北师大版高中数学高一必修3学案古典概型的特征和概率计算公式
北师大版高中数学必修三古典概型的特征和概率计算公式教案(精品教学设计)
古典概型的特征和概率计算公式一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A 2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:正确理解掌握古典概型及其概率公式;三、学法与教学用具:1、与学生共同探讨,应用数学解决现实问题;2、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.四、教学过程1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3 (10)师生共同探讨:根据上述情况,你能发现它们有什么共同特点?2、基本概念:(1)基本事件、古典概率模型见课本(2)古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A . 3、例题分析:课本例题略例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点), 其包含的基本事件数m=3所以,P (A )=n m =63=21=0.5 小结:利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m 为事件A 所包含的基本事件数,求m 值时,要做到不重不漏。
北师大版数学高一- (北师大)必修3学案 3.2.1古典概型的特征和概率计算公式
3.2.1 古典概型的特征和概率计算公式1.理解古典概型的两个基本特征,掌握古典概型的概率计算公式.2.会用列举法计算一些随机事件所含的基本事件数及其发生的概率.古典概型1.定义:如果一个概率模型满足:(1)试验的所有可能结果只有________个,每次试验只出现其中的________个结果;(2)每一个结果出现的可能性________.我们把具有这样两个特征的随机试验的数学模型称为古典概型(古典的概率模型).【做一做1】下列试验中,是古典概型的有( ).A.抛掷一枚图钉,发现钉尖朝上B.某人到达路口看到绿灯C.抛掷一枚均匀的正方体骰子,观察向上的点数D.从10 cm3水中任取1滴,检查有无细菌2.基本事件:在一次试验中,所有可能发生的基本结果中不能再分的最简单的随机事件称为该次试验中的基本事件.试验中其他的事件(除不可能事件外)都可以用________来描绘.【做一做2-1】口袋中装有4个红、白、蓝、黑四种颜色且形状相同的小球,从中任意取出2个小球,写出所有的基本事件.【做一做2-2】袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,下列事件不是基本事件的是( ).A.{正好2个红球}B.{正好2个黑球}C.{正好2个白球}D.{至少1个红球}3.计算公式:对于古典概型,如果试验的所有可能结果(基本事件)数为n,随机事件A 包含的基本事件数为m,那么事件A的概率规定为P(A)=________.求古典概型的概率有两种方法:一是公式法,即利用古典概型的概率计算公式求解;二是随机模拟方法,当用公式法不易求解时可以考虑用随机模拟的方法估计概率的近似值.【做一做3-1】抛掷一枚硬币,正面向上的概率是( ).A .14B .13C .12D .1 【做一做3-2】将一枚均匀的硬币连掷3次,出现“2个正面,1个反面”和“1个正面,2个反面”的概率各是多少?怎样计算古典概型中基本事件的总数?剖析:计算古典概型中基本事件的总数时,通常利用列举法.列举法就是把所有的基本事件一一列举出来,再逐个数出.例如:把从4个除编号外完全相同的球中任取两个看成一次试验,那么这次试验共有多少种可能的结果?为了表述方便,对这四个球编号为1,2,3,4.把每次取出的两个球的号码写在一个括号内,则有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),所以共有6个基本事件.本例中是按含有1号球,含有2号球,含有3号球的顺序来列举的,这样做可以避免出现重复或遗漏,因此要按一定的顺序标准来写.用数对来表示试验结果是非常重要的表示方法,这种表示方法要注意数对中的两个量是否有顺序限制,本题中没有限制.有时还可以在直角坐标系中用点来表示.有时也可以根据归纳的结论来计算.其常见结论是:把从n 个量中任取出2个量看成一次试验,如果这2个量没有顺序,那么这次试验有n (n -1)2个基本事件;如果这2个量有顺序,那么这次试验有n (n -1)个基本事件.可以作为结论记住(不要求证明),在选择题或填空题中可以直接应用.题型一 基本事件个数的求法【例题1】将一颗均匀的骰子先后抛掷两次,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是质数的结果有多少种?分析:用列举法列出所有结果,然后按要求进行判断即可.反思:列举法是探求基本事件的常用方法,列举时必须按照某一标准进行,要做到不重、不漏.题型二 古典概型的概念【例题2】(1)在线段[0,3]上任取一点,求此点的坐标小于1的概率,问此试验的概率模型是否为古典概型?为什么?(2)从1,2,3,4四个数中任意取出两个数,求所取两数之一是2的概率,此试验的概率模型是古典概型吗?试说明理由.分析:要判断试验的概率模型是否为古典概型,只需看该试验中所有可能的结果(基本事件)是否为有限个;每个结果出现的概率是否相等.反思:判断一个试验的概率模型是否为古典概型,关键是看它是否具备古典概型的两个特征:(1)一次试验中,可能出现的结果只有有限个,即有限性;(2)每个基本事件发生的可能性是均等的,即等可能性.题型三 古典概型的概率计算【例题3】某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.(1)求中三等奖的概率;(2)求中奖的概率.分析:分别写出所有基本事件,利用古典概型的概率计算公式求出概率.反思:解决古典概型问题的关键是首先明确基本事件是什么,然后分清基本事件总数n 与事件A 所含的基本事件数m ,因此要注意以下几个方面:①明确基本事件是什么;②试验是否是等可能性的试验;③基本事件总数是多少;④事件A 包含多少个基本事件.题型四 易错辨析【例题4】掷两枚硬币,求两枚硬币正面向上的概率.错解:掷两枚硬币出现的情况为:一正一反、两正、两反共3个基本事件,所以概率为P =13.错因分析:以上3个基本事件不是等可能的,如两正只有一种情况,而一正一反就有2种情况.事实上,掷两枚硬币共有4个基本事件,而且是等可能的.1下列随机试验的数学模型属于古典概型的是( ).A .在一定的条件下,种一粒种子,它可能发芽,也可能不发芽B .在平面直角坐标系内,从横坐标和纵坐标都为整数的所有点中任取一个点C .某射手射击一次,可能命中0环,1环,2环, (10)D .四位同学用抽签的方法选一人去参加一个座谈会2抛掷一枚均匀的正方体骰子,向上的点数是5或6的概率是( ).A .16B .13C .12D .1 3在5张卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,则得到的五位数能被2或5整除的概率是( ).A .0.2B .0.4C .0.6D .0.84掷一枚骰子,骰子落地时向上的点数是3的倍数的概率是__________.5袋中装有除颜色外其他均相同的红、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球.(1)试问:一共有多少种不同的结果?请列出所有可能的结果.(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.答案:基础知识·梳理1.(1)有限 一 (2)相同【做一做1】C2.基本事件【做一做2-1】解:所有的基本事件有6个,分别是A ={红,白},B ={红,蓝},C ={红,黑},D ={白,蓝},E ={白,黑},F ={蓝,黑}.【做一做2-2】D 至少1个红球包含:一红一白或一红一黑或2个红球,所以{至少1个红球}不是基本事件,其他事件都是基本事件.3.m n【做一做3-1】C【做一做3-2】解:一枚均匀的硬币连掷3次,每次落地都有2种不同的情况,故共有基本事件总数为n =8.记“2个正面,1个反面”为事件A ,“1个正面,2个反面”为事件B ,则A ={(正,正,反),(正,反,正),(反,正,正)},含有3个基本事件,B ={(反,反,正),(反,正,反),(正,反,反)},含有3个基本事件,故由古典概型的概率公式得P (A )=38,P (B )=38. 典型例题·领悟【例题1】解:(1)将抛掷两次骰子的所有结果一一列举如下:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),共有36种不同的结果.(2)点数之和是质数的结果有(1,1),(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(4,1),(4,3),(5,2),(5,6),(6,1),(6,5),共15种.【例题2】解:(1)此试验的概率模型不属于古典概型.在线段[0,3]上任取一点,此点可以在[0,3]上的任一位置,且在每个位置的可能性是相同的,具备等可能性.但试验结果有无限多个,不满足试验结果的有限性.(2)此试验的概率模型是古典概型.因为此试验的基本事件总数为6:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),且每个基本事件的出现是等可能的,因此属于古典概型,所取两数之一是2的概率为36=12. 【例题3】解:设“中三等奖”为事件A ,“中奖”为事件B ,从四个小球中有放回地取两球有:(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1),(3,0)共7种结果,则中三等奖的概率为P (A )=716. (2)由(1)知两个小球号码相加之和等于3或4的取法有7种;两个小球号码相加之和等于5的取法有2种:(2,3),(3,2).两个小球号码相加之和等于6的取法有1种:(3,3).则中奖的概率为P (B )=7+2+116=58. 【例题4】正解:由题意可知,掷两枚硬币其结果共有4个基本事件,且是等可能的,所以“两枚硬币正面向上”的概率为P =14. 随堂练习·巩固1.D 2.B3.C 一个五位数能否被5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件空间Ω={1,2,3,4,5},“能被2或5整除”这一事件中含有基本事件2,4,5,概率为35=0.6.故选C. 4.13 掷骰子的结果共有6种,其中是3的倍数的结果有2种,故概率为26=13. 5.解:(1)一共有8种不同的结果,列举如下:(红,红,红),(红,红,黑),(红,黑,红),(红,黑,黑),(黑,红,红),(黑,红,黑),(黑,黑,红),(黑,黑,黑).(2)记“3次摸球所得总分为5”为事件A .因为8个基本事件发生的可能性相等,事件A 包含的基本事件为(红,红,黑),(红,黑,红),(黑,红,红),共3个.所以事件A 的概率为P (A )=38.。
北师大版高中数学必修3《三章 概率 2 古典概型 2.1古典概型的特征和概率计算公式》优质课教案_6
§2.1古典概型的特征和概率计算公式一、教材分析
本节课是高中数学北师大版(必修3)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其他概率及概型的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率。
.
二、教学目标
1.知识与技能
(1) 通过实验或实例,理解古典概型的特征并能利用概率公式计算概率;
(2)会用列举法计算一些简单随机事件所含的基本事件数及事件发生的概率。
根据本节课通过两个试验的观察让学生理解古典概型的特征,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
3.情感态度与价值观
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
三、重点、难点
重点:古典概型的特征及概率计算公式。
难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、教学方式
学生自我探究总结归纳,讨论合作的教学模式
五、教学过程。
北师大版高中数学必修3《三章 概率 2 古典概型 2.1古典概型的特征和概率计算公式》优质课教案_10
2.1 古典概型的特征和概率计算公式教学目标:知识与技能:理解古典概型的概念,会分辨随机试验是否是古典概型,会用列举法计算简单随机事件的概率.过程与方法:通过实例和引导问题解决的方式对古典概型的概念进行归纳和总结。
情感态度价值观:通过解决问题的方式使学生体验知识产生和形成的过程,培养学生的抽象概括能力,让学生感受到数学模型不止函数模型,通过对函数模型的理解迁移到对概率模型的理解,让学生感受事物之间的联系教学重点:理解古典概型的相关概念及利用古典概型求解随机事件的概率.教学难点:基本事件特征及如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件所包含的基本事件的个数和试验中基本事件的总数.教学过程:问题的提出:口袋内装有2红2白除颜色外完全相同的4球, 4人按序摸球,摸到红球为中奖, 通过大量的重复试验发现:先抓的人和后抓的人的中奖率是一样,即摸奖的顺序不影响中奖率,先抓还是后抓对每个人来说是公平的。
这种大量的重复试验并不能精确的描述这类事件发生的概率,对于具有某些特征的随机试验,如何描述它们以及如何计算其概率?寻找类似的例子:1、投掷一枚均匀的硬币,出现“正面朝上”和“反面朝上”的机会相等2、抛掷一枚均匀的骰子,出现数字“1”、“2”、“3”、“4”、“5”、“6”的机会相等3、转动一个八等分(分别标上数字0、1、…、7)的转盘,箭头指向每个数字的机会相等找出共同点:1..试验的所有可能结果只有有限个,且每次试验只出现其中的一个结果;2.每一个试验结果出现的可能性相同。
概念归纳总结:具有以上两个特点的随机试验称为古典概型(古典的概率模型)或等可能概型(其中,每个可能的结果称为基本事件) 计算方法的归纳总结:掷6面的骰子,其中包含的基本事件数各是多少? 设事件A 为掷得的点数为3,则A 的概率为?设事件A 为掷得的点数小于等于3,则A 中包含的基本事件有哪些,事件A 发生的概率为?归纳出概率计算公式:nmA A P A 基本事件的总数基本事件个数包含的发生的概率事件j )(小结:古典概型的两个基本特征和计算公式古典概型概念的理解:通过以下例题让学生理解古典概型的两个基本特征例1:向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,那么这个随机投点的试验符合古典概型吗?学生作答 教师点评例2:向如图的圆面内随机地投一个点,该点落在圆内8个区域都是等可能的,那么这个随机投点的试验符合古典概型吗?学生作答 教师点评例3:射击运动员向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中1环和命中0环.那么这个试验符合古典概型吗?学生作答教师点评例4:依次投掷两枚完全一样的只有4个面的均匀骰子,各面点数为1,2,3,4学生作答教师点评古典概型计算公式的应用通过以下例题让学生熟练掌握运用列表和树状图的方式解决简单古典概型的计算问题例5:依次投掷两枚完全一样的只有4个面的均匀骰子,各面点数为1,2,3,4若事件A:点数和为4,则P(A)=?若事件B:点数和不超过4,则P(B)=?学生作答教师点评若事件A:点数和为4,则P(A)=3/16其中A包含的基本事件有:(1,3) (2,2) (3,1)若事件B:点数和不超过4,则P(B)=3/8其中B包含的基本事件有:(1,1) (1,2) (1,3) (2,1) (2,2) (3,1)例6:依次投掷两枚完全一样的只有4个面的均匀骰子,各面点数为2.5,5,10,20,列出所有可能的结果,记事件A 分别为两个骰子点数和不超过10,事件B 为点数和不超过22,则P(A)=?,P(B)=?该例改自课本例题,旨在让学生通过不同的表达方式去描述同一种模型 学生作答 教师点评 思考:通过思考题,为下一节课”建立概率模型“做准备先后抛掷2枚均匀的硬币,出现“一枚正面,一枚反面”的概率是多少? 同时抛掷2枚均匀的硬币,出现“一枚正面,一枚反面”的概率是多少? 先后抛掷3枚均匀的硬币,出现“两个正面,一个反面”的概率是多少? 同时抛掷3枚均匀的硬币,出现“两个正面,一个反面”的概率是多少? 总结:课堂总结古典概型的两个基本特征和概率计算公式,如何应用公式解题,以及需要注意的内容。
高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析
P(“出现不小于2点”)=“出现不小于2点”所包含的基本领件的个数÷基本领件的总数.
思索6:一般地,对于古典概型,事务A在一次试验中发生的概率如何计算?
P(A)=事务A所包含的基本领件的个数÷基本领件的总数
典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.假如考生驾驭了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
P(“含有不合格产品”)=18/30=0.6
点评:本题的关键是对依次不放回抽取总共列多少基本领件的考查。
变式训练:
一个盒子里装有标号为1,2,3,4,5的5张标签,依据下列条件求两张标签上的数字为相邻整数的概率:
(1)标签的选取是无放回的:
(2)标签的选取是有放回的:
归纳小结
1.基本领件是一次试验中全部可能出现的最小事务,且这些事务彼此互斥.试验中的事务A可以是基本领件,也可以是有几个基本领件组合而成的.
(2)掷一枚质地匀称的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中全部可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事务。我们把这类随机事务称为基本领件
综上分析,基本领件有哪两个特征?
例4假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的随意一个.假设一个人完全遗忘了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:一个密码相当于一个基本领件,总共有10000个基本领件,它们分别是0000,0001,0002,…
数学北师大版必修3教案:3.2.1古典概型的特征和概率计算公式 Word版含解析
§2古典概型2.1 古典概型的特征和概率计算公式整体设计教学分析本节课是高中数学(必修3)第三章“概率”的第二节“古典概型”的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.三维目标1.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性地理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.2.鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,掌握古典概型的概率计算公式;注意公式:P(A)=事件A包含的可能结果数的使用条件——古典概型,体现了化归的重要思想.掌握列举法,试验的所有可能结果数学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣,形成学习数学知识的积极态度.重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.课时安排1课时教学过程导入新课思路1.(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标有号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?为此我们学习古典概型,教师板书课题.思路2.将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好地解决方法吗?把“抽到红心”记为事件B,那么事件B 相当于“抽到红心1”“抽到红心2”……“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心是“抽到红心1”“抽到红心2”……“抽到红心K”这13种情形之一时,事件B就发生,于是P (B )=1352=14.为此我们学习古典概型. 推进新课新知探究提出问题 试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由课代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录出现“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由课代表汇总.1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?3.什么是基本事件?基本事件具有什么特点?4.什么是古典概型?它具有什么特点?5.对于古典概型,应怎样计算事件的概率?活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,最后师生共同汇总方法、结果和感受.讨论结果:1.用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.2.上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是随机事件,出现的概率是相等的,都是16. 3.根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.基本事件具有如下的两个特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.4.在一个试验中,如果:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.如图1,向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?图1因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如图2,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?图2不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.5.古典概型,随机事件的概率计算对于试验一,出现正面朝上的概率与反面朝上的概率相等,即P (“正面朝上”)=P (“反面朝上”),由概率的加法公式,得P (“正面朝上”)+P (“反面朝上”)=P (必然事件)=1.因此P (“正面朝上”)=P (“反面朝上”)=12, 即P (“出现正面朝上”)=12=“出现正面朝上”所包含的基本事件的个数基本事件的总数. 试验二中,出现各个点的概率相等,即P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”). 反复利用概率的加法公式,我们有P (“1点”)+P (“2点”)+P (“3点”)+P (“4点”)+P (“5点”)+P (“6点”)=P (必然事件)=1,所以P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”)=16. 进一步,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P (“出现偶数点”)=P (“2点”)+P (“4点”)+P (“6点”)=16+16+16=36=12, 即P (“出现偶数点”)=36=“出现偶数点”所包含的基本事件的个数基本事件的总数. 因此根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为P (A )=事件A 包含的可能结果数试验的所有可能结果数. 在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.下面我们看它们的应用.应用示例思路1例1 在一个健身房里,用拉力器进行锻炼时,需要选取2个质量盘装在拉力器上.有2个装质量盘的箱子,每个箱子中都装有4个不同的质量盘:2.5 kg,5 kg,10 kg 和20 kg ,每次都随机地从2个箱子中各取1个质量盘装在拉力器上后,再拉动这个拉力器.(1)随机地从2个箱子中各取1个质量盘,共有多少种可能的结果?用表格列出所有可能的结果.(2)计算选取的2个质量盘的总质量分别是下列质量的概率:①20 kg ;②30 kg ;③不超过10 kg ;④超过10 kg.(3)如果一个人不能拉动超过22 kg 的质量,那么他不能拉开拉力器的概率是多少? 解:(1)第一个箱子的质量盘和第二个箱子的质量盘都可以从4种不同的质量盘中任意选取.我们可以用一个“有序实数对”来表示随机选取的结果.例如,我们用(10,20)来表示: 在一次随机的选取中,从第一个箱子取的质量盘是10 kg ,从第二个箱子取的质量盘是20 kg.下表列出了所有可能结果.从表中可以看出,随机地从2个箱子中各取1个质量盘的所有可能结果共有16种.由于选取质量盘是随机的,因此这16种结果出现的可能性是相同的,这个试验属于古典概型. (2)①用A 表示事件“选取的2个质量盘的总质量是20 kg”,因为总质量为20 kg 的所有可能结果只有1种,因此,事件A 的概率P (A )=116=0.062 5. ②用B 表示事件“选取的2个质量盘的总质量是30 kg”,从表中可以看出,总质量为30 kg 的所有可能结果共有2种,因此,事件B 的概率P (B )=216=18=0.125. ③用C 表示事件“选取的2个质量盘的总质量不超过10 kg”.总质量不超过10 kg ,即总质量为5 kg,7.5 kg,10 kg 之一,从表中容易看出,所有可能结果共有4种,因此,事件C 的概率P (C )=416=14=0.25. ④用D 表示事件“选取的2个质量盘的总质量超过10 kg”.总质量超过10 kg ,即总质量为12.5 kg,15 kg,20 kg,22.5 kg,25 kg, 30 kg,40 kg 之一,从表中可以看出,所有可能结果共有12种,因此,事件D 的概率P (D )=1216=34=0.75. (3)用E 表示事件“不能拉开拉力器”,即总质量超过了22 kg.总质量超过22 kg 是指总质量为22.5 kg,25 kg,30 kg,40 kg 之一,从表中可以看出,这样的可能结果共有7种,因此,不能拉开拉力器的概率P (E )=716≈0.44. 点评:在这个例子中,我们用列表的方法列出了所有可能的结果.在计算古典概率时,只要所有可能结果的数量不是很多,列举法是我们常用的一种方法.例2 单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?活动:学生阅读题目,搜集信息,交流讨论,教师引导,解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型.如果学生掌握或者掌握了部分考查内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定学生不会做,随机地选择了一个答案的情况下,才可以化为古典概型.解:这是一个古典概型,因为试验的可能结果只有4个:选择A 、选择B 、选择C 、选择D ,即基本事件共有4个,考生随机地选择一个答案是A ,B ,C ,D 的可能性是相等的.从而由古典概型的概率计算公式,得P (“答对”)=“答对”所包含的基本事件的个数基本事件的总数=14=0.25.点评:古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数n 和事件A 所包含的结果数m ;(4)用公式P (A )=m n求出概率并下结论.变式训练1.抛掷两枚均匀硬币,求出现两个正面朝上的概率.解:试验的所有可能结果为:(正,正),(正,反),(反,正),(反,反).这里四个基本事件是等可能发生的,故属古典概型.故出现两个正面朝上的概率为14. 2.一次投掷两颗骰子,求出现的点数之和为奇数的概率.解法一:设A 表示“出现点数之和为奇数”,用(i ,j )记“第一颗骰子出现i 点,第二颗骰子出现j 点”,i ,j =1,2,…,6.显然出现的36个基本事件的概率是相等的,其中A包含的基本事件个数为k =3×3+3×3=18,故P (A )=12. 解法二:若把一次试验的所有可能结果取为:(奇,奇),(奇,偶),(偶,奇),(偶,偶),则它们发生的概率相等.基本事件总数n =4,A 包含的基本事件个数k =2,故P (A )=12. 解法三:若把一次试验的所有可能结果取为:{点数和为奇数},{点数和为偶数},两者发生的概率也相等,基本事件总数n =2,A 所包含基本事件数为1,故P (A )=12. 点评:找出所有的基本事件,必须是等概率的.解法二中倘若解为:(两个奇),(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P (A )=13,错的原因就是它不是等概率的.例如P (两个奇)=14,而P (一奇一偶)=12.本例又告诉我们,同一问题可取不同的基本事件解答.例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A )有4种,因此,由古典概型的概率计算公式可得P (A )=436=19. 例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?图3解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,所以P (“试一次密码就能取到钱”)=110 000. 发生概率为110 000的事件是小概率事件,通常我们认为这样的事件在一次试验中是几乎不可能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次输入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.思路2例1 一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,问:(1)共有多少个基本事件?(2)摸出的两个都是白球的概率是多少?活动:可用枚举法找出所有的等可能基本事件.解:(1)分别记白球为1,2,3号,黑球4,5号,从中摸出2只球,有如下基本事件〔摸到1,2号球用(1,2)表示〕:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个基本事件.(2)上述10个基本事件发生的可能性是相同的,且只有3个基本事件是摸到两个白球(记为事件A ),即(1,2),(1,3),(2,3),故P (A )=310. 即共有10个基本事件,摸到两个白球的概率为310. 变式训练将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数的和是3的倍数的概率是多少?分析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果.(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果.(3)记“向上点数和为3的倍数”为事件A ,则事件A 的结果有12种,因为抛两次得到的36种结果是等可能出现的,所以所求的概率为P (A )=1236=13. 解:(1)先后抛掷2次,共有36种不同的结果;(2)两数的和是3的倍数的结果有12种;(3)两数的和是3的倍数的概率为13. 点评:也可以利用图表来数基本事件的个数(如图4):图4例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2)和(a 1,b 2),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品,用A 表示“取出的两件中,恰好有一件次品”这一事件,则A 由(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)这4个基本事件组成,因而P (A )=46=23. 思考在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.有放回地连续取出两件,其一切可能的结果有:(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B 包含了(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)这4个基本事件.因而P (B )=49. 点评:(1)在连续两次取出过程中,(a 1,b 1)与(b 1,a 1)不是同一个基本事件,因为先后顺序不同.(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的. 变式训练现有一批产品共有10件,其中8件为正品,2件为次品.(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为有放回抽样;(2)为不放回抽样.解:(1)有放回地抽取3次,按抽取顺序(x ,y ,z )记录结果,则x ,y ,z 都有10种可能,所以试验结果有10×10×10=103种;设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P (A )=83103=0.512. (2)方法一:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x ,y ,z ),则x 有10种可能,y 有9种可能,z 有8种可能,所以试验的所有结果为10×9×8=720种.设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6=336,所以P (B )=336720≈0.467. 方法二:可以看作不放回3次无顺序抽样,先按抽取顺序(x ,y ,z )记录结果,则x 有10种可能,y 有9种可能,z 有8种可能,但(x ,y ,z ),(x ,z ,y ),(y ,x ,z ),(y ,z ,x ),(z ,x ,y ),(z ,y ,x )是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B 包含的基本事件个数为8×7×6÷6=56,因此P (B )=56120≈0.467. 点评:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.知能训练本节练习1,2,3.拓展提升一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.解:在1 000个小正方体中,一面涂有色彩的有82×6个,两面涂有色彩的有8×12个,三面涂有色彩的有8个,故(1)有一面涂有色彩的概率为P 1=3841 000=0.384;(2)有两面涂有色彩的概率为P 2=961 000=0.096;(3)有三面涂有色彩的概率为P 3=81 000=0.008. 答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.课堂小结1.古典概型我们将具有(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.2.古典概型计算任何事件的概率计算公式P (A )=事件A 包含的可能结果数试验的所有可能结果数. 3.求某个随机事件A 包含的基本事件的个数和试验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.作业本节练习4.设计感想本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式.这一过程能够培养学生发现问题、分析问题和解决问题的能力.在解决概率的计算上,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑.由此,整个教学设计可以在教师的期盼中实施.备课资料一、备选习题1.在40根纤维中,有12根的长度超过30 mm ,从中任取一根,取到长度超过30 mm 的纤维的概率是( ).A.3040B.1240C.1230D .以上都不对 解析:在40根纤维中,有12根的长度超过30 mm ,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为1240. 答案:B2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( ).A.15B.14C.45D.110解析:从盒中任取一个铁钉包含基本事件总数为10,其中抽到合格铁钉(记为事件A )包含8个基本事件,所以,所求概率为P (A )=810=45. 答案:C3.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是________.解析:记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2),(红1,白3),(红2,白1),(红2,白2),(红2,白3),(白1,白2),(白1,白3),(白2,白3)共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为710. 答案:7104.抛掷2颗质地均匀的骰子,求点数和为8的概率.解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,由于1,2号骰子分别有6种不同的结果,因此同时掷两颗骰子的结果共有6×6=36种,在所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为536. 5.豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d ,则杂交所得第一子代的一对基因为Dd ,若第二子代的D ,d 基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因D 则其就是高茎,只有两个基因全是d 时,才显现矮茎).解:由于第二子代的D ,d 基因的遗传是等可能的,可以将各种可能的遗传情形都枚举出来.Dd 与Dd 的搭配方式共有4种:DD ,Dd ,dD ,dd ,其中只有第四种表现为矮茎,故第二子代为高茎的概率为34=0.75. 答:第二子代为高茎的概率为0.75.思考:第三子代高茎的概率呢?二、古典概型经典案例分析如果说你们班里有50人,那么我愿意和你打赌,你们班里至少有一对生日相同的人,你愿意站在我的反面和我打赌吗?如果说你能够清楚地找到基本事件,分析好复杂事件包含了多少个基本事件,就能够通过有理数的除法计算出概率,当然,分析清楚基本事件不可缺少的就是一种顺序的观点,可能有时候,用顺序的观点看问题会产生一些不必要的麻烦,但是往往在你忽略了顺序的时候,产生了一种错觉,于是就使你的先进的思想在这里因为你的大意退化到了中世纪以前的水平.那么充分小心的你,可能也会犯错误,甚至会感到头疼,因为记数也是一门技术,不一定都很简单.好了言归正传,我们仍然讨论这个关于生日的赌局.我看起来是有着十分的把握(或者说接近十分的把握,因为十分就成了必然事件,显然,你看得出这个不是一个必然的事件,严格地说我有接近十分的把握),如果你曾经了解过一些关于这个问题的结论,你也可能不。
高中数学 第3章 概率 2 第1课时 古典概型的特征和概率计算公式教学案 北师大版必修3-北师大版高
第1课时 古典概型的特征和概率计算公式[核心必知]1.古典概型具有以下两个特征的随机试验的数学模型称为古典概型(古典的概率模型).(1)有限性:即试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)等可能性:即每一个试验结果出现的可能性相同.2.古典概型概率公式对于古典概型,通常试验中的某一事件A 是由几个基本事件组成的.如果试验的所有可能结果(基本事件)数为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n. [问题思考]1.掷一枚骰子共有多少种不同的结果?提示:6种.2.以下试验中,是古典概型的有( )A .放飞一只信鸽观察其能否飞回B .从规格直径为(250±0.6)mm 的一批合格产品中任意取一件,测量其直径C .抛掷一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶提示:只有选项C 具有:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.讲一讲1.以下试验中是古典概型的是( )A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C.向正方形ABCD内随机抛掷一点,该点落在正方形内任意一点都是等可能的D.在区间[0,6]上任取一点,求此点小于2的概率[尝试解答][答案] B判断一个试验是否为古典概型,关键是看该试验是否具有有限性和等可能性两个特征.练一练1.以下概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人作演讲;④一只使用中的灯泡寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优〞或“差〞.其中属于古典概型的有________.解析:①不属于,原因:所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因:命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因:显然满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因:灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因:该品牌月饼评为“优〞与评为“差〞的概率不一定相同,不满足等可能性.答案:③讲一讲2.先后抛掷两枚大小相同的骰子,求点数之和能被3整除的概率.[尝试解答] 先后抛掷两枚大小相同的骰子,结果如下:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36种不同的结果.记“点数之和能被3整除〞为事件A ,那么事件A 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (A )=1236=13.求解古典概型问题的一般步骤:(1)计算所有可能的基本事件数n ;(2)计算事件A 包含的基本事件数m ;(3)计算事件A 的概率P (A )=事件A 包含的基本事件数试验的所有可能的基本事件数=m n. 运用公式的关键在于求出m 、n .在求n 时,必须确定所有可能的基本事件是等可能发生的. 练一练2.袋中装有除颜色外其他均相同的6个球,其中4个白球、2个红球,从袋中任取两球,求以下事件的概率:(1)A :取出的两球都是白球;(2)B :取出的两球一个是白球,另一个是红球.解:设4个白球的编号为1,2,3,4,2个红球的编号为5、6.从袋中的6个球中任取两球的取法有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种取法,且每种取法都是等可能发生的.(1)从袋中的6个球中任取两球,所取的两球全是白球的取法总数,即为从4个白球中任取两球的方法总数,共有6种,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所以P (A )=615=25; (2)从袋中的6个球中任取两球,其中一个是白球,另一个是红球的取法有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.所以P (B )=815. [解题高手][易错题]有1号、2号、3号3个信箱和A 、B 、C 、D 4封信,假设4封信可以任意投入信箱,投完为止,其中A 恰好投入1号或2号信箱的概率是多少?[错解] 每封信投入1号信箱的机会均等,而且所有结果数为4,故A 投入1号或2号信箱的概率为24=12. [错因] 应该考虑A 投入各个信箱的概率,而不能考虑成四封信投入某一信箱的概率.[正解] 由于每封信可以任意投入信箱,对于A 投入各个信箱的可能性是相等的,一共有3种不同的结果,投入1号信箱或2号信箱有2种结果,所以所求概率为23.1.抛掷一枚均匀的正方体骰子,向上的点数是5或6的概率是( )A.16B.13C.12D .1 解析:选B 掷一枚骰子出现向上的点数为1,2,3,4,5,6,共6种情况.P =m n =26=13. 2.有100X 卡片(从1号到100号),从中任取一X 卡片,那么取得的卡片是7的倍数的概率是( )A.320B.750C.13100D.325解析:选B ∵n =100,m =14,∴P =m n =14100=750. 3.一枚硬币连掷2次,恰好出现一次正面的概率是( )A.12B.14C.34D .0 解析:选 A 列举出所有基本事件,找出“只有一次正面〞包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有一次出现正面的包括(正,反),(反,正)2个,故其概率为24=12. 4.以下试验是古典概型的为________.①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小②同时掷两颗骰子,点数和为7的概率③近三天中有一天降雨的概率④10人站成一排,其中甲、乙相邻的概率解析:①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.答案:①②④5.(某某高考)假设甲、乙、丙三人随机地站成一排,那么甲、乙两人相邻而站的概率为________.解析:三人站成一排有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6种排法,其中甲、乙相邻有4种排法,所以甲、乙两人相邻而站的概率为46=23. 答案:236.设有关于x 的一元二次方程x 2+2ax +b 2=0,假设a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根〞.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根意味着Δ=(2a )2-4b 2≥0,即a ≥b .基本事件有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共12个,其中第1个数表示a 的取值,第2个数表示b 的取值.而事件A 包含9个基本事件,故事件A 发生的概率为P (A )=912=34.一、选择题1.下面是古典概型的是( )A .任意抛掷两粒骰子,所得的点数之和作为基本事件B .为求任取一个正整数,该正整数平方值的个位数字是1的概率,将取出的正整数作为基本事件C .从甲地到乙地共有n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币至首次出现正面为止解析:选C 对于A ,所得点数之和为基本事件,个数虽有限但不是等可能发生的;对于B ,D ,基本事件的个数都是无限的;只有C 是古典概型.2.以下对古典概型的说法中正确的选项是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件总数为n ,随机事件A 假设包含k 个基本事件,那么P (A )=k n.A .②④B .①③④C .①④D .③④解析:选B ②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.3.在5X 卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,那么得到的五位数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.8解析:选C 一个五位数能否被5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件有1,2,3,4,5,“能被2或5整除〞这一事件中含有基本事件2,4,5,概率为35=0.6. 4.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,那么这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选 A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 5.4X 卡片上分别写有数字1,2,3,4,从这4X 卡片中随机抽取2X ,那么取出的2X 卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34解析:选C 从4X 卡片中随机抽取2X ,对应的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故基本事件总数n =6.且每个基本事件发生的可能性相等.设事件A =“取出的2X 卡片上的数字之和为奇数〞,那么A 中所含的基本事件为:(1,2),(1,4),(2,3),(3,4),故m =4,综上可知所求事件的概率P (A )=m n =23. 二、填空题6.三X 卡片上分别写上字母E ,E ,B ,将三X 卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.解析:三X 卡片的排列方法有EEB ,EBE ,BEE ,共3种.且等可能出现,那么恰好排成英文单词BEE 的概率为13. 答案:137.(某某高考)从1,2,3,4这四个数中一次随机地取两个数,那么其中一个数是另一个数的两倍的概率是________.解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍〞的基本事件有{1,2},{2,4},共2个,所以所求的概率为13. 答案:138.将一枚质地均匀的硬币先后抛掷三次,恰好出现一次正面向上的概率是________.解析:所有的基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共8组.设“恰好出现1次正面向上〞为事件A ,那么A 包含(正,反,反),(反,正,反),(反,反,正),共3个基本事件,所以P (A )=38.答案:38三、解答题9.设b 和c 分别是先后抛掷一枚骰子得到的点数,求方程x 2+bx +c =0有实根的概率. 解:设事件A 为“方程x 2+bx +c =0有实根〞,那么 A ={(b ,c )|b 2-4c ≥0,b ,c =1,2,…,6}.而(b ,c )共有(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),共36组.其中,可使事件A 成立的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共19组.故事件A 的概率为P (A )=1936. 10.(某某高考)袋中有五X 卡片,其中红色卡片三X ,标号分别为1,2,3;蓝色卡片两X ,标号分别为1,2.(1)从以上五X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一X 标号为0的绿色卡片,从这六X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三X 红色卡片分别记为A ,B ,C ,标号为1,2的两X 蓝色卡片分别记为D ,E ,从五X 卡片中任取两X 的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一X 卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五X 卡片中任取两X ,这两X 卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两X 卡片颜色不同且它们的标号之和小于4的概率为310. (2)记F 为标号为0的绿色卡片,从六X 卡片中任取两X 的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一X卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六X卡片中任取两X,这两X卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两X卡片颜色不同且它们的标号之和小于4的概率为815.。
高中数学第三章概率3.2.1古典概型的特征和概率计算公式2.2建立概率模型学案含解析北师大版必修3
2 古典概型2.1古典概型的特征和概率计算公式2.2建立概率模型考纲定位重难突破1.通过实例理解古典概型的两个特征及古典概型的定义.2.掌握古典概型的概率计算公式.3.理解概率模型的特点及应用.重点:古典概型的概念及其概率公式的应用条件.难点:古典概型的概率的计算.授课提示:对应学生用书第43页[自主梳理]1.古典概型2.古典概型的概率计算公式对于古典概型,通常试验中的某一事件A是由几个基本事件组成的.如果试验的所有可能结果为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=事件A包含的所有可能结果数试验的所有可能结果数=mn.3.建立古典概率模型的要求(1)在建立概率模型时,如果每次试验有且只有一个基本事件出现.(2)基本事件的个数是有限的.(3)并且它们的发生是等可能的.满足上述三个条件的概率模型就是一个古典概型.4.古典概率模型的解决方案从不同的角度去考虑一个实际问题,可以将问题转化为不同的古典概型来解决,而所得到的古典概型的所有可能结果越少,问题的解决就变得越简单.[双基自测]1.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,下列事件不是基本事件的是()A.{正好2个红球}B.{正好2个黑球}C.{正好2个白球} D.{至少1个红球}解析:至少1个红球包含:一红一白或一红一黑或2个红球.答案:D2.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件“点落在x轴上”包含的基本事件的个数共有()A.7个B.8个C.9个D.10个解析:符合要求的基本事件是(-9,0),(-7,0),(-5,0),(-3,0),(-1,0),(2,0),(4,0),(6,0),(8,0).答案:C3.下列概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人做演讲;④一只使用中的灯泡的寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.其中属于古典概型的是________.解析:①不属于,原因是所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因是满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.答案:③授课提示:对应学生用书第44页探究一基本事件的计数问题[典例1]做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y 表示第2颗骰子出现的点数.写出:(1)试验的基本事件;(2)事件“出现点数之和大于8”包含的基本事件.[解析](1)这个试验的基本事件共有36个,如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).(2)事件“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).基本事件的两个探求方法:(1)列表法:将基本事件用表格的方式表示出来,通过表格可以清楚地看出基本事件的总数,以及要求的事件所包含的基本事件数,列表法适合于较简单的试验的题目,基本事件较多的试验不适合用列表法.(2)树状图法:树状图法是用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.树状图法适合于较复杂的试验的题目.1.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面:(1)写出这个试验的所有基本事件;(2)求这个试验的基本事件的总数;(3)记A=“恰有两枚正面向上”这一事件,则事件A包含哪几个基本事件?解析:(1)作树状图如图.故所有基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反). (2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).探究二 古典概型概率问题的求法[典例2] 袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)事件A :取出的两球都是白球;(2)事件B :取出的两球一个是白球,另一个是红球.[解析] 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.(1)从袋中的6个球中任取两个,所取的两球全是白球的取法总数,即是从4个白球中任取两个的取法总数,共有6种,为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所以取出的两球都是白球的概率为P (A )=615=25.(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.所以取出的两个球一个是白球,一个是红球的概率为P (B )=815.求古典概型概率的计算步骤: (1)求出基本事件的总个数n .(2)求出事件A 包含的基本事件的个数m . (3)求出事件A 的概率P (A )=事件A 所包含的基本事件数试验的基本事件总数=m n .2.盒中有3只灯泡,其中2只是正品,1只是次品.(1)从中取出1只,然后放回,再取出1只,求连续2只取出的都是正品的概率; (2)从中一次任取2只,求2只都是正品的概率.解析:(1)将灯泡中2只正品记为a 1,a 2,1只次品记为b 1,画出树状图如图.基本事件总数为9,连续2次取得正品的基本事件数是4,9(2)“从中一次任取2只”得到的基本事件总数是3,即a 1a 2,a 1b 1,a 2b 1(a 1a 2表示一次取出正品a 1,a 2),“2只都是正品”的基本事件数是1,所以其概率是P =13.探究三 与古典概型有关的综合问题[典例3] 设关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率. [解析] 设事件A 为“方程x 2+2ax +b 2=0有实根”. 当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的条件为a ≥b .基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 包含9个基本事件,为(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),故事件A 发生的概率为P (A )=912=34.(1)注意放回与不放回的区别.(2)在古典概型下,当基本事件总数为n 时,每个基本事件发生的概率均为1n ,要求事件A 的概率,关键是求出基本事件总数n 和事件A 所包含的基本事件数m ,再由古典概型概率公式P (A )=mn 求事件A 的概率.3.编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 得分 15 35 21 28 25 36 18 34 运动员编号 A 9 A 10 A 11 A 12 A 13 A 14 A 15 A 16 得分1726253322123138(1)将得分在对应区间内的人数填入相应的空格:区间 10~20 20~30 30~40 人数(2)从得分在20~30①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率.解析:(1)由得分记录表,从左到右应填4,6,6.(2)①得分在20~30内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13.从中随机抽取2人,所有可能的抽取结果有:(A 3,A 4),(A 3,A 5),(A 3,A 10),(A 3,A 11),(A 3,A 13),(A 4,A 5),(A 4,A 10),(A 4,A 11),(A 4,A 13),(A 5,A 10),(A 5,A 11),(A 5,A 13),(A 10,A 11),(A 10,A 13),(A 11,A 13),共15种.②从得分在20~30内的运动员中随机抽取2人,将“这2人得分之和大于50”记为事件B ,则事件B 的所有可能结果有:(A 4,A 5),(A 4,A 10),(A 4,A 11),(A 5,A 10),(A 10,A 11),共5种,153树形图的应用[典例]某盒子中有红、黄、蓝、黑色彩笔各1支,这4支笔除颜色外完全相同,4个人按顺序依次从盒中抽出1支,求基本事件总数.[解析]把这4支笔分别编号为1,2,3,4,则4个人按顺序依次从盒中抽取1支彩笔的所有可能结果用树状图直观地表示如图所示.由树状图知共有24个基本事件.[感悟提高]利用树形图(表格)寻找基本事件的个数形象直观且不易出错.[随堂训练]对应学生用书第45页1.下列有关古典概型的四种说法:①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④已知基本事件总数为n,若随机事件A包含k个基本事件,则事件A发生的概率P(A)=kn. 其中所有正确说法的序号是()A.①②④B.①③C.③④D.①③④解析:②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.故选D. 答案:D2.从甲、乙、丙三人中任选两名代表,甲被选中的概率是( ) A.12 B.13 C.23D .1 解析:列举基本事件,从甲、乙、丙三人中任选两名代表可能的结果是(甲,乙),(甲,丙),(乙,丙)共3种;甲被选中的可能结果是(甲,乙),(甲,丙),共2种,所以P (“甲被选中”)=23.答案:C3.从集合A ={2,3,-4}中随机选取一个数记为k ,从集合B ={-2,-3,4}中随机选取一个数记为b ,则直线y =kx +b 不经过第二象限的概率为________.解析:依题意k 和b 的所有可能的取法有(2,-2),(2,-3),(2,4),(3,-2),(3,-3),(3,4),(-4,-2),(-4,-3),(-4,4),共9种,当直线y =kx +b 不经过第二象限时,应有k >0,b <0,满足条件的取法有(2,-2),(2,-3),(3,-2),(3,-3),共4种,所以所求概率为49.答案:494.一个口袋内装有大小相等的1个白球和已有不同编号的3个黑球,从中任意摸出2个球. (1)共有多少个不同的基本事件,这样的基本事件是否为等可能的?该试验是古典概型吗? (2)摸出的两个球都是黑球记为事件A ,问事件A 包含几个基本事件? (3)计算事件A 的概率.解析:(1)任意摸出两球,共有{白球和黑球1},{白球和黑球2},{白球和黑球3},{黑球1和黑球2},{黑球1和黑球3},{黑球2和黑球3},6个基本事件.因为4个球的大小相同,所以摸出每个球是等可能的,故6个基本事件都是等可能事件.由古典概型定义知,这个试验是古典概型.(2)摸出2个黑球包含3个基本事件.故事件A 包含3个基本事件. (3)因为试验中基本事件总数n =6,而事件A 包含的基本事件数m =3.所以P (A )=m n =36=12.。
北师大版高中数学必修三古典概型的特征和概率计算公式课件
思思考考44::从从基基本本事事件件角角度度2来来.任看看,,上上何述述事两两个个件试试验验(有有何何除共 共不同同特特可征征??能事件)都可以表示成基本事件的和.
谢 谢!
色的成绩为我国赢得了射箭项目的第一枚 每个基本事件等可能出现.
某校三名艺术生报考三所院校,求其中甲、乙两名学生填报不同院校的概率____. 思考5:下列两个模型是古典概型吗?
奥运金牌。你认为打靶这一试验能用古典 思考6:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?
(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为 任何两个基本事件是互斥的;
思考5:下列两个模型是古典概型吗?
不会
思考5:下列两个模型是古典概型吗?
任何两个基本事件是互斥的 思考6:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?
任何两个基本事件是互斥的;
思考4:从基本事件角度来看,上述两个试验有何共同特征?
思考6:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?
古每典个概 基型本的事概件率等计可算能公出1式现.:.基本事件数量有限;
每个基本事件等可能出现.
任这何一两 试个验基能本用事古件典是概互型2斥来.的描每;述个吗?基为什本么?事件等可能出现.
从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为____.
➢古典概型的概率公式: 试验1:掷一枚质地均匀的硬币,观察可能出
北师大版高中数学必修3《三章 概率 2 古典概型 2.1古典概型的特征和概率计算公式》优质课教案_17
(2)每个试验结果出现的可能性相同。
概念辨析:(1)向一个圆面内随机地投射一个点,如果该点落圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
(2)08年北京奥运会上我国选手张娟娟以出色的成绩为我国赢得了射箭的第一枚金牌。你认为打靶这一试验能用古典概型来描述吗?为什么?
2.每个随机事件都可以由几个基本事件组成.
得到古典概型概率计算公式:
提问:根据概率计算公式,计算随机事件概率时的关键是什么?
(1)要判断该模型是不是古典概型.
(2)计算试验的所有可能结果数n和事件A包含的可能结果数m.
设计意图:引出如何列出试验的所有可能结果,初中学习过的列举法、列表法、树状图发。
4、 例题讲解,合作学习,知识巩固
设计意图:强调古典概型的两个特征:基本事件等可能性和有限性。
3、古典概型公式的形成
提问:掷一粒均匀的骰子,骰子落地时向上的点数为偶数的概率是多少?骰子落地时向上的点数不超过4的概率是多少?骰子落地时向上的点数为质数的概率又是多少?
设计意图:引出基本事件的特点:
1.每次试验只出现一个基本事件,每个基本事件发生的概率均为
设计意图:四问环环相扣,引出古典概型这个特殊的数学模型,它既可以避免
大量的重复试验,又能得到概率的准确值。
2、课堂探究,概念初步
探究:试验1:投硬币试验
试验2:掷骰子试验
试验3:转转盘试验
提问:这些试验有什么共同特点?(从试验结果的个数,每种结果发生的概
率方面引导学生回答)
设计意图:引出古典概型的概念,及其两个特征:
设计意图:切身实际出发,引起学生注意,强调列举时按一定顺序来,做到列举不重不漏.
北师大版高中数学必修三3.2.1古典概型的特征和概率计算公式(24ppt)
1、向一个圆面内随机地投一个点,如果该点落在圆内任 意一点都是等可能的,你认为这是古典概型吗?为什么?
〖解〗因为实验的所有可能结果是 圆面内所有的点,实验的所有可能 结果数是无限的,虽然每一个实验 结果出现的“可能性相同”,但这 个实验不满足古典概型的第一个条 件.
....
........ ........ .....
解:(1)第一个箱子的质量盘和第二个箱子的质量盘都可以 从4种不同的质量盘中任意选取.我们可以用一个“有序实数 对”来表示随机选取的结果.例如,我们用(10,20)来表 示:在一次随机的选取中,从第一个箱子取的质量盘是10 kg, 从第二个箱子取的质量盘是20 kg,表1列出了所有可 能的结果. 表1
.
....... ......
2、如图,射击运动员向一靶心进行射击,这一实验的结 果只有有限个:命中10环、命中9环……命中1环和命中0 环.你认为这是古典概型吗?为什么?
〖解〗不是古典概型,因为实验的所 有可能结果只有11个,而命中10环、 命中9环……命中1环和不中环的出现 不是等可能的,即不满足古典概型的 第二个条件.
16 4 (ⅳ)用D表示事件“选取的两个质量盘的总质量超过 10 kg”,总质量超过10 kg,即总质量为12.5 kg,20 kg, 15 kg,22.5 kg,25 kg,30 kg,40 kg,从表2中可以看出, 所有可能结果共有12种,因此,事件D的概率 P(D)= 12 = 3 =0.75.
果.在计算古典概率时,只要所有可能结果的数量不是 很多,列举法是我们常用的一种方法.
单选题是标准化考试中常用的题型,一般是从A,B,C, D四个选项中选择一个正确答案.如果考生掌握了考察的内 容,他可以选择唯一正确的答案.假设考生不会做,他随机 的选择一个答案,问他答对的概率是多少?
高一数学北师大版必修3 古典概型的特征和概率计算公式 课件
变式训练 1 从高三抽出 50 名学生参加数学竞赛,由成绩得到 如图所示的频率分布直方图:
试利用频率分布直方Байду номын сангаас求: (1)这 50 名学生成绩的众数与中位数; (2)这 50 名学生的平均成绩.
解析: (1)由众数的概念可知,众数是出现次数最多的数.在直 方图中高度最高的小长方形框的中间值的横坐标即为所求,所以众数 应为 75. 由于中位数是所有数据中的中间值,故在频率分布直方图中体现 的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形 的面积和相等.因此在频率分布直方图中将频率分布直方图中所有小 矩形的面积一分为二的直线所对应的成绩即为所求. ∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3, ∴前三个小矩形面积的和为 0.3, 而第四个小矩形面积为 0.03×10 =0.3,0.3+0.3>0.5, ∴中位数应位于第四个小矩形内,设其底边为 x,高为 0.03, ∴令 0.03x=0.2 得 x≈6.7, ∴中位数应为 70+6.7=76.7≈77.
(3)求平均数时,可用各组中值乘以频率来计算,故平均数为 1 250×0.000 2×500 + 1 750×0.000 4×500 + 2 250×0.000 5×500+2 750×0.000 5×500+3 250×0.000 3×500+3 750×0.000 1×500=(0.25+0.7+1.125+1.375+0.975+0.375)×500=2 400(元).
解析:设第一组 20 名学生的成绩为 xi(i=1,2,„,20), 第二组 20 名学生的成绩为 yi(i=1,2,„,20). 1 1 依题意有: (x1+x2+„+x20)=90, (y1+y2+„+y20)=80, 20 20 故全班平均成绩为: 1 1 (x1+x2+„+x20+y1+y2+„+y20)= (90×20+80×20)=85. 40 40 又设第一组学生成绩的标准差为 s1,平均数为 x ;第二组学生成 绩的标准差为 s2,平均数为 y , 1 2 则 s1= [(x1- x )2+(x2- x )2+„+(x20- x )2]= 20 1 2 2 2 [x1+x2 + „ + x + 20 x -2 x (x1+x2+„+x20)] 2 20 20 1 2 2 2 = (x1+x2 2+„+x20-20 x ), 20
北师大版高中数学必修3《三章 概率 2 古典概型 2.1古典概型的特征和概率计算公式》优质课教案_14
3.2.1古典概型的特征和概率计算公式一、教材分析《3.2.1古典概型的特征和概率计算公式》是普通高中数学北师大版《必修3》第三章第二节第一课时的内容,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.二、教学目标1.知识与技能:理解古典概型的两个特征及古典概型的定义;掌握古典概型的概率计算公式。
2.过程与方法:鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式。
3.情感态度与价值观:树立从具体到抽象、从特殊到一般的辩证唯物主义观点;体现了化归的重要思想。
学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣,形成学习数学知识的积极态度。
三、教学重难点重点:理解古典概型的概念及利用古典概型求解随机事件的概率.难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.四、教学方法讨论教学法五、教学过程设计教学环节教师活动学生活动设计意图(一)创设情境引入新知(4分钟)1.概率论起源于赌博,意大利有位数学家卡当曾致力于研究赌博不会输的办法,他曾参加过这样一次赌博:掷一红一蓝两粒均匀的骰子,以两粒骰子朝上的点数之和作为打赌的内容,你认为卡当把赌注下在几点最有利?请说明理由。
2.要想说明下在“4点”或者“6点”最有利,就要说明“点数之和为4”的什么是最大的?3.那么现在的问题是,“点数之和为4”的概率要怎么计算?4.相信经过这节课的学习,同学们心中会有一个明朗的答案。
引出课题:古典概型的特征概率计算公式(板书)1.学生思考2.学生猜测预答:4点,5点,6点,7点3.学生回答:概率以数学史和数学故事作为引入,让学生体会数学来源于生活,同时激发学生的学习兴趣。
北师版数学高一-教学设计古典概型的特征和概率计算公式
2.1古典概型的特征和概率计算公式三维目标1.知识与技能(1)理解古典概型及其概率计算公式.(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.2.过程与方法根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性.观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题.3.情感、态度与价值观树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神.鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度.重点难点重点:理解古典概型的概念及利用古典概型求解随机事件的概率.难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.教学建议根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来.最后在例题中加入模型的展示,帮助学生突破教学难点.教学流程创设情境,引入新课:以掷硬币试验为例考查事件的基本特点⇒教师引导学生分析探究事件的构成及特点,引出古典概型的概念并分析特点⇒通过例1及变式训练,使学生能掌握事件的构成,突出重点⇒通过例2及变式训练,使学生掌握简单古典概型的判断方法⇒引导学生完成例3及变式训练,使学生掌握古典概型的概率求法⇒归纳总结,知识升华,使学生系统的掌握本节知识并分层布置作业⇒完成当堂双基达标,巩固本节知识并进行反馈1.掷两枚质地均匀的硬币,有哪几种可能结果?【提示】 (正,正),(正,反),(反,正),(反,反).2.掷一枚质地均匀的骰子,有哪些基本事件?每个基本事件出现的可能性相等吗?【提示】 这个试验的基本事件有六个,正面出现的点数为1,2,3,4,5,6,由于质地均匀,因此基本事件出现的可能性相等.1.试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;2.每一个试验结果出现的可能性相同.我们把具有这样两个特征的随机试验的数学模型称为古典概型.试验的每一个可能结果称为基本事件.有可能结果(基本事件)数为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n.例1(1)写出该试验的基本事件及基本事件总数;(2)写出“取出的两球上的数字之和是6”这一事件包含的基本事件.【思路探究】 解答本题可先用列举法一一列举出来,再指出符合要求的基本事件. 解 (1)这个试验包含的基本事件为(1,1),(1,2),(1,3),(1,5),(2,1),(2,2),(2,3),(2,5),(3,1),(3,2),(3,3),(3,5),(5,1),(5,2),(5,3),(5,5)共有16个基本事件.(2)“取出的两球上的数字之和是6”包含的基本事件有(1,5),(3,3),(5,1)三个.规律方法1.本题中的基本事件是“有放回地取两次球”,每个事件也称一个试验结果,表达每种结果时,可依据有无顺序选用符号“{ }”或“( )”.本题中由于是有放回摸出2只球,有先后顺序,故宜用“( )”表示每个基本事件,如(a ,b )和(b ,a )是两个结果.2.用列举法列举所有基本事件时,要按一定的规律依次列举,避免重复和遗漏.另外树状图是进行列举的一种常用方法,适合较复杂问题中基本事件数的探求.变式训练随意安排甲、乙、丙3人在3天节日中值班,每人值班1天.(1)这3人的值班顺序共有多少种不同的安排方法?(2)其中甲在乙之前的安排方法有多少种?解 (1)作树状图如下:甲乙—丙丙—乙 乙甲—丙丙—甲 丙甲—乙乙—甲故不同的安排方法共有6种.(2)由树状图得,甲在乙之前的排法有3种.例2 (1)此点的坐标小于1的概率;(2)从1,2,3,4四个数中任意取出两个数,你认为该试验是古典概型吗?为什么?若是,则求所取两数之一是2的概率.【思路探究】 要判断试验是否为古典概型,只需看该试验中所有可能的结果是否为有限个;每个结果出现的可能性是否相同.解 (1)在数轴的0~3之间任取一点,此点可以在0~3之间的任一位置,且在每个位置的可能性是相同的,具备等可能性.但试验结果有无限多个,不满足古典概型的特征“有限性”,因此不属于古典概型.(2)因为此试验的所有基本事件共6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),且每个事件的出现是等可能的,因此属于古典概型,两数之一是2的概率为p =36=12. 规律方法1.列出随机试验的所有基本事件,进而求解相应事件概率.2.判断是否为古典概型关键是看试验是否同时具备古典概型的两个特征.变式训练下列概率模型中,是古典概型的个数为( )(1)从区间内任取一个数,求取到1的概率;(2)从中任意取一个整数,求取到1的概率;(3)在一个正方形ABCD 内画一点P ,求P 刚好与点A 重合的概率;(4)向上抛掷一枚不均匀的硬币,求出现反面朝上的概率.A .1B .2C .3D .4【解析】 第1个概率模型不是古典概型,因为从区间内任意取出一个数,有无数个对象可取,所以不满足“有限性”.第2个概率模型是古典概型,因为试验结果只有10个,而且每个数被抽到的可能性相等,即满足有限性和等可能性;第3个概率模型不是古典概型,而是以后将学的几何概型;第4个概率模型也不是古典概型,因为硬币不均匀,因此两面出现的可能性不相等.【答案】 A例3 (1) 恰有两枚出现正面的概率;(2)至少有两枚出现正面的概率.【思路探究】 先由古典概型的定义判断概型,然后由概率公式求解.解 依题意所有基本事件有(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反).(1)用A 表示“恰有两枚出现正面”这一事件,则事件A 包含(正,正,反),(正,反,正),(反,正,正)三个基本事件,而基本事件总数共8个,故所求概率P (A )=38. (2)用B 表示“至少有两枚出现正面”这一事件,则事件B 包含(正,正,正),(正,正,反),(正,反,正),(反,正,正)四个基本事件,而基本事件总数共8个,故所求概率P (B )=48=12. 规律方法1.在列出所有可能出现的结果时应注意按一个确定的顺序.保证不重不漏.2.古典概型概率计算的步骤是:首先判断试验是不是古典概型,若是,则用列举法列出所有基本条件:(1)计算所有的基本事件数n ; (2)计算事件A 包含的基本事件数m ;(3)计算P (A ),P (A )=m n. 变式训练将一枚骰子先后抛掷两次,观察向上的点数,(1)求点数之和是5的概率;(2)设a ,b 分别是将一枚骰子先后抛掷两次向上的点数,求式子2a -b =1成立的概率. 解 将一枚骰子先后抛掷两次,向上的点数分别记为(a ,b ),则全部基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)(1)点数之和是5的基本事件有(1,4),(2,3),(3,2),(4,1).所以点数之和是5的概率是436=19. (2)由2a -b =1可知a =b ,点数相等的基本事件有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以式子2a -b =1成立的概率是636=16. 易错易误辨析古典概型概念不清致误典例 把三枚硬币一起掷出,求出现两枚正面向上、一枚反面向上的概率.【错解】 三枚硬币掷出,所有可能的结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P =18. 【错因分析】 在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:(正,正,反),(正,反,正)(反,正,正),上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式P =m n显然就是错误的. 【防范措施】 古典概型的计算务必紧扣它的两个特征有限、等可能.【正解】 所求概率P =38. 课堂小结解决古典概型应注意的问题1.判断试验是否具有有限性和等可能性.2.要分清基本事件总数n 及事件A 包含的基本事件数m ,利用公式P (A )=m n求解. 3.常用列举法、列表法、树状图法求基本事件总数.当堂检测1.下列事件属于古典概型是( )A .任意抛掷两颗均匀的正方体骰子,所得点数之和作为基本事件B .篮球运动员投篮,观察他是否投中C .测量一杯水中水分子的个数D .在4个完全相同的小球中任取1个【解析】 判断一个事件是否为古典概型,主要看它是否具有古典概型的两个特征:有限性和等可能性.【答案】 D2.广州亚运会要在某高校的8名懂外文的志愿者中选1名,其中有3人懂日文,则选到懂日文的志愿者的概率为( )A.38B.13C.18D.15【解析】 8名懂外文的志愿者中随机选1名有8个基本事件,“选到懂日文的志愿者”包含3个基本事件,因此所求概率为38. 【答案】 A3.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________.【解析】 甲、乙、丙三人随机地站成一排有(甲乙丙)、(甲丙乙)、(乙甲丙)、(乙丙甲)、(丙甲乙)、(丙乙甲)共6种排法,甲、乙相邻而站有(甲乙丙)、(乙甲丙)、(丙甲乙)、(丙乙甲)共4种排法,由概率计算公式得甲、乙两人相邻而站的概率为46=23. 【答案】 234.一个口袋中装有2个白球和2个黑球,这些球除颜色外完全相同,从中摸出2个球.(1)写出该试验的基本事件及基本事件总数;(2)求至少摸到1个黑球的概率.解 (1)设2个白球编号为1,2,2个黑球编号为3,4,则基本事件是(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共有6个基本事件.(2)设至少摸到1个黑球为事件A ,则事件A 包含的基本事件共有5个,所以P (A )=56.。
北师大版高中数学必修3《三章 概率 2 古典概型 2.1古典概型的特征和概率计算公式》优质课教案_21
古典概型的特征和概率计算公式教学分析本节课是数学3(必修)第三章概率的第二节古典概型的第一课时,本节课的教学内容是在学生学习了频率与概率基础上学习的内容。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为几何概型的学习奠定基础,同时有利于理解概率的概念,有利于计算一些生活中事件的概率,有利于解释生活中的一些问题。
教学目标1. 知识与技能目标(1)掌握古典概型的特征及其概率计算公式,(2)会用列举法计算一些随机事件所含的基本事件数及计算事件发生的概率。
2.过程与方法目标古典概型的教学应该让学生通过实例理解古典概型的特征:实验结果的有限性和每一个实验结果出现的等可能。
让学生初步学会把一些实际问题化为古典概型。
3.情感、态度与价值观目标树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。
教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
教学难点:如何判断一个试验的概率模型是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
教学过程一、问题情境1.新课引入:问题1:掷一枚质地均匀的硬币,正面朝上的概率是多少?那么扔三次,“一次正面朝上,两次反面朝上”的概率是多少呢?二、探索新知:(一)古典概型的特征探究1.思考回答:(1)掷一枚质地均匀的硬币,只有种不同的结果(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有种不同的结果。
(3)掷一枚均匀的骰子,向上一面出现的数字有种不同的结果。
(4)数轴上[1,5]之间,任取一点,有种不同的结果。
(5)三个女生一个男生抽签决定组长人选,结果为或者,2种不同的结果。
2. 学生活动(口答结果,并且写出每种结果出现的概率)(1)掷一枚质地均匀的硬币,只有 2 种不同的结果(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3, (10)从中任取一球,只有10种不同的结果。
北师大版高中数学必修3《三章 概率 2 古典概型 2.1古典概型的特征和概率计算公式》优质课教案_4
3.2古典概型(1)(教学设计)3.2.1古典概型的特征和概率的计算公式一、教学目标:1、知识与技能(1)正确理解古典概型的两大特点;(2)掌握古典概型的概率计算公式:P(A)(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯.3、情感与价值观通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、教学重点、难点:正确理解掌握古典概型及其概率公式.三、教学过程:(一)创设情景、导入课题1、通过抛硬币掷筛子等实验来引入本节课的内容2、概率有哪些基本性质?3、通过试验和观察的方法,我们可以得到一些事件的概率估计值.但这种方法耗时多,而且得到的仅是概率的近似值,并且有些事件是难以组织试验的. 在某些特殊条件下,我们可以构造出计算事件概率的通用方法.(板书课题)(二)师生互动、探究新知考察两个试验:⑴掷一枚质地均匀的硬币的实验;⑵掷一枚质地均匀的骰子的实验.在试验⑴中,结果只有2个,即“正面朝上”和“反面朝上”,它们都是随机事件;在试验⑵中,所有可能的试验结果只有6个,即出现“1点” “2点” “3点” “4点” “5点” “6点” ,它们也都是随机事件;我们把这类随机事件称为“基本事件”.“基本事件”有哪些特点呢?综上分析,基本事件有如下特征:(1)任何两个基本事件是不会同时发生的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.在抛掷两枚质地均匀的硬币,有哪些基本事件?解:基本事件有4个:A=(正,正),B=(正,反),C=(反,正),D=(反,反);思考:每个基本事件出现的可能性相等吗?思考1:每个基本事件出现的可能性相等吗?思考2:在这个试验中,随机事件“出现一次正面和一次反面”,分别由哪些基本事件组成?上述问题的共同特点是:⑴试验中所有可能出现的基本事件只有有限个,⑵且每个基本事件出现的可能性相等.我们称具有这两个特点的概率模型为古典概率模型.思考:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?随机抛掷一枚质地均匀的骰子是古典概型P(“1点”)= P(“2点”)= P(“3点”)= P(“4点”)=P(“5点”)= P(“6点”)P(“1点”)+P(“2点”)+ P(“3点”)+ P(“4点”)+P(“5点”)+ P(“6点”)=1.每个基本事件出现的概率是1/6一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为:思考:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点” 的概率如何计算?P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1古典概型的特征和概率计算公式预习课本P130~133,思考并完成以下问题(1)古典概型的定义是什么?(2)古典概型的概率公式是什么?[新知初探]1.古典概型的定义如果一个试验满足:(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同.我们把具有这样两个特征的随机试验的数学模型称为古典概型(古典的概率模型).2.古典概型的概率公式对于古典概型,如果试验的所有可能结果(基本事件数)为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=m n.[点睛]在一次试验中可能出现的每一个结果称为基本事件,它们是试验中不能再分的最简单的随机事件.例如,掷一枚骰子,出现“1点”“2点”“3点”“4点”“5点”“6点”共6个结果,就是该随机试验的6个基本事件.[小试身手]1.一个家庭有两个小孩,则所有的基本事件是()A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)解析:选C用坐标法表示:将第一个小孩的性别放在横坐标位置,第二个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女,男),(女,女).2.下列试验是古典概型的为()①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;②同时掷两颗骰子,点数和为7的概率; ③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率; A .①② B .②④ C .①②④D .③④解析:选C ①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.3.从100台电脑中任抽5台进行质量检测,每台电脑被抽到的概率是( ) A.1100 B.15 C.16D.120解析:选D 每台电脑被抽到的概率为5100=120.4.从1,2,3,4中随机取出两个数,则其和为奇数的概率为________.解析:不同的取法包括(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件,每个基本事件发生的可能性相同,因此是古典概型.和为奇数包括(1,2),(1,4),(2,3),(3,4),共4个基本事件,故所求概率为46=23.答案:23古典概型的判定[典例] (1)从区间[1,10]内任意取出一个实数,求取到实数2的概率; (2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率. [解] (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的那个实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.只有同时满足有限性和等可能性这两个条件的试验才是古典概型,两个条件只要有一个不满足就不是古典概型.[活学活用]下列随机事件:①某射手射击一次,可能命中0环,1环,2环,…,10环;②一个小组有男生5人,女生3人,从中任选1人进行活动汇报;③一只使用中的灯泡寿命长短;④抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.这些事件中,属于古典概型的有________.解析:题号判断原因分析①不属于命中0环,1环,2环,…,10环的概率不一定相同②属于任选1人与学生的性别无关,仍是等可能的③不属于灯泡的寿命是任何一个非负实数,有无限多种可能④属于该试验结果只有“正”“反”两种,且机会均等⑤不属于该品牌月饼评“优”与“差”的概率不一定相同古典概型的概率计算[典例](1)点数之和为5的概率;(2)点数之和为7的概率;(3)出现两个4点的概率.[解]在抛掷两粒均匀的骰子的试验中,每粒骰子均可出现1点,2点,…,6点,共6种结果.两粒骰子出现的点数可以用有序实数对(x,y)来表示,它与直角坐标系内的一个点对应,则所有的基本事件包括:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个.(1)记“点数之和为5”为事件A,从图中可以看到事件A包含的基本事件数共有4个:(1,4),(2,3),(3,2),(4,1),所以P(A)=436=19.(2)记“点数之和为7”为事件B,从图中可以看到事件B包含的基本事件数共有6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P(B)=636=16.(3)记“出现两个4点”为事件C,则从图中可以看到事件C包含的基本事件数只有1个:(4,4),所以P(C)=1 36.求解古典概型的概率“四步”法[活学活用]先后抛掷均匀的壹分、贰分、伍分硬币各一次.(1)一共可能出现多少种结果?(2)出现“2枚正面朝上,1枚反面朝上”的结果有多少种?(3)出现“2枚正面朝上,1枚反面朝上”的概率是多少?解:(1)先后抛掷壹分、贰分、伍分硬币时,可能出现的结果共有8种,即(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).(2)用A 表示事件“2枚正面朝上,1枚反面朝上”,所有结果有3种,即(正,正,反),(正,反,正),(反,正,正).(3)因为每种结果出现的可能性相等,所以事件A 的概率P (A )=38.[层级一 学业水平达标]1.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )A.16 B.13 C.12D.23解析:选B 所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,∴P =26=13.故选B.2.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29D.19解析:选D 个位数与十位数之和为奇数的两位数一共有45个,其中个位数为0的有5个,概率为19.3.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 4.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.解析:从3男3女中选出2名同学,共有以下15种情况:(男1,男2),(男1,男3),(男2,男3),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(男3,女1),(男3,女2),(男3,女3),(女1,女2),(女1,女3),(女2,女3),其中2名都是女同学的有3种情况,故所求的概率P =15.答案:15[层级二 应试能力达标]1.两个骰子的点数分别为b ,c ,则方程x 2+bx +c =0有两个实根的概率为( ) A.12 B.1536 C.1936D.56解析:选C (b ,c )共有36个结果,方程有解,则Δ=b 2-4c ≥0,∴b 2≥4c ,满足条件的数记为(b 2,4c ),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P =1936.2.将一个各个面上涂有颜色的正方体锯成27个同样大小的小正方体,从中任取一个小正方体,其中恰有3面涂有颜色的概率为( )A.427B.827C.18D.14解析:选B 在这27个小正方体中,只有原正方体的8个顶点所对应的小正方体的3面是涂色的,故概率P =827.3.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )A.310B.25C.12D.35解析:选C 从五种不同属性的物质中随机抽取两种,出现的情况有:(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木,土),(水,火),(水,土),(火,土)共10种等可能情况,其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12.4.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45解析:选B 袋中的1个红球、2个白球和3个黑球分别记为a ,b 1,b 2,c 1,c 2,c 3. 从袋中任取两球有{a ,b 1},{a ,b 2},{a ,c 1},{a ,c 2},{a ,c 3},{b 1,b 2},{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},{c 1,c 2},{c 1,c 3},{c 2,c 3},共15个基本事件.其中满足两球颜色为一白一黑的有{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},共6个基本事件.所以所求事件的概率为615=25.5.设a ,b 随机取自集合{1,2,3},则直线ax +by +3=0与圆x 2+y 2=1有公共点的概率是________.解析:将a ,b 的取值记为(a ,b ),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能.当直线与圆有公共点时,可得3a 2+b 2≤1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为59.答案:596.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a ,b ,没过保质期的3瓶用1,2,3表示,试验的结果为: (1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b )共10种结果,2瓶都过保质期的结果只有1个,∴P =110.答案:1107.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.解析:从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5).其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为34.答案:348.为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:(1)求a ,b (2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1. (2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310.9.甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数则甲赢,否则乙赢.(1)若以A 表示事件“和为6”,求P (A );(2)若以B 表示事件“和大于4而小于9”,求P (B ); (3)这种游戏公平吗?试说明理由. 解:将所有可能情况列表如下:甲乙 123451 (1,1) (1,2) (1,3) (1,4) (1,5)2 (2,1) (2,2) (2,3) (2,4) (2,5)3 (3,1) (3,2) (3,3) (3,4) (3,5)4 (4,1) (4,2) (4,3) (4,4) (4,5) 5(5,1)(5,2)(5,3)(5,4)(5,5)由上表可知,该试验共包括25个等可能发生的基本事件,属于古典概型.(1)“和为6”的结果有:(1,5),(2,4),(3,3),(4,2),(5,1),共5种结果,故所求的概率为525=15. (2)“和大于4而小于9”包含了(1,4),(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),共16个基本事件,所以P (B )=1625.(3)这种游戏不公平.因为“和为偶数”包括13个基本事件,即甲赢的概率为1325,乙赢的概率为25-1325=1225,所以它不公平.。