高等数学知识点最全汇总

合集下载

(完整版)高数知识点总结

(完整版)高数知识点总结

高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。

3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。

例如:||x y =连续但不可导。

6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。

(完整版)高等数学基础知识点归纳

(完整版)高等数学基础知识点归纳

(完整版)高等数学基础知识点归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集,记作N。

⑶、全体整数组成的集合叫做整数集,记作Z。

⑷、全体有理数组成的集合叫做有理数集,记作Q。

⑸、全体实数组成的集合叫做实数集,记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。

⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。

⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A??。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。

记作A∪B。

(在求并集时,它们的公共元素在并集中只能出现一次。

高等数学基本知识点大全

高等数学基本知识点大全

高等数学基本知识点大全一、导数和微分在高等数学中,导数和微分是重要的基本概念。

导数描述了函数在某一点的变化率,可以帮助我们求解函数的最值、刻画曲线形状等问题。

微分则是导数的一种运算形式,表示函数在给定点附近的局部线性逼近。

1. 导数的定义和性质:- 导数定义:函数f(x)在点x=a处的导数定义为f'(a) =lim┬(h→0)⁡〖(f(a+h)-f(a))/h〗。

- 导数的几何意义:导数表示曲线在某一点的切线斜率。

- 导数的性质:求导法则包括常数法则、幂函数法则、指数函数和对数函数法则等。

2. 微分的定义和性质:- 微分的定义:设y=f(x)为定义在区间I上的函数,若存在常数dy 使得Δy=f'(x)Δx+dy,其中Δx是x的增量,则称dy为函数f(x)在区间I 上的微分。

- 微分的性质:微分是线性近似,具有微分的小量运算法则。

3. 一阶导数和高阶导数:- 一阶导数:如果函数f(x)在点x处的导数存在,则称f(x)在该点可导,其导数为一阶导数,记作f'(x)或dy/dx。

- 高阶导数:若函数f(x)的导数f'(x)也存在导数,则称导数f'(x)为函数f(x)的二阶导数,记作f''(x)或d²y/dx²。

二、积分和定积分积分和定积分是数学中的重要工具,可以用来求解曲线下的面积、求解定量累计、求解方程等问题。

它们是导数的逆运算。

1. 定积分的定义和性质:- 定积分的定义:设函数f(x)在闭区间[a,b]上有定义,则称函数f(x)在区间[a,b]上的积分为定积分,记作∫_a^b▒f(x)dx。

- 定积分的性质:定积分具有线性性、加法性、估值性等。

2. 积分基本公式和换元积分法:- 积分基本公式:包括常数乘法法则、分步积分法则和换元积分法则等。

- 换元积分法:利用换元积分法可以将一些复杂的积分问题转化为简单的积分形式。

3. 不定积分和定积分的关系:- 不定积分:函数F(x)是f(x)的一个原函数,即F'(x)=f(x),则称F(x)为f(x)的不定积分,记作∫f(x)dx=F(x)+C,其中C为常数。

(完整版)高等数学完全归纳笔记(全)

(完整版)高等数学完全归纳笔记(全)

一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

高等数学基础知识点大全(9页完美打印版)

高等数学基础知识点大全(9页完美打印版)

高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作∅,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

即A⊆A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。

大学高数知识点总结

大学高数知识点总结

大学高数知识点总结大学高数知识点总结一、代数:1、函数及其图象:定义域、值域、增函数、减函数、奇函数、偶函数、有界函数、无界函数、相交函数、无穷小量的概念、函数的极限及其性质。

2、不等式:一元不等式与多元不等式的性质、解不等式的方法以及在几何中的应用。

3、导数:函数的导数的定义、性质、计算、利用导数解析函数的最值问题;高阶导数的概念以及利用它确定函数图象的单调性。

4、曲线的积分:曲线的面积、积分的定义、计算方法、利用积分求曲线面积、平面曲线的积分、特殊函数的积分。

5、复数:复数的概念、运算规则、虚部抽象概念、复数函数、复数解析函数及其图象、利用几何性质解决复数问题。

6、三角函数:三角函数的概念、函数表达式、图象、关系式、函数的性质、函数的变换、求解三角函数的方法、应用。

7、统计:概率的概念、抽样理论、统计分布、误差分析、检验理论。

二、初等数论:1、素数及其分解:素数的概念、素数的分解法、素数的基本性质、素数的充要条件。

2、同余理论:同余方程的概念、同余方程的解法、同余方程的性质、模的概念及其性质。

3、欧几里德算法:求最大公约数、求最小公倍数、求逆元、斯特林公式、欧几里得定理及其应用。

4、置换:置换的概念、置换的性质、置换的构成、置换的表示法、置换的应用。

5、图论:图的概念、图的构成、图的性质、图的表示法、图的生成算法、图的应用。

三、几何:1、几何形体:正n边形、正多边形、空间几何体、椭圆、圆锥、圆柱、圆台等几何形体的性质及其应用。

2、切线、切面:曲线的切线、曲面的切面、曲线的法线方向、曲面的法线方向、曲线的曲率、曲面的曲率及其定义。

3、投影:正射投影、透视投影、锥体投影等投影的概念及其应用。

4、立体视角:立体视角的概念、立体视角的定义及其应用。

四、空间几何:1、几何性质:投影的性质、平面的性质、空间的性质、直线的性质、平行线的性质、平面的性质、直线的性质、平行线的性质、面的性质、曲线的性质、曲面的性质、四边形的性质等。

高数知识点

高数知识点

高数知识点总结1.函数定义:x 经过对应法则f 唯一确定y三要素:定义域、值域和对应法则基本性质:单调性、奇偶性、周期性、有界性基本初等函数:反对幂指三复合函数:函数套函数y =f(g (x ))(注意复合次序及取值范围) 初等函数:由常数和基本的初等函数经过有限次的四则运算和有限次的复合步骤形成的一个式子的函数2.极限(1)定义:当自变量在某个变化的过程中,函数无限的接近某一个常数A ,则收敛,lim x→?f (x )=A (2)左右极限:左右极限存在且相等,则极限存在。

(3)求极限的方法:①四则运算(直接代入)②C 0或C ∞型:利用无穷大与无穷小的关系C 0=∞,C ∞=0 ③00型:去零因子(因式分解或有理化)、洛必达法则(上下求导) ④∞∞型:看最高次项、洛必达法则 ⑤无穷小的性质(有界变量与无穷小量的乘积是无穷小量) ⑥等价无穷小替换(只能乘积因子)0~sin ~arcsin ~tan ~arctan ~ln(1)~1x x x x x x x x e →+-当时,,211cos ~.2x x -⑦两个重要极限:lim x→0sinx x=1(适用于含三角函数的00) lim x→∞(1+1x)x =e (1∞ 型的幂指函数) 3.函数的连续性(1)定义:0lim 0x y ∆→∆=,极限值=函数值 (2)单侧连续:左连续且右连续⇔连续(3)间断点:①第一类间断点:左右极限都存在可去间断点(左右相等但不等于此处函数值)、 跳跃间断点(左右不相等)②第二类间断点:(左右极限至少有一个不存在) 无穷间断点、振荡间断点4.导数(变化率问题):(1)定义:增量比值取极限,极限存在即可导lim △x→0△y △x =A几何意义:切线的斜率单侧导数:左导右导存在且相等,则可导(2)常用导数公式(基本的初等函数求导) 复合函数求导: x u x y y u '''=⋅(外导*内导)隐函数求导: 参数方程求导:''d ()=d ()t t y y t x t x ψϕ'='5.导数的应用(1)单调性:()0f x '>单增,()0f x '<单减(2)极值:(驻点和不可导点为可能极值点) 法一:f ′(x )左负右正取极小,f ′(x )左正右负取极大 法二:f ′′(x 0)<0时, f(x)在x 0处取得极大值;f ′′(x 0)>0时, f(x)在x 0处取得极小值(3)最值:比较端点值和极值出最值(4)凹凸性:()0f x ">,则在[],a b 上为凹的;()0f x "<,则在[],a b 上为凸的. 拐点:其横坐标是()0f x "=的点或()f x 二导不存在的点. 微分:00|()()x x dy f x x f x dx =''=∆=6.不定积分:(1)定义:原函数的全体()d ()f x x F x C =+⎰几何意义:积分曲线族(2)不定积分的计算:①直接积分法②换元积分法:第一类还原法(凑微分法)()()(())()d (())d ()()d ()(())u x g x dx f x x x f x x f u u F u C F x Cϕϕϕϕϕϕ='====+=+⎰⎰⎰⎰第二类还原法 1()()d (())()d t x f x x f t t tψψψ-='=⎰⎰(根式代换、三角代换、倒数代换)③分部积分法: d d u v uv v u =-⎰⎰(反对幂指三,谁在前谁设为u )7.定积分:(1)定义:分割、近似、求和、取极限,极限存在即可积01()d lim ()nb i i a i I f x x f x λξ→===∆∑⎰ 几何意义:曲边梯形的面积(2)性质:线性性、依区间可加性:()d ()d ()d b c ba a c f x x f x x f x x =+⎰⎰⎰ 几何度量性:∫cdx =c(b −a)ba保号性、保序性、积分绝对值不等式、估值定理:()()d ()b a m b a f x x M b a -≤≤-⎰ 积分中值定理:至少存在一点[,]a b ξ∈,使得 ()d ()()ba f x x fb a ξ=-⎰.(3)定积分的计算:(求原函数,算增量)直接积分法、换元积分法、分部积分法+微积分基本公式 ()()|()()bba a f x dx F x Fb F a ==-⎰。

高等数学知识点汇总

高等数学知识点汇总

高等数学知识点高等数学知识点汇总通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

下面小编给大家介绍高等数学知识点汇总,赶紧来看看吧!高等数学知识点汇总第一章函数与极限知识点1:函数的概念、函数定义域的求法知识点2:函数的分类、特殊类型的函数知识点3:函数的基本性质知识点4:数列极限的概念与性质知识点5:函数极限的概念与性质知识点6:证明极限式与证明极限不存在的方法知识点7:无穷小与无穷大的概念与关系知识点8:极限的四则运算法则知识点9:复合函数的极限运算法则知识点10:极限存在的两个准则知识点11:两个重要极限知识点12:无穷小的比较知识点13:函数连续性的概念及判断知识点14:函数间断点的求法及分类知识点15:闭区间上连续函数的性质第二章导数与微分知识点16:导数的概念知识点17:导数的几何意义、平面曲线的切线与法线方程的求法知识点18:复合函数的求导知识点19:反函数的求导知识点20:隐函数及参数方程的求导知识点21:微分的概念及运算知识点22:一元函数微分形式的不变性知识点23:导数的物理意义知识点24:按定义求导的题目类型知识点25:可导、可微与连续三个概念之间的关系知识点26:奇偶函数与周期函数的导数的性质知识点27:用求导公式与法则求导数知识点28:函数的高阶导数第三章微分中值定理与导数的应用知识点29:罗尔定理、拉格朗日中值定理的应用知识点30:柯西中值定理的应用知识点31:有关中值定理证明题的典型实例知识点32:洛必达法则求极限知识点33:求极限的方法总结知识点34:函数的零点(方程的根)存在性与唯一性的证明知识点35:函数的零点(方程的根)个数的讨论知识点36:不等式的证明方法总结知识点37:泰勒公式的求法知识点38:泰勒公式的应用知识点39:函数的单调性及判别知识点40:函数的极值及判别知识点41:函数的最值及判别知识点42:渐近线的分类与求法知识点43:曲线的凸凹性和拐点知识点44:曲率、曲率圆及曲率半径(数学一、二)知识点45:弧微分知识点46:导数在经济领域的应用(数学三)第四章不定积分知识点47:不定积分的概念与性质知识点48:不定积分的换元积分法知识点49:不定积分的分部积分法知识点50:有理函数与三角有理式的不定积分知识点51:不定积分计算技巧的典型实例第五章定积分知识点52:定积分的概念与基本性质知识点53:变上限的积分及其导数知识点54:奇偶函数与周期函数的积分性质知识点55:涉及定积分证明题型的典型实例知识点56:用牛顿-莱布尼兹定理计算定积分知识点57:定积分的换元积分法知识点58:定积分的分部积分法知识点59:定积分的特殊计算方法的典型实例知识点60:无穷限的.反常积分的概念与计算知识点61:无界函数的反常积分的概念与计算第六章定积分的应用知识点62:用定积分求平面图形的面积知识点63:用定积分求特殊立体的体积知识点64:用定积分求弧长知识点65:定积分的物理应用(数一、二)知识点66:连续函数的平均值(数一、二)第七章空间解析几何与向量代数知识点67:空间直角坐标系及相关概念(数一)知识点68:向量的属性、向量的长度与夹角(数一)知识点69:向量的各类运算及其运算法则(数一)知识点70:用向量解决的几何问题(数一)知识点71:平面的法向量与平面方程(数一)知识点72:直线的方向向量与直线方程(数一)知识点73:两个平面间的关系(数一)知识点74:两条直线间的关系(数一)知识点75:直线与平面的关系(数一)知识点76:点到平面的距离的计算(数一)知识点77:点到直线的距离的计算(数一)知识点78:旋转曲面(数一)知识点79:柱面(数一)知识点80:二次曲面(数一)知识点81:空间曲线的方程及其在坐标面上的投影(数一)第八章多元函数微分法及其应用知识点82:多元函数的概念和几何意义知识点83:二元函数的极限知识点84:二元函数的连续性知识点85:偏导数的概念与常规计算知识点86:高阶偏导数知识点87:多元函数可微与全微分知识点88:连续,可偏导,可微的关系知识点89:多元复合函数的求导法则知识点90:多元函数的微分形式不变性知识点91:多元隐函数的求导知识点92:多元函数的极值问题知识点93:条件极值问题、拉格朗日乘数法知识点94:多元函数的最值问题知识点95:方向导数(数一、二)知识点96:数量场的梯度(数一、二)知识点97:空间曲线的切线与法平面(数一、二)知识点98:空间曲面的切平面与法线(数一、二)知识点99:二元函数的二阶泰勒公式(数一)第九章重积分知识点100:重积分的概念与性质知识点101:直角坐标下二重积分的定限与计算知识点102:极坐标下二重积分的定限与计算知识点103:直角坐标下三重积分的定限与计算知识点104:柱面坐标下三重积分的定限与计算知识点105:球面坐标下三重积分的定限与计算知识点106:重积分积分次序的交换知识点107:利用积分区域的对称性及被积函数的奇偶性求重积分的技巧第十章曲线积分与曲面积分知识点108:第一类曲线积分的概念与计算知识点109:第二类曲线积分的概念与计算知识点110:两类曲线积分之间的联系知识点111:二元函数全微分求积知识点112:格林公式及其应用知识点113:曲线积分与路径无关的条件知识点114:第一类曲面积分的概念与计算知识点115:第二类曲面积分的概念与计算知识点116:两类曲面积分之间的联系知识点117:高斯公式及其应用知识点118:通量与散度知识点119:斯托克斯公式及其应用知识点120:环流量与旋度知识点121:涉及重积分与曲线曲面积分的证明题总结第十一章无穷级数知识点122:级数的概念及性质(数一、三)知识点123:级数收敛的概念与判别法(数一、三)知识点124:正项级数的审敛法(数一、三)知识点125:交错级数、莱布尼兹判别法(数一、三)知识点126:函数项级数与幂级数的概念(数一、三)知识点127:函数的幂级数展开(数一、三)知识点128:阿贝尔判别法(数一、三)知识点129:幂级数的收敛域(数一、三)知识点130:幂级数的和函数(数一、三)知识点131:绝对收敛与条件收敛(数一、三)知识点132:傅里叶级数的展开式的求法(数一)知识点133:傅里叶级数的周期延拓(数一)知识点134:傅里叶级数的奇偶延拓(数一)第十二章微分方程知识点135:微分方程的基本概念知识点136:可分离变量的微分方程知识点137:齐次微分方程知识点138:一阶线性微分方程知识点139:全微分方程知识点140:伯努利方程知识点141:用变量替换解微分方程举例知识点142:含变限积分的方程知识点143:可降阶的高阶微分方程知识点144:线性微分方程解的性质和结构知识点145:二阶常系数齐次线性方程知识点146:n阶常系数齐次线性方程知识点147:二阶常系数非齐次线性方程知识点148:欧拉方程(数学一)知识点149:差分方程(数学三)知识点150:微分方程应用题的典型实例。

高等数学知识点汇总

高等数学知识点汇总

高等数学知识点汇总高等数学知识点汇总1. 集合:集合是一组具有特定意义的对象的总称。

集合可以根据不同条件被分类,如有界集合、无界集合、空集合、子集、伯努利子集、近似集合等。

2. 函数:函数是一种特殊的数学关系,它用于表示一个自变量和它的函数值之间的对应关系。

如果一个函数的自变量和因变量是多元的,那么就称这个函数为多元函数。

3. 微积分:微积分是数学中的一个重要分支,它研究数量之间的变化。

它主要有两个重要的概念:·微分学,它是用极限的思想去研究函数之间的变化·积分学,它是用定积分的思想去求解函数之间的面积4. 相似几何:相似几何是一种特殊的几何图形,它指的是两个图形之间存在着唯一的比例,即它们之间的长度比例,面积比例是相等的。

5. 概率统计:概率统计是数学中的一个重要分支,它主要研究随机事件的发生概率。

它设计了几种概率分布,如二项分布、泊松分布、正态分布、贝叶斯分布等。

6. 数列:数列是由一些有特宁顺序排列的数字或元素组成的序列。

数列分为等差数列、等比数列、定点数列和其他特殊数列。

7. 极限:极限是数学中的一个重要概念,它用来描述一个变量在不变的情况下,它的初始值或最终值无限接近但又不等于某一特定值。

8. 椭圆:椭圆是一种曲线,可以通过椭圆方程来表示。

它具有两个焦点和一个长轴和短轴,这两个轴是椭圆的解释。

它在物理学中用来计算椭圆偏心率和圆周率。

9. 向量:向量是指一个数量,它有大小和方向。

它可以用来表示几何形状的位置或运动,也可以用来描述物理量,如力、速度和加速度。

10. 四元数:四元数又称复数,它是一种用来表示复平面上变量之间关系的数学形式,一个四元数由实部和虚部组成,它们与实数的加减乘除运算类似。

高数学习笔记总结,帮你快速复习数学知识

高数学习笔记总结,帮你快速复习数学知识

高数学习笔记总结,帮你快速复习数学知识高数学习笔记总结:
一、函数与极限
1. 函数的定义:函数是数学表达关系的符号,它表示两个变量之间的依赖关系。

函数的定义域和值域是函数的两个重要属性。

2. 极限的概念:极限是函数在某个点附近的变化趋势,它可以用来研究函数的特性。

极限的运算法则包括加减乘除和复合函数的极限运算法则。

3. 无穷小和无穷大的概念:无穷小是指一个函数在某个点的值趋于0,而无穷大是指一个函数在某个点的值趋于无穷大。

无穷小和无穷大是研究函数的重要工具。

二、导数与微分
1. 导数的概念:导数是函数在某一点的切线的斜率,它可以用来研究函数的单调性、极值、拐点等特性。

导数的运算法则包括求导法则和复合函数的导数法则。

2. 微分的概念:微分是函数在某一点附近的小增量,它可以用来近似计算函数的值。

微分的运算法则包括微分的基本公式和微分的链式法则。

3. 导数与微分的应用:导数和微分的应用非常广泛,例如求极值、求拐点、近似计算、优化问题等等。

三、积分与级数
1. 积分的概念:积分是定积分和不定积分的总称,它可以用来计算面积和体积等几何量。

定积分和不定积分的计算方法包括基本公式法和凑微分法等等。

2. 级数的概念:级数是无穷多个数的和,它可以用来研究函数的性质和行为。

级数的分类包括几何级数、调和级数、幂级数等等。

3. 积分与级数的应用:积分和级数的应用非常广泛,例如计算面积和体积、近似计算、信号处理等等。

(完整版)高数知识点总结

(完整版)高数知识点总结

高数重点知识总结1、基本初等函数: 反函数 (y=arctanx),对数函数 (y=lnx) ,幂函数 (y=x) ,指数函数 ( y a x ),三角函数 (y=sinx) ,常数函数 (y=c) 2、分段函数不是初等函数。

3、无量小:高阶 +低阶 =低阶比方: limx 2x lim x 1xxx 0x(1)limsin x11 x4、两个重要极限: 1(2) lim 1 x xe lim 1ex 0xx 0x xx 0 , f ( x) 0, g( x)f ( x)g ( x) lim f ( x) g (x)经验公式:当 x, lim 1ex x 0xx 01lim3xxe 3比方: lim 1 3x xe x 0x 05、可导必然连续,连续未必可导。

比方: y | x |连续但不可以导。

6、导数的定义: limf (xx) f ( x)f '( x)lim f (x)f (x 0 )f ' x 0x 0xxx 0xx 07、复合函数求导: df g( x)f ' g( x) ? g'( x)dx112 x2 x 1比方: yxx , y'2 xx4 x 2x x8、隐函数求导: (1)直接求导法; (2)方程两边同时微分,再求出dy/dxx 2 y 2 1比方: 解:法 (1), 左右两边同时求导 , 2x 2 yy' 0 y'xy法( 2), 左右两边同时微分 ,2xdx 2 ydy dy xdx y9、由参数方程所确定的函数求导: 若yg(t) ,则 dy dy / dtg '(t),其二阶导数:xh(t)dxdx / dth'(t)d 2 y d dy / dxd (dy / dx)d g' (t ) / h'(t )dt dtdx 2dxdx / dth' (t )10、微分的近似计算: f ( x 0 x) f ( x 0 )x ? f '( x 0 ) 比方:计算 sin 3111、函数中止点的种类: (1) 第一类:可去中止点和跳跃中止点;比方:y sin x ( x=0x 是函数可去中止点) , y sgn(x) (x=0 是函数的跳跃中止点)(2) 第二类:振荡中止点和无量中止点;比方:f ( x) sin1 (x=0 是函数的振荡中止点) , y 1(x=0 是函xx数的无量中止点) 12、渐近线:水平渐近线: ylim f (x)cx铅直渐近线: 若,lim f ( x),则 x a 是铅直渐近线 .x a斜渐近线: 设斜渐近线为 yax b, 即求 a limf ( x), b lim f ( x)axxxx比方:求函数 yx3x 2x 1的渐近线x 2113、驻点:令函数 y=f(x) ,若 f'(x0)=0 ,称 x0 是驻点。

高等数学知识点大全

高等数学知识点大全

高等数学知识点大全高考高等数学知识点篇一极限1、知识范围(1)数列极限的概念数列、数列极限的定义(2)数列极限的性质性、有界性、四则运算法则、夹通定理、单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义、左、右极限及其与极限的关系趋于无穷时函数的极限、函数极限的几何意义(4)函数极限的性质性、四则运算法则、夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的阶(6)两个重要极限2、要求(1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

篇二高考数学解答题部分主要考查七大主干知识:第一,函数与导数。

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计。

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。

是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。

以不变应万变。

对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

高数总结知识点

高数总结知识点

高数总结知识点一、函数与极限函数的概念、性质及其图像。

函数的极限定义、性质及其运算。

无穷小与无穷大的概念及关系。

极限存在准则(夹逼准则、单调有界准则等)。

二、导数与微分导数的定义、性质及几何意义。

导数的计算(包括基本初等函数的导数、复合函数求导法则、隐函数求导、参数方程求导等)。

高阶导数的概念及计算。

微分的定义、性质及运算。

三、微分中值定理与导数的应用微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理等)。

洛必达法则及其应用。

函数的单调性、极值、最值及凹凸性的判定。

曲线的渐近线、拐点及图形的描绘。

四、不定积分与定积分不定积分的概念、性质及基本积分公式。

不定积分的计算(包括凑微分法、换元积分法、分部积分法等)。

定积分的概念、性质及计算。

定积分的应用(如面积、体积、弧长、功、平均值等的计算)。

五、向量代数与空间解析几何向量的概念、性质及运算。

空间直角坐标系及点的坐标表示。

向量的坐标表示及运算。

平面与直线的方程及其位置关系。

六、多元函数微分学多元函数的概念、性质及极限与连续。

偏导数的定义、计算及几何意义。

全微分的概念及计算。

多元函数的极值与最值问题。

七、多元函数积分学二重积分的概念、性质及计算。

三重积分的概念及计算。

曲线积分与曲面积分的概念及计算。

八、无穷级数常数项级数的概念、性质及收敛判别法。

函数项级数的概念及一致收敛性。

幂级数的概念、性质及运算。

傅里叶级数及其应用。

九、微分方程微分方程的概念及分类。

一阶微分方程的解法(分离变量法、凑微分法等)。

高阶微分方程的解法(降阶法、幂级数解法等)。

微分方程的应用(如物理、化学、生物等领域中的实际问题)。

以上只是高等数学的一些主要知识点,实际上高等数学的内容非常丰富且深入,需要学习者不断地探索和实践。

高等数学基本知识点大全大一复习,考研必备

高等数学基本知识点大全大一复习,考研必备

大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

高数基础知识总结与重点概念整理

高数基础知识总结与重点概念整理

高数基础知识总结与重点概念整理
一、导数与微分
导数:描述函数在某一点附近的变化率,是函数值的极限。

可导性:函数在某点可导,当且仅当该点附近存在一个定义恰当的导数。

微分:一个近似值,表示函数在某点附近的小变化所引起的函数值的大致变化。

二、积分
不定积分:求一个函数的原函数(或反导数),即求函数的不定积分。

定积分:对一个区间上函数的值的总和的量度,即求函数的定积分。

微积分基本定理:定积分可化为不定积分的计算。

三、级数
数列:一个数字序列。

无穷级数:无穷多个数的和,即数列的和。

收敛性:无穷级数趋于一个有限的和的性质称为收敛性。

发散性:无穷级数不收敛的性质称为发散性。

四、多元函数
多元函数:定义在多个变量上的函数。

偏导数:多元函数对一个变量的导数。

方向导数:描述函数在某点处沿某一方向的变化率。

梯度:方向导数的最大值,表示函数在某点处沿梯度方向的增长最快的方向。

五、微分方程
微分方程:包含未知函数的导数或微分的方程。

初值问题:给定初始条件的微分方程问题。

通解与特解:满足微分方程的解称为通解,满足特定初始条件的解称为特解。

高数学公式和知识点笔记

高数学公式和知识点笔记

高数学公式和知识点笔记高等数学是一门重要的基础学科,包含了众多的公式和知识点。

以下是我为大家整理的一份较为全面的高数学公式和知识点笔记,希望能对大家的学习有所帮助。

一、函数与极限(一)函数函数的概念:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个 x∈D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x∈D。

函数的性质:1、单调性:若对于定义域内的任意 x₁< x₂,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),则称函数 f(x)在该区间上单调递增(或单调递减)。

2、奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数f(x)为偶函数;若 f(x) = f(x),则称函数 f(x)为奇函数。

(二)极限极限的定义:设函数 f(x)在点 x₀的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当 x 满足 0 <|x x₀| <δ 时,对应的函数值 f(x)都满足|f(x) A|<ε,那么常数 A 就叫做函数 f(x)当x→x₀时的极限,记作lim(x→x₀) f(x) = A。

极限的运算:1、四则运算:若lim(x→x₀) f(x) = A,lim(x→x₀) g(x) = B,则lim(x→x₀) f(x) ± g(x) = A ± B;lim(x→x₀) f(x) × g(x) = A × B;lim(x→x₀) f(x) / g(x) = A / B(B ≠ 0)。

2、两个重要极限:lim(x→0) (sin x / x) = 1;lim(x→∞)(1 +1 / x)ⁿ = e(n 为常数)。

二、导数与微分(一)导数导数的定义:函数 y = f(x)在点 x₀处的导数 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx。

【专转本】高数知识点汇总

【专转本】高数知识点汇总

【专转本】高数知识点汇总
以下是高等数学的一些重要知识点的汇总:
1. 极限:
- 变量趋于无穷时的极限计算
- 函数的左极限和右极限
- 极限的性质,如极限的唯一性、四则运算法则、夹逼定理等- 无穷小量和无穷大量的概念
2. 偏导数与全微分:
- 多元函数对于一个变量的偏导数
- 多元函数的全微分和偏导数的关系
- 隐函数求导法则
- 高阶偏导数和混合偏导数
3. 微分法:
- 泰勒展开式和麦克劳林展开式的应用
- 最大值和最小值的存在性和求解方法
- 条件极值和拉格朗日乘子法
4. 不定积分:
- 不定积分的定义和性质
- 基本积分公式和常用积分公式
- 函数的换元积分法和分部积分法
- 无穷区间上的积分计算方法
5. 定积分:
- 定积分的定义和性质
- 牛顿-莱布尼茨公式和基本定理的应用
- 用定积分计算曲线的弧长、面积和体积
6. 微分方程:
- 一阶微分方程的解法,如可分离变量法、齐次方程和一阶线
性方程等
- 高阶微分方程的解法,如常系数线性齐次方程和非齐次方程

- 二阶线性非齐次方程的特解法和待定系数法
以上是高等数学中一些重要的知识点的汇总,但高等数学的内容非常广泛深入,上述只是其中的一部分,想要在高数考试中取得好的成绩,需要全面掌握这些知识点,并进行大量的练习。

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 连续函数的定义与性质- 闭区间上连续函数的定理(确界存在定理、中值定理、罗尔定理等)2. 导数与微分- 导数的定义与几何意义- 导数的计算方法(基本导数公式、链式法则、乘积法则、商法则、隐函数求导等)- 高阶导数- 微分的定义与应用- 泰勒级数与麦克劳林级数3. 积分学- 不定积分的概念与性质- 基本积分表与积分技巧(换元法、分部积分法等)- 定积分的定义与性质- 定积分的应用(面积、体积、弧长、工作量等)- 微积分基本定理- 积分技巧(特殊技巧、积分表的使用等)4. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值问题与拉格朗日乘数法- 梯度、方向导数与切平面- 多重积分的概念与计算(二重积分、三重积分)5. 向量代数与空间解析几何- 向量的运算与性质- 点、直线与平面的方程- 空间曲线与曲面的方程6. 级数- 级数的基本概念(数项级数、幂级数、函数项级数)- 收敛性判断(柯西准则、比较判别法、比值判别法、根值判别法等)- 幂级数的收敛半径与收敛区间- 傅里叶级数7. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程- 特殊类型的微分方程(贝塞尔方程、勒让德方程等)8. 复变函数- 复数的基本概念与运算- 解析函数的概念与性质- 复变函数的积分与柯西积分定理- 留数定理与应用9. 泛函分析初步- 赋范线性空间与内积空间- 线性算子与线性泛函- 正交性与谱理论初步10. 概率论与数理统计- 随机事件与概率的定义- 随机变量与分布函数- 多维随机变量及其分布- 大数定律与中心极限定理- 统计量的分布与假设检验以上是高等数学的主要知识点概要。

每个部分都需要深入学习并通过大量的练习来掌握。

这些知识点构成了高等数学的基础,对于理解和应用更高级的数学概念至关重要。

高等数学之高中知识点总结

高等数学之高中知识点总结

高等数学之高中知识点总结一、微积分微积分是高等数学中最基础也是最重要的内容之一。

微积分包括微分学和积分学两部分内容,主要研究函数的变化规律和面积、长度、体积等问题。

1. 函数及其性质函数的基本概念:自变量、因变量、变量域、值域等。

初等函数:常函数、幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数等。

函数的性质:单调性、奇偶性、周期性等。

极限与连续:函数极限的概念、极限性质、无穷小与无穷大、函数连续性及其判别法。

2. 微分学导数的定义及其几何意义:导数的定义、导数的几何意义、导数的性质。

常用函数的导数:常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等的导数。

高阶导数、隐函数与参数方程的导数、导数的运算法则。

微分:微分的概念、微分的性质、高阶微分、微分的应用。

泰勒公式与洛必达法则。

3. 积分学不定积分:不定积分的概念、基本积分、换元积分法、分部积分法、有理分式的积分、反常积分等。

定积分:定积分的概念、定积分的性质、定积分的计算法、变限积分的导数公式和积分公式。

定积分的应用:定积分的几何应用、物理应用、概率统计应用等。

二、线性代数线性代数是研究多维空间中向量、矩阵、线性方程组及其相关概念和理论的数学学科。

1. 线性方程组与矩阵线性方程组:线性方程组的概念、线性方程组的解的判别法、线性方程组的解的结构。

矩阵与矩阵的运算:矩阵的概念、矩阵的运算、矩阵的初等变换、矩阵的秩与逆。

2. 向量空间向量的概念、向量的线性运算和向量空间的性质。

向量空间的基与维数:线性无关组、向量组的秩、向量空间的基、维数。

3. 线性变换与矩阵的相似性线性变换的概念、线性变换的矩阵表示、线性变换与矩阵的相似性。

特征值与特征向量:特征值与特征向量的概念、求特征值与特征向量的方法。

4. 线性空间的结构内积、内积空间、正交向量组。

正交矩阵、正交变换。

三、数学分析数学分析是数学的一个重要分支,主要研究实数系统上的连续函数和变量的极限等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(t )
连续,
公 式 2 . lim⎜⎛1 + 1 ⎟⎞n = e ; lim⎜⎛1 + 1 ⎟⎞u = e ;
n→∞⎝ n ⎠
u→∞⎝ u ⎠
lim (1
+
v
)1 v
=
e
v→0
则 dy dx
=
f [ϕ2 (x)]ϕ2′ (x) −
f [ϕ1(x)]ϕ1′(x)
4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式(比用等价无穷小更深刻)(数学一和
⎡ f (x)⎤′
⎢ ⎣
g
(x)
⎥ ⎦
=
f ′(x)g(x) − f (x)g′(x) g 2 (x)
3.复合函数运算法则
(g(x) ≠ 0)
设 y = f (u),u = ϕ(x) ,如果ϕ(x) 在 x 处可导,f (u)
在对应点 u 处可导,则复合函数 y = f [ϕ (x)]在 x 处可导,
性质。这些性质以后都要用到。
(cot x)′ = − csc2 x d cot x = − csc2 xdx (sec x)′ = sec x tan x d sec x = sec x tan xdx
定理 1.(有界定理)如果函数 f (x) 在闭区间 [a,b]上 (csc x)′ = − csc x cot x d csc x = − csc x cot xdx
与 f (b)异号,则在 (a,b)内至少存在一个点ξ ,使得
f (ξ ) = 0
这个推论也称为零点定理 五.导数与微分计算
1.导数与微分表
(c)′ = 0
d(c) = 0
( ) ( ) xα ′ = α xα−1(α 实常数)d xα = α xα−1dx(α 实常数)
(2)第二类间断点 第一类间断点以外的其他间断点统称为第二类间断 点。 常见的第二类间断点有无穷间断点和振荡间断点。
2
Edited by 杨凯钧 2005 年 10 月
( )e x ′ = e x
de x = e x dx
考研数学知识点-高等数学
ψ ′(t)存在,且ϕ ′(t) ≠ 0 ,则
(arcsin x)′ = 1
1− x2
d arcsin x = 1 dx 1− x2
(arccos x)′ = − 1
d arccos x = − 1 dx
三.函数的间断点的分类 函数的间断点分为两类: (1)第一类间断点
设 x0 是函数 y = f (x)的间断点。如果 f (x) 在间断点
x0 处的左、右极限都存在,则称 x0 是 f (x) 的第一类间断
点。 第一类间断点包括可去间断点和跳跃间断点。

f (ξ ) = c
推论:如果函数 f (x) 在闭区间 [a,b]上连续,且 f (a)
有时也写成 f (x0 + ∆x) − f (x0 ) = f ′(x0 + θ∆x)⋅ ∆x
(2) y = a x (a > 0, a ≠ 1) y (n) = a x (ln a)n
(0 < θ < 1)
(3) y = sin x (4) y = cos x
y (n) = sin⎜⎛ x + nπ ⎟⎞ ⎝ 2⎠
考研数学知识点-高等数学
一. 函数的概念 1.用变上、下限积分表示的函数
公式 1. lim sin x = 1 x→0 x
(1) y
=
x
∫0
f (t)dt ,其中
f (t)连续,则 dy
dx
=
f (x)
∫ (2)y =
ϕ2 (x) ϕ1 (x)
f
(t )dt
,其中 ϕ1 (x )
,ϕ 2
(x ) 可导,f
定理 3.(介值定理)如果函数 f (x) 在闭区间 [a,b]上
连续,且其最大值和最小值分别为 M 和 m ,则对于介于 m
和 M 之间的任何实数 c ,在 [a,b]上至少存在一个ξ ,使
存在] 8.利用定积分定义求极限
∑ ∫ 基本公式 lim 1 n f ⎜⎛ k ⎟⎞ = 1 f (x)dx [如果存在] n n→∞ k =1 ⎝ n ⎠ 0
法如下:
把 F (x, y) = 0 两边的各项对 x 求导,把 y 看作中间变
量,用复合函数求导公式计算,然后再解出 y′ 的表达式(允 许出现 y 变量)
7.对数求导法则 先对所给函数式的两边取对数,然后再用隐函数求导
方法得出导数 y′ 。
都成立。因此称为一阶微分形式不变性。
4.由参数方程确定函数的运算法则
f ′(x) ≠ 0

g′(y) =
f
1
′(x
)
=
1
f ′[g(y)]
( f ′(x) ≠ 0)
二阶导数
g ′′( y )
=
d [g ′( y )]
=
⎡ d⎢

f
1⎤
′(x)⎥⎦

1
dy
dx dy
dx
=

[
f f
′′(x) ′(x)]3
=

{
f f
′′[g ( y )] ′[g(y)]}3
( f ′(x) ≠ 0)
整数),则
lim
n→∞
xn
=
A 存在,且 A ≥
m
( ) ( ) arctan x = x − x3 + x5 − Λ + − 1 n+1 x 2n+1 + 0 x 2n+1
35
2n +1
(1+ x)α =1+αx+α(α −1) x2 +Λ +α(α −1)Λ [α −(n−1)] xn (+0 xn)
1 − cos x ~ 1 x2 , e x −1 ~ x , ln(1 + x) ~ x ,
2
(1 + x)α −1 ~ αx
二.求极限的方法 1.利用极限的四则运算和幂指数运算法则 2.两个准则 准则 1.单调有界数列极限一定存在
(1)若 xn+1 ≤ xn ( n 为正整数)又 xn ≥ m ( n 为正
y (n) = cos⎜⎛ x + nπ ⎟⎞ ⎝ 2⎠
这里 x0 相当 a 或 b 都可以, ∆x 可正可负。
推论 1.若 f (x) 在 (a,b)内可导,且 f ′(x) ≡ 0 ,则 f (x) 在 (a,b)内为常数。
(5) y = ln x
y (n) = (−1)n−1 (n −1)!x −n
1− x2
1− x2
(arctan x)′ = 1
1+ x2
(arc cot x)′ = − 1
1+ x2
d arctan x = 1 dx 1+ x2
darc cot x = − 1 dx 1+ x2
[ ( )]′
ln x + x 2 + a 2 =
1
x2 + a2
dy dx
=
ψ ϕ
′(t ) ′(t )
+ (−1)n
x 2n
(2n)!
+
0
x 2n
( ) ln(1 + x) = x − x2 + x3 − Λ + (− )1 n+1 xn + 0 xn
23
n
f (x) ~ g(x)
3.常见的等价无穷小
当x → 0时 sin x ~ x ,tan x ~ x ,arcsin x ~ x ,arctan x ~ x
2.两个无穷小的比较
数学二)
设 lim
f
(x)
=
0
, lim
g(x)
=
0
,且 lim
f (x) g(x)
=
l
( ) 当 x → 0 时, e x = 1 + x + x2 + Λ + xn + 0 xn
2!
n!
(1) l = 0 ,称 f (x) 是比 g(x) 高阶的无穷小,记以 f (x) = 0[g(x)] ,称 g(x) 是比 f (x) 低阶的无穷
[ ( )]′
ln x + x 2 − a 2 =
1
x2 − a2
( ) d ln x + x2 − a2 = 1 dx x2 − a2 2.四则运算法则 [ f (x) ± g(x)]′ = f ′(x) ± g′(x)
[ f (x)⋅ g(x)]′ = f ′(x)g(x) + f (x)g′(x)
(log a
x)′
=
1 x ln a
(a
>
0, a
≠ 1)
d loga
x
=
dx x ln a
(a
> 0, a
≠ 1)
(ln x)′ = 1
x
d ln x = 1 dx x
( )a x ′ = a x ln a (a > 0, a ≠ 1)
da x = a x ln adx (a > 0, a ≠ 1)
用归纳法证明。
有一些常用的初等函数的 n 阶导数公式
(1) y = e x
y(n) = e x
(2)在开区间 (a,b)内可导;
则存在ξ ∈ (a,b),使得 f (b) − f (a) = f ′(ξ )
b−a
或写成 f (b) − f (a) = f ′(ξ )(b − a)
(a < ξ < b)
相关文档
最新文档