天然气脱水工艺流程

合集下载

天然气脱水流程与原理详解演示文稿

天然气脱水流程与原理详解演示文稿
天然气脱水流程与原理详解演示 文稿
优选天然气脱水流程与原理
第一节 概 述 一、直接冷却法:
• 原理:通过降低天然气的温度, 利用水与轻烃凝结为液体的温 差,使水得以冷凝,从而达到 脱水的目的。
• 缺点:需要制冷设施对天然气 进行制冷。
天然气脱硫、脱水器
第一节 概 述
二、溶剂吸收脱水法
•原理:天然气与某种吸水能力强的化学溶剂相接触,利用化 学溶剂对水的吸收能力,吸收天然气中的水分,同时不与水 发生化学反应,最终达到脱水的目的。 •优点:吸收剂能通过一定的方法进行再生,使其能重复使用。
三、甘醇脱水工艺流程
湿天然气自吸收塔底部 进入,自下而上与从顶部进 入的三甘醇贫液相接触后, 干气从顶部流出;贫三甘醇 自塔顶进入,与吸收塔内湿 天然气充分接触后成为富液。 富液从塔底部流出,经过滤 器、换热器与贫三甘醇换热 后进入再生塔,富液再生后 成为贫液经与富液换冷后加 压循环注入吸收塔中。
194.2 -5.6 <1.33 314 1.092 1.128 全溶 237.8 2.4.4-233.9
10.2×10-3 2.18 4.5 1.457
第三节 吸收法脱水 三甘醇质量的最佳值
参数
pH值① 氯化物 烃类② 铁粒子② 水③
固体悬浮物 ③/(mg/L)
起泡倾向
颜色及 外观
富甘醇 7.0-8.5 <600 <0.3 <15 贫甘醇 7.0-8.5 <600 <0.3 <15
3.57.5
<1.5
<200 <200
泡沫高度, 高度1020mL;破裂 时间,5s
洁净, 浅色到 黄色
①富甘醇由于有酸性气体溶解,其pH值较低。

盐穴储气库天然气脱水处理工艺

盐穴储气库天然气脱水处理工艺

盐穴储气库天然气脱水处理工艺【摘要】天然气脱水工程即采用一定的方法使天然气中饱和的水脱除出来的工艺。

本文以盐穴储气库采气期的井口天然气脱水过程为背景,对盐穴储气库脱水工艺类型、一般流程、脱水剂的选型、主要工艺设备、原理、安全和职业卫生防护及运行期的污染与防治等做一简要介绍和分析。

【关键词】盐穴储气库脱水工艺三甘醇1 引言从盐穴储气井里采出来的天然气里充满了饱和水蒸气。

天然气被压缩或冷却时,水蒸汽会转变成液态或固态。

液态水会加速设备的腐蚀,降低输气效率;而固态的冰则会堵塞阀门、管件甚至输气管线。

为避免出现这些问题,在天然气进入输气管网之前,必须除掉其中的部份水蒸气。

储气库天然气脱水工艺就是采用一定的方法使天然气中饱和的水蒸气脱除出来的工艺系统。

自储气库的湿天然气经采气管线进入集配气站计量后集输至注采站,在注采站内需要经脱水装置脱水合格、计量后才能输送至长输管线。

本文所要论述的是盐穴储气库的脱水工艺。

2 脱水剂选型储气库采出气经净化后输至输气干线,作为管线调峰用气。

外输天然气达到GB17820-1999《天然气》中二类天然气的要求,天然气水露点比输送条件下的最低环境温度低5℃,烃露点低于或等于最低环境温度,按照川气东送管道设计要求,烃水露点应≤-15℃。

图1 盐穴储气库注采气流程来自储气库的天然气,经过集输支管管线进入集配气站,由集配气站经集输干管输送至注采站,在注采站内经重力分离器及过滤分离器分离掉其中的游离水、凝析油及机械杂质后,进入脱水装置,脱水合格后经计量调压输送至分输站。

在采气末期,当储气库压力低于注采站出站压力时,利用注气压缩机增压,增压后天然气进入出站管网。

2.1 脱水剂选择对于盐穴储气库,盐穴底部会存有—定量的水分,在采气初期,这些水会随着天然气夹带出地面,随着采气量的不断增大,盐穴底部存留的水量会逐渐减少。

天然气脱水的方法有很多种,一般分为溶剂吸收法、固体干燥剂吸收法、直接冷却法、注防冻剂(脱水机)法、化学反应法等。

天然气脱水工艺

天然气脱水工艺
天然气脱水和三甘醇再生
乐东准备组
2008-6-4
1
天然气脱水工艺
一、基本概念 二、天然气脱水原因及含水量的确定方法 三、天然气脱水方法 1. 冷却法 2. 吸附法 3. 膜分离法 4. 吸收法
2
天然气脱水工艺
一、基本概念 1、天然气的烃露点
在一定压力下,天然气经冷却到气相中析出第一滴微小的液体烃时的温 度,称为烃露点。天然气的烃露点与其组分和压力有关。天然气的组成, 尤其是高碳数组分的含量对烃露点的影响最大。 在天然气输送过程中,一般要求天然气的烃露点必须比沿管线各地段的最低 温度低5℃。
18
天然气脱水工艺
三、天然气脱水方法
从油气井采出及湿法脱碳脱硫后的天然气中一般都含有饱和水蒸气(习 惯上称为含水),在外输前通常要将其中的水蒸气脱除至一定的程度(习 惯上称为脱水),使其露点或水含量符合管输要求。脱水前原料气的露点 与脱水后的干气露点之差成为露点降。露点降即表示天然气脱水深度或效 果。
水和物结构:水分子(主体分子)接氢键形成具有笼型空腔(孔穴)的各 种多面体,而尺寸较小且几何形状合适的气体分子(客体分子)则在范德瓦尔 斯力作用下被包围在笼型空腔内,若干个多面体相互连接即成为水合物晶体。 水合物生成条件:1、 必须有游离水存在;
2、 必须有碳4以上的轻烃存在; 3、 必须有一定含量的酸性气体CO2和H2S等存在; 4.、必须满足一定的压力和温度条件.
W = yWhc + y1W1 + y2W2 W -- 天然气中的含水量 Whc – 图表1.1中对应压力温度下烃类的含水量 W1 – 图表1.2中CO2对应压力温度下的有效含水量 W2 -- 图表1.2中H2S对应压力温度下的有效含水量
10

天然气脱水原理及工艺流程

天然气脱水原理及工艺流程

天然气脱水原理及工艺流程一、天然气水合物1、H2O存在的危害(1)减少商品天然气管道的输送能力;(2)当气体中含有酸性气体时,液态水与酸性气体形成酸性水溶液腐蚀管道和设备;(3)液态水与天然气中的某些低分子量的烃类或非烃类气体分子结合形成天然气水合物,从而减小管路的流通断面积、增加管路压降,严重时将造成水合物堵塞管道,生产被迫中断;(4)作为燃料使用,降低天然气的热值。

2、什么是天然气水合物天然气水合物是在一定温度和压力条件下,天然气中的甲烷、乙烷等烃类物质和硫化氢、二氧化碳等酸性组分与液态水形成的类似冰的、非化学计量的笼型晶体化合物。

最大的危害是堵塞管道。

(1)物理性质①白色固体结晶,外观类似压实的冰雪;②轻于水、重于液烃,相对密度为0.960.98;③半稳定性,在大气环境下很快分解。

(2)结构采用X射线衍射法对水合物进行结构测定发现,气体水合物是由多个填充气体分子的笼状晶格构成的晶体,晶体结构有三种类型:I、II、H型。

3、天然气水合物生成条件具有能形成水合物的气体分子:如小分子烃类物质和H2S、CO2等酸性组分天然气中水的存在:液态水是生成水化物的必要条件。

天然气中液态水的来源有油气层内的地层水(底水、边水)和地层条件下的汽态水。

这些汽态的水蒸汽随天然气产出时温度的下降而凝析成液态水。

一般而言,在井下高压高温状态下,天然气呈水水蒸气饱状态,当气体运移到井口时,特别是经过井口节流装置时,由于压力和温度的降低,使会凝析出部分的液态水,因此,在井口节流装置或处理站节流降温处往往容易形成水化物。

3、天然气水合物生成条件足够低的温度:低温是形成水化物的重要条件。

气流从井底流到井口、处理厂并经过角式节流阀、孔板等装置节流后,会因压力降低而引起温度下降。

温度降低不仅使汽态水凝析(温度低于天然气露点时),也为生成水化物创造了条件。

足够高的压力:水化物生成的温度随压力升高而升高,随压力降低而降低,也就是压力越高易生成水化物。

天然气脱水工艺流程介绍(ppt 30页)

天然气脱水工艺流程介绍(ppt 30页)

①工艺简单,操作容易,占地面积小;
②不需要额外加入溶剂,不需再生,无二次污染;
③可利用天然气本身的压力作为推动力,几乎没有压力损失;
④操作弹性大,可通过调节膜面积和工艺参数来适应处理量
的波动。
中国石油塔里木油田公司
迪那筹备组
讲座提 纲
一、脱水的原
因 二、脱水方法简
介 三、脱水工艺介
绍 四、各工艺的注意事
节流阀制冷
膨胀制冷
膨胀机制冷
低温分离法
丙烷制冷
热分离机制冷等
中国石油塔里木油田公司
迪那筹备组
脱水的方

• 溶剂吸收法:
利用某些液体物质不与天然气中的水分发 化学反应,只对水有很好的溶解能力且溶水 后蒸气压很低,可再生和循环使用的特点。 将天然气中水汽脱出。这样的物质有甲醇、 甘醇等。由于吸收剂可再生和循环使用,故 脱水成本低,已得到广泛使用。
油气田无自由压降可利用,满足 管输天然气水露点要求的场合。
1、脱水后干气中水含量可 低于1ppm,水露点可低于90℃; 2、对进料气体温度、压力 、流量变化不敏感; 3、操作简单,占地面积小 4、无严重腐蚀和发泡方面 的问题。
1、对于大装置,其设备投 资大,操作费用高; 2、气体压降大; 3、吸附剂使用寿命短,一 般三年需更换,增加成本; 4、耗能高,低处理量时更 明显;
• 牙哈320万方/日凝析气处理装置:设计处理天然 气320万方/天、凝析油产量为50万吨/年, 2000 年10月31日投产装置通过经J-T阀节流降温[加注 乙二醇防冻],脱除天然气中的水,并实现轻烃回 收。
中国石油塔里木油田公司
迪 三那 甘筹 醇备脱水组 工

各工艺的注意 事项

天然气脱水流程与原理

天然气脱水流程与原理

第三节 吸收法脱水
汽提气工艺流程示意图
第三节 吸收法脱水
解吸溶剂(DRIZO)工艺流程图
第三节 吸收法脱水
四、吸收塔设备及结构介绍
分类
•板式塔:塔内装有一定数量的塔盘,气体以鼓泡或喷射 的形式穿过塔盘上的液层使两相密切接触,进行传质。 •填料塔:塔内装填一定层段数和一定高度的填料层,液 体沿填料表面呈膜状向下流动,作为连续相的气体自下而 上流动,与液体逆流传质。
450
500
600
--------
1200-1400 ------- 350①
450
500
600
1600-3000 ------- ------- 450 ①
500
600
3200-4200 ------- ------- ------- --------
600
800 ① 800 800
①不推荐采用
第三节 吸收法脱水

天收
然 气
捕雾器→

脱流
水程



来自入口洗涤器

的湿气 →


干气→ ←贫液
←天然气与贫液 热交换器 ←贫液
天然气→
富液去重沸器→
第三节 吸收法脱水
五、三甘醇法脱水工艺参数的选取
入口温度:
如入口温度高: 1.天然气含水量高; 2.天然气的体积增加导致吸收塔塔径的增大; 3.超过48℃将导致三甘醇损失增大;
较高温度会增加甘醇的损失(一般选为107.2℃)。 较低温度将导致过多的水冷凝,增加再沸器的热 负荷。
第三节 吸收法脱水 三甘醇脱水装置操作温度推荐值
设备或部 原料气进 贫甘醇进 富甘醇进 富甘醇进 富甘醇进 精馏柱顶

天然气脱水工艺流程演示文稿

天然气脱水工艺流程演示文稿

天然气脱水工艺流程演示文稿一、引言天然气是一种重要的清洁能源,然而,在天然气的生产和运输过程中,常常伴随着大量的水分存在。

为了提高天然气的热值和减少管道的腐蚀,需要对天然气进行脱水处理。

二、脱水工艺流程1.提高压力天然气从井口出来时的压力一般比较低,需要通过增压设备将其压力提高到一定程度,以便后续步骤的进行。

2.初级脱水初级脱水是将天然气中的大部分水分去除的工艺步骤。

通常采用的方法是使用吸附剂或干燥剂来吸附天然气中的水分。

常用的吸附剂有硅胶和分子筛等,常用的干燥剂有石油醚等。

天然气经过初级脱水后,水分含量明显降低。

3.残余水分的除去初级脱水后,天然气中仍然会残留一部分水分。

为了进一步降低水分含量,需要使用高效脱水设备进行二次脱水。

常用的高效脱水设备有膜分离器和冷凝器等。

膜分离器通过半透膜的作用将天然气中的水分分离出来,冷凝器则利用冷凝原理将天然气中的水分冷凝成液体。

4.脱水后处理脱水后的天然气含有少量的脱水剂残留物和其他杂质。

为了提高天然气的纯净度,需要经过一系列的后处理步骤。

常用的后处理设备有过滤器和除尘器等。

三、工艺流程的示意图(在演示文稿中插入一张天然气脱水工艺流程示意图,并进行详细解释)四、设备介绍1.增压设备增压设备用于将天然气的压力提高到一定程度。

一般采用的设备有压缩机和泵等。

2.初级脱水设备初级脱水设备主要是吸附剂和干燥剂。

吸附剂常用的有硅胶和分子筛,干燥剂常用的有石油醚等。

3.高效脱水设备高效脱水设备有膜分离器和冷凝器。

膜分离器通过半透膜的作用将水分分离出来,冷凝器通过冷凝原理将水分冷凝成液体。

4.后处理设备后处理设备有过滤器和除尘器。

过滤器用于去除脱水后残留的脱水剂残留物和其他杂质,除尘器用于去除天然气中的颗粒物。

五、总结。

小知识,天然气分子筛脱水工艺的流程简介

小知识,天然气分子筛脱水工艺的流程简介

小知识,天然气分子筛脱水工艺的流程简介流程的选择假设湿净化气流量为100×104m3/d(20℃、101.325kPa标准状态下)。

对于这样规模较大的分子筛脱水装置,可以采用2个吸附塔或3个吸附塔两种方案(分别简称两塔方案、三塔方案)。

而相同工艺不同方案的操作情况与投资数据却完全不同,现将两塔方案、三塔方案的操作情况与投资情况进行比较,从而选择出最佳方案。

在两塔流程中,一塔进行脱水操作,另一塔进行吸附剂的再生和冷却,然后切换操作。

在三塔或多塔流程中,切换的程序有所不同,通常三塔流程采用一塔吸附、一塔再生、一塔冷吹同时进行。

三塔方案(常规)时间分配表吸附器0~8h8~16h16~24h分子筛脱水塔A吸附加热冷却分子筛脱水塔B冷却吸附加热分子筛脱水塔C加热冷却吸附由表1-1可以看出,在三塔方案中,加热炉连续工作,并且冷吹再生时间长,期间的加热、冷却功率相对较小,三塔流程灵活性较高。

表1-2 两塔方案(常规)时间分配表吸附器0~8h8~16h分子筛脱水塔A吸附加热/冷却分子筛脱水塔B加热/冷却吸附由表1-2可以看出,分子筛两塔脱水装置运行时,始终保持一塔处于吸附状态,另一塔处于再生状态。

因此,加热炉操作不连续,点火、停炉频繁,不利于装置的长周期正常、平稳运行,且会造成一定的热损失。

但两塔流程简单,其吸附时间增长,能耗大大降低。

两塔流程较三塔流程减少1座吸附塔,大大节约了设备采购费用。

由于设备数量的减少,操作维护费用也将大大降低。

同时,由于减少了设备、工艺管线的数量,实际上也相应削减了管线、设备穿孔泄露的风险,提高了安全可靠性。

且吸附、再生、冷却过程为密闭过程,对环境污染少。

两塔流程由装填有分子筛的两个塔组成,假设塔2在进行干燥,塔1在进行再生。

在再生期间,所有被吸附的物质通过加热而被脱吸,为该塔的下一个吸附周期作准备。

湿原料气一般经原料气过滤分离器,除去携带的液滴后自上而下地进入分子筛脱水塔(塔2),进行脱水吸附过程。

天然气脱水工艺流程

天然气脱水工艺流程
干气
脱水工艺
再生气
三甘醇装置
过 湿天然气 滤

TEG 吸 收 塔
贫TEG
闪蒸罐
过 滤 器
重沸器
缓冲罐
TEG冷却器
燃料气
中国石油塔里木油田公司
迪那筹备组
湿原料气
入 口 分 离 器












脱水工艺
冷却器
水 分 离 罐
分子筛装置
加热器
再 生 气
干气
中国石油塔里木油田公司
迪那筹备组
膜法装置
①工艺简单,操作容易,占地面积小;
②不需要额外加入溶剂,不需再生,无二次污染;
③可利用天然气本身的压力作为推动力,几乎没有压力损失;
④操作弹性大,可通过调节膜面积和工艺参数来适应处理量
的波动。
中国石油塔里木油田公司
迪那筹备组
讲座提 纲
一、脱水的原
因 二、脱水方法简
介 三、脱水工艺介
绍 四、各工艺的注意事

中国石油塔里木油田公司
迪那筹备组
低温分离装置
脱水工艺
干气外输
干气至外输首站
原料气
乙二醇贫液
原料气预冷器 原料气预冷器
乙二醇贫液
J-T
原料气预冷器

原料气预冷器
闪蒸气回系统
醇烃液三相分离器
低 温 分 离 器
醇烃液/闪蒸气换热器
至乙二醇再生及注醇装置
至轻烃回收装置
中国石油塔里木油田公司
迪 那 筹 备 组 闪蒸气
中国石油塔里木油田公司
迪那筹备组
各工艺的注意 事项

CNG站脱水装置工艺操作步骤

CNG站脱水装置工艺操作步骤

CNG站脱水装置工艺操作步骤根据《汽车用天然气》(GB18047-2000)的规定,压缩天然气在贮存和向汽车充气过程中,在最高贮存压力下,气体中水露点应低于当地最低环境温度5℃以下,如果达不到该要求,压缩天然气可能会析出液态水。

液态水的存在会严重损害汽车及加气站的安全。

在汽车的充气过程,会产生很大的温度降,如果析出的液态水会在管道和阀门产生冰堵,汽车则无法开动。

在高压状态下,液态水的存在会在贮气容器中生成水合物。

压力为25MPa、密度为0.68的天然气在24℃时就可能生成水合物,同样会堵塞管道和阀门。

液态水的存在加强了酸性组分(H2S、CO2)对压力容器及管道的腐蚀,并可能导致爆炸等灾难性事故的发生。

我公司目前采用的脱水装置均为后置式高压脱水装置。

高压脱水装置放置在压缩机末级出口处。

注:本手册以GZQ—1500/25型再生干燥装置为范本,其他形式的脱水装置请务必按其说明书严格执行。

1.1脱水装置工艺流程脱水装置的工艺流程图如下图所示:1.2再生干燥器操作规程1.2.1主要技术参数及特征(1)工作介质:天然气;工作压力:25MPa(2)处理气量:1500Nm3/h(3)常压露点:≤—62℃(4)含尘量:≤10mg/ Nm3;含尘粒径:≤5μm;(5)工作周期:8小时(吸附—再生+冷却,A、B塔交替进行);(6)再生气压力:△P=0.1~0.2MPa(与进气管线的压差);再生气耗量:20—30Nm3/h;加热再生气体温度:230~250℃(工作介质为天然气时取下限)。

1.2.2首次使用前的准备与检查(1)拧紧地脚螺栓;(2)连接好电加热电源线(耐热电线),接头处用301硅胶进行密封,使接头不与外界气体接触,并保证加热器可靠接地;(3)连接气管,开压缩机对干燥器装置充气,置换空气。

干燥器在规定压力下不得泄漏。

(4)停机、放空。

1.2.3正常使用时的操作(1)首次工作前或设备管线拆修后开车前用天然气对系统空气进行置换a、开启装置上的所有放空阀、排污阀。

简述天然气脱水工艺流程

简述天然气脱水工艺流程

简述天然气脱水工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!天然气脱水工艺流程。

1. 预热: 天然气进入脱水装置前,先经预热器加热,提高温度。

teg脱水原理

teg脱水原理

teg脱水原理TEG脱水原理1. 引言TEG(三乙二醇)是一种常用的脱水剂,广泛应用于天然气脱水工艺中。

本文将介绍TEG脱水原理及其工作过程。

2. TEG脱水原理TEG脱水原理基于TEG对水的亲和力较强,通过物理吸附和化学反应的方式,将天然气中的水分去除。

TEG脱水工艺通常包括吸收、脱附和再生三个主要步骤。

2.1 吸收在吸收步骤中,湿气与TEG接触并发生物理吸附和化学反应。

TEG 通过与湿气中的水分子发生氢键作用,将水分子从气相吸附到液相中。

同时,TEG还可以与天然气中的酸性气体发生化学反应,使其被吸收。

2.2 脱附脱附是指将吸附在TEG中的水分子从TEG中分离出来。

在脱附过程中,将饱和的TEG与低压蒸汽接触,通过温度升高和压力降低的方式,使TEG中的水分子从液相转移到气相中。

脱附后的TEG可以再次用于吸收步骤,实现循环利用。

2.3 再生再生是指将脱附后的TEG中的水分子去除,使其恢复到饱和状态,以便再次进行吸收。

在再生过程中,将脱附后的TEG与高温蒸汽接触,通过加热和减压的方式,使TEG中的水分子从气相转移到液相中。

再生后的TEG可以回到吸收器进行下一轮的吸收。

3. TEG脱水工艺流程TEG脱水工艺通常包括吸收塔、冷凝器、分离器、再生器和降温器等设备组成。

3.1 吸收塔吸收塔是进行TEG与湿气接触的主要设备。

湿气从底部进入吸收塔,TEG从顶部喷淋下来,在塔内与湿气接触。

在接触过程中,湿气中的水分子被吸附到TEG中,同时酸性气体也被吸收。

3.2 冷凝器冷凝器用于冷却饱和的TEG,并使其中的水分子凝结为液体。

冷凝器通常采用冷却水或冷凝剂进行冷却,将TEG中的热量带走。

3.3 分离器分离器用于将冷凝后的水分子与TEG分离。

由于TEG和水的密度差异较大,因此可以通过重力分离的方式,将TEG和水分开。

3.4 再生器再生器是将脱附后的TEG中的水分子去除的设备。

脱附后的TEG经过加热和减压,使其中的水分子从气相转移到液相中,实现再生。

天然气脱水工艺流程介绍

天然气脱水工艺流程介绍

低温分离方法在塔 里木的应用
• 塔中六天然气处理装置:大庆设计院设计,设计 处理天然气86万方/天、凝析油产量为1.8万吨/年, 于2007年4月建成投产。 装置通过经J-T阀节流 降温[加注乙二醇防冻]实现天然气净化。
• 牙哈320万方/日凝析气处理装置:设计处理天然 气320万方/天、凝析油产量为50万吨/年, 2000 年10月31日投产装置通过经J-T阀节流降温[加注 乙二醇防冻],脱除天然固体物质表面孔隙可以吸附大量 水分子的特点来进行天然气脱水的,脱水后 的天然气含水量可降至1ppm或露点达到100℃。这样的固体有硅胶,活性氧化铝和分 子筛等。
固体吸附剂一般易被水饱和,但也容易再 生。经多次热吹脱附后可多次循环使用。因 此常被用于低含水天然气深度脱水情况下。
离,使水被脱出。
节流阀制冷
膨胀制冷
膨胀机制冷
低温分离法
丙烷制冷
热分离机制冷等
• 溶剂吸收法:
利用某些液体物质不与天然气中的水分发 化学反应,只对水有很好的溶解能力且溶水 后蒸气压很低,可再生和循环使用的特点。 将天然气中水汽脱出。这样的物质有甲醇、 甘醇等。由于吸收剂可再生和循环使用,故 脱水成本低,已得到广泛使用。
方法对比
节流法
三甘醇法
分子筛法
1、装置操作简单,占地面积小; 1、操作温度下溶剂稳定,吸湿性
2、装置投资及运行费用低。
高,露点降高;
2、容易再生成99%(w)以上的浓

度;

3、蒸气压低,气相携带损失小;
4、装置投资及运行费用低;
5、进出装置的压降小。
1、只适用于高压天然气;
1、存在轻质油时,会有一定程度
干气至外输首站
闪蒸气回系统

天然气脱水

天然气脱水

2)平衡常数法 Katz认为:水合物可看作气体溶于晶状固体内的溶液,因而与气
液平衡露点计算相似,水合物生成条件计算可采用平衡常数法。 露点方程
3)热力学模型法 (1)纯烃水合物的相特性
线1、2、3、4为水合物生成曲线, 在线的左上方为水合物生成区。
线5为烃的蒸气压曲线,线上方为液 态,下方为气态。
CH4·6H2O C2H6·8H2O
H2S·6H2O
C02·6H2O
大分子量组分C3H8和i-C4H10(异丁烷)仅能进入II型水合物内的大腔 室,形成II型水合物。每个气体分子周围有17个水分子,即:
C3H8·17H2O i-C4H10·17H2O。 气体分子填满腔室的程度取决于外部压力和温度,腔室内充满气体 分子程度愈高、水合物愈稳定。腔室未被气体分子占据时,结构处于亚 稳定状态,称为β相;气体分子占有腔室后形成稳定结构,称H相。
12个正五边形、 2个正六边形
正五边形
12个正五边形、 4个正六边形
3)H型晶体结构:对H型水合物尚处于研究中,知之甚少, H型水合 物由34个水分子构成,共有6个笼状晶格,可容纳6个气体分子。 其中1个大的( 12个正五边形、8个正六边形组成的二十面 体)、 2个中的( 3个正四边形、6个正五边形、3个正六边形 组成的十二面体)、3个小的(正五边形组成的十二面体)。
4、生成预测方法:
当水分条件满足时,预测生成水合物压力、温度条件的方 法主要有图解法、平衡常数法和热力学模型法。
1)图解法
常用的图解法有两种,一种是只考虑气体相对密度的相对 密度法,另一种是考虑相对密度和酸气含量的酸性气体图。
(1)相对密度法 曲线左上方为水合物存在区。右下方
为水合物不可能存在区。 已知气体相对密度,由图可查一定温

CNG站脱水装置工艺操作步骤

CNG站脱水装置工艺操作步骤

CNG站脱水装置工艺操作步骤根据《汽车用天然气》(GB18047-2000)的规定,压缩天然气在贮存和向汽车充气过程中,在最高贮存压力下,气体中水露点应低于当地最低环境温度5℃以下,如果达不到该要求,压缩天然气可能会析出液态水。

液态水的存在会严重损害汽车及加气站的安全。

在汽车的充气过程,会产生很大的温度降,如果析出的液态水会在管道和阀门产生冰堵,汽车则无法开动。

在高压状态下,液态水的存在会在贮气容器中生成水合物。

压力为25MPa、密度为0.68的天然气在24℃时就可能生成水合物,同样会堵塞管道和阀门。

液态水的存在加强了酸性组分(HS、CO)对压力容器22及管道的腐蚀,并可能导致爆炸等灾难性事故的发生。

我公司目前采用的脱水装置均为后置式高压脱水装置。

高压脱水装置放置在压缩机末级出口处。

注:本手册以GZQ—1500/25型再生干燥装置为范本,其他形式的脱水装置请务必按其说明书严格执行。

1.1脱水装置工艺流程脱水装置的工艺流程图如下图所示:1.2再生干燥器操作规程1.2.1主要技术参数及特征25MPa)工作介质:天然气;工作压力:1(.3/h )处理气量:1500Nm(2 ℃3)常压露点:≤—62(3μm;(4)含尘量:≤10mg/ Nm;含尘粒径:≤5塔交、B8小时(吸附—再生+冷却,A(5)工作周期:替进行);(与进气管线的压0.2MPa6()再生气压力:△P=0.1~3~/h;加热再生气体温度:23020差);再生气耗量:—30Nm 250℃(工作介质为天然气时取下限)。

1.2.2首次使用前的准备与检查 1)拧紧地脚螺栓;(301,接头处用(2)连接好电加热电源线(耐热电线)硅胶进行密封,使接头不与外界气体接触,并保证加热器可靠接地;置换空气。

3)连接气管,开压缩机对干燥器装置充气,(干燥器在规定压力下不得泄漏。

4)停机、放空。

(正常使用时的操作1.2.3)首次工作前或设备管线拆修后开车前用天然气对系(1 统空气进行置换、开启装置上的所有放空阀、排污阀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天然气脱水工艺流程包括以下步骤:
1.来自集气站压力为8.8MPa、温度为23℃的原料天然气进入原料
气重力分离器与过滤分离器,分出液态水分及其他杂质,然后进入TEG吸收塔的下部,自下而上流动,与从上而下的贫TEG 逆流接触,脱除其中水分。

2.干气从塔顶流出,经干气分离器分离出夹带的三甘醇后,出装
置至外输管线。

3.吸收了水分的TEG富液从TEG吸收塔底部流出,经减压后进
入重沸器上部的富液精馏柱顶换热盘管,加热后进入闪蒸罐闪蒸,闪蒸气进入燃料气系统。

4.闪蒸后的富液先后通过机械过滤器和活性炭过滤器,以除去其
中的机械杂质和降解产物。

5.过滤后的富液经TEG缓冲罐与热的贫TEG换热后进入富液精
馏柱,与来自重沸器的蒸汽逆流接触而得到部分提浓。

6.在重沸器内,富液被加热至约200℃。

7.TEG溶液经贫液精馏柱进入缓冲罐,与自下而上的气提气在贫
液精馏柱中逆流接触,以进一步提高贫TEG浓度。

8.高温TEG贫液在缓冲罐内与冷的TEG富液换热后,经冷却器
冷却。

9.TEG循环泵升压后送至吸收塔上部完成TEG吸收和再生循环
过程。

相关文档
最新文档