关于拉普拉斯算子和格林函数的数学理论和应用
第6章拉普拉斯方程和格林函数法
n 第二边值值问题也称牛曼(Neumann)问题.
以上两个边值问题都是 区域内部求拉普拉斯方程的解.
这样的问题称为内问题.
6.2 格林公式
江西理工大学理学院
设 是以足够光滑的曲面 为边界的有界区域, P( x, y, z),Q( x, y, z), R( x, y, z) 在 上连续的,在 内具有一阶连续偏导数的任意函数, 则成立如下
内 v1 r
是连续可微的.
在公式(4.9)中取 u 为调和函数 取 v 1 ,并以 r
K 代替该公式中的 ,得
(u2 1 1 2u)d
u
1 r
1
u
dS
,
K
rr
n r n
#
江西理工大学理学院
因为在
K
内 2u 0,2 1 r
0.
而在球面
上
1 r
n
1 r
0
v
u n
u
v n
dS .
将上式与积分表达式相减得u(M0来自) u v n
1
4
1 n rMM0
1
4 rMM0
v
u n
dS
.
如果能选取调和函数 v 使满足
于是有
1
v
,
4 rMM0
江西理工大学理学院
1
u(M0 ) u n 4 rMM0 v dS.
令
1
G(M , M0 ) 4 rMM0 v,
r
1 r2
1
2
,
因此
u
1 r
dS
n
1
2
udS
1
2
u 4 2
拉普拉斯方程积分解
拉普拉斯方程积分解什么是拉普拉斯方程拉普拉斯方程(Laplace’s equation)是一个重要的偏微分方程,常常用于描述电势、温度、流体流动等物理过程。
它的一般形式如下:∇^2ϕ = 0,其中,∇^2表示拉普拉斯算符,ϕ表示待求函数。
拉普拉斯方程的积分解方法拉普拉斯方程的求解方法有很多种,其中一种重要的方法是积分解法。
积分解法基于格林函数的概念,通过求解拉普拉斯方程的格林函数,然后进行积分运算,得到方程的解。
格林函数的定义和性质格林函数是偏微分方程求解中的重要概念,它表示在某个位置施加一个单位源,得到的响应。
对于拉普拉斯方程,其格林函数可以表示为:G(x, x’) = -1/(4π|r - r’|),其中,G(x, x’)表示格林函数,x和x’分别表示两个位置点的坐标,r和r’表示两个位置点的距离。
格林函数的一个重要性质是齐次性,即满足齐次边界条件。
这意味着当待求函数满足齐次边界条件时,拉普拉斯方程的解可以表示为格林函数与边界条件的乘积的积分:ϕ(x) = ∫ G(x, x’)f(x’)dV’,其中,ϕ(x)表示待求函数,f(x’)表示边界条件,dV’表示体积元素。
求解过程要利用积分解法求解拉普拉斯方程,首先需要确定边界条件和格林函数。
对于某个具体的物理问题,边界条件是问题的一部分,可以通过实际情况或给定条件确定。
格林函数的选择要与边界条件相适应,通常需要进行一些数学推导和分析。
确定好边界条件和格林函数后,就可以开始求解了。
求解的过程主要包括以下几个步骤:1.将待求函数表示为格林函数与边界条件的乘积的积分形式。
2.利用格林函数的性质进行积分运算,得到待求函数的表达式。
3.针对具体的边界条件和格林函数形式,进行数值计算或解析求解,得到问题的解。
案例分析下面通过一个简单的例子来说明拉普拉斯方程积分解的具体步骤。
考虑一个二维平面上的拉普拉斯方程问题,边界条件为ϕ(x, y) = g(x, y),其中g(x, y)为已知函数。
电势与格林函数静电问题中的拉普拉斯方程与格林函数解法
电势与格林函数静电问题中的拉普拉斯方程与格林函数解法导言:在静电学中,研究电势和格林函数是解决电场分布的重要方法。
本文将讨论电势与格林函数在静电问题中的应用,重点介绍拉普拉斯方程以及格林函数解法。
一、拉普拉斯方程简介拉普拉斯方程是描述电势在无电荷区域中分布的基本方程。
对于一个二维情况下的电势分布问题,拉普拉斯方程可以写作:∇²ψ = 0其中,∇²表示拉普拉斯算子,ψ表示电势。
二、格林函数的概念与意义格林函数是求解拉普拉斯方程问题的关键工具。
格林函数是指满足以下条件的函数G(x,x'):∇²G(x,x') = -1 / ε₀ * δ(x-x')其中,ε₀是真空介电常数,δ(x-x')表示Dirac函数。
格林函数在某一点的值表示在该点放置单位点电荷时在空间中的分布情况。
三、格林函数的求解方法格林函数的求解可以通过使用边值问题的方法,具体步骤如下:1. 确定给定区域的边界条件以及相应的边界值。
2. 根据边界条件和拉普拉斯方程建立复杂变量的边界值问题。
3. 利用复变函数的解析性质求解得到问题的解析解。
4. 根据格林第一定理以及叠加原理,得到最终的格林函数解。
四、拉普拉斯方程与格林函数解法实例在一个有限区域中,假设存在一个带电导体表面,题目要求求解该区域内的电势分布。
根据已知条件,可以将问题建模为一个边值问题,通过求解格林函数来得到电势分布。
结论:在静电学问题中,电势与格林函数是求解电场分布的重要方法。
通过拉普拉斯方程与格林函数的解法,可以得到电势的具体分布情况。
在实际问题中,我们可以根据具体的边界条件和几何形状,使用适当的数值方法或解析方法求解,从而获得准确的电势分布结果。
参考文献:[1] Griffiths D J. Introduction to Electrodynamics[M]. Pearson Education Limited, 2017.[2] Lewin W. Mathematical Methods in Classical Mechanics[M]. Springer Science & Business Media, 2012.。
拉普拉斯方程的完整求解
拉普拉斯方程的完整求解拉普拉斯方程是一种常见的偏微分方程,在数学、物理、工程等领域都有广泛的应用。
它描述了一个物理系统中的稳态情况,即在没有时间变化的情况下,物理量的分布情况。
在本文中,我们将介绍拉普拉斯方程的完整求解方法,包括数学推导和物理应用。
一、数学推导拉普拉斯方程的一般形式为:∇^2ϕ=0其中,∇^2为拉普拉斯算子,表示对空间中各个方向的二阶导数之和。
ϕ为待求函数。
为了求解该方程,我们需要先确定边界条件。
边界条件指的是在物理系统的边界上,待求函数的取值或导数的取值已知。
常见的边界条件包括:1. Dirichlet 边界条件:在边界上,待求函数的取值已知。
2. Neumann 边界条件:在边界上,待求函数的法向导数已知。
3. Robin 边界条件:在边界上,待求函数的取值或法向导数与外界参数成比例。
根据不同的边界条件,我们可以采用不同的数学方法求解拉普拉斯方程。
下面我们分别介绍三种常见的方法。
1. 分离变量法当边界条件为 Dirichlet 边界条件时,我们可以采用分离变量法求解拉普拉斯方程。
具体来说,我们假设待求函数可以表示为以下形式:ϕ(x,y,z)=X(x)Y(y)Z(z)将该式代入拉普拉斯方程,得到:X''/X+Y''/Y+Z''/Z=0由于等式左侧的三个部分只依赖于x、y、z 中的一个,因此它们必须都等于一个常数λ。
于是我们得到三个独立的常微分方程:X''+λX=0Y''+λY=0Z''+λZ=0这些方程的解分别为:X(x)=Asin(√λx)+Bcos(√λx)Y(y)=Csin(√λy)+Dcos(√λy)Z(z)=Esin(√λz)+Fcos(√λz)其中,A、B、C、D、E、F 为待定常数。
将这些解代入待求函数的表达式中,再利用边界条件,我们就可以求出这些常数,从而得到完整的解。
拉普拉斯方程的格林函数法
然出现感应电荷, 内任意一点的电位,就是点电荷的
电位 1 和感应电荷的电位 内4的rM电0M位.
v
的叠加,
Green函数=
➢将 上的感应电荷用一个等价的点电荷代替,使得这
个“虚”的电荷和真实的点电荷一起,在 内给出和原
来的问题同样的解
M0
M1
4.4 两种特殊区域的格林函数 及狄氏问题的解
4.4 两种特殊区域的格林函数及狄氏问题的解
r
2
2
同理可得 因此
1 r
u n
dS
1
u n
dS
4
u n
u
n
1 r
1 r
u n
dS
4
u
4
u n
0
4.2 格 林 公 式
令 0, 则
lim 0 u uM0
于是
lim
0
4
u n
0
u
M
0
1
4
u M
n
1 rM0M
1 rM0M
u M
n dS
4.2 格 林 公 式
4.3 格林函数
要想确定格林函数, 需要找一个调和函数 v , 它满
1
足: 易,
但v 对| 于4一 r些M0特M .殊对的于区一域般, 的如区半域空,间确,定球v域并等不, 容格
林函数可以通过初等方法得到. 我们通常使用“电
象法”求解。
4.3 格林函数
Green函数的物理意义
➢在接地的闭曲面中放上点电荷之后,在 面内侧必
边界条件:
1) 第一边值问题
u 0 ()
u | f .
狄利克雷(Direchlet)问题 2)第二边值问题
拉普拉斯方程的格林函数法
拉普拉斯方程的格林函数法
本次课主要内容
4.1 拉普拉斯方程边值问题的提法4.2 格林公式
4.1拉普拉斯方程边值问题的提法
狄氏问题
•在区域Ω内找一个调和函数,它在边界Γ上的值为已知。
3、内问题与外问题
以上两个边值问题都是在边界Γ上给定某些边界条件,在区域内部求拉普拉斯方程的解,这样的问题称为内问题。
重点讨论内问题
4.2 格林公式
二个格林公式
借助于二个格林公式,可以得到拉氏方程的狄氏问题与牛曼问题的解的积分表达式。
为何引入格林公式
积分公式的起点是通过直接积分或分部积分将未知函数从微分号下解脱出来
我们要求解的数值方程中均含有Δ,格林公式是将未知函数从微分算符Δ下解脱出来的工具。
而格林公式则是曲面积分中高斯公式的直接推论。
两个推论(Gauss 公式)
格林公式建立了区域Ω中的场与边界Γ上的场之间的关系。
因此,利用格林公式可以将区域中场的求解问题转变为边界上场的求解问题。
格林公式说明了两种标量场之间应该满足的关系。
因此,如果已知其中一种场的分布特性,即可利用格林公式求解另一种场的分布特性。
3、调和函数的性质
1、定义:如果函数u(x,y,z)满足:(1)在具有二阶连续偏导数;Ω+Γ称u 为Ω上的调和函数。
2、调和函数的性质。
2
∇=u (2)。
[理学]格林函数的应用
就相当于所要求的格林函数。
2
1
G(M , M 0 ) 4rMM0 v,
(17)
u(M 0 )
f
(M )
GdS n
(20)
4.3.1 半空间的格林函数及狄利克雷问题
求解上半空间 z 0内的狄利克雷问题
uxx u yy uzz 0 (z 0),
(22)
u |z0 f (x, y), x, y , (23) 先求出格林函数G(M , M 0 ). 为此,在上半空间 z 0 的点 M 0 (x0 , y0 , z0 ) 处放置一单位正电荷,在点
1
4
1 rMM0
R rOM0
1 rMM1
.
(30)
记 r0 rOM0 , r rOM , r1 rOM1 , 是OM 0和OM 的夹角, 则(30)式变形为
G(M , M 0 )
1
4
1
R
r02 r 2 2r0r cos r0
1
r12 r 2 2r1r cos
20
1
G(M , M 0 ) 4rMM0 v,
1
2
ln
1 rMM0
1 ln
rMM1
,
(24’)
12
u(M 0 )
C
f
(x,
y) G n
dS.
(20’)
为了求得G问(M题, M(20 )2’2)1(2l3n’r)M1的M0 解 ln,rM1需M1 要, 计算(2Gn4|’y)0 .
由于在边界 y 0 上的外法线方向是 oy 轴的负
向,因此,G
M 0 关于平面z 0的对称点 M1(x0 , y0 ,z0 ) 处放置一
单位负电荷。
04第四章格林函数法
(1)
西安理工大学应用数学系
u u 但在边界上, 未知,不能用上述公式求解,必须消去 n n
为此,引入Green函数的概念。
取 u, v 均为区域 内的调和函数,且在 上有一阶连续 的偏导数,则由第二Green公式,有
v u (u n v n )dS 0
西安理工大学应用数学系
P Q R ( x y z )d ( P cos Q cos R cos )dS
其中n {cos , cos , cos } 是 的外法线方向。 (2)第一Green公式:设 是有界区域, 是其边界曲面且 足够光滑,u( x, y, z ), v( x, y, z ) 及其一阶偏导数在 上连 续,在 内有二阶连续偏导数,则
u(M 0 ) 1 4
(2)
[u
(1)式+(2)式,得
1 1 u ( ) ]dS n rMM 0 rMM 0 n
(1)
v 1 1 1 u u ( M 0 ) {u[ n 4 n ( rMM )] ( 4 rMM v) n}dS 0 0
(3)
西安理工大学应用数学系
选 v ,使 v
1 4 rMM 0
,则(3)式变成
称为Green函数
v 1 1 u ( M 0 ) u[ n 4 n ( rMM )]dS 0 1 u ( n 4 rMM v)dS 0 1 v 4 rMM 0
v u v u v u v uvd u n dS ( x x y y z z )d v v v 推导:令 Pu , Qu , Ru x y z
数学物理方法-18 Laplace方程的格林函数法
[u
S
u 1 u ]dS [ udS dS r 4 2 r S S
1 u [ u ( P ) dS |P2 1 4 2 r S
dS] u(P1 )
S
u |P r 2
积分中值定理
其中,P1和P2分别表示小球面Sε上的两个点, 当ε0时, P1和P2 M0,那么上式的极限是 u lim[u ( P ) |P ] u ( M 0 ) 1 0 r
性质(1):令u为调和函数,v=1,则
u dS 0 n
性质(2)平均值定理:设u在M0为中心、R为半径的 球内调和,球面上有一阶连续偏导数,则
1 u(M 0 ) 4 r 1 1 u [u r ]dS n n
u(M 0 ) 1 4R 2
M0 SR
格林函数法:格林公式
静电场场强(置于原点处的点电荷q在其周围空 间形成的电势场)
1 u 4 1 2 2 2 4r x y z q
求解任意点M(x, y, z)的梯度,计算时,令ε=q=1
1 1 1 x y z grad [ 3 , 3 , 3] 4 r 4 r r r x y z 3 3 3 进一步计算 u 1 1 1 ( r r r ) 4 r 4 x y z Δu u grad u
r 1 u 1 [u r 1 ]dS n n 4π
Ω
1 fdV r
给定f和Ω,体 积分可以求解。
此项根据不同边界条件求解, 求解方法待续……
格林函数法:调和函数的性质
第二格林公式
[uv vu]dV [u
v u v ]dS n n
四.在分析引入英国后,他是第一个沿着欧洲大陆的研究线索前进的英国数学家。他的
数学物理方程课件 第四章拉普拉斯方程的格林函数法
S
u
(
v n
1
4
1 (
n rMM0
)
(
1
4
1 rMM0
v)
u n
dS
v为调和函数,且满足v
1
4
1 rMM 0
1 1
u(M0 )
u ( (
v) dS
S n 4 rMM0
11
G(M0 ) 4 rMM0 v
2u(M ) 0, 内 u | f (M )
G
u(M0 ) S u n dS
数学物理方程与特殊函数
第4章格林函数法
3 区域的格林函数和狄氏问题的解
v为调和函数,且满足v 电象法求格林函数
1
4
1 rMM 0
11
G(M0 ) 4 rMM0 v
在区域外找出区域内一点关于边界的象点,在这两个点放
置适当的电荷,这两个电荷产生的电位在曲面边界上相互抵消。
这两个电荷在区域中形成的电位就是所要求的格林函数。
1
4 rMM0 F (M0 )dV0
(t)
线性系统
h(t)
f (t)
线性系统
f (t) h(t)
G(M , M0 ) F(M0)
1
4 rMM0
F(M0 )dM0
1
4 rM rM0 F (M0 )dM0
数学物理方程与特殊函数
第4章格林函数法
2u(M
)
r
r0
,
内
u | 0
G(M , M0)
1
R1
G(M , M0 ) 4 rMM0
4 rOM0
rMM1
M R
o M0
M1
第四章_拉普拉斯方程的格林函数法
注:对于外问题来说,求解通常都是在无界区域上,
这时需不需要对解加些限制条件呢?看下面一例子。
易知
u 0, r 1,
u 1 r 1
其中r x2 y2 z2
u 1,
u 1/ r
都是上述定解问题的解,即解不唯一.为了保证解的唯一性,
n
的值,所以要想求得狄氏问题的解就要想法消去积分公式中的
u 。故而我们需要引入格林函数。 n
在第二格林公式 (u2v
v2u)dV
(u
v n
v
u )dS, n
中取u, v C1(),并且都是内的调和函数.则
(u
v n
v
u )dS n
P Q R
(
x
y
z
) dV
Pdydz
Qdzdx Rdxdy
其中取外侧位正向.
由两类曲面积分之间的关系得高斯公式的另一种形式:
(
P x
Q y
R z
)dV
(P cos(n, x) Q cos(n, y) R cos(n, z))dS.
Ka表示以M0 (x0, y0, z0 )为中心,以a为半径且完全落在内部的球面,
则成立下面平均值公式
1
u(M0 ) 4 a2 Ka udS
证明: 将调和函数的积分公式应用到Ka可得
u(M 0 )
1
4
(u(M )
n
(1) r
1 r
数学物理方程学习指导书第6章拉普拉斯方程的格林函数法
第6章 拉普拉斯方程的格林函数法在第4、5两章,我们较系统地介绍了求解数学物理方程的三种常用方法——分离变量法、行波法与积分变换法.本章我们来介绍拉普拉斯方程的格林函数法.先讨论此方程解的一些重要性质,再建立格林函数的概念,然后通过格林函数建立拉普拉斯方程第一边值问题解的积分表达式.6.1 拉普拉斯方程边值问题的提法在第3章,我们已从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出了三维拉普拉斯方程22222220.u u uu x y z∂∂∂∇≡++=∂∂∂作为描述稳定和平衡等物理现象的拉普拉斯方程,它不能提初始条件.至于边界条件,如第一章所述有三种类型,应用得较多的是如下两种边值问题.(1)第一边值问题 在空间(,,)x y z 中某一区域Ω的边界Γ上给定了连续函数f ,要求这样一个函数(,,)u x y z ,它在闭域Ω+Γ (或记作Ω)上连续,在Ω内存在二阶偏导数且满足拉普拉斯方程,在Γ上与已知函数f 相重合,即.u f Γ= (6.1)第一边值问题也称为狄利克莱(Dirichlet)问题,或简称狄氏问题.4.3中所讨论过的问题就是圆域内的狄氏问题.拉普拉斯方程的连续解称为调和函数.所以,狄氏问题也可以换一种说法:在区域Ω内找一个调和函数,它在边界Γ上的值为已知.(2)第二边值问题 在某光滑的闭曲面Γ上给出连续函数f ,要求寻找这样一个函数(,,)u x y z ,它在Γ内部的区域Ω中是调和函数,在Ω+Γ上连续,在Γ上任一点处法向导数un∂∂存在,并且等于已知函数f 在该点的值: .uf n Γ∂=∂ (6.2) 这里n 是Γ的外法向矢量.第二边值值问题也称牛曼(Neumann )问题.以上两个边值问题都是在边界Γ上给定某些边界条件,在区域内部求拉普拉斯方程的解.这样的问题称为内问题.在应用中我们还会遇到狄氏问题和牛曼问题的另一种提法.例如,当确定某物体外部的稳恒温度场时,就归结为在区域Ω的外部求调和函数u ,使满足边界条件,u f Γ=这里Γ是Ω的边界,f 表示物体表面的温度分布,象这样的定解解问题称为拉普拉斯方程的外问题.由于拉普拉斯方程的外问题是在无穷区域上给出的,定解问题的解是否应加以一定的限制?基于在电学上总是假定在无穷远处的电位为零,所以在外问题中常常要求附加一个条件*)lim (,,)0(r u x y z r →∞==(6.3)(3)狄氏外问题 在空间(,,)x y z 的某一闭曲面Γ上给定连续函数f ,要找出这样一个函数(,,)u x y z ,它在Γ的外部区域'Ω内调和,在'Ω+Γ上连续,当点(,,)x y z 趋于无穷远时,(,,)u x y z 满足条件(6.3),并且它在边界Γ上取所给的函数值.u f Γ= (6.4)(4)牛曼外问题 在光滑的闭曲面Γ上给定连续函数f ,要找出这样一个函数(,,)u x y z ,它的闭曲面Γ的外面部区域'Ω内调和,在'Ω+Γ上连续,在无穷远处满足条件(6.3),而且它在Γ上任一点的法向导数'un ∂∂存在,并满足 ,'uf n Γ∂=∂ (6.5) 这里n '是边界曲面Γ的内法向矢量.下面我们重点讨论内问题,所用的方法也可以用于外问题.6.2 格林公式为了建立拉普拉斯方程解的积分表达式,需要先推导出格林公式,而格林公式则线面积分中奥-高公式的直接推论.设Ω是以足够光滑的曲面Γ为边界的有界区域,(,,),(,,),(,,)P x y z Q x y z R x y z 是在Ω+Γ上连续的,在Ω内具有一阶连续偏导数的任意函数,则成立如下的奥-高公式*)从数学角度讲,补充了这个条件就能保证外问题的解是唯一的,如果不具有这个条件,外问题的解可能不唯一.例如,在单位圆Γ外求调和函数,在边界上满足1=Γu.容易看出,及1),,(1≡z y x u22221),,(zy x z y x u ++=都在单位圆外满足拉普拉斯方程,并且在单位圆Γ上满足上述边界条件.P Q R d x y z Ω⎛⎫∂∂∂++Ω ⎪∂∂∂⎝⎭⎰⎰⎰ [cos(,)cos(,)cos(,)],P n x Q n y R n z dS Γ=++⎰⎰ (6.6)其中d Ω是体积元素,n 是Γ的外法向矢量,dS 是Γ上的面积元素.下面来推导公式(6.6)的两个推论.设函数(,,)u x y z 和(,,)v x y z 在Ω+Γ上具有一阶连续偏导数,在Ω内具有连续的二阶偏导数.在(6.6)中令,,,v v v P uQ u R u x y z∂∂∂===∂∂∂ 则有2()u v u v u v u v d d x x y y z z ΩΩ⎛⎫∂∂∂∂∂∂∇Ω+++Ω ⎪∂∂∂∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰ ,vudS nΓ∂=∂⎰⎰ 或2().vu v d u dS grad u grad v d n ΩΓΩ∂∇Ω=-⋅Ω∂⎰⎰⎰⎰⎰⎰⎰⎰ (6.7) (6.7)式称为第一格林(Green)公式.在公式(6.7)中交换,u v 位置,则得2().uv u d v dS grad u grad v d n ΩΓΩ∂∇Ω=-⋅Ω∂⎰⎰⎰⎰⎰⎰⎰⎰ (6.8) 将(6.7)与(6.8)式相减得到22().v u u v v u d u v dS n n ΩΓ∂∂⎛⎫∇-∇Ω=- ⎪∂∂⎝⎭⎰⎰⎰⎰⎰ (6.9) (6.9)式称为第二格林公式.利用格林公式我们可以推出调和函数的一些基本性质. (i)调和函数的积分表达式所谓调和函数的积分表达式,就是用调和函数及其在区域边界Γ上的法向导数沿Γ的积分来表达调和函数在Ω内任一点的值.设0000(,,)M x y z 是Ω内某一固定点,现在我们就来求调和函数在这点的值,为此,构造一个函数1v r == (6.10)函数1r除点0M 外处处满足拉普拉斯方程,这函数在研究三维拉普拉斯方程中起着重要的作用,通常称它为三维拉普拉斯方程的基本解.由于1v r=在Ω内有奇异点0M ,我们作一个以0M 为中心,以充分小的正数ε为半径的球面,εΓ在Ω内挖去,εΓ所包围的球域K ε得到区域K εΩ-(图6-1),在K εΩ-内1v r=是连续可微的.在公式(4.9)中取u 为调和函数,而图6-1取1v r=,并以K εΩ-代替该公式中的Ω,得 221111(),K u r u u d u dS r r n r n εεΩ-Γ+Γ⎡⎤⎛⎫∂ ⎪⎢⎥∂⎝⎭⎢⎥∇-∇Ω=-∂∂⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰ (6.11) 因为在K εΩ-内2210,0.u r∇=∇=而在球面εΓ上221111,r r n r r ε⎛⎫⎛⎫∂∂ ⎪ ⎪⎝⎭⎝⎭=-==∂∂ 因此22211144,r u dS udS u u n εεπεπεεΓΓ⎛⎫∂ ⎪⎝⎭==⋅=∂⎰⎰⎰⎰其中u 是函数u 在球面εΓ上的平均值.同理可得22211144,r u dS udS u u n εεπεπεεΓΓ⎛⎫∂ ⎪⎝⎭==⋅=∂⎰⎰⎰⎰ 此外u n ⎛⎫∂ ⎪∂⎝⎭是un ∂∂在球面εΓ上的平均值,将此两式代入(6.11)可得 11440.u u u dS u n r r n n εππεΓ⎛⎫⎛⎫∂∂∂⎛⎫-+-= ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎰⎰ 现在令0,ε→由于00lim ()u u M ε→=(因为(,,)u x y z 是连续函数),0lim 40u n επε→⎛⎫∂=⎪∂⎝⎭(因为(,,)u x y z 是一阶连续可微的,故un∂∂有界)则得 000111()()(),4MM MM u M u M u M dS n r r n πΓ⎡⎤⎛⎫∂∂⎢⎥=--⎪ ⎪∂∂⎢⎥⎝⎭⎣⎦⎰⎰ (6.12)此外为明确起见,我们将r =记成0MM r .(6.12)说明,对于在Ω+Γ上有连续一阶偏导数的调和函数u ,它在区域Ω内任一点0M 的值,可通过积分表达式(6.12)用这个函数在区域边界Γ上的值及其在Γ上的法向导数来表示*).(ii)牛曼内问题有解的必要条件设u 是在以Γ为边界的区域Ω内的调和函数,在Ω+Γ上有一阶连续偏导数,则在公式(6.9)中取u 为所给的调和函数,取1v =,就得到0udS nΓ∂=∂⎰⎰(6.13) 由(6.13)可得牛曼内问题u f nΓ⎛⎫∂=⎪∂⎝⎭有解的必要条件为函数f 满足*)上面的推导是假定点),,(0000z y x M 在区域Ω内,如果0M 在Ω外或0M 在边界Γ上,我们也可用同样方法推得另外两个式子,把它们合并在一起可得⎰⎰Γ⎪⎩⎪⎨⎧ΩΓΩ=⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂-。
第四章格林函数法1
注1:当M 0取在区域之外或边界上,可用同样的方法导出公式
4 u ( M 0 ), 1 1 u [u ( ) ]dS 2 u ( M 0 ), n r r n 0,
M 0在内; M 0在上; M 0在外。
注2:若u不是调和函数,即2u F,只要u C 2 () C1 (), 我们可以得到类似公式
u u ds ds n n r R D
sin Rd 4 R 0 0 4
2
由牛曼内问题有解的必要条件知该问题无解。
3)平均值公式
定理3:设函数u(M )在区域内调和,M 0 ( x0 , y0 , z0 )为其中 任一点,a是以M 0为中心,以a为半径且完全落在内部 的球面,则下面平均值公式成立 1 u(M 0 ) udS 2 4 a a
P Q R ( ) dV Pdydz Qdzdx Rdxdy (1) x y z 其中取外侧位正向.
由两类曲面积分之间的关系得高斯公式的另一 种形式:
P Q R ( ) dv x y z ( P cos Q cos R cos )dS .
2 2
取u为调和函数,并假定且在上有一阶连续偏导数,v 1/ r则有
1 1 u r (u )dS 0 n r n
1 1 1 r r 注意到:在球面 上, 2 n r
1 1 r 因此可得 u dS 2 n 其中u
两式相减可得 v u (u v v u )dV (u v )dS n n
2 2
第二格林公式
二、调和函数的基本性质
1). 调和函数的积分表达式
定义:所谓调和函数的积分表达式,就是用调和函数及其 在区域边界上的法向导数沿的积分来表达调和函数在 内任一点的值。
流体力学中的特殊函数算子
流体力学中的特殊函数算子在流体力学研究中,特殊函数算子扮演着重要的角色。
特殊函数算子是一种用来描述流体场中特殊物理现象的数学工具,通常由微分方程定义并具有特殊的性质。
本文将介绍几个在流体力学中常见的特殊函数算子及其应用。
一、拉普拉斯算子(Laplacian Operator)拉普拉斯算子是流体力学中常用的一个特殊函数算子,通常用符号∇^2表示。
在笛卡尔坐标系中,拉普拉斯算子定义为:∇^2 = ∂^2/∂x^2 + ∂^2/∂y^2 + ∂^2/∂z^2其中,∂^2/∂x^2、∂^2/∂y^2和∂^2/∂z^2分别表示对坐标x、y和z的二阶偏导数。
拉普拉斯算子用于描述流体场中的速度、压力、温度等物理量的分布情况。
在流体动力学中,拉普拉斯算子常用于表示速度场的散度和涡度。
通过计算速度场的拉普拉斯算子,可以获得流体的加速度分布情况,进而分析流体的运动状态。
二、格林函数(Green's Function)格林函数是一种用于求解流体力学微分方程的特殊函数算子。
格林函数通常由微分方程的边界条件和初始条件确定,并可用于求解非齐次微分方程的特解。
在流体力学中,格林函数常用于求解流体场的速度和压力分布。
通过构造泊松方程的格林函数,可以求解出流体场中的速度和压力,并进一步分析流体的运动行为。
三、费曼算子(Feynman Operator)费曼算子是一种由理论物理学家费曼引入的特殊函数算子,用于描述流体力学中的量子效应。
费曼算子在量子流体力学研究中具有重要的应用价值。
在流体力学中,费曼算子通常用于描述流体场的量子行为,如量子涨落、凝聚态效应等。
通过引入费曼算子,可以在经典流体力学框架下考虑量子效应,进一步深入研究流体的微观行为。
总结:流体力学中的特殊函数算子在研究流体行为、分析流体力学微分方程等方面具有重要的作用。
本文介绍了几个常见的特殊函数算子,如拉普拉斯算子、格林函数和费曼算子,并分析了它们在流体力学中的应用。
拉普拉斯方程的格林函数法
1 r
r
r
u r
0
解方程得: u(r) C1 ln r C2
其中 C1, C2 是任意常数。
特别地,取 C1 1, C2 0,即 u(r) ln 1 称为二维拉普拉斯方程的基本解。 r
§4.1 拉普拉斯方程边值问题的提法
设 u u x, y, z 满足三维拉普拉斯方程
该点的值。构造辅助函数
1
1
v
r x x0 2 y y0 2 z z0 2
其中 (x, y, z) 为空间中任意一点。
函数 v 1
1
r x x0 2 y y0 2 z z0 2
除点 M0外处处满足拉普拉斯方程,它称为三维拉普 拉斯方程的基本解。
P u v x
Q u v y
R u v z
grad u grad v dV u2v dV .
其中梯度向量
grad
u
u x
,
u y
,
u z
,
由高斯公式, 上式等于
u
v x
cos
n,
x
v y
cos
n,
y
v z
cos
n,
z
dS
v
u
n
dS
.
u2vdV
第一格林公式
u
v n
dS
拉普拉斯方程及其解法
拉普拉斯方程及其解法拉普拉斯方程是一个经典的偏微分方程,它的形式为:∇²u=0其中,u表示待求的函数,∇²表示Laplace算子,表示二阶偏导数的和。
拉普拉斯方程在各个领域中都有着重要的应用,如电场、热传导、流体力学等。
在数学上,对于二维或三维函数的拉普拉斯方程,其解法有许多种,其中最常用的为分离变量法与格林函数法。
一、分离变量法分离变量法在解决二维及三维拉普拉斯方程中具有广泛的适用性,它的基本思想是将多维问题化为一系列单变量问题的组合。
假设拉普拉斯方程的解可以表示为三维函数的乘积形式:u(x,y,z)=X(x)Y(y)Z(z)则将这个表达式代入拉普拉斯方程中,可以得到以下三个方程:X''(x)/X(x)+Y''(y)/Y(y)+Z''(z)/Z(z)=0由于每个方程都与坐标变量无关,因此可以将它们分别表示为常微分方程的形式:X''(x)/X(x)=λ1,Y''(y)/Y(y)=λ2,Z''(z)/Z(z)=λ3上述三个方程中的参数λ1、λ2、λ3为方程的本征值,它们的取值将直接影响到解的形式。
当λ1、λ2、λ3为常数时,可以将三个方程的通解写成以下形式:X(x)=Acos(α1x)+Bsin(α1x),Y(y)=Ccos(α2y)+Dsin(α2y),Z(z)=Ecos(α3z)+Fsin(α3z)其中,A、B、C、D、E、F为任意常数,α1、α2、α3为根据本征值计算出来的常数。
将上述三个方程的通解带入原式,经过简单分析、代数变换,可以得到二维或三维拉普拉斯方程的解。
二、格林函数法另一种常用的解法为格林函数法。
在一定条件下,基于格林函数的方法能够得到更加简单和结构精细的解,因此在应用中有着广泛的应用。
假设存在格林函数G(x,y),它有以下特性:①G(x,y)满足拉普拉斯方程,即∇²G(x,y)=δ(x-x0,y-y0)。
格林函数
格林函数这是一篇关于格林函数经典解法的文章。
从现代的讨论中寻求根本的解法。
在数学中,格林函数是一种用来解有边界条件的非齐次微分方程式的函数。
在多体理论中,这一术语也被应用于物理中,特别在量子场论,电动力学和统计领域的理论,尽管那些不适合数学定义。
格林函数的名称是来自于英国数学家乔治·格林(George Green ),早在1830年,他是第一个提出这个概念的人。
在线性偏微分方程的现代研究中,格林函数主要用于研究基本解。
定义及用法技术上来说,格林函数),(s x G 伴随着一个在流形M 中作用的线性算子L ,为以下方程式的解:)(),(s x s x LG -=δ (1)其中δ为狄拉克δ函数。
此技巧可用来解下列形式的微分方程: )()(x f x Lu = (2)若L 的核是非平凡的,则格林函数不只一个。
不过,实际上因为对称性、边界条件或其他的因素,可以找到唯一的格林函数。
一般来说,格林函数只需是一种数学分布即可,不一定要具有一般函数的特性。
格林函数在凝聚态物理学中常被使用,因为格林函数允许扩散方程式有较高的精度。
在量子力学中,哈密顿算子的格林函数和状态密度有重要的关系。
由于扩散方程式和薛定谔方程有类似的数学结构,因此两者对应的格林函数也相当接近。
其方程如下:)(),(s x s x LG --=δ这一定义并不显著改变格林函数的任何性质。
如果运算符是平移不变量,即当L 与x 是线性关系时,那么格林函数可以转换成一个卷积算,即为:)(),(s x G s x G -=在这种情况下,格林函数和线性不变系统理论中的脉冲响应是相同的。
动机若可找到线性算符 L 的格林函数 G ,则可将(1)式两侧同乘)(s f ,再对变量 s 积分,可得:)()()()(),(x f ds s f s x ds s f s x LG =-=⎰⎰δ由公式 (2) 可知上式的等号右侧等于)(x Lu ,因此:ds s f s x LG x Lu )(),()(⎰=由于算符 L 为线式,且只对变量x 作用,不对被积分的变量 s 作用),所以可以将等号右边的算符L 移到积分符号以外,可得:))(),(()(ds s f s x G L x Lu ⎰=而以下的式子也会成立:ds s f s x G x u )(),()(⎰= (3)因此,若知道(1)式的格林函数,及(2)式中的)(x f ,由于L 为线性算符,可以用上述的方式得到)(x u 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于拉普拉斯算子和格林函数的数学理论和
应用
拉普拉斯算子和格林函数是数学中的两个重要概念,被广泛应用于数学、物理、工程等领域。
本文将介绍拉普拉斯算子和格林函数的基本概念、性质和应用。
一、拉普拉斯算子
拉普拉斯算子是向量算子,用于描述向量场的散度。
在三维空间中,拉普拉斯算子的表达式为:
$$
\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}
$$
其中,$\phi$ 为标量函数。
在二维平面和一维线性空间中,拉普拉斯算子的表达式分别为:
$$
\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}
$$
$$
\Delta \phi = \frac{\partial^2 \phi}{\partial x^2}
$$
拉普拉斯算子的性质很重要,其中最重要的性质是齐次性。
齐次性指的是,对于任意的标量函数 $\phi$,有如下等式成立:
$$
\Delta (af) = a \Delta f, \quad a \in \mathbb{R}
$$
也就是说,拉普拉斯算子可以与标量函数的加法和数乘交换顺序。
这个性质非常有用,因为它使得拉普拉斯算子可以应用于线性微分方程的解析和求和问题等。
二、格林函数
格林函数是一种特殊的函数,用于求解偏微分方程的边界值问题。
偏微分方程的边界值问题是指,在某个空间区域内,给定方程的解在该区域边界上的特定值,解决方程在整个区域内的解。
例如,要求在一个矩形区域中求解波动方程的解。
格林函数的概念最早由数学家 George Green 提出,后来由格林本人描述,并被称为“格林函数”。
格林函数的实质是一个函数,它表示在某个点上的函数值,是由在其他所有点上的函数值共同决定的。
一个标量函数的格林函数 $G(x,y)$ 就是满足下列条件的函数:
1. 在区域 $D$ 中除了 $(x,y)$ 外所有点的函数值满足拉普拉斯方程。
2. 当 $x$ 在边界 $\partial D$ 上时,格林函数满足
$\lim_{(x,y)\to(x_0,y_0)} G(x,y) = 0$。
格林函数的求法非常重要,因为它可以用来解决偏微分方程的边界值问题。
求解格林函数的方法有很多种,最常用的方法是使用分离变量法。
三、数学理论应用
拉普拉斯算子和格林函数在数学中有很多应用,其中最常见的应用是解决偏微分方程。
例如,可以使用拉普拉斯方程推导出泊松方程和亥姆霍兹方程等。
拉普拉斯算子和格林函数也被广泛应用于数学物理和工程学中的许多问题,如热传导方程、流体力学和电磁学等。
拉普拉斯算子和格林函数在计算机科学中也有广泛的应用,尤其是在图像处理和计算机视觉中。
例如,在图像分割和图像去噪等过程中,拉普拉斯算子可以用来计算图像中像素的梯度信息,而格林函数则可以用来实现滤波,提高图像的清晰度和质量。
总之,拉普拉斯算子和格林函数是数学中非常重要的概念,被广泛应用于许多领域。
它们的理论性质和应用价值也在不断地被发掘和拓展。