电磁场与电磁波习题答案
电磁场与电磁波第二版课后答案 (2)
电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
电磁场与电磁波 答案
23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。
《电磁场与电磁波》课后习题解答(全)
(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。
电磁场与电磁波 课后答案(冯恩信 著)
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
电磁场和电磁波练习(有答案)
电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。
电磁场与电磁波答案(高等教育出版社)陈抗生_第2版
第一章1.1.,,/)102102cos(1026300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 --⨯+⨯==ππ解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0x --⨯π+⨯π==++=∴ 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向;波的幅度 m /V 10E E 3y -==。
s /m 10102102k V ;102k ;MHZ 1HZ 1021022f 826P 266=⨯π⨯π=ω=⨯π===π⨯π=πω=--―――1.2 写出下列时谐变量的复数表示(如果可能的话))3sin()6sin()()6(sin 1)()5()21000cos(10)()4(sin 2cos 3)()3(sin 10)()2()6sin(6)()1(πωπωωππωωωπω++=-=-=-=-=+=t t t U t t D t t C t t t A tt I t t V(1)解: 3/2/6/)(πππϕ-=-=z vj j e V j 3333sin 63cos 66)3(-=-==-∴πππ(2)解:)2cos(10)(πω--=t t I2)(πϕν-=zj eI j 10102=-=-∴π(3)解:)t t t A ωωsin 132cos 133(13)(-=j eA j 2313)2(+==-πθ则(4)解:)21000cos(10)(ππ-=t t CjeC j 10102-==∴π(5)(6)两个分量频率不同,不可用复数表示―――1.3由以下复数写出相应的时谐变量)8.0exp(4)2exp(3)3()2.1exp(4)2(43)1(j jC j C jC +=-=+=π(1)解:tt j t j t t j t j e j t j ωωωωωωωsin 4cos 4sin 3cos 3)sin )(cos 43()43(-++=++=+t t Ce RE t C t j ωωωsin 4cos 3)()(-==∴(2)解:)2.1cos(4)4()()(2.1-===-t e e RE Ce RE t C t j j t j ωωω(3)解:)8.0t (j )2t (j t j 8.0j j t j e 4e3e )e 4e3(Ce 2+ωπ+ωωω+=+=π得:)sin(3)8.0cos(4)8.0cos(4)2cos(3)()(t t t t Ce RE t C tj ωωωπωω-+=+++==―――1.4 写出以下时谐矢量的复矢量表示00000)cos(5.0)3()sin (cos 8)sin 4cos 3()()2()2cos(sin 4cos 3)()1(x t kz H z t t x t t t E z t y t x t t V t ωωωωωπωωω-=-++=+++=(1)解:00043)(z i y j x r V+-=(2)解:00)43cos(28)cos(5)(z t x t t V πωϕω--+=00430)88()43(285)(54arcsinz j x j z e x e r V++-=-==-πϕϕ其中 (3)解:00)]sin()[cos(5.05.0)(x kz j kz x e r H kz-==-―――1.6 ]Re[,)22(,)21(000000**⨯⋅⨯⋅-+-=+++=B A B A B A B A z j y j x B z j y j x A ,,,求:假定解:j B A B A B A B A z z y y x x 35-=++=⋅0000000000000025)()22(12113)22()32()31()61(z y x B A RE jj j j z y x B A jB A z j y j x B z j y j x j B B B A A A z y x B A zyxz y x-+=⨯--+=⨯--=⋅+--=--++++-==⨯****得到:则:――――1.7计算下列标量场的梯度xyzu xyy x u xz yz xy u z y x u z y x u =++=++=-+==)5(2)4()3(2)2()1(22222222(1)解:u u grad ∇=)(22022022022202220222222z z y x y yz x x z xy z zz y x y y z y x x x z y x ++=∂∂+∂∂+∂∂=(2)解:u u grad ∇=)( 000224z z y y x x -+=(3) 解:u u grad ∇=)(000)()()(z x y y z x x z y+++++=(4) 解:u u grad ∇=)(00)22()22(y x y x y x+++=(5) 解:u u grad ∇=)(000z xy y xz x yz ++=第二章――2.1.市话用的平行双导线,测得其分布电路参数为: R ’=0.042Ωm -1; L ’=5×10-7Hm -1; G ’=5×10-10Sm -1; C ’=30.5PFm -1. 求传播常数k 与特征阻抗Z c . 答:))((C j G L j R jk '+''+'=ωω)()(C j G L j R Z c '+''+'=ωω代入数据可得:k =(1.385-1.453i) ×10-5; Z c= (1.52 -1.44i) ×103Ω2.2.传输线的特征阻抗Z c = 50Ω,负载阻抗Z L = 75 +75j Ω,用公式和圆图分别求:(1)与负载阻抗对应的负载导纳; (2)负载处的反射系数;(3)驻波系数与离开负载第一驻波最小点的位置Z L解:(1)Y L =Z L1=1501j -(2)ΓL=Z ZZ Z C LCL+-=j j 751257525++=171(7+6j) (3)70863.0)7/6arctan()0(==ψ rad离开负载第一驻波最小点的位置 d min =))0(1(4πψλ+=0.3064λ 2.3min1max min max min 80,50,5/,/4,/2,3/8,,I ,I L C L Z Z Z V d l V V ρλλλλ===参看图,负载电压,求驻波系数,驻波最小点位置传输线长度处的输入阻抗以及。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E试求球内外各点的电位。
《电磁场与电磁波》习题参考答案
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场与电磁波第二版课后练习题含答案
电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。
电磁场与电磁波答案
=
1 r2
∂ ∂r
(r2 sinθ cosφ) +
1 r sinθ
∂ ∂θ
(sin θ
cosθ
cosφ) +
1 r sinθ
∂ ∂φ
(− sinφ) =
2 sinθ cosφ + cosφ − 2sinθ cosφ − cosφ = 0
r
r sinθ
r
r sinθ
er reθ r sinθ eφ
∇× A= 1 ∂ ∂ r2 sinθ ∂r ∂θ
等于零。
解
(1) ∇u
= ex
∂u ∂x
+ ey
∂u ∂y
+ ez
∂u ∂z
= ex (2x + 3) + ey (4 y − 2) + ez (6z − 6) ;
(2)由 ∇u = ex (2x + 3) + ey (4 y − 2) + ez (6z − 6) = 0 ,得
x = −3 2, y =1 2,z =1
量 ex
3 50
+
ey
4 50
+
ez
5 定出;求 (2, 3,1) 点的方向导数值。 50
解
∇Ψ
= ex
∂ ∂x
(
x
2
yz)
+
e
y
∂ ∂y
(
x
2
yz
)
+
ez
∂ (x2 yz) = ∂z
ex 2xyz + ey x2 z + ez x2 y
故沿方向 el = ex
3 50
《电磁场与电磁波》第4版(谢处方_编)课后习题答案_高等教育出版社
1 1 ( ) 2 d y dz ( ) 2 d y dz 2 2 1 2 1 2 1 2 1 2
1 1 2 x 2 ( ) 2 d x dz 2 x 2 ( ) 2 d x d z 2 2 1 2 1 2 1 2 1 2 1 1 1 24 x y ( )3 d x d y 24 x 2 y 2 ( )3 d x d y 2 2 24 1 2 1 2 1 2 1 2
1 r 42 32 5 、 tan (4 3) 53.1 、 2 3 120 故该点的球坐标为 (5,53.1 ,120 ) 1.9 用球坐标表示的场 E e 25 , r r2 (1)求在直角坐标中点 (3, 4, 5) 处的 E 和 E x ;
(2) 在球坐标系中
故 PP 为一直角三角形。 1 2P 3
1 1 1 R1 2 R 2 3 R 1 2 R 2 3 1 7 6 9 17.13 2 2 2 1.3 求 P(3,1, 4) 点到 P(2, 2,3) 点的距离矢量 R 及 R 的方向。 解 rP ex 3 e y ez 4 , rP ex 2 e y 2 ez 3 ,
(2)三角形的面积
S
则
RPP rP rP ex 5 e y 3 ez
且 RPP 与 x 、 y 、 z 轴的夹角分别为
1.4
ex RPP 5 ) cos 1 ( ) 32.31 RPP 35 e R 3 y cos 1 ( y P P ) cos 1 ( ) 120.47 RPP 35 e R 1 z cos 1 ( z PP ) cos 1 ( ) 99.73 RPP 35 给定两矢量 A ex 2 e y 3 ez 4 和 B ex 4 e y 5 ez 6 ,求它们之间的夹角和
04《电磁场与电磁波》练习及答案
电磁学试题库试题4一、填空题(每小题2分,共20分)1、一均匀带电球面,电量为Q,半径为R,在球内离球心R/2处放一电量为q 的点电荷,假定点电荷的引入并不破坏球面上电荷的均匀分布,整个带电系统在球外P点产生的电场强度( )。
2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。
3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势(4、平行板电容器充电后两极板的面电荷密度分别为+σ与-σ,极板上单位面积的受力( )5、一电路如图所示,已知V 121=ε V 92=ε V 83=ε Ω===1321r r rΩ====25431R R R R Ω=32R 则Uab =( )6、两条无限长的平行直导线相距a ,当通以相等同向电流时,则距直导线距离都为a 的一点P 的磁感应强度的大小是( )7、通过回路所圈围的面积的磁通量发生变化时,回路中就产生感应电动势,引起磁通量变化的物理量是( )R R 33r ε54I a Pa a I8、0C C r ε=成立的条件是( )。
9、铁介质的主要特征是( )。
10、麦克斯韦在总结前人电磁学全部成就的基础上,提出了两条假设。
一、选择题(每小题2分,共20分)1、在用试探电荷检测电场时,电场强度的定义为:0q FE =则( )(A )E 与q o 成反比(B )如果没有把试探电荷q o 放在这一点上,则E=0(C )试探电荷的电量q o 应尽可能小,甚至可以小于电子的电量 (D )试探电荷的体积应尽可能小,以致可以检测一点的场强 2、一点电荷q 位于边长为d 的立方体的顶角上,通过与q 相连的三个平面的电通量是( )(A )04εq (B )08εq(C )010εq (D )03、两个平行放置的带电大金属板A 和B ,四个表面电荷面密度为4321σσσσ、、、如图所示,则有( ) (A )3241σ-=σσ=σ,(B )3241σ=σσ=σ, (C )3241σ-=σσ-=σ, (D )3241σ=σσ-=σ,4、如图所示,图中各电阻值均为R ,AB R 为( ) (A )Ω=4AB R (B )Ω=2AB R(C ) R R AB 43=(D ) R R AB 23=5、一圆线圈的半径为R ,载有电流I ,放在均匀外磁场中,如图所示,线圈导线上的张力是:( ) (A )T=2RIB (B )T=IRB (C )T=0(D )T=RIB π26、一个分布在圆柱形体积内的均匀磁场,磁感应强度为B ,方向沿圆柱的轴线,圆柱Q Q 1234A B的半径为R ,B 的量值以κ=dt dB 的恒定速率减小,在磁场中放置一等腰形金属框ABCD (如图所示)已知AB=R ,CD=R/2,线框中总电动势为:( )(A )K R 21633 顺时针方向(B )KR 21633 逆时针方向 (C )KR 243 顺时针方向 (D )KR 243 逆时针方向7、一个介质球其内半径为R ,外半径为R+a ,在球心有一电量为0q 的点电荷,对于R <r <R+a 电场强度为:( )(A )2004r q r επε (B)2004r q πε (C)204r q π (D)2041r q r r πε-ε)(8、在与磁感应强度为B 的均匀恒定磁场垂直的平面内,有一长为L 的直导线ab ,导线绕a 点以匀角速度ω转动,转轴与B 平行,则ab 上的动生电动势为:( )(A )221BL ω=ε(B )2BL ω(C )241BL ω=ε(D )ε=09、放在平滑桌面上的铁钉被一磁铁吸引而运动,其产生的动能是因为消耗了( ) (A )磁场能量; (B )磁场强度; (C )磁场力; (D )磁力线。
电磁场与电磁波第四版课后答案
3
答案: A = ax Ax + ay Ay + az Az
其中, Ax = (
2x2 + x3z + xy2 z + xz3 ) x2 + y2
(x2 + y2 + z2)2 ;
Ay = (
2xy + x2 yz + y3z + yz3) x2 + y2
(x2 + y2 + z2)2 ;
⎤ ⎥ ⎥
=
⎡ sin θ ⎢⎢cosθ
cosϕ cosϕ
⎢⎣ Aiϕ ⎥⎦ ⎢⎣ − sin ϕ
sinθ sinϕ cosθ sinϕ
cosϕ
cosθ ⎤ ⎡ Aix ⎤
−
sin
θ
⎥ ⎥
⎢ ⎢
Aiy
⎥ ⎥
,
0 ⎥⎦ ⎢⎣ Aiz ⎥⎦
而 Aix = Ri sinθi cosϕi , Aiy = Ri sinθi sin ϕi , Aiz = Ri cosϕi 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η
⎢
答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η
⎢
⎢
0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
为 ε = 2.56ε0 ,μ = μ0 , σ = 3.5 ×10−5 S/m,两极板间施加直流电压U0 = 50 V 。求
电磁场与电磁波习题及答案
11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
《电磁场与电磁波》试题含答案
�
(1)标量函数的梯度; (2)求出通过点 (1,0 ) 处梯度的大小。
四、应用体 (每小题 10 分,共 30 分) � ˆ x 3E 0 e − jkz E =e 18.在无源的自由空间中,电场强度复矢量的表达式为
(3) 试写出其时间表达式; (4) 判断其属于什么极化。 19. 两点电荷 q1 = −4C , 位于 x 轴上 x = 4 处, q 2 = 4C 位于轴上 y = 4 处, 求空间点 (0,0,4 ) 处的 (1) 电位; (2) 求出该点处的电场强度矢量。 20.如图 1 所示的二维区域,上部保持电位为
,使电磁场以波的形式
。 。
可以构成电容器。
9.电介质中的束缚电荷在外加电场作用下,完全脱离分子的内部束缚力时,我们把这种现 象称为 。 函数表示成几个单变量函数乘积的方法。
10.所谓分离变量法,就是将一个
二、简述题(每ຫໍສະໝຸດ 题 5 分,共 20 分) � � � ∂D ∇×H = J + ∂t ,试说明其物理意义,并写出方程的积分形 11.已知麦克斯韦第一方程为
5.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以 播出去,即电磁波。 6.随时间变化的电磁场称为 场。 。
的形式传
7.从场角度来讲,电流是电流密度矢量场的
8.一个微小电流环,设其半径为 a 、电流为 I ,则磁偶极矩矢量的大小为 9.电介质中的束缚电荷在外加
。
作用下,完全脱离分子的内部束缚力时,我们把这种
(1) A + B (2) A ⋅ B 17.在无源的自由空间中,电场强度复矢量的表达式为
�
�
� �
� ˆ x 3E 0 − e ˆ y 4 E 0 )e − jkz E = (e
电磁场与电磁波(第四版)课后答案_电科习题
3)
v C
evx
3y2 - 2x
+ evy x2 + evz 2z
问:1.哪些矢量可以由一个标量函数的梯度表示?哪些
矢量可以由一个矢量函数的旋度表示?
2.求出这些矢量的源分布。
1.28利用直角坐标,证明
v fA
vv f A Af
1.29: 矢量
在Av由 evρ=52, evzz验2=z0证和散z=度4围定成理的。圆柱形区域,
分量,根据边界条件可知,两种介质的
2
磁感应强度
uv B1
rr
uv B2
r B
er B
但磁场
强度 H1 H2
3.23一电荷量为 q 质量为 m 的小带电体,放置在无限长导体
平面下方,与平面距离h 。求 q 的值以使带电体上受到的
静电力恰好与重力相平衡(设 m 2103 kg, h 0.02m)。
对
第二章
2.1已知半径为a的导体球面上分布着电荷密度为 s s0 cos 的电荷,式中的 s0
为常数。试计算球面上的总电荷量。
2.6 一个平行板真空二极管内的电荷 体位密于度x=为0,阳 极94 板0U0位(d 于43 )xx23=,d,式极中间阴电极压板 为U0。如果U0 =40V,d=lcm,横截 面积s =10cm2。 求:
验
A
证散度定理
1.21 求矢量
v A
erx
x
ery
x2
erz
y
2
z
沿xy平面上的一个边长为2的正
形再回求路 的Av线对积此分回,路此所正包方围形的的表两面个积边分分,别验与证x斯轴托和克y轴斯相定重理合
电磁波与电磁场第四版答案
电磁波与电磁场第四版答案一、单选题1.垂直于匀强磁场放置一长为1m的通电直导线,导线中电流为2A,所受安培力大小为0.1N,则该磁场的磁感应强度大小为() [单选题] *A.0.05T(正确答案)B.0.1TC.0.2TD.2T2.某一区域的磁感线分布如图所示,M、P为磁场中的两个点,下列说法正确的是()[单选题] *A.M点的磁场方向和P点的磁场方向相反B.M点的磁场方向和P点的磁场方向相同C.M点的磁感应强度小于P点的磁感应强度(正确答案)D.M点的磁感应强度大于P点的磁感应强度3.如图所示,小磁针静止在导线环中。
当导线环通过沿逆时针方向的电流时,忽略地磁场影响,小磁针最后静止时N极所指的方向()[单选题] *A.水平向右B.水平向左C.垂直纸面向里D.垂直纸面向外(正确答案)4.面积为0.75m2的线圈放在匀强磁场中,线圈平面与磁感线垂直,已知穿过线圈平面的磁通量是1.50Wb,那么这个磁场的磁感应强度是() [单选题] *A.0.05T B.1.125T C.2.0T(正确答案)D.0.02T5.首先发现电流的磁效应的物理学家是() [单选题] *A.安培B.法拉第C.奥斯特(正确答案)D.密立根6.某个磁场的磁感线如图所示,如果把一个小磁针放入磁场中,小磁针将()[单选题] *A.顺时针转动(正确答案)B.逆时针转动C.向右移动D.向左移动7.关于定义式(其中B表示磁感应强度,F表示通电导体棒受到的磁场力,I表示通过导体棒的电流强度,L表示导体棒的长度),下列说法正确的是() [单选题] *A.B与F成正比B.I越大,则B越小C.F的方向就是B的方向D.B的大小和方向与IL无关,由磁场本身决定(正确答案)8.如图,通电螺线管轴线上a、b、c三点的磁感应强度大小分别为Ba、Bb、Bc,则()[单选题] *A.Bc>Ba>Bb B.Bb>Bc>BaC.Ba>Bb>Bc(正确答案)D.Ba=Bb=Bc9.下列选项中通电直导线周围磁感线分布正确的是()[单选题] *A.⑴(正确答案)B.⑵ C. ⑶D.⑷10.把螺线管与电源连接,发现小磁针N极向螺线管偏转,静止时所指方向如图所示。
《电磁场与电磁波》习题参考答案
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
电磁场与电磁波典型习题及答案(恒定磁场)
=
8 r
+ 3cotθ
≠
0 ,F
不表示磁感应强度
B。
e) ∇ ⋅ F = − ∂A + ∂A = 0 (A 为常数), J = ∇ ⋅ B = ∇ ⋅ F = 0
∂x ∂y
µ0
µ0
f) ∇ ⋅ F = 1 ∂ (r3r) + ∂2 = 6 ≠ 0 ,F 不表示磁感应强度 B。
r ∂r
∂z
4-4 无限长直线电流垂直于磁导率分别为 µ1 和 µ2 的两种介质的分界面,试求: (1) 两种介质中的磁感应强度 B1 和 B2;(2) 磁化电流分布。
B0x = 0.002 , B0 y = 0.5 , B0z = 0
即
B0 = ex 0.002 + e y 0.5
4-13 真空中有一厚度为 d 的无限大载流块,电流密度为 ez J0 ,在其中心位置有 一半径为 a 的圆柱形空腔。求腔内的磁感应强度。
解:设空腔中同时存在有密度为 ±ez J0 的电流,则可利用安培环路定律和迭加原 理求出空腔内的 B 。
+ π (r 2
− a12 )J 2 ] ⇒
B
=
eφ
⎜⎜⎝⎛
10 3
r
− 10−5 r
⎟⎟⎠⎞
当r
>
a2 时,有 B
= eφ
µ0I 2π r
=
eφ
2 ×10−5 r
4-8 已知在半径为 a 的圆柱区域内有沿轴向方向的电流,其电流密度为
J
= ex
J0r a
,其中 J0 为常数,求圆柱内外的磁感应强度。
1 r
d (r 1) = 0 dr r
在 r=0 处, 具有奇异性。以 z 轴为中心作一个圆形回路 c,由安培环路定律得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。
那么,由1222022101244r r r q q r q q =⇒'='πεπε,同时考虑到d r r =+21,求得d r d r 32 ,3121==可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 31。
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204r q πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-3 直接利用式(2-2-14)计算电偶极子的电场强度。
解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离。
再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离。
两个点电荷相距为l ,场点P 的坐标为(r,θ,)。
根据叠加原理,电偶极子在场点P 产生的电场为⎪⎪⎭⎫ ⎝⎛-=311304r rq r rE πε 考虑到r >> l ,1r e = e r ,θcos 1l r r -=,那么上式变为r rr r r r r r qr r r r q e e E ⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛-=2121102122210))((44πεπε式中 ()2122212211cos 211cos 2---⎪⎪⎭⎫ ⎝⎛-+=-+=θθr lr l r rl l r r以rl为变量,并将2122cos 21-⎪⎪⎭⎫ ⎝⎛-+θr l r l 在零点作泰勒展开。
由于r l <<,略去高阶项后,得θθcos 1cos 11211rl r r l r r +=⎪⎭⎫ ⎝⎛+=-利用球坐标系中的散度计算公式,求出电场强度为θr e e E 3030204sin 2cos 1cos 14r ql r ql r r l r q πεθπεθθπε+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∇-⎪⎭⎫ ⎝⎛+∇-=2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-5 通过电位计算有限长线电荷 的电场强度。
习题图2-4解 建立圆柱坐标系。
令先电 荷沿z 轴放置,由于结构以z 轴对称,场强与φ无关。
为了简单起见,令场点位于yz 平面。
设线电荷的长度为L ,密度为l ρ,线电荷的中点位于坐标原点,场点P 的坐标为⎪⎭⎫⎝⎛z r ,2,π。
利用电位叠加原理,求得场点P 的电位为⎰-=22d 4L L lr l περϕ 式中()220r l z r +-=。
故()2222222202222ln 4 ln 4r L z L z r L z L z r l z l z lL Ll+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++=⎥⎦⎤⎢⎣⎡+-+--=-περπερϕ因ϕ-∇=E ,可知电场强度的z 分量为222202222ln 4r L z L z r L z L z zz E l z +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕy习题图2-5⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+-=2222021214r L z r L z l περ ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛-+-⎪⎭⎫ ⎝⎛++-=2202112114r L z r L z r l περ ()()⎪⎪⎭⎫⎝⎛-+-++-=22220224L z r r L z r r r l περ ()120sin sin 4θθπερ-=rl电场强度的r 分量为222202222ln 4r L z L z r L z L z rr E l r +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕ()()⎝⎛-⎪⎭⎫ ⎝⎛++++++-=222202224r L z L z r L z rl περ()()⎪⎪⎪⎪⎭⎫⎪⎭⎫ ⎝⎛+-+-+-2222222r L z L z r L z r- ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++-=2202122114r L z rL z r L z rl περ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-++-⎪⎭⎫ ⎝⎛-+22212211r L z r L z r L z⎝⎛-⎪⎪⎭⎫⎝⎛+++-=121120tan 11tan 1tan 1114θθθπερr l⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫ ⎝⎛+++22222tan 11tan 1tan 111θθθ ()()()210cos 1cos 14θθπερ----=rl()210cos cos 4θθπερ-=rl式中2tanarc ,2tanarc 21Lz r L z r -=+=θθ,那么,合成电强为()()[]r z lre e E 12120cos cos sin sin 4θθθθπερ---=当L时,πθθ→→ ,021,则合成电场强度为r lre E 02περ=可见,这些结果与教材2-2节例4完全相同。
2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-7 已知真空中半径为a 的圆环上均匀地分布的线电荷密度为l ρ,试求通过圆心的轴线上任一点的电位及电场强度。
习题图2-6习题图2-7y解 建立直角坐标,令圆环位于坐标原点,如习题图2-7所示。
那么,点电荷l l d ρ在z 轴上P 点产生的电位为rll 04d περϕ=根据叠加原理,圆环线电荷在P 点产生的合成电位为()220200202d 4d 41za al r l rz l a l al+===⎰⎰ερπερρπεϕππ 因电场强度ϕ-∇=E ,则圆环线电荷在P 点产生的电场强度为()()232202z a az z z l zz+=∂∂-=ερϕe e E 2-8 设宽度为W ,面密度为S ρ的带状电荷位于真空中, 试求空间任一点的电场强度。
解 建立直角坐标,且令带状电荷位于xz 平面内,如习题图2-8所示。
带状电荷可划分为很多条宽度为x 'd 的无限长线电荷,其线密度为x s 'd ρ。
那么,该无限长线电荷习题图2-8yy(a)(b))产生的电场强度与坐标变量z 无关,即r e E rx s 02d d περ'=式中()22y x x r +'-=()[]y x x rr y r x x y x y xr e e e e e +'-=+'-=1得()[]()[]y x x yx x x s yxe e E +'-+'-'=2202d d περ那么()[]()[]y x x yx x x s w w yxe e E +'-+'-'=⎰-220222d περ⎪⎪⎪⎪⎭⎫⎝⎛+---++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛--=y w x y w x yw x yw x s s 2arctan 2arctan 222ln 4022220περπερy x e e2-9 已知均匀分布的带电圆盘半径为a ,面电荷密度 为S ρ,位于z = 0平面,且盘心与原点重合,试求圆盘 轴线上任一点电场强度E 。
解 如图 2-9所示,在圆盘上取一半径为r ,宽度为r d 的圆环,该圆环具有的电荷量为s r r q ρπd 2d =。
由于对称性,该圆环电荷在z 轴上任一点P 产生的电场强度仅的r 有z 分量。
根据习题2-7结果,获知该圆环电荷在P习题图2-9y产生的电场强度的z 分量为()232202d d zr rzr E s z +=ερ那么,整个圆盘电荷在P 产生的电场强度为()⎪⎪⎭⎫ ⎝⎛+-=+=⎰22023222d 2a z zz z r zrzr s zas zερερe e E 2-10 已知电荷密度为S ρ及S ρ-的两块无限大面电荷分别位于x = 0及x = 1平面,试求10 ,1<<>x x 及0<x 区域中的电场强度。
解 无限大平面电荷产生的场强分布一定是均匀的,其电场方向垂直于无限大平面,且分别指向两侧。
因此,位于x = 0平面内的无限大面电荷S ρ,在x < 0区域中产生的电场强度11E x e E -=-,在x > 0区域中产生的电场强度11E x e E =+。
位于x = 1平面内的无限大面电荷S ρ-,在x < 1区域中产生的电场强度22E x e E =+,在x > 1区域中产生的电场强度22E x e E -=-。