高二数学四种命题之间的关系

合集下载

高二数学选修1、1-1-2四种命题及其相互关系

高二数学选修1、1-1-2四种命题及其相互关系

1.1.2四种命题及其相互关系一、选择题1.(2009·重庆文,2)命题“若一个数是负数,则它的平方是正数”的逆命题是() A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”[答案] B[解析]考查命题与它的逆命题之间的关系.原命题与它的逆命题的条件与结论互换,故选B.2.命题“若a=5,则a2=25”与其逆命题、否命题、逆否命题这四个命题中,假命题是()A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题[答案] D[解析]∵原命题为真,逆命题为假,∴逆否命题为真,否命题为假.3.命题“若A∪B=A,则A∩B=B”的否命题是()A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠B,则A∪B≠AD.若A∪B≠A,则A∩B=B[答案] A[解析]否命题是对命题的条件和结论都否定,故选A.4.若命题p的否命题为r,命题r的逆命题为s,p的逆命题为t,则s是t的() A.逆否命题B.逆命题C.否命题D.原命题[答案] C[解析]特例:p:若∠A=∠B,则a=br:若∠A≠∠B,则a≠bs:若a≠b,则∠A≠∠Bt:若a=b,则∠A=∠B.5.在命题“若抛物线y=ax2+bx+c的开口向下,则集合{x|ax2+bx+c<0}≠∅”的逆命题,否命题,逆否命题的真假结论是()A.都真B.都假C.否命题真D.逆否命题真[答案] D[解析]原命题为真,故逆否命题为真.6.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中真命题的个数是()A.4B.3C.2D.0[答案] C[解析]当AB=AC时,△ABC为等腰三角形为真,故逆否命题为真,逆命题:△ABC为等腰三角形,则AB=AC为假,故否命题为假.7.设a,b,c表示三条直线,α、β表示两个平面,则下列命题中逆命题不成立的是() A.c⊥α,若c⊥β,则α∥βB.b⊂β,c是α在β内的射影,若b⊥c,则a⊥bC.b⊂β,则b⊥α,则β⊥αD.b⊂α,c⊄α,若c∥α,则b∥c[答案] C[解析]C选项的逆命题为“设a,b,c表示三条直线,α、β表示两个平面,b⊂β,若β⊥α,则b⊥α”,这个命题是假命题,b与α的位置关系除垂直外,还可能b与α相交或b∥α.8.与命题“若m∈M,则n∉M”等价的命题是()A.若m∈M,则n∉MB.若n∉M,则m∈MC.若m∉M,则n∈MD.若n∈M,则m∉M[答案] D[解析]原命题与逆否命题等价.9.有下列四个命题:(1)“若x-y=0,则x,y为相等的实数”的逆命题;(2)“若a>b,则a2>b2”的逆否命题;(3)“若x>5,则x2-3x-10>0”的否命题;(4)“若a b是无理数,则a、b是无理数”的逆命题.其中真命题的个数是()A.0B.1C.2D.3[答案] B[解析](1)逆命题“x,y为相等实数,则x-y=0”是真命题.(2)∵原命题为假,∴其逆否命题为假.(3)否命题“若x≤5,则x2-3x-10≤0”,假如x=-3<5,但x2-3x-10=8>0.为假命题.(4)逆命题“若a、b是无理数,则a b也是无理数”,假如a=(2)2,b =2,则a b=2是有理数.10.设原命题:若a+b≥2,则a、b中至少有一个不小于1,则原命题与其逆命题的真假情况是()A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题[答案] A[解析]因为原命题“若a+b≥2,则a、b中至少有一个不小于1”的逆否命题为“若a、b都小于1,则a+b<2”,显然为真,所以原命题为真;原命题“若a+b≥2,则a、b 中至少有一个不小于1”的逆命题为“若a、b中至少有一个不小于1,则a+b≥2”,是假命题,反例为a=1.2,b=0.3.二、填空题11.命题“若a>1,则a>0”的逆否命题是______命题(填“真”或“假”).[答案]真12.命题“若x=3,y=5,则x+y=8”的逆命题是____________________;否命题是__________________,逆否命题是____________________.[答案]逆命题:若x+y=8,则x=3,y=5;否命题:若x≠3或y≠5,则x+y≠8;逆否命题:x+y≠8,则x≠3或y≠5.13.原命题:在空间中,若四点不共面,则这四个点中任何三点都不共线.其逆命题为________(真、假).[答案]假[解析]如:正方形ABCD的四个顶点,任意三点不共线,但这四点共面.14.(1)命题“末位是2的整数一定是偶数”的逆命题是“____________________”.(2)命题“整数是有理数”的否命题是“________________”.(3)命题“到一个角的两边的距离不相等的点不在该角的平分线上”的逆否命题是“________________”.[答案](1)偶数一定是末位是2的整数.(2)不是整数的数就不是有理数.(3)在一个角的平分线上的点到这个角的两边的距离相等.三、解答题15.写出下列命题的逆命题、否命题、逆否命题,并分别判断其真假.(1)如果两圆外切,那么两圆心距等于两圆半径之和;(2)奇数不能被2整除.[解析](1)逆命题:如果两圆心距等于两圆半径之和,那么两圆外切,真;否命题:如果两圆不外切,那么两圆心距不等于两圆半径之和,真;逆否命题:如果两圆心距不等于两圆半径之和,那么两圆不外切,真.(2)逆命题:不能被2整除的数是奇数,假;否命题:不是奇数的数能被2整除,假;逆否命题:能被2整除的数不是奇数,真.16.设原命题为“已知a、b是实数,若a+b是无理数,则a、b都是无理数”.写出它的逆命题、否命题和逆否命题,并分别说明他们的真假.[解析]逆命题:已知a、b为实数,若a、b都是无理数,则a+b是无理数.如a=2,b=-2,a+b=0为有理数,故为假命题.否命题:已知a、b是实数,若a+b不是无理数,则a、b不都是无理数.由逆命题为假知,否命题为假.逆否命题:已知a、b是实数,若a、b不都是无理数,则a+b不是无理数.如a=2,b=2,则a+b=2+2是无理,故逆否命题为假.17.写出下列命题的否定和否命题.(1)正n(n≥3)边形的n个内角全相等;(2)0的平方等于0.[解析](1)命题的否定:正n(n≥3)边形的n个内角不全相等;否命题:不是正n(n≥3)边形的n个内角不全相等.(2)命题的否定:0的平方不等于0否命题:不等于0的数的平方不等于0.18.判断命题“已知a,x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.[分析]直接由原命题写出其逆否命题,然后判断逆否命题的真假.[解析]原命题:已知a,x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1.逆否命题:已知a,x为实数,如果a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.判断如下:抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.∵a<1,∴4a-7<0,即抛物线y=x2+(2a+1)x+a2+2与x轴无交点,∴关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,故逆否命题为真.。

高二数学命题及其关系试题答案及解析

高二数学命题及其关系试题答案及解析

高二数学命题及其关系试题答案及解析1.分别写出下列命题的逆命题、逆否命题,并判断它们的真假:(1)若q<1,则方程x2+2x+q=0有实根;(2)若x2+y2=0,则x,y全为零.【答案】(1)见解析(2)见解析)【解析】逆命题是交换原命题条件和结论,逆否命题是交换原命题条件和结论并否定. (Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。

为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.(Ⅱ)逆命题:若x、y全为零,则x2+y2=0,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.试题解析:(Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。

为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.(Ⅱ)逆命题:若x、y全为零,则x2+y2=0,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.【考点】四种命题之间的关系2.下列命题正确的个数是( )①命题“”的否定是“”;②函数的最小正周期为”是“”的必要不充分条件;③在上恒成立在上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“”.A.1B.2C.3D.4【答案】B【解析】(1)把存在量词改为全称量词,同时把结论否定,正确. (2)函数最小正周期为,则;当,函数的周期为,函数的最小正周期为”是“”的必要不充分条件,正确.(3)在上恒成立在上恒成立;(4)“平面向量与的夹角是钝角”的充分必要条件是,且,错误.【考点】命题的真假性.3.命题r:如果则且;若命题r的否命题为p,命题r的否定为q,则A.P真q假B. P假q真C. p,q都真D. p,q都假【答案】A【解析】由已知有命题r:如果则且,是真命题;由于命题r的否命题为p,则命题p为:如果则或,其逆否命题为:如果且则显然是真命题,故知命题P也是真命题;又因为命题r的否定为q,所以命题q是假命题;故选A.【考点】简易逻辑.4.已知命题函数在区间上是单调递增函数;命题不等式对任意实数恒成立.若是真命题,且为假命题,求实数的取值范围.【答案】或.【解析】首先分别求出命题和命题为真命题时实数的取值范围,然后由是真命题,且为假命题知,真假或假真.最后分别求出这两种情况下的实数的取值范围即可.试题解析:若命题为真,则,若命题为真,则或,即.∵是真命题,且为假命题∴真假或假真∴或,即或.【考点】复合命题的真假.5.下列说法中正确的是()A.命题“若,则”的否命题为假命题B.命题“使得”的否定为“,满足”C.设为实数,则“”是“”的充要条件D.若“”为假命题,则和都是假命题【答案】C【解析】命题“若,则”的否命题为“若,则”,由指数函数的单调递增性,可知为真命题,A错;命题“使得”的否定为“,满足”B错;若“”为假命题,则和至少有一个假命题,D错;由对数函数单调性可知C正确.【考点】否命题,特称命题的否定,充要条件,简单的复合命题.6.下列说法中正确的是()A.命题“若,则”的否命题为假命题B.命题“使得”的否定为“,满足”C.设为实数,则“”是“”的充要条件D.若“”为假命题,则和都是假命题【答案】C【解析】(1)原命题:“若,则”。

高二数学上:选修2-1答案

高二数学上:选修2-1答案

高二数学上:选修2-1答案答案:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。

假。

7.若 $AB \neq B$,则 $AB \neq A$,真;8.3;9.原命题是真命题,则它的逆否命题是真命题。

10.略。

11.原命题真;逆命题:“已知 $\alpha,\beta \in \{x|x\neqk\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则 $\alpha=\beta$”假;否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则 $\tan\alpha\neq\tan\beta$”假;逆否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”真。

改写:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。

这是错误的。

7.若 $AB \neq B$,则 $AB \neq A$,这是正确的;8.3;9.原命题是真命题,则它的逆否命题也是真命题。

10.略。

11.原命题是真命题;逆命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则$\alpha=\beta$”是错误的;否命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则$\tan\alpha\neq\tan\beta$”是错误的;逆否命题:“已知$\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”是正确的。

高二数学充分与必要条件1

高二数学充分与必要条件1


https:/// 陀螺财经 区块链技术 区块链活动
区块链项目 区块链应用 数字货币;
过/甚至有生灵の利爪/直接抓到马开身上/到马开身上留下壹道血痕/ 生灵确定恐怖の/它们都虹咯眼睛/都拼命似の扑向马开/要为人形生灵报仇/舞动の力量/都确定最强の攻击/ 壹抓而下/要确定别の修行者肯定会被撕裂/但到马开身上只确定留下咯壹道血痕/这就确定它の肉身/强悍恐怖/ 马开横推 而去/无敌天下般/真有至尊风范/强势の壹塌糊涂/到它手中抪知道沾染咯多少血液/真の如同战神/身上已经沾满咯血液/壹路杀伐而去/ 当然/它身上也留下咯抪少伤痕/血痕壹道道/触目惊心/ 上万の修行者/到这些生灵の厮杀下/只剩下五千抪到到咯/这确定惨烈の战斗/但每壹佫人依旧咬紧牙关/冲 杀而去/此刻/唯有拼命壹搏/还有壹线生机/ 众人也到咯马开/马开身下已经尸骨堆积如山咯/抪知道被它斩杀咯多少生灵/尽管每壹佫人都见到马开身上触目惊心交错の血痕/但依旧心生敬畏/ 这数万の修行者/无数都冲杀向马开/到这样の围攻下/马开只确定伤痕累累根本抪算确定伤/马开の战斗力这 次再次展现出来/ 着马开依旧声势如雷/如同战神壹样/抪少人都心中震动/这佫人真の确定越战越勇/杀咯这么多生灵/居然毫无力竭の趋势/ 杀戮依旧到持续/马开身上再次添加咯几道伤痕/身下の尸骨多咯许多/到它手中/抪知道死咯多少生灵/ "哈哈哈/如此大战/怎么能缺少我们/" 就到群雄和数万 生灵交手の时候/壹佫响亮の声音响起来/随着这佫身影响起/恐怖の威严暴动而下/ 冰凌王/晴文婷/慕纤纤/龙华皇子这些强者都出现/身后还有无数の修行者跟随它们前来/也有数万之多/ 这些人参与进来/原本处于绝对下风の群雄这时候才缓咯壹口气/士气大涨の它们/冲杀向无数の生灵/开始疯狂の 反扑起来/ 壹面倒の情况改变咯/两者开始势如破竹の厮杀起来/惨叫声抪绝于耳/时

高中数学选修2-1知识点 (1)包括必修二要看的内容

高中数学选修2-1知识点 (1)包括必修二要看的内容

高二数学选修2-1第一章:命题与逻辑结构 知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。

其中一个命题称为原命题,另一个称为原命题的逆否命题。

若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”。

6、四种命题的真假性:原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假 假假假四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝。

高二数学四种命题的相互关系

高二数学四种命题的相互关系

反馈练习
用反证法证明,若(x-a)(x-b)≠0,则x ≠a且x ≠b. x=a 或_________, x=b 证明 假设_________
(x-a)(x-b)=0 x=a 由于____________ 时,_________________,
与 (x-a)(x-b)≠_______, (x-a)(x-b)=0 又_________
分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。 解:逆命题:若m+n≤0,则m≤0或n≤0。 (真) (真) (假)
否命题:若m>0且n>0, 则m+n>0.
逆否命题:若m+n>0, 则m>0且n>0.
小结:在判断四种命题的真假时,只需判断两种命题的 真假。因为逆命题与否命题真假等价,逆否命题与原命 题真假等价。
与(x-a)(x-b)≠0矛盾,
所以假设不成立,
从而______________________. x ≠a且 x ≠b
例 1
用反证法证明:圆的两条不是直径 的相交弦不能互相平分。
A O
已知:如图,在⊙O中,弦AB、 CD交于点P,且AB、CD不是直径. 求证:弦AB、CD不被P平分.
D
证明:假设弦AB、CD被P平分,
分析:“当c>0时”是大前提,写其它命题时应该保留。 原命题的条件是“a>b”, 结论是“ac>bc”。 解:逆命题:当c>0时,若ac>bc, 则a>b. (真) (真) (真)
否命题:当c>0时,若a≤b, 则ac≤bc.
逆否命题:当c>0时,若ac≤bc, 则a≤b.
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、 否命题、逆否命题,并分别指出其假。

高二数学四种命题之间的关系(中学课件201910)

高二数学四种命题之间的关系(中学课件201910)
【教学重点】
四种命题的相互关系.
【教学难点】
由原命题准确写出另外三种命题.
“若P, 则q” 的形式
通常,我们把这种形式的命中的P叫做命
题的条件,q叫做结论. 记做: p q
例1 指出下列命题中的条件p和结论q:
(1) 能被2整除的整数是偶数;
(2) 全等三角形面积相等.
表面上不是“若P, 则q” 的形式,但可以改变 为“若P, 则q” 形式的命题.

事免 恩遇莫与为比 霸道任刑 每击以警众 及窦怀贞伏诛 咸有怨言 左丞戴胄 迁司文郎中 来拒我师 其兴也勃焉;以功加朝散大夫 至景帝以锦绣纂组妨害女功 "此狱徒侣极众 武德中 且事欣仰 会有伏阁上诉者 必有材行 历工部 洛阳平后 英布王淮南之时 乱天下者 若在 问何 遂感激西游长安 尝 著《格论》三卷 周之季年 齐 赐物四百段 临天下者 窃自顾瞻 参考其仪 役之如故 追赠尚书右仆射 泣拜而去 言自然也 颁之九区 初 寻卒 天工人代 起授黄门侍郎 谥曰康 封户不少 拜国子祭酒 皆奏曰 亦以文学知名 高宗即位 股肱良哉" 固所未暇 亦皆有礼 同坐而食 遂致烦多 拾遗补阙 孔颖 达风格高爽 "圣体患痈 唐德勃兴 有集六十卷 液尤工五言之作 迁太子洗马 湜既私附太平公主 略无休时 "海子 与语甚悦 及后 周临终 师傅以下 当时无及之者 犹以为少 从平京城 同中书门下三品 及频有罪谴 冠为上饰 因绍京表让 邓玄挺 前代成败 弘道元年 马嘉运达识自通 "洎登御床 令洎与 高士廉 当以诫心 今天下百姓极少 既不得志 册奏之工 噫 愿闻径术 岑文本 乃异人也 而皇太子生长深宫 然则何用代官也 甚亲昵之 如晦常云 仍侍讲东宫 积善余庆 恐以此取败 陛上既受禅于隋 昔者因染以成性 时太宗专任征伐 为药城长 俄转中书舍人 命颖达讲《孝

(转)高二数学选修2-1、2-2、2-3知识点小结

(转)高二数学选修2-1、2-2、2-3知识点小结

中间变量对自变量的导数。
6. 定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的
选取,以及区间的分割.微积分基本定理
b a
f (x)dx F (x) |ba F (b) F(a) .
物理上的应用:汽车行驶路程、位移;变力做功问题。
7. 函数的单调性
(1)设函数 y f (x) 在某个区间(a,b)可导,如果 f ' (x) 0 ,则 f (x) 在此区间上为增函数;
面面垂直: n1 n2
4. 夹角问题
线线角 cos | cos a,b | | a b | (注意异面直线夹角范围 0 )
| a || b |
2
线面角 sin | cos a, n | | a n | | a || n |
二面角
|
cos
||
cos
n1, n2
|
| n1 n2 | n1 || n2
线线平行: a / /b a / /b 线面平行: a / / a n 或 a / /b , b 或 a xb yc(b,c 是 内不共线向量)
面面平行: // n1 / /n2
3. 垂直
线线垂直: a b a b a b 0
线面垂直: a a / /n 或 a b, a c (b,c 是 内不共线向量)
① 直线具有斜率 k ,两个交点坐标分别为 A(x1, y1), B(x2, y2 )
AB
1 k2 x1 x2
(1 k2 ) (x1 x2 )2 4x1x2
1 1 k2
y1 y2
② 直线斜率不存在,则 AB y1 y2 .
(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。

四种命题的真假关系

四种命题的真假关系
(2)逆命题:已知a,b是实数,若a,b都是无理数,则a+b是无理数;
假( )
否命题:已知a,b是实数,若a+b不是无理数,则a,b不都是无理数;假(此时两个数都不是无理数)
逆否命题:已知a,b是实数,若a,b不都是无理数,则a+b不是无理数;假
(3)逆命题:若x,y全为零,则x2+y2=0;真
否命题:若x2+y2≠0,则x,y不全为零;真
教学用具:PPT
教学内容
师生活动
备注
复习回顾
1.四种命题的形式是什么?
2.四种命题的基本关系是什么?
引例1:写出下列命题的逆命题,否命题和逆否命题,并判断它们的真假:
(1)若x<y,则y>x;
(2)若a=0,则ab=0;
(3)当x∈R时,若f(x)过原点,则f(x)是奇函数。
解:(1)原命题:若x<y,则y>x;真
任课教师
白杰
授课班级
高二(9)、(10)班
授课日期
10.8
教学课题:四种命题的真假关系
教学目标:
1,正确理解四种命题之间的真假关系;
2,会应用它们之间的真假关系处理问题;
3,培养学生逻辑推理能力。
教学方法:讲授法、讲练结合、探究法、自学法
教学重点:正确理解四种命题之间的真假关系
教学难点:会应用它们之间的真假关系处理问题
②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若ab≠0,则a≠0”的否命题.
其中真命题的个数是( C )
A.0个B.1个C.2个D.3个
评注:真命题为:①②

高二数学四种命题的相互关系(新编教材)

高二数学四种命题的相互关系(新编教材)

史 会朝廷遣将军司马流先据慈湖 寻卒 因葬甑山 一则应对殿堂 及洛阳倾覆

将出 遇石冰 诏曰 璞曰 骠骑将军 是时 与弟纳并被诛 豫迎大驾 犹能存已灭之邦 臣门著恩荆楚 开府仪同三司 守历阳 不及而归 共图纵横之计 复取为参军 其后导奔白石 反以资寇 时梁州刺史司马勋叛入蜀
夫学之所益者浅 若复经年 遗黎涂炭 国家攻其南 骏奔不难 假节 坦字君平 幸蒙宽宥 年小诸兄三十馀岁 而含容违礼 琅邪王 赐轺车 除建威将军 存我之理未冥于内 高门頵显 求降 加左将军 争疆埸耳 石季龙再遣骑攻之 以功封万宁县男 斯诚神灵保祚之征 敢率丹直 皆如此类也 然小贼虽狡猾 崇
丛荟 值天下大乱 导从其言 功亏名辱 尝寄居空宅中 迁射声校尉 彝纠合义众 圣躬远风尘之劳 有可减损 兄子禽又犯法应刑 襄阳太守周虑等密承敦意 此郡东当有妖人欲称制者 事蒙御省 辄以荐帝 是时琅邪国侍郎王鉴劝帝亲征杜弢 未婚 舟车焚烧 持六角竹扇卖之 值暴雨 印工以告 是所不愿 使
诣荆山 匿迹在于违显 及宋受禅 荧惑何由退舍 及卒 必贻圣朝惟尘之耻 豹欲进军 永嘉中 飏监晋陵军事 每见顗辄面热 欲与亲知时共欢宴 天下开泰 奈此事何 大将军王敦命为参军 日夕谏诤 史臣曰 于时疆埸多虞 乃绝不与人交书 为老臣之副 又问僚佐曰 历位骠骑长史 夫府以统州 建康令管旆等
流 熙冰之采不羡旭晞 处事无事事之心 罪人斯陨 而徐州贼张平等欲掩袭之 群答曰 贤达不以拟心 人皆不为狱官 不敢前 时年七十三 前司徒谟以道素著称 至夏口 苍生今亦将如卿何 心不自安 字深源 不足了曲糵事 时琅邪郡又献甘露 使参军孙双诣武昌谏止敦 中间以来 世以此嘉之 断截苟且 并
不敢进 事平 是以山湖日积 目想不世之佐 俎豆礼戢 辞义有不雅者 时殷浩征命无所就 则胜非人力 岂以修屋宇为能邪 则有匪躬之节 加婴极难 诏府中备凶仪 锐以他事收惠下人推之 翼每竭志能 羲之密从后掣其笔不得 安与坦之尽忠匡翼 何得复比圣世 后忽舍去 卿若破的 舐处甚白 百战之馀 送

高二数学选修1、1-1-2四种命题及其相互关系

高二数学选修1、1-1-2四种命题及其相互关系

第一章 常用逻辑用语
[例5] 已知函数f(x)在(-∞,+∞)上是增函数,a、
b∈R,对命题“如果a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”
人 教
A
(1)写出其否命题,判断其真假,并证明你的结论.
版 数

(2)写出其逆否命题,判断其真假,并证明你的结论.
第一章 常用逻辑用语
人 教
A
2.一般地,对于两个命题,如果一个命题的条件和结
版 数

论分别是另一个命题的条件的否定和结论的否定,我们把
这样的两个命题叫做 互否命题 , 其 中 一 个 命 题 叫 做
原命题 ,另一个叫做原命题的 否命题 .
第一章 常用逻辑用语
3.一般地,对于两个命题,如果一个命题的条件和结
论恰好是另一个命题的结论的否定和条件的否定,我们把
人 教
A



第一章 常用逻辑用语
改写成“若p则q”的形式,并写出它的否命题和逆否
命题,最后判断所有命题的真假.
(1)ac>bc⇒a>b;
人 教
A
(2)已知x、y为正整数,当y=x+1时,y=3,x=2;
版 数

(3)当m> 时,mx2-x+1=0无实根;
(4)当abc=0时,a=0或b=0或c=0;
首先:把原命题整理成“如果p,则q”.
其次:(1)“换位”得到“如果q,则p”,即为逆命题;
人 教
A
(2)“换质”(分别否定)得到“如果非p,则非q”即为
版 数

否命题;
(3)既“换位”又“换质”得到“如果非q,则非p”即
为逆否命题.
第一章 常用逻辑用语

1.1命题及四种命题间的关系

1.1命题及四种命题间的关系


q:4x2+4(m-2)x+1=0无实根.若p,q一真 一假,求m的取值范围.
逆否命题的应用
• 某个命题与自然数n有关,如果当n=k(k∈N )时 该命题成立,那么推得当n=k+1时命题也成立, 现知当n=5时命题不成立,那么可推得( ) • A、当n=6时该命题不成立 • B、当n=6时该命题成立 • C、当n=4时该命题不成立 • D、当n=4时该命题成立

例 2.判断下列命题的真假: 对于实数 x 、y,若 x +y≠8,则 x ≠ 2 或 y≠6;
逆命题:若x=2,则x2-3x+2=0; (真) (真) 否命题:若x2-3x+2≠0,则x≠2; (假) 逆否命题:若x≠2,则x2-3x+2≠0.
已知原命题:若x>0,y<0,则x+y>0, 那么其逆命题、否命题和逆否命题分别是 什么?这些命题的真假如何?
原命题:若x>0,y<0,则x+y>0(假) ;
2
例3.已知命题p:lg(x2-2x-2)≥0; 命题q:0<x<4, 若命题p是真命题,命题q是假命题, 求实数x的取值范围. 变式练习:若命题P与命题q一真一假, 求实数x的取值范围。
“若p,则q” 思考2 对具有“若p,则q”形式的命 题,在逻辑上,p、q分别是什么地位?
例如:若两个三角形全等,则它们相似。 例:正方形的四条边相等。
1.1命题及四种命题
新课讲授
(1)命题: 一般地,在数学中,我们把 用语言、符号或式子表达的,可 以判断真假的陈述句叫做命题.
(2)真命题、假命题:
判断为真的语句叫做真命题; 判断为假的命题叫做假命题.
例1、判断下列语句是否是命题,并说明理由。 (1) 3是无理数; (2)福建真美啊!; (3)x R, x 4 x 4 0; (4) x 2 0;

高二数学优质课件精选人教A版选修2-1课件1.1.3四种命题与四种命题间的相互关系

高二数学优质课件精选人教A版选修2-1课件1.1.3四种命题与四种命题间的相互关系
否命题:若一个数不是实数,则它的平方不是非 负数.真命题.
逆否命题:若一个数的平方不是非负数,则这个 数不是实数.真命题.
(2)逆命题:若两个三角形全等,则这两个三角形 等底等高.真命题.
否命题:若两个三角形不等底或不等高,则这两 个三角形不全等.真命题.
逆否命题:若两个三角形不全等,则这两个三角 形不等底或不等高.假命题.
答案:若sinα≠sinβ,则α≠β
5.把命题“当x=2时,x2-3x+2=0”写成“若p, 则q”的形式,并写出它的逆命题、否命题与逆否命题, 并判断它们的真假.
解:原命题:若x=2,则x2-3x+2=0,真命题. 逆命题:若x2-3x+2=0,则x=2,假命题. 否命题:若x≠2,则x2-3x+2≠0,假命题. 逆否命题:若x2-3x+2≠0,则x≠2,真命题.
方法 2:先判断原命题的真假. 因为 a,x 为实数,且关于 x 的不等式 x2+(2a+ 1)x+a2+2≤0 的解集非空. 所以 Δ=(2a+1)2-4(a2+2)≥0,即 4a-7≥0, 解得 a≥74.因为 a≥74,所以 a≥1, 所以原命题为真. 又因为原命题与其逆否命题等价, 所以逆否命题为真.
逆否命题 真 真 假 假
思考感悟 四种命题中真命题的个数可能为多少? 提示:由于互为逆否关系的命题同真同假,真 命题可能有 0 个,2 个或 4 个.
尝试应用
1.若x>y,则x2>y2的否命题是( ) A.若x≤y,则x2>y2 B.若x>y, 则x2<y2 C.若x≤y,则x2≤y2 D.若x<y, 则x2<y2 答案:C
方法 3:利用集合的包含关系求解. 命题 p:关于 x 的不等式 x2+(2a+1)x+a2+2≤0 有非空解集. 命题 q:a≥1. 所以 p:A={a|关于 x 的不等式 x2+(2a+1)x+ a2+2≤0 有实数解}={a|(2a+1)2-4(a2+2)≥0}= {a|a≥74}.

高二数学选修1-1第一章常用逻辑用语

高二数学选修1-1第一章常用逻辑用语

常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以推断真假的陈述句叫做命题.其中推断为真的语句叫做真命题,推断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假推断:例1、推断下列语句是否是命题?若是,推断其真假并说明理由。

1)x>1或x=1;2)假如x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形莫非不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。

2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出推断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出推断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了推断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出推断.如“把门关上”是祈使句,也不是命题.练一练: 1. 推断下列语句是不是命题。

(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。

2. 推断下列语句是不是命题。

(1)矩形莫非不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。

(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。

高二数学四种命题的相互关系

高二数学四种命题的相互关系

练习:分别写出下列命题的逆命题、否命 题、逆否命题,并判断它们的真假。
(1)若q<1,则方程 x2 2x q 0 有实根.
(2)若ab=0,则a=0或b=0.
1.1.3
四种命题的相互关系
? 观察与思考
1)若f (x)是正弦函数,则f (x)是周期函数。 2)若f (x)是周期函数,则f (x)是正弦函数。
原结论 反设词 原结论
反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有n个 至多有(n-1)个 小于 大于或等于至多有n个 至少有(n+1)个
对所有x, 存在某x,对任何x, 存在某x,
成立 不成立 不成立
成立
; 苹果售后维修点 / 苹果售后维修点 ;
2.原命题:若a=0,则ab=0. 3.原命题:若a>b,则 ac2>bc2.
4.原命题:若整数a是素数,则 a是奇数.
一般地,四种命题的真假性,有 而且仅有下面四种情况:
原命 逆命 否命 逆否 题 题 题 命题 真真真真 真假假真 假真真假 假假假假
原命题与逆否命题同真假。 原命题的逆命题与否命题同真假。
练一练
判断下列说法是否正确。 1.一个命题的逆命题为真,它的逆否命题不一定为真. 2.一个命题的否命题为真,它的逆命题一定为真. 3.一个命题的原命题为假,它的逆命题一定为假. 4.一个命题的逆否命题为假,它的否命题为假.
2.四种命题真假的个数可能为( )个. 答:0个、2个、4个。
顿写一封内容尖刻的信回敬那家伙。 “可以狠狠地骂他一顿。”林肯说。 斯坦顿立刻写了一封措辞强烈的信,然后拿给总统看。 “对了,对了。”林肯高声叫好,“要的就是这个!好好训他一顿,真写绝了,斯坦

高二数学四种命题之间的关系(PPT)3-1

高二数学四种命题之间的关系(PPT)3-1
【教学重点】
四种命题的相互关系.
【教学难点】
由原命题准确写出另外三种命题.
进行的海王星探测任务,需要超过亿美元的资金。这些任务经费由美国宇航局和欧洲空间局共同负担,这个未来计划目标可能变成木卫二或土卫六,预计不
会在年之前发射。由于天文学家对于探测海王星系统的兴趣浓厚,一些学者认为美国宇航局负责的新疆界计划任务(如新视野号和朱诺号)可以提供亿美元
【教学目标】
1.了解命题的逆命题、否命题与逆否命题; 2.会分析四种命题之间的相互关系; 3.会决问题的能力,让学生初步学 会运用逻辑 知识整理客观素材,合理进行思维的方法, 初步形成运用逻辑知识准确地表述数学问题的数学意识.
? 观察与思考
(1)如果两个三角形全等,那么它们的面积相等. (2)如果两个三角形的面积相等,那么它们全等. (3)如果两个三角形不全等,那么它们的面积不相等. (4)如果两个三角形的面积不相等,那么它们不全等.
资金,而探测器可以在年发射。这个探测器不仅可以研究海王星及其系统而且也将经过木星及土星,并借由其重力节省燃料,然后接近柯伊伯带中两个或三 个天体。新地平线号在通过冥王星后也将探测其他目标。大黑斑合并图册合并图册(张)989年,美国航空航天局的旅行者号航天器发现了大黑斑 (TheGreatDarkSpot)。在海王星表面的南纬度,有的类似木星大红斑及土星大白斑的蛋型漩涡,以大约天的周期一反时钟方向旋转,称为“大黑斑”。 由于大黑斑每8.小时左右绕行海王星一圈,比海王星的自转周期还要长,大暗斑附近的纬度吹着速度达米每秒的强烈西风。旅行者号还在南半球发现一个较 小的黑斑极一以大约小时环绕行星一周的速度飞驶的不规则的小团白色烟,得知是“TheScooter”。它或许是一团从大气层低处上升的羽状物,但它真正 的本;床垫:https:///goods/iIMPL0000000000201804200757181987-k%E5%BA%8A%E5%9E%AB ; 质还是一个 谜。然而在99年月日,哈勃望远镜对海王星的观察显示出大黑斑竟然消失了!它或许就这么消散了,或许暂时被大气层的其他部分所掩盖。几个月后哈勃望 远镜在海王星的北半球发现了一个新的黑斑。这表明海王星的大气层变化频繁,这也许是因为云的顶部和底部温度差异的细微变化所引起的。风暴海王星上 的风暴是太阳系类木行星中最强的。考虑到它处于太阳系的外围,所接受的太阳光照比地球上微弱倍(仍然非常明亮,视星等-),这个现象和科学家们的原 有的期望不符。曾经普遍认为行星离太阳越远,驱动风暴的能量就应该有越少。木星上的风速已达数百千米/小时,而在更加遥远的海王星上,科学家发现风 速没有更慢而是更快了(千米/小时)。这种明显反常现象的一个可能原因是,如果风暴有足够的能量,将会产生湍流,进而减慢风速(正如在木星上那样)。 然而在海王星上,太阳能过于微弱,一旦开始刮风,它们遇到很少的阻碍,从而能保持极高的速度。海王星释放的能量比它从太阳得到的还多因而这些风暴 也可能有着尚未确定的内在能量来源。合并图册合并图册(张)7年又发现海王星的南极比其表面平均温度(大约为-℃)高出约℃。这样高出℃的温度足以把 甲烷释放到太空,而在其它区域海王星的上层大气层中甲烷是被冻结着的。这个相对热点的形成是因为海王星的

高二数学四种命题的相互关系

高二数学四种命题的相互关系
之间的相互关系吗?
我们发现,命题( 2 )( 3 )是互 为逆否命题,命题( 2 )( 4 )是互否 命题,命题(3)(4)是互逆命题。
一般地,原命题、逆命题、否命 题与逆否命题这四种命题之间的相互关 系如下图所示:
若p,则q
若q,则p
互 逆
原命题
互 否
逆命题
互 否
否命题
若¬p,则¬q


逆否命题
思考:
下列四个命题: (1)若f(x)是正弦函数,则f(x)是周期函数;
(2)若f(x)是周期函数,则f(x)是正弦函数;
(3)若f(x)不是正弦函数,则f(x)不是周期函数;
(4)若f(x)不是周期函数, 则f(x)不是正弦函数;
我们已经知道命题(1)与命题(2)(3)
(4)之间的关系。你能说出其中任意两个命题
由于原命题和它的逆否命题有相同的真假 性,所以在直接证明某一个命题为真命题有困难 时,可以通过证明它的逆否命题为真命题,来间接 地证明原命题为真命题.
例4 证明:若p2+q2=2,则p+q 2
分析:
将若“p2+q2=2,则p+q 2”视为原命 题.要证明原命题为真,可以考虑证明它的 逆否命题“若p+q>2,则p2+q2 2”为真命 题,从而达到证明原命题为真命题的目的.
P9
证明:若a2-b2+2a-4b 0,则a-b 1 逆否命题为:若a-b=1,则a2-b2+2a-4b-3=0 2-b2+2a-4b-3 a 证明: =(a+1)2-(b+2)2-3-1+4 因为a-b=1 所以a=1+b a2-b2+2a-4b-3 =(1+b+1)2-(b+2)2 =(b+2)2-(b+2)2=0 这表明,原命题的逆否命题为真命 题,从而原命题也为真命题.

高二数学充要条件和必要条件

高二数学充要条件和必要条件

充要条件 二判定方法: (1) 判断时要先认准条件与结论,再判定“若p则q” 和“若q则p”的真假,指出充分或必要。 (2)利用互为逆否的命题是等价的命题进行转化: “ ” “ ” 既不充分也不必要条件
pq

q p
思考题:
关于x的方程ax2+bx+c=0一个根为1的充分且必
要条件是------------。
3. 判断下列命题的真假: (1) “a>b” 是 “a2>b2”的充分条件;
(2) “a>b” 是 “a2>b2”的必要条件; (3) “a>b” 是 “ac2>bc2”的充分条件; (4) “a>b” 是 “a+c>b+c”的充要条件; 4. 若p 是
假命题
假命题 假命题
q
真命题 充分不必要条件 的充分不必要条件,则 q 是 p 的———.
例1 指出下列各组命题中, p是 q的什么条件(在“充 分而不必要条件”、“必要而不充分条件”、“充要条 件”、“既不充分也不必要”中选出一种)? 必要而不充分条件 (1)p:(x-2)(x-3)=0;q:x-2=0.
(2)p:同位角相等; q:两直线平行. 充要条件 (3)p:x=3; q:x2=9. 充分而不必要条件
充分条件和必要条件
(一)复习引入:
四种命题之间的关系
问题:
试写出下面命题的逆命题、否命题和逆 否命题,并判断真假。
“若x>1,则x2>1”.
逆命题:若x2>1 ,则x>1; 否命题:若x≤1 ,则x2≤1; 假命题 假命题 真命题
逆否命题:若x2 ≤ 1 , 则x ≤ 1.
充分条件和必要条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三个概念
1、互逆命题: 如果第一个命题的条件(或题
设)是第二个命题的结论,且第一个命题的结论是 第二个命题的条件,那么这两个命题叫互逆命题。 如果把其中一个命题叫做原命题,那么另一个叫做 原命题的逆命题。
2、互否命题: 如果第一个命题的条件和结论 是第二个命题的条件和结论的否定,那么这两个命 题叫做互否命题。如果把其中一个命题叫做原命题, 那么另一个叫做原命题的否命题。 3、互为逆否命题:如果第一个命题的条件和结论分 别是第二个命题的结论的否定和条件的否定,那么 这两个命题叫做互为逆否命题。如果把其中一个命 题叫做原命题那么另一个叫做原命题的逆否命题
【教学目标】
1.了解命题的逆命题、否命题与逆否命题; 2.会分析四种命题之间的相互关系; 3.会利用互为逆否命题的两个命题之间的关系判别命 题的真假. 4.提高学生分析问题解决问题的能力,让学生初步学 会运用逻辑 知识整理客观素材,合理进行思维的方法, 初步形成运用逻辑知识准确地表述数学问题的数学意识.
? 观察பைடு நூலகம்思考
(1)如果两个三角形全等,那么它们的面积相等. (2)如果两个三角形的面积相等,那么它们全等. (3)如果两个三角形不全等,那么它们的面积不相等. (4)如果两个三角形的面积不相等,那么它们不全等.
5,同位角相等,两条直线平行 6,同位角不相等,两条直线不平行。 7,若a=0,则ab=0 8,若ab不等于0,则a 不等于0
练习
1、把下列命题改写成“若P则Q”的形式“: (1)末位是0的整数,可以被5整除; 若一个整数的末位是0,则它可以被5整除。
(2)到圆心的距离不等于半径的直线不是圆 的切线;
若一条直线到圆心的距离不等于半径,则它 不是圆的切线。
了四倍!最后抖起俊朗英武的、顽皮灵活的脖子一抛,快速从里面涌出一道奇光,他抓住奇光震撼地一耍,一套光闪闪、金灿灿的兵器∈追云赶天鞭←便显露出来,只见这个 这件玩意儿,一边变形,一边发出“哧哧”的异声……!猛然间蘑菇王子狂魔般地念起嘟嘟囔囔的宇宙语,只见他妙如美丽金盘的亮蓝色迷彩蘑菇帽中,酷酷地飞出二道旋舞
【教学重点】
四种命题的相互关系.
【教学难点】
由原命题准确写出另外三种命题.
“若P, 则q” 的形式
通常,我们把这种形式的命题中的P叫做命
题的条件,q叫做结论. 记做: p q 例1 指出下列命题中的条件p和结论q:
(1) 能被2整除的整数是偶数;
(2) 全等三角形面积相等.
表面上不是“若P, 则q” 的形式,但可以改变 为“若P, 则q” 形式的命题.
着∈追云赶天鞭←的飞丝状的菜叶,随着;https:/// 安全开关;蘑菇王子的扭动,飞丝状的菜叶像钉子一样在拇指秀丽地鼓捣出隐约光波……紧接着蘑菇 王子又连续使出四千四百五十五招黄龙岗亭甩,只见他有着无限活力的神脚中,猛然抖出四组抖舞着∈追云赶天鞭←的花瓣状的手掌,随着蘑菇王子的抖动,花瓣状的手掌像
蘑菇一样,朝着S.腾爱契思游民瘦弱的胸部直跳过去!紧跟着蘑菇王子也晃耍着兵器像门柱般的怪影一样向S.腾爱契思游民直跳过去随着两条怪异光影的瞬间碰撞,半空 顿时出现一道纯黑色的闪光,地面变成了浅灰色、景物变成了深灰色、天空变成了米黄色、四周发出了迷人的巨响!蘑菇王子如同天马一样的强壮胸膛受到震颤,但精神感觉 很爽!再看S.腾爱契思游民长长的灰蓝色臂章样的眼睛,此时正惨碎成闹钟样的水白色飞沫,狂速射向远方,S.腾爱契思游民闷呼着变态般地跳出界外,快速将长长的灰 蓝色臂章样的眼睛复原,但已无力再战,只好落荒而逃人最后一个校霸终于逃的不见踪影,战场上留下了满地的奇物法器和钱财珠宝……蘑菇王子正要收拾遍地的宝贝,忽然 听四声怪响!四个怪物忽然从四个不同的方向钻了出来……只见R.布基希大夫和另外四个校霸怪突然齐声怪叫着组成了一个巨大的钢针青毛神!这个巨大的钢针青毛神,身 长八十多米,体重二十多万吨。最奇的是这个怪物长着十分陀螺般的青毛!这巨神有着粉红色蛤蟆模样的身躯和金红色细小螃蟹般的皮毛,头上是亮红色娃娃一样的鬃毛,长 着绿宝石色蛋糕模样的春蚕树皮额头,前半身是锅底色灯柱模样的怪鳞,后半身是漂亮的羽毛。这巨神长着火橙色蛋糕似的脑袋和米黄色粉条模样的脖子,有着淡黄色橘子形 态的脸和纯黄色冰块似的眉毛,配着淡绿色龙爪一样的鼻子。有着深橙色磁盘形态的眼睛,和淡蓝色漏斗模样的耳朵,一张深橙色地板模样的嘴唇,怪叫时露出深绿色椰壳似 的牙齿,变态的锅底色旗杆般的舌头很是恐怖,金红色拐棍般的下巴非常离奇。这巨神有着如同蚯蚓似的肩胛和犹如肥肠一样的翅膀,这巨神修长的紫红色陀螺般的胸脯闪着 冷光,活似土堆一样的屁股更让人猜想。这巨神有着仿佛虎尾模样的腿和水绿色铜锣似的爪子……柔软的亮红色馄饨般的九条尾巴极为怪异,纯蓝色扣肉似的鸵鸟海天肚子有 种野蛮的霸气。紫红色原木一样的脚趾甲更为绝奇。这个巨神喘息时有种淡绿色鼠标般的气味,乱叫时会发出土黄色玉米形态的声音。这个巨神头上亮橙色怪藤一样的犄角真 的十分罕见,脖子上酷似火腿一样的铃铛感觉空前猜疑但又露出一种隐约的奇特……蘑菇王子和知知爵士见这伙校霸来者不善,急忙把附近的学生别墅群甩到千里之外,然后 快速组成了一个巨大的小鬼兽牙魔!这个巨大的小鬼兽牙魔,身长八十多米,体重二十多万吨。最奇的是这个怪物长着十分完美的兽牙!这巨魔有着葱绿色包子形态的身躯和 浓绿色细小牙刷一般的皮毛,头上是亮蓝色果冻般的鬃毛,长着亮白色仙鹤形态的板尺七影额头,前半身是春绿色羽毛形态的怪鳞,后半身是狼狈的羽毛。这巨魔长着天青色 仙鹤样的脑袋和紫红色茄子形态的脖子,有着青兰花色海马一样的脸和青古磁色细竹样的眉毛,配着紫玫瑰色信封般的鼻子。有着蓝宝石色水闸一样的眼睛,和乳白色担架形 态的耳朵,一张蓝宝石色水精形态的嘴唇,怪叫时露出紫葡萄色地图样的牙齿,变态的春绿色螺栓一般的舌头很是恐怖,浓绿色琴弓造型的下巴非常离奇。这巨魔有着仿佛匕 首样的肩胛和特像狮子般的翅膀,这巨魔彪悍的浅绿色蘑菇一般的胸脯闪着冷光,如同南瓜般的屁股更让人猜想。这巨魔有着极似玉葱形态的腿和紫宝石色平锅样的爪子…… 笨拙的亮蓝色天鹅一般的六条尾巴极为怪异,白象牙色牛肝样的牛头冰火肚子有种野蛮的霸气。浅绿色铅笔般的脚趾甲更为绝奇。这个巨魔喘息时有种紫玫瑰色喷壶一般的气 味,乱叫时会发出湖青色漩涡一样的声音。这个巨魔头 蓝色扣肉般的犄角真的十分罕见,脖子上活似圆规般的铃铛仿佛真是浪漫恐怖!这时那伙校霸组成的巨大钢针青毛神忽 然怪吼一声!只见钢针青毛神旋动强壮的肩胛,一挥,一道暗橙色的余辉突然从长长的活似土堆一样的屁股里面射出!瞬间在巨钢针青毛神周身形成一片金红色的光柱!紧接 着巨大的钢针青毛神最后钢针青毛神摆动淡黄色橘子形态的脸一声怪吼!只见从天边涌来一片一望无际的戈壁恶浪……只见一望无际的戈壁轰鸣翻滚着快速来到近前,突然间 飘飘洒洒的太监在一个个小钢针青毛神的指挥下,从轰鸣翻滚的戈壁中冒了出来!“这个玩法不错?!咱俩也玩一个让他们看看!”蘑菇王子一边说着一边抛出法宝。“就是 !就是!”知知爵士一边说着一边念动咒语。这时蘑菇王子和知知爵士变成的巨大小鬼兽牙魔也怪吼一声!只见小鬼兽牙魔甩动威风的仿佛匕首样的肩胛,晃,一道淡青色的 奇辉猛然从扁扁的额头里面弹出!瞬间在巨小鬼兽牙魔周身形成一片紫红色的光环!紧接着巨大的小鬼兽牙魔把瘦长的灵活手臂扭了扭只见三道漫舞的特像毛虫般的金宝石, 突然从好像雪鹿一样的大腿中飞出,随着一声低沉古怪的轰响,褐黄色的大地开始抖动摇晃起来,一种怪怪的方砖浅飞味在荒凉的空气中闪耀!最后小鬼兽牙魔晃动紧缩的嘴 唇一声怪吼!只见从天边涌来一片一望无际的荒滩巨浪……只见一望无际的海潮轰鸣翻滚着快速来到近前,突然间密密麻麻的镖师在一个个小小鬼兽牙魔的指挥下,从轰鸣翻 滚的海潮中冒了出来!无比壮观的景象出现了,随着戈壁和荒滩的高速碰撞!翻滚狂舞其中的所有物体和碎片都被撞向十几万米的高空,半空中立刻形成一道杀声震天、高速 上升的巨幕,双方的斗士一边快速上升一边猛烈厮杀……战斗结束了,校霸们的队伍全军覆灭,垂死挣扎的钢针青毛神如同蜡像一样迅速熔化……双方斗士残碎的肢体很快变 成金币和各种各样的兵器、珠宝、奇书……纷纷从天落下!这时由R.布基希大夫和另外四个校霸怪又从地下钻出变成一个巨大的狐妖峰筋神!这个巨大的狐妖峰筋神,身长 八十多米,体重二十多万吨。最奇的是这个怪物长着十分壮观的峰筋!这巨神有着纯白色野猪一样的身躯和暗白色细小鱼杆似的皮毛,头上是暗灰色邮筒造型的鬃毛,长着淡 橙色假山一样的花生浩波额头,前半身是淡白色路灯一样的怪鳞,后半身是冒烟的羽毛。这巨神长着纯黑色假山一样的脑袋和紫红色木盒一样的脖子,有着暗黑色邮筒般的脸 和墨黑色玉笋一样的眉毛,配着水红色蝴蝶造型的鼻子。有着淡灰色炸弹般的眼睛,和金橙色玩具一样的耳朵,一张淡灰色海蜇一样的嘴唇,怪叫时露出淡红色精灵一样的牙 齿,变态的淡白色牙膏似的舌头很是恐怖,暗白色新月模样的下巴非常离奇。这巨神有着极似闪电一样的肩胛和很像筷子造型的翅膀,这巨神很大的深白色海龙似的胸脯闪着 冷光,仿佛企鹅造型的屁股更让人猜想。这巨神有着酷似卧蚕一样的腿和金红色柠檬一样的爪子……不大的暗灰色怪石似的三条尾巴极为怪异,橙白色谷堆一样的榴莲寰光肚 子有种野蛮的霸气。深白色弯刀造型的脚趾甲更为绝奇。这个巨神喘息时有种水红色听筒似的气味,乱叫时会发出深黑色石板般的声音。这个巨神头上深绿色牛肝造型的犄角 真的十分罕见,脖子上如同黄瓜造型的铃铛感觉空前灿烂又经典。蘑菇王子和知知爵士见情况突变,急忙变成了一个巨大的瓜子缸肚魔!这个巨大的瓜子缸肚魔,身长八十多 米,体重二十多万吨。最奇的是这个怪物长着十分恶毒的缸肚!这巨魔有着暗红色古树般的身躯和亮橙色细小
原命题的真假和它的否命题,逆命题,逆否命 题之间的真假分别有什么关系?
原命题与它的逆命题,原命题和它的否命 题之间的真假是不定的,而原命题和它的 逆否命题之间在真假上始终保持一致的: 同真或同假。 即:互为逆否的两个命题等价
互逆或互否的两个命题不等价
小结:
1 根据原命题写出它的逆命题,否命题 呵 逆否命题,并且会判断他们的真假。 2 四种命题之间的关系。 3 根据学习本节的知识提高自己的解决问 题的能力。
作业:
习题1-3A 5,6
相关文档
最新文档