是一个不大的负值。
加速度导数:Yv点是水动力Y相对于加速度在平衡状态下的变化率,正的加速度的船舶经受一个与加速度相反方向的水反作用力,因此Yv点是一个相当大的负值。
由于船首和船尾对Z轴产生的水动力力矩方向相反,因此水动力矩导数Nv点是一个不大的数值,其符号取决于船型。
旋转导数Yr ,Nr:由于船首和船尾水动力方向相反,因此水动力导数Yr的绝对值不是很大,其符号取决于船型,可正可负。
由于船体回转产生的水动力矩在船首尾有相同的方向,都是阻止船舶回转的,因此水动力矩导数Nr是一个很大的负值。
船舶操纵性指数K、T
04 k、t指数在船舶设计中的 应用
பைடு நூலகம்
k指数在船舶设计中的应用
船舶稳定性
K指数用于评估船舶的横稳性和纵 稳性,帮助设计者优化船舶的浮 态和稳态特性。
推进效率
K指数可以预测船舶在特定航速下 的推进效率,为船舶动力系统设 计提供依据。
阻力性能
K指数与船舶阻力密切相关,通过 优化K值可以降低船舶阻力,提高 航行效率。
船舶操纵性指数k、t
目录
• 船舶操纵性指数k、t的定义 • k、t指数的测量与计算 • k、t指数对船舶操纵性的影响 • k、t指数在船舶设计中的应用 • k、t指数与其他船舶性能指标的关系 • 未来研究方向与展望
01 船舶操纵性指数k、t的定 义
k、t指数的定义
k、t指数是船舶操纵 性指数,用于评估船 舶在各种航行条件下 的操纵性能。
03
k、t指数的评估结果可以为船舶设计、建造和改进 提供参考依据。
k、t指数的物理含义
k指数反映了船舶在回转过程中的阻 力和推进力矩之间的关系,以及船舶 的回转惯性和推力臂长度等因素。
t指数反映了船舶在减速过程中的阻力 和推力之间的关系,以及船舶的动能 和阻力臂长度等因素。
02 k、t指数的测量与计算
k、t指数的相互作用
k指数和t指数之间存在一定的相互作用关系。一般来说,较大的k指数会导致较小的t指 数,而较小的k指数则会导致较大的t指数。
综合影响分析
在实际的船舶操纵过程中,k指数和t指数的综合作用会影响到船舶的操纵性能。为了获 得更好的操纵性能,需要综合考虑k指数和t指数的影响,并选择合适的操纵策略。
k、t指数与船舶耐波性
k、t指数与船舶耐波性之间存在一定 的关系。一般来说,k指数越大,船 舶耐波性越好;而t指数对船舶耐波性 的影响则较为复杂。
船舶操纵考点总结
第一章船舶操纵性能基本概念1.船舶操纵性能可分为固有操纵性和控制操纵性,固有操纵性:包括追随性、定长旋回性、航向稳定性;控制操纵性:包括改向性、旋回性、保向性。
2.转心:从瞬时轨迹曲率中心O 点作船舶首尾线的垂线可得瞬时转动中心P 点,简称“转心”。
船舶定常旋回时,一般转心位于船首之后约1/3 - 1/5 船长处;尾倾时,转心后移,首倾时,转心前移。
3.漂角:漂角是指船体上一点的船速矢量与船舶首尾线之间的交角;漂角一般指船舶重心处的漂角,用符号β 表示,左舷为负,右舷为负。
4.水动力及其力矩:水给予船舶的运动方向相反的力。
5.水动力作用中心:水动力作用中心是指船体水下部分的面积中心,随漂角β 的增大而逐渐向后移动。
船舶平吃水时,当漂角为0,船舶向前直航时,水动力中心在船首之后约1/4 船长处,且船速越低,越靠近船中;⏹当漂角为180º,即船舶后退时,水动力中心在距离船尾之前约1/4 船长处,且船退速越低,越靠近船中。
⏹船舶空载或压载时往往尾倾较大,船体水下侧面积中心分布在船中之后,水动力作用中心要比满载平吃水时明显后移。
6.引航卡(Pilot Card):船长与引航员之间关于船舶操纵性能进行信息沟通的资料卡;每航次由船长填写;内容包括本船的主尺度、操纵装置性能、船在不同载况时主机不同转速下的航速以及船舶特殊操纵装置(侧推器)等信息。
7.驾驶台操纵性图(Wheelhouse Poster):详细概述船舶旋回性能和停船性能的图表资料;置于驾驶台显著位置;内容包括深水和浅水(=1.2),满载和压载情况下船舶的旋回圈轨迹图及制动性能(停船试验)资料。
8.船舶操纵手册(Maneuvering Booklet):详细描述船舶实船操纵性试验结果的手册;它是重要的船舶资料之一;内容包括旋回试验、Z形操纵试验和停船试验的试验条件、试验记录以及试验分析等;操纵手册包括全部驾驶台操纵性图上的全部信息;除实船试验结果之外,操纵手册中的大部分操纵信息估算结果。
船舶操纵性与控制性能分析
船舶操纵性与控制性能分析第一章船舶操纵性的定义与重要性船舶操纵性是指船舶在水上运动时对操纵指令的执行情况,包括转向性能、行进性能以及速度控制能力等。
船舶操纵性在航行安全和航行效率方面均具有重要意义。
良好的操纵性能使船舶能够准确地遵循船长的指令,并能够迅速应对紧急情况,确保船舶的稳定性和航行安全。
本章将对船舶操纵性的定义、指标和重要性进行分析。
第二章船舶操纵性指标船舶操纵性的指标主要包括转向半径、转向时间、航向稳定性和船舶速度控制性能。
转向半径是指船舶在接受操纵指令之后,从原来的航向转向到新航向所需的圆周半径。
转向时间是指从船舶接收操纵指令到其开始转向并最终稳定在新航向的时间。
航向稳定性是指船舶在无外部扰动的情况下能够稳定地维持航向的能力。
船舶速度控制性能是指船舶能够准确控制航行速度,在不同的航行条件下保持稳定。
第三章影响船舶操纵性的因素船舶操纵性受到多种因素的影响,包括船舶的设计参数、水动力因素、环境条件以及航行用途等。
船舶的设计参数如船体形状、船体尺寸、操纵装置的位置和类型等对船舶操纵性产生重要影响。
水动力因素包括航行速度、水流和风力等,在不同的水动力条件下,船舶的操纵性能会有所变化。
环境条件如水域深度、水温和水质等也可能对船舶操纵性产生影响。
此外,航行用途如货船、客船和军舰等也对船舶操纵性有所要求。
第四章船舶操纵性的改进方法为了提高船舶的操纵性能,设计师和船舶操纵员可以采取多种方法。
在设计方面,可以通过优化船体结构、改善操纵装置的设计和布置以及改进船舶的推进系统来提高船舶的操纵性。
在操纵操作方面,船舶操纵员可以通过合理的操作技术和训练来提高船舶的操纵性能。
此外,船舶的自动化技术和辅助操纵系统的引入也可以提高船舶的操纵能力。
第五章船舶操纵性的应用船舶操纵性在船舶的各个领域中都具有重要应用价值。
在商业航运中,良好的船舶操纵性能可以提高货船的航行效率,降低燃油消耗。
在客船运输中,船舶的操纵能力直接关系到乘客的舒适度和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固定坐标系中船舶六自由度操纵运动方程:
. m(u . vr wq ) X H X R X P X 1W X 2W m(v ur pw) YH YR YP Y1W Y2W . m( w uq vp) Z H Z P Z1W Z 2W . I xx p K H K R K P K1W K 2W . I yy q ( I xx I zz ) pr M H M P M 1W M 2W . I zz r ( I yy I xx ) pq N H N R N P N1W N 2W
回转直径:
D
2U 0 2U 0 r K r
k为舵效系数
L2 d 最小回转直径: D 10 AR
2) 战术直径 DT
船舶首向改变180度时,其重心距初始直线航线的横向距离
4) 正横距 l B
转舵开始点到首向角改变90度时重心横移 的距离
DT (0.9 ~ 1.2) D
3) 进距 l A
Cw 为水线面系数
桨力
桨推力减额系数: 推力系数:
进速系数:
(汉克歇尔公式估算)
舵力
(1)
tR
为舵阻力减额系数
(2) 舵的正压力: a) f 的计算:
f a 为舵的法向力系数, 为舵的展弦比 ,
(芳村模型) (船舶机动时舵处的伴流系数)
2 b)U R (有效来流速度)的计算:
v为船舶瞬时速度,
非线性流体动力:
为展弦比,
3)转船流体动力 采用井上模型:
a) b) c)
d) e)
f)
为首尾吃水差
4)横摇流体动力矩
横摇阻尼系数:
z H 为横向流体动力 YH 作用点的z向坐标
a为横向力作用点高度系数
z g 为船舶重心距基线的高度
5)垂荡流体动力和纵摇流体动力矩
Cp 为菱形系数 * 为船中宽度吃水比 H0
hR
为舵高;
为滑脱比;
为增速系数
c) R 舵处的有效来流冲角:采用汤室公式
零正压力舵角 舵处几何漂角
(3) a H
为操舵诱导船体横向力与舵力的比值:
(4) x
R
为舵力作用中心至船中心的纵向距离(舵力作用点的纵向坐标)
(5)为操舵诱导船体横向力作用中心到船舶重心距离
xH 0.40 L ~ 0.5L
下标H,P,R,1W,2W分别表示船体力、螺旋浆力、舵力、一阶波浪力和二阶波浪漂移力 船体力、螺旋浆力、舵力采用经验公式计算 波浪力采用三维面元法计算
船体力
作用在船体上的作用力可分为惯性和粘性两类 惯性类流体动力及力矩是船舶在理想流体中作非定常运动所受到的
水动力,大小与船体运动的加速度成比例,方向与加速度方向相反,
FL
水平定常回转运动数学模型
U -X G N
向心力:
XT
y
小舵角定常回转 : U=U0,sinβ
≈β ,cosβ ≈1
水动力函数的线性近似式
水动力系数
假设船外形对中纵面对称,则
Y0 , N 0 0 ,得到水平面定常回转运动数学模型
1) 定常回转直径D
在回转运动中,船舶进入定常阶段后的回转圈的直径
转舵开始点到首向角改变90度时重心横移的距离
表征船舶的回转性和跟从性。
5) 外冲 lC
重心偏离航线的最大横向距离,通常
l B (0.6 ~ 1.2) D
K (0 ~ 0.1) D
船舶操纵性概述 操纵性指船舶按驾驶者的意图保持或改变运动状态的性能,即船舶能保持或改 变航速、航向和位置的性能。包括以下四个方面
1、航向稳定性:船舶在水平面收到扰动而偏离平衡状态后保持原有航向运动 的性能 2、回转性:船舶应舵作圆弧运动的性能 3、转首性及跟从性:船舶应舵转首及迅速进入新的稳定运动状态的性能 4、停船性能:船舶对惯性停船和倒车停船的响应性能
比例常数称为附加质量
只需要求出附加质量系数 Aij 即可求惯性作用力
粘性船体作用力用贵岛模型
粘性流体力及力矩的计算可以理解为水动力导数的计算
(1)纵向流体动力
采用井上模型:
a) 面积系数 直航总阻力系数 Ct =摩擦阻力 C f +剩余阻力 Cr
b) c) d)
(2)横向流体动力
采用井上模型
线性流体动力:
波浪力
波浪力分为一阶波浪力和二阶波浪漂移力,其中一阶波浪力又分为入射波力、绕射波力、 辐射波力
入射波势:
绕射势
D
定解问题:
辐射势定解问题
采用源汇分布法计算绕射势和辐射势,得
入射波力:
辐射波力:
绕射波力:
流体静力系数 c 只有5项不为0
ቤተ መጻሕፍቲ ባይዱjk
船舶的回转运动
直线航行的船舶,将舵转至某一舵角,并保持此舵角,船将作曲线运动, 称为回转运动 回转运动的三个阶段 (1)转舵阶段:船舶从开始 执行转舵命令起到实现命令 舵角止的阶段。 (2)过渡阶段:从转舵终止到船舶进 入定常回转的中间阶段 (3)定常阶段:在回转运动中,过渡阶段终 了,船舶运动参数开始稳定,达到新的平衡阶 段