2019年河北省邯郸市高考数学一模试卷(理科)〖详解版〗
2019年河北省邯郸市高考数学一模试卷(理科)-含详细解析
2019年河北省邯郸市高考数学一模试卷(理科)副标题一、选择题(本大题共12小题,共60.0分)1.设集合A={x|x2>4},A∩B={x|x<-2},则集合B可以为()A. B. C. D.2.在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.由此表估计这名小学生身高的中位数为()(结果保留位有效数字)A. B. C. D.4.若函数f(x)=,,>有最大值,则a的取值范围为()A. B. C. D.5.位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为5m,跨径为12m,则桥形对应的抛物线的焦点到准线的距离为()A. B. C. D.6.汉朝时,张衡得出圆周率的平方除以16等于,如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为()A. 32B. 40C.D.7.已知函数f(x)=2cos2(2x+)+sin(4x+),则下列判断错误的是()A. 为偶函数B. 的图象关于直线对称C. 的值域为D. 的图象关于点对称8.如图,在直角坐标系xOy中,边长为1的正方形OMNP的两个顶点在坐标轴上,点A,B分别在线段MN,NP上运动.设PB=MA=x,函数f(x)=,g(x)=,则f(x)与g(x)的图象为()A. B.C. D.9.已知m>0,设x,y满足约束条件,z=x+y的最大值与最小值的比值为k,则()A. k为定值B. k不是定值,且C. k为定值D. k不是定值,且10.设S n为等差数列{a n}的前n项和,若a7=5,S5=-55,则nS n的最小值为()A. B. C. D.11.过点M(-1,0)引曲线C:y=2x3+ax+a的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则a=()A. B. C. D.12.正方体ABCD-A1B1C1D1的棱上到直线A1B与CC1的距离相等的点有3个,记这3个点分别为E,F,G,则直线AC1与平面EFG所成角的正弦值为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.(x-)7的展开式的第2项为______.14.若函数f(x)=1+|x|+,则f(lg2)+f(lg)+f(lg5)+f(lg)=______.15.若存在等比数列{a n},使得a1(a2+a3)=6a1-9,则公比q的取值范围为______.16.已知A,B分别是双曲线C:x2-=1的左、右顶点,P为C上一点,且P在第一象限.记直线PA,PB的斜率分别为k1,k2,当2k1+k2取得最小值时,△PAB的垂心到x轴的距离为______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,3sin A =2sin B,tan C=2.(1)证明:△ABC为等腰三角形.(2)若△ABC的面积为2,D为AC边上一点,且BD=3CD,求线段CD的长.18.某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售.不低于100箱则有以下两种优惠方案:①以100箱为基准,每多50箱送5箱;②通过双方议价,买方能以优惠8%成交的概率为0.6,以优惠6%成交的概率为0.4.(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;(2)某单位需要这种零件650箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?19.如图,在多面体ABCDEF中,四边形ADEF为正方形,AD∥BC,AD⊥AB,AD=2BC=1.(1)证明:平面ADEF⊥平面ABF.(2)若AF⊥平面ABCD,二面角A-BC-E为30°,三棱锥A-BDF的外接球的球心为O,求二面角A-CD-O的余弦值.20.已知椭圆E:=1(a>b>0)的左,右焦点分别为F1,F2,P为E上的一个动点,且|PF2|的最大值为2+,E的离心率与椭圆Ω:=1的离心率相等.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM面积的最大值.21.已知函数f(x)的导函数f′(x)满足(x+x lnx)f′(x)>f(x)对x∈(1,+∞)恒成立.(1)判断函数g(x)=在(1,+∞)上的单调性,并说明理由;(2)若f(x)=e x+mx,求m的取值范围.22.在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)若l与C相交于A,B两点P(-2,0),求|PA|•|PB|;(2)圆M的圆心在极轴上,且圆M经过极点,若l被圆M截得的弦长为1,求圆M的半径.23.设函数f(x)=|x-1|+|x+3|.(1)求不等式|f(x)-6|<1的解集;(2)证明:4-x2≤f(x)≤2|x|+4.答案和解析1.【答案】C【解析】解:A={x|x<-2,或x>2};∴B={x|x<1}时,A∩B={x|x<-2}.故选:C.可解出集合A,然后进行交集的运算即可.考查描述法的定义,一元二次不等式的解法,以及交集的运算.2.【答案】A【解析】解:∵==,∴在复平面内对应的点的坐标为(2,11),位于第一象限.故选:A.利用复数代数形式的乘除运算化简,求出复数所对应点的坐标得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.【答案】C【解析】解:设中位数为t,则有:=0.5,解得t≈123.3.故选:C.设中位数为t,则有:=0.5,由此能求出结果.本题考查中位数的求法,考查中位数的性质等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:函数f(x)=,当x≤1时,函数是增函数,x>1时,函数是减函数,由题意可得:f(1)=a+4≥=-1,解得a≥-5.故选:B.利用分段函数的表达式,以及函数的单调性求解最值即可.本题考查分段函数的应用,函数的单调性以及函数的最值的求法,考查计算能力.5.【答案】D【解析】解:(1)设抛物线的解析式为:x2=-2py,p>0,∵抛物线过(6,-5),则36=10p,可得p=,抛物线的焦点到准线的距离为:.故选:D.根据题意,抛物线的顶点坐标是(0,0),并且过(6,-5),利用抛物线的顶点坐标式待定系数法求p即可.本题考查抛物线的简单性质的应用,涉及了待定系数法求抛物线解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.6.【答案】C【解析】解:根据几何体的三视图:转换为几何体,它有半个圆锥和半个圆柱组成.故:,由于,所以:.故:.故选:C.首先把几何体的三视图转换为几何体,进一步利用几何体的体积公式求出结果.本题考查的知识要点:三视图和几何体的转换,几何体的体积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】D【解析】解:f(x)=1+cos(4x+)+sin(4x+)=1+2sin(4x++)=1+2cos4x,则A,B,C均正确,D错误.故选:D.化简f(x)=1+2cos4x后,根据函数的性质可得.本题考查了三角恒等变换与三角函数的图象及其性质,运算求解能力,属中档题.8.【答案】A【解析】解:由已知可得A(1,x),B(x,1),x∈[0,1],则=(1-x,x-1),=(1,x),=(x,1),所以f(x)=•=1-x+x(x-1)=(x-1)2,g(x)==2x,故选:A.由已知可得A(1,x),B(x,1),x∈[0,1],根据向量的数量积即可求出f(x),g (x)的解析式,即可得到函数的图象.本题考查了平面向量与函数的图象,考查了函数与方程的数学思想,属于基础题.9.【答案】C【解析】解:画出m>0,x,y满足约束条件的可行域如图:当直线z=x+y经过点A(2,m+4),z取得最大值,当直线经过B(-1-,-2)时,z取得最小值,故k=-2为定值.故选:C.由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,进一步求出最值,结合最大值与最小值的差为3求得实数m的值.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.【答案】A【解析】解:由题意可得,解可得a1=-19,d=4,∴S n=-19n=2n2-21n,∴nS n=2n3-21n2,设f(x)=2x3-21x2,f′(x)=6x(x-7),当0<x<7时,f′(x)<0;函数是减函数;当x>7时,f′(x)>0,函数是增函数;所以n=7时,nS n取得最小值:-343.故选:A.分别利用等差数列的通项公式及求和公式表示已知条件,然后求出得a1,d,在代入求和公式即可求解.本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题.11.【答案】B【解析】解:设切点坐标为(t,2t3+at+a),由y=2x3+ax+a,得y′=6x2+a,∴,即4t3+6t2=0,解得:t=0或t=-.∵|MA|=|MB|,∴,即2a+6×,故a=-.故选:B.设出切点坐标,求出原函数的导函数,可得曲线C在切点处的切线的斜率,由斜率相等列式求得切点横坐标,再由|MA|=|MB|,可得,由此求得a值.本题考查导数的几何意义,考查化归与转化思想方法,是中档题.12.【答案】D【解析】解:正方体ABCD-A1B1C1D1的棱上到直线A1B与CC1的距离相等的点分别为:D1,BC的中点,B1C1的四等分点(靠近B1),假设D1与G重合,BC的中点为E,B1C1的四等分点(靠近B1)为F,以D为坐标原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,设AB=2,则E(1,2,0),F(,2,2),G(0,0,2),A(2,0,0),C1(0,2,2),∴=(),=(),=(-2,2,2),设平面EFG的法向量=(x,y,z),则,即,取x=4,得=(4,-3,-1).设直线AC1与平面EFG所成角为θ,则直线AC1与平面EFG所成角的正弦值为sinθ=|cos<>|=.故选:D.正方体ABCD-A1B1C1D1的棱上到直线A1B与CC1的距离相等的点分别为:D1,BC的中点,B1C1的四等分点(靠近B1),假设D1与G重合,BC的中点为E,B1C1的四等分点(靠近B1)为F,以D为坐标原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AC1与平面EFG所成角的正弦值.本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.13.【答案】-x5【解析】解:(x-)7的展开式的第2项为T2=••x5=-x5,故答案为:-x5.利用二项展开式的通项公式,求得(x-)7的展开式的第2项.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.【答案】6【解析】解:f(x)=1+|x|+,∴f(-x)+f(x)=2+2|x|,∵lg=-lg2,lg=-lg5,∴f(lg2)+f(lg)+f(lg5)+f(lg)=2×2+2(lg2+lg5)=6,故答案为:6根据指数与对数的运算的性质计算即可.本题考查了指数与对数的运算,考查了抽象概括能力和运算求解能力15.【答案】{q|≤q≤,且q≠0}【解析】解:∵a1(a2+a3)=6a1-9,∴a12(q+q2)-6a1+9=0,当q+q2=0时,易知q=-1,满足题意,当q≠0,当q+q2≠0,△=36-36(q+q2)≥0,解得≤q≤,且q≠0,故公比q的取值范围为{q|≤q≤,且q≠0},故答案为:{q|≤q≤,且q≠0}由题意可得a12(q+q2)-6a1+9=0,根据判别式即可求出.本题考查了等比数列,考查了函数与方程的数学思想一运算求解能力,属于基础题.16.【答案】2【解析】解:设M(-a,0),N(a,0),P(x,y)由题意,k1=,k2=,∴k1k2==2,2k1+k2≥2=4,当且仅当2k1=k2时取等号,此时k1=1,PA的方程为y=x+1,与x2-=1联立,可得x2-2x-3=0,解得x=3或x=-1,则P的坐标(3,4),设△PAB的垂心H(3,y),由PA⊥BH,可得:=8+4y=0,解得y=-2,则,△PAB的垂心到x轴的距离为:2.故答案为:2.设M(-a,0),N(a,0),P(x,y),得到k1k2=2,利用基本不等式求解最值,得到P的坐标,然后转化求解△PAB的垂心到x轴的距离.本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.17.【答案】(1)证明:∵tan C=2>0,∴C为锐角,且sin C=,cos C=.过A做AH⊥BC,垂足为H,则CH=b cos C=,∵3sin A=2sin B,∴3a=2b,即a=,∴H是BC的中点,又AH⊥BC,∴AB=AC,∴△ABC为等腰三角形.(2)解:AH=b sin C=,∴S△ABC===2,解得b=3,∴BC=2,在△BCD中,由余弦定理得cos C==,解得:CD=.【解析】(1)过A做BC的垂线AH,根据C的大小可得H为BC的中点,从而得出AB=AC;(2)根据面积求出BC,在△BCD中根据余弦定理计算CD.本题考查了余弦定理,三角形中的几何计算,属于中档题.18.【答案】解:(1)∵甲单位的优惠比例低于乙单位的优惠比例的概率为:0.4×0.6=0.24,∴甲单位优惠比例不低于乙单位优惠比例的概率P=1-0.24=0.76.(2)设在折扣优惠中每箱零件的价格为X元,则X=184或188,P(X=184)=0.6,P(X=188)=0.4,则().若选择方案②,则购买总价的数学期望为:185.6×650=120640元;若选择方案①,由于购买600箱能获赠50箱,∴该单位只需要购买600箱,从而购买总价为200×600=120000元,∵120640>120000,∴选择方案①更划算.【解析】(1)先求出甲单位的优惠比例低于乙单位的优惠比例的概率,由此利用对立事件概率计算公式能求出甲单位优惠比例不低于乙单位优惠比例的概率.(2)设在折扣优惠中每箱零件的价格为X元,则X=184或188,求出X的分布列和E(X)=184×0.6+188×0.4=185.6.选择方案②,则购买总价的数学期望为:185.6×650=120640元;若选择方案①,该单位只需要购买600箱,从而购买总价为200×600=120000元,由此得到选择方案①更划算.本题考查概率、离散型随机变量的分布列、数学期望的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,是中档题.19.【答案】证明:(1)∵四边形ADEF是正方形,∴AD⊥AF,又AD⊥AB,AB∩AF=A,∴AD⊥平面ABF,∵AD⊂平面ADEF,∴平面ADEF⊥平面ABF.(2)由(1)知AD⊥平面ABF,又是AD∥BC,则BC⊥平面ABF,∴BC⊥BF,∵BC⊥AB,∴二面角A-BC-E的平面角为∠ABF=30°,以A为坐标原点,建立空间直角坐标系,则D(0,1,0),C(,,0),F(0,0,1),A(0,0,0),∵三棱锥A-BDF的外接球的球心为O,∴O为线段BE的中点,则O(,,),=(,0,-),=(-,,0),设平面OCD的法向量=(x,y,z),则,取x=1,得=(1,2,),平面ACD的一个法向量=(0,0,1),设二面角A-CD-O的平面角为θ,则cosθ==.∴二面角A-CD-O的余弦值为.【解析】(1)推导出AD⊥AF,AD⊥AB,AD⊥平面ABF,由此能证明平面ADEF⊥平面ABF.(2)推导出BC⊥平面ABF,BC⊥BF,再由BC⊥AB,得二面角A-BC-E的平面角为∠ABF=30°,以A为坐标原点,建立空间直角坐标系,利用向量法能求出二面角A-CD-O的余弦值.本题考查面面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.【答案】解:(1)由题意可得,解得a=2,c=则b2=a2-c2=1,故E的方程为+y2=1.(2)延长MF1交E于点M′,由(1)可知F1(-,0),F2(,0),设M(x1,y1),M′(x2,y2),设直线MF1的方程为x=my-,由可得(m2+4)y2-2y-1=0,∴y1+y2=,y1y2=-∴|y1-y2|===,设F1M与F2N的距离为d,则四边形的F1F2NM面积S=(|F1M|+|F2N|)d=(|F1M|+|F2M′|)d=|MM′|d=S△ ,∴S=S△ =△ +△ =|F1F2||y1-y2|==≤=2,故四边形F1F2NM面积的最大值为2.【解析】(1)由题意可得,解得a=2,c=则b2=a2-c2=1,即可求出;(2)设直线MF1的方程为x=my-,由可得(m2+4)y2-2y-1=0,利用韦达定理定理求出y1-y2|,由题意可得S=|F1F2||y1-y2|,利用基本不等式求得最值.本题考查椭圆方程的求法,考查了直线与椭圆位置关系的应用,训练了利用基本不等式求最值,属中档题21.【答案】解:(1)由(x+x lnx)f′(x)>f(x),x∈(1,+∞),得(1+ln x)f′(x)-f(x)>0,g′(x)=,则g′(x)>0,故g(x)在(1,+∞)递增;(2)∵f(x)=e x+mx,∴(x+x lnx)(e x+m)>e x+mx,即(x+x lnx)(e x+m)-e x-mx=e x(x-1+x lnx)+mx lnx>0,设函数h(x)=e x(x-1+x lnx)+mx lnx,(x>1),h′(x)=(1+ln x)[(x+1)e x+m],∵x>1,∴1+ln x>0,p(x)=(x+1)e x+m是增函数,则p(x)>p(1)=2e+m,当2e+m≥0即m≥-2e时,h′(x)>0,则h(x)在(1,+∞)递增,从而h(x)>h(1)=0,当2e+m<0即m<-2e时,则存在x0>1,p(x0)=0,若1<x<x0,h′(x)<0,若x>x0,h′(x)>0,从而h(x)min=h(x0)<h(1)=0,这与h(x)>0对x∈(1,+∞)恒成立矛盾,故m<-2e不合题意,综上,m的范围是[-2e,+∞).【解析】(1)求出函数的导数,根据函数的单调性求出函数的单调性即可;(2)求出函数的导数,通过讨论m的范围求出函数的单调区间,求出函数的最小值,确定m的范围即可.本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22.【答案】解:(1)由ρ=,得x2+y2=10,将代入x2+y2=10,得t2-2t-6=0,设A,B两点对应的参数分别为t1,t2,则t1t2=-6,故|PA||PB|=|t t2|=6.(2)直线l的普通方程为-y+2=0,设圆M的方程为(x-a)2+(y-b)2=a2(a>0)圆心(a,0)到直线l的距离为d=,因为2=1,所以d2=a2-=,解得a=18(a=-1<0,舍去),则圆M的半径为13,.【解析】(1)先将圆C的极坐标方程化成直角坐标方程,再将直线l的参数方程代入,利用参数t的几何意义可得;(2)设出圆M的直角坐标方程,利用点到直线的距离公式和勾股定理列式可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)∵|f(x)-6|<1,∴-1<f(x)-6<1,即-5<f(x)<7,当-3≤x≤1时,f(x)=4,显然不合题意,当x<-3时,5<-2x-2<7,解得-<x<-,当x>1时,5<2x+2<7,解得<x<,综上不等式的解集为,(-,-)∪(,).证明:(2)∵f(x)=|x-1|+|x+3|≤|x|+1+|x|+3=2|x|+4,当且仅当x=0时等号成立,∴f(x)≤2|x|+4∵f(x)=|x-1|+|x+3|≥|1-x+x+3|=4,∴f(x)≥4,∵4-x2>4,∴4-x2≤f(x),∴4-x2≤f(x)≤2|x|+4.【解析】(1)不等式|f(x)-6|<1可得-5<f(x)<7,分段讨论解得即可,(2)根据绝对值三角不等式即可证明本题主要考查绝对值不等式的解法和不等式的证明,体现了转化、分类讨论的数学思想,属于中档题.。
河北省邯郸市高考数学一模试卷(理科) Word版含解析
2017年河北省邯郸市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|x2﹣2x﹣3<0},B={x|x≥2},则A∩B=()A.(2,3]B.[2,3]C.(2,3)D.[2,3)2.已知a,b∈R,i为虚数单位,当a+bi=i(1﹣i)时,则=()A.i B.﹣i C.1+i D.1﹣i3.已知向量,满足||=2,||=3,(﹣)•=7,则与的夹角为()A.B.C.D.4.已知椭圆C: +=1(a>b>0)的左焦点为F(﹣c,0),上顶点为B,若直线y=x与FB平行,则椭圆C的离心率为()A.B.C.D.5.已知△ABC的三个内角A,B,C依次成等差数列,BC边上的中线AD=,AB=2,则S△ABC=()A.3 B.2C.3D.66.从5种主料职工选2种,8种辅料中选3种烹制菜肴,烹制方式有5种,那么最多可以烹制出不同的菜肴种数为()A.18 B.200 C.2800 D.336007.执行如图所示的程序框图,则输出的结果是()A.8 B.13 C.21 D.348.如图,在边长为2的正方形ABCD中,M是AB的中点,则过C,M,D三点的抛物线与CD围成阴影部分的面积是()A.B.C.D.9.设{a n}是公差为2的等差数列,b n=a,若{b n}为等比数列,则b1+b2+b3+b4+b5=()A.142 B.124 C.128 D.14410.某几何体的三视图如图所示,则该几何体的体积为()A.πB.πC.πD.π11.已知棱长为的正四面体ABCD(四个面都是正三角形),在侧棱AB上任取一点P(与A,B都不重合),若点P到平面BCD及平面ACD的距离分别为a,b,则+的最小值为()A.B.4 C.D.512.设f(x)=e x,f(x)=g(x)﹣h(x),且g(x)为偶函数,h(x)为奇函数,若存在实数m,当x∈[﹣1,1]时,不等式mg(x)+h(x)≥0成立,则m 的最小值为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分).13.已知函数f(x)=,则f[f(﹣3)]=.14.已知函数f(x)=ax+b,0<f(1)<2,﹣1<f(﹣1)<1,则2a﹣b的取值范围是.15.已知三个命题p,q,m中只有一个是真命题,课堂上老师给出了三个判断:A:p是真命题;B:p∨q是假命题;C:m是真命题.老师告诉学生三个判断中只有一个是错误的,那么三个命题p,q,m中的真命题是.16.已知点A(a,0),点P是双曲线C:﹣y2=1右支上任意一点,若|PA|的最小值为3,则a=.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.已知a,b分别是△ABC内角A,B的对边,且bsin2A=acosAsinB,函数f(x)=sinAcos2x﹣sin2sin 2x,x∈[0,].(Ⅰ)求A;(Ⅱ)求函数f(x)的值域.18.如图,在五棱锥P﹣ABCDE中,△ABE是等边三角形,四边形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中点,点P在底面的射影落在线段AG 上.(Ⅰ)求证:平面PBE⊥平面APG;=,△PBE点M在侧棱PC上,CM=2MP,求二面角M﹣AB﹣D的余弦值.19.某校后勤处为跟踪调查该校餐厅的当月的服务质量,兑现奖惩,从就餐的学生中随机抽出100位学生对餐厅服务质量打分(5分制),得到如图柱状图.(Ⅰ)从样本中任意选取2名学生,求恰好有1名学生的打分不低于4分的概率;(Ⅱ)若以这100人打分的频率作为概率,在该校随机选取2名学生进行打分(学生打分之间相互独立)记X表示两人打分之和,求X的分布列和E(X).(Ⅲ)根据(Ⅱ)的计算结果,后勤处对餐厅服务质量情况定为三个等级,并制定了对餐厅相应的奖惩方案,如表所示,设当月奖金为Y(单位:元),求E(Y).20.已知F为抛物线E:x2=2py(p>0)的焦点,直线l:y=kx+交抛物线E于A,B两点.(Ⅰ)当k=1,|AB|=8时,求抛物线E的方程;(Ⅱ)过点A,B作抛物线E的切线l1,l2,且l1,l2交点为P,若直线PF与直线l斜率之和为﹣,求直线l的斜率.21.已知函数f(x)=x2﹣alnx(a>0)的最小值是1.(Ⅰ)求a;(Ⅱ)若关于x的方程f2(x)e x﹣6mf(x)+9me﹣x=0在区间[1,+∞)有唯一的实根,求m的取值范围.从22、23题中任选一题作答.[选修4-4:坐标系与参数方程选讲]22.在平面直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1,C2的极坐标方程分别为ρ=2sinθ,ρcos(θ﹣)=.(Ⅰ)求C1和C2交点的极坐标;(Ⅱ)直线l的参数方程为:(t为参数),直线l与x轴的交点为P,且与C1交于A,B两点,求|PA|+|PB|.[选修4-5:不等式选讲]23.已知函数f(x)=|ax﹣2|.(Ⅰ)当a=2时,解不等式f(x)>x+1;(Ⅱ)若关于x的不等式f(x)+f(﹣x)<有实数解,求m的取值范围.2017年河北省邯郸市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|x2﹣2x﹣3<0},B={x|x≥2},则A∩B=()A.(2,3]B.[2,3]C.(2,3)D.[2,3)【考点】交集及其运算.【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x|x≥2},∴A∩B={x|2≤x<3}=[2,3).故选:D.2.已知a,b∈R,i为虚数单位,当a+bi=i(1﹣i)时,则=()A.i B.﹣i C.1+i D.1﹣i【考点】复数代数形式的乘除运算.【分析】由a+bi=i(1﹣i)=1+i,求出a,b的值,然后代入,再由复数代数形式的乘除运算化简得答案.【解答】解:由a+bi=i(1﹣i)=1+i,得a=1,b=1.则=.故选:A.3.已知向量,满足||=2,||=3,(﹣)•=7,则与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】运用向量的数量积的性质:向量的平方即为模的平方,可得•=﹣3,再由向量的夹角公式,计算即可得到所求角.【解答】解:向量,满足||=2,||=3,(﹣)•=7,可得2﹣•=4﹣•=7,可得•=﹣3,cos<,>===﹣,由0≤<,>≤π,可得<,>=.故选:C.4.已知椭圆C: +=1(a>b>0)的左焦点为F(﹣c,0),上顶点为B,若直线y=x与FB平行,则椭圆C的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】求出直线FB的斜率,利用直线y=x与FB平行,建立方程,求出b=c,即可求出椭圆C的离心率.【解答】解:由题意,,∴b=c,∴a=c,∴e==,故选B.5.已知△ABC的三个内角A,B,C依次成等差数列,BC边上的中线AD=,AB=2,则S△ABC=()A.3 B.2C.3D.6【考点】正弦定理.【分析】由于△ABC的三个内角A、B、C成等差数列,且内角和等于180°,故B=60°,ABD中,由余弦定理可得BD的长,进而利用三角形面积公式即可计算得解.【解答】解:∵由于△ABC的三个内角A、B、C成等差数列,且内角和等于180°,∴B=60°,∵△ABD中,由余弦定理可得:AD2=AB2+BD2﹣2AB•BD•cosB,即:7=4+BD2﹣2BD,∴BD=3或﹣1(舍去),可得:BC=6,===3.∴S△ABC故选:C.6.从5种主料职工选2种,8种辅料中选3种烹制菜肴,烹制方式有5种,那么最多可以烹制出不同的菜肴种数为()A.18 B.200 C.2800 D.33600【考点】排列、组合的实际应用.【分析】根据题意,分3步进行分析:①、从5种主料之中选2种,②、从8种辅料中选3种烹制菜肴,③、从5种烹制方式选一种,分别计算每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分3步进行分析:①、从5种主料之中选2种,有C52=10种选法;②、从8种辅料中选3种烹制菜肴,有C83=56种选法;③、从5种烹制方式选一种,有C51=5种选法;则最多可以烹制出不同的菜肴种数为10×56×5=2880;故选:C.7.执行如图所示的程序框图,则输出的结果是()A.8 B.13 C.21 D.34【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量a,b,c的值,并输出满足退出循环条件时的b的值,模拟程序的运行,对程序运行过程中各变量的值进行分析,即可得解.【解答】解:模拟执行程序,可得a=1,b=1,i=1执行循环体,c=2,a=1,b=2,i=2不满足条件i>5,执行循环体,c=3,a=2,b=3,i=3不满足条件i>5,执行循环体,c=5,a=3,b=5,i=4不满足条件i>5,执行循环体,c=8,a=5,b=8,i=5不满足条件i>5,执行循环体,c=13,a=8,b=13,i=6满足条件i>5,退出循环,输出b的值为13.故选:B.8.如图,在边长为2的正方形ABCD中,M是AB的中点,则过C,M,D三点的抛物线与CD围成阴影部分的面积是()A.B.C.D.【考点】定积分在求面积中的应用.【分析】由题意,建立如图所示的坐标系,求出抛物线的方程,利用定积分求面积即可.【解答】解:由题意,建立如图所示的坐标系,则D(2,1),设抛物线方程为y2=2px,代入D,可得p=,∴y=,∴S===,故选D.9.设{a n}是公差为2的等差数列,b n=a,若{b n}为等比数列,则b1+b2+b3+b4+b5=()A.142 B.124 C.128 D.144【考点】等比数列的通项公式.【分析】由已知得a n=a1+(n﹣1)×2=a1+2n﹣2,且(a4)2=a2•a8,从而a1=2,=2+2×2n﹣2=2n+1,由此能求出b1+b2+b3+b4+b5的值.【解答】解:∵{a n}是公差为2的等差数列,b n=a,∴a n=a1+(n﹣1)×2=a1+2n﹣2,∵{b n}为等比数列,∴.∴(a4)2=a2•a8,∴=(a1+4﹣2)(a1+16﹣2),解得a1=2,∴=2+2×2n﹣2=2n+1b1+b2+b3+b4+b5=22+23+24+25+26=124.故选:B.10.某几何体的三视图如图所示,则该几何体的体积为()A.πB.πC.πD.π【考点】由三视图求面积、体积.【分析】由三视图可得,直观图为圆锥的与圆柱的组合体,由图中数据可得该几何体的体积.【解答】解:由三视图可得,直观图为圆锥的与圆柱的组合体,由图中数据可得几何体的体积为=,故选A.11.已知棱长为的正四面体ABCD(四个面都是正三角形),在侧棱AB上任取一点P(与A,B都不重合),若点P到平面BCD及平面ACD的距离分别为a,b,则+的最小值为()A.B.4 C.D.5【考点】基本不等式.=S△ACD,【分析】由题意可得: +=,其中S△BCDh为正四面体ABCD的高,可得h=2,a+b=2.再利用“乘1法”与基本不等式的性质即可得出.=S△【解答】解:由题意可得: +=,其中S△BCD,h为正四面体ABCD的高.ACDh==2,∴a+b=2.∴+==≥=,当且仅当a=2=时取等号.故选:C.12.设f(x)=e x,f(x)=g(x)﹣h(x),且g(x)为偶函数,h(x)为奇函数,若存在实数m,当x∈[﹣1,1]时,不等式mg(x)+h(x)≥0成立,则m 的最小值为()A.B.C.D.【考点】函数奇偶性的性质.【分析】由F(x)=g(x)+h(x)及g(x),h(x)的奇偶性可求得g(x),h (x),进而可把mg(x)+h(x)≥0表示出来,分离出参数后,求函数的最值问题即可解决.【解答】解:由f(x)=g(x)﹣h(x),即e x=g(x)﹣h(x)①,得e﹣x=g(﹣x)﹣h(﹣x),又g(x),h(x)分别为偶函数、奇函数,所以e﹣x=g(x)+h(x)②,联立①②解得,g(x)=(e x+e﹣x),h(x)=(e x﹣e﹣x).mg(x)+h(x)≥0,即m•(e x+e﹣x)+(e x﹣e﹣x)≥0,也即m≥,即m≥1﹣∵存在实数m,当x∈[﹣1,1]时,不等式mg(x)+h(x)≥0成立,1﹣≥,∴m≥.∴m的最小值为.故选A.二、填空题:本大题共4小题,每小题5分,共20分).13.已知函数f (x )=,则f [f (﹣3)]= ﹣ .【考点】函数的值.【分析】由已知得f (﹣3)==,从而f [f (﹣3)]=f (),由此能求出结果.【解答】解:∵函数f (x )=,∴f (﹣3)==,f [f (﹣3)]=f ()====﹣.故答案为:.14.已知函数f (x )=ax +b ,0<f (1)<2,﹣1<f (﹣1)<1,则2a ﹣b 的取值范围是.【考点】不等式的基本性质.【分析】由题意可得0<a +b <2,﹣1<﹣a +b <1,作出可行域如图,设z=2a ﹣b ,利用z 的几何意义,利用数形结合即可求出该线性规划问题中所有的最优解. 【解答】解:∵f (x )=ax +b ,0<f (1)<2,﹣1<f (﹣1)<1, ∴0<a +b <2,﹣1<﹣a +b <1, 作出可行域如图设z=2a ﹣b ,得b=2a ﹣z ,则平移直线b=2a ﹣z ,则由图象可知当直线经过点B 时,直线b=2a ﹣z 得截距最小,由可得a=,b=此时z 最大为z=2×﹣=,当直线经过点A 时,直线b=2a ﹣z 得截距最大,由可得a=﹣,b=,此时z最小为z=2×(﹣)﹣=﹣,∴2a﹣b的取值范围是,故答案为:,15.已知三个命题p,q,m中只有一个是真命题,课堂上老师给出了三个判断:A:p是真命题;B:p∨q是假命题;C:m是真命题.老师告诉学生三个判断中只有一个是错误的,那么三个命题p,q,m中的真命题是m.【考点】复合命题的真假.【分析】根据已知中老师告诉学生三个判断中只有一个是错误的,逐一分析论证,可得答案.【解答】解:由已知中三个命题p,q,m中只有一个是真命题,①若A是错误的,则:p是假命题;q是假命题;m是真命题.满足条件;②若A是错误的,则:p是真命题;q的真假不能确定;m是真命题.不满足条件;③若C是错误的,则:p是真命题;p∨q不可能是假命题;不满足条件;故真命题是m,故答案为:m16.已知点A(a,0),点P是双曲线C:﹣y2=1右支上任意一点,若|PA|的最小值为3,则a=﹣1或2.【考点】双曲线的简单性质.【分析】设P(x,y)(x≥2),则|PA|2=(x﹣a)2+y2=+﹣1,分类讨论,利用|PA|的最小值为3,求出a的值.【解答】解:设P(x,y)(x≥2),则|PA|2=(x﹣a)2+y2=+﹣1,a>0时,x=a,|PA|的最小值为﹣1=3,∴,a<0时,2﹣a=3,∴a=﹣1.故答案为﹣1或2.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.已知a,b分别是△ABC内角A,B的对边,且bsin2A=acosAsinB,函数f(x)=sinAcos2x﹣sin2sin 2x,x∈[0,].(Ⅰ)求A;(Ⅱ)求函数f(x)的值域.【考点】余弦定理.【分析】(Ⅰ)由已知结合正弦定理,求出tanA的值,从而求出A的值;(II)由A化简函数f(x)为正弦型函数,求出x∈[0,]时f(x)的值域.【解答】解:(Ⅰ)△ABC中,bsin2A=acosAsinB,由正弦定理得,sinBsin2A=sinAcosAsinB,∴tanA==,…又A∈(0,π),∴;…(II)由A=,∴函数f(x)=sinAcos2x﹣sin2sin 2x=cos2x﹣sinxcosx=•﹣•sin2x=﹣(sin2x﹣cos2x)+,=﹣sin(2x﹣)+,∵x∈[0,],∴﹣≤2x﹣≤,…∴﹣≤sin(2x﹣)≤1,∴≤﹣sin(2x﹣)+≤,所以f(x)的值域为.…18.如图,在五棱锥P﹣ABCDE中,△ABE是等边三角形,四边形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中点,点P在底面的射影落在线段AG 上.(Ⅰ)求证:平面PBE⊥平面APG;=,△PBE点M在侧棱PC上,CM=2MP,求二面角M﹣AB﹣D的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)取BE中点F,连接AF,GF,由题意得A,F,G三点共线,过点P作PO⊥AG于O,则PO⊥底面ABCDE,推导出BE⊥PO,BE⊥AG,由此能证明平面PBE⊥平面APG.(II)连接PF,推导出O点与F点重合,以O为原点,分别以的方向为x轴,y轴,z轴正方向,建立空间直角坐标系.利用向量法能求出二面角M﹣AB﹣D的余弦值.【解答】证明:(Ⅰ)取BE中点F,连接AF,GF,由题意得A,F,G三点共线,过点P作PO⊥AG于O,则PO⊥底面ABCDE∵BE⊂平面ABCDE,∴BE⊥PO,∵△ABE是等边三角形,∴BE⊥AG…∵AG∩PO=O,∴BE⊥平面PAG,∵BE⊂平面PBE,∴平面PBE⊥平面APG.…解:(II)连接PF,∵又∵∠PAF=45°,∴PF⊥AF,∴PF⊥AF,∴PF⊥底面ABCDE.…∴O点与F点重合.如图,以O为原点,分别以的方向为x轴,y轴,z轴正方向,建立空间直角坐标系.底面ABCDE的一个法向量…∵,∴,设平面ABM的法向量,∵,∴,∴,∴,取则,∴,…∵二面角的法向量分别指向二面角的内外,即为二面角的平面角,∴cos<>==.∴二面角M﹣AB﹣D的余弦值为.…19.某校后勤处为跟踪调查该校餐厅的当月的服务质量,兑现奖惩,从就餐的学生中随机抽出100位学生对餐厅服务质量打分(5分制),得到如图柱状图.(Ⅰ)从样本中任意选取2名学生,求恰好有1名学生的打分不低于4分的概率;(Ⅱ)若以这100人打分的频率作为概率,在该校随机选取2名学生进行打分(学生打分之间相互独立)记X表示两人打分之和,求X的分布列和E(X).(Ⅲ)根据(Ⅱ)的计算结果,后勤处对餐厅服务质量情况定为三个等级,并制定了对餐厅相应的奖惩方案,如表所示,设当月奖金为Y(单位:元),求E(Y).【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)计算“从样本中任意选取2名学生,恰好有一名学生的打分不低于4分”的概率值;(Ⅱ)由X的可能取值,计算对应的概率值,写出X的分布列,计算数学期望;(Ⅲ)根据表格写出Y的分布列,计算对应的数学期望值.【解答】解:(Ⅰ)设“从样本中任意选取2名学生,求恰好有一名学生的打分不低于4分”为事件A,则P(A)==≈0.51;…(Ⅱ)X的可能取值为4,5,6,7,8,9,10;则P(X=4)=0.2×0.2=0.04,P(X=5)=2×0.2×0.3=0.12,P(X=6)=2×0.2×0.3+0.3×0.3=0.21,P(X=7)=2×0.3×0.3+2×0.2×0.2=0.26,P(X=8)=2×0.2×0.3+0.3×0.3=0.21,P(X=9)=2×0.2×0.3=0.12,P(X=10)=0.2×0.2=0.04;X的分布列如下:X的数学期望为E(X)=4×0.04+5×0.12+6×0.21+7×0.26+8×0.21+9×0.12+10×0.04=7;…..(Ⅲ)Y的分布列为Y的数学期望为E(Y)=﹣1000×0.16+2000×0.68+3000×0.16=1680.…20.已知F为抛物线E:x2=2py(p>0)的焦点,直线l:y=kx+交抛物线E于A,B两点.(Ⅰ)当k=1,|AB|=8时,求抛物线E的方程;(Ⅱ)过点A,B作抛物线E的切线l1,l2,且l1,l2交点为P,若直线PF与直线l斜率之和为﹣,求直线l的斜率.【考点】抛物线的简单性质.【分析】(Ⅰ)根据弦长公式即可求出p的值,问题得以解决,(Ⅱ)联立方程组,根据韦达定理,即可求出过点A,B作抛物线E的切线l1,l2方程,再求出交点坐标,根据斜率的关系即可求出k的值.【解答】解:(Ⅰ)联立,消去x得,题设得,∴p=2,∴抛物线E的方程为x2=4y.(II)设联立,消去y得x2﹣2pkx﹣p2=0,∴,由得,∴直线l1,l2的方程分别为,联立得点P 的坐标为,∴,∴或,∴直线l 的斜率为k=﹣2或.21.已知函数f (x )=x 2﹣alnx (a >0)的最小值是1. (Ⅰ)求a ;(Ⅱ)若关于x 的方程f 2(x )e x ﹣6mf (x )+9me ﹣x =0在区间[1,+∞)有唯一的实根,求m 的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性. 【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出f (x )的最小值,问题转化为﹣ln ﹣1=0,记g (a )=﹣ln ﹣1,(a >0),根据函数的单调性求出a 的值即可;(Ⅱ)由条件可得f 2(x )e 2x ﹣6mf (x )e x +9m=0,令g (x )=f (x )e x =(x 2﹣2lnx )e x ,原问题等价于方程t 2﹣6mt +9m=0在区间[e ,+∞)内有唯一解,通过讨论△的符号,求出m 的范围即可.【解答】解:(Ⅰ)f′(x )=2x ﹣=,(x >0),所以,当0<x <时,f′(x )<0,当x >时,f′(x )>0,故f (x )min =f ()=﹣ln ,由题意可得:﹣ln =1,即﹣ln ﹣1=0,记g (a )=﹣ln ﹣1,(a >0),则函数g (a )的零点即为方程﹣ln =1的根;由于g′(a )=﹣ln ,故a=2时,g′(2)=0,且0<a<2时,g′(a)>0,a>2时,g′(a)<0,所以a=2是函数g(a)的唯一极大值点,所以g(a)≤g(2),又g(2)=0,所以a=2.(II)由条件可得f2(x)e2x﹣6mf(x)e x+9m=0,令g(x)=f(x)e x=(x2﹣2lnx)e x,则g′(x)=(x2+2x﹣﹣2lnx)e x,令r(x)=x2+2x﹣﹣2lnx(x≥1),则,r(x)在区间[1,+∞)内单调递增,∴g(x)≥g(1)=e;所以原问题等价于方程t2﹣6mt+9m=0在区间[e,+∞)内有唯一解,当△=0时可得m=0或m=1,经检验m=1满足条件,当△>0时可得m<0或m>1,所以e2﹣6me+9m≤0,解之得:m≥,综上,m的取值范围是{m|m=1或m≥}.从22、23题中任选一题作答.[选修4-4:坐标系与参数方程选讲]22.在平面直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1,C2的极坐标方程分别为ρ=2sinθ,ρcos(θ﹣)=.(Ⅰ)求C1和C2交点的极坐标;(Ⅱ)直线l的参数方程为:(t为参数),直线l与x轴的交点为P,且与C1交于A,B两点,求|PA|+|PB|.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)求出C1和C2的直角坐标方程,得出交点坐标,再求C1和C2交点的极坐标;(Ⅱ)利用参数的几何意义,即可求|PA|+|PB|.【解答】解:(Ⅰ)由C1,C2极坐标方程分别为ρ=2sinθ,’化为平面直角坐标系方程分为x2+(y﹣1)2=1,x+y﹣2=0.…得交点坐标为(0,2),(1,1).…即C1和C2交点的极坐标分别为.…(II)把直线l的参数方程:(t为参数),代入x2+(y﹣1)2=1,得,…即t2﹣4t+3=0,t1+t2=4,…所以|PA|+|PB|=4.…[选修4-5:不等式选讲]23.已知函数f(x)=|ax﹣2|.(Ⅰ)当a=2时,解不等式f(x)>x+1;(Ⅱ)若关于x的不等式f(x)+f(﹣x)<有实数解,求m的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(Ⅰ)把a=2代入不等式化简后,对x分类讨论,分别去掉绝对值求出每个不等式的解集,再取并集即得不等式的解集;(Ⅱ)利用绝对值三角不等式求出f(x)+f(﹣x)的最小值,结合题意列出不等式,求出实数m的范围.【解答】解:(Ⅰ)当a=2时,不等式为:|2x﹣2|>x+1,当x≥1时,不等式化为:2x﹣2>x+1,解得x>3…当x<1时,不等式化为:2﹣2x>x+1,解得…综上所述,解集为;…(II)因为f(x)+f(﹣x)=|ax﹣2|+|﹣ax﹣2|≥|ax﹣2﹣ax﹣2|=4…,所以f(x)+f(﹣x)的最小值为4,…,因为f(x)+f(﹣x)<有实数解,所以…2017年4月1日。
2019年河北高考理科数学真题及答案
2019年河北高考理科数学真题及答案注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合知={川-4<工<2}, ^={X|X2-X-6<0},则二A. {X H<XV3}B. {x\-A<x<-2}C. {x|-2<x<2}D. {x\2<x<3}2.设复数z满足—z在复平面内对应的点为(x, r),则A. (A+1)2 + y2 = 1B. (x-l)2 + y2=lC. x2+(y-l)2 =1D. x2+(y+l)2=l3.已知〃 = log2().2, b = 202, c = 0.2°3,则A. a <b<cB. a <c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是避二12 (由二1-0. 618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽2喉的长度与咽喉至肚脐的长度之比也是也若某人满足上述两个黄金分割比例,且腿长为105cm,2头顶至脖子下端的长度为26cm,则其身高可能是A.165 cmB.175cmC.185cmD. 190cm2AsinY+ x5.函数= ——F 在[一兀河的图像大致为 COSX +厂概率是— C. —D.—3232 169,记S 〃为等差数列{4}的前A 项和.已知邑=0, % =5,则7.已知非零向量& 6满足1。
2019-2020年高三数学第一次统一考试试题 理(含解析)
2019-2020年高三数学第一次统一考试试题 理(含解析)【试卷综析】试题在重视基础,突出能力,体现课改,着眼稳定,实现了新课标高考数学试题与老高考试题的尝试性对接.纵观新课标高考数学试题,体现数学本质,凸显数学思想,强化思维量,控制运算量,突出综合性,无论是在试卷的结构安排方面,还是试题背景的设计方面以全新的面貌来诠释新课改的理念.【题文】一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】 l.集合 {}{}{}1,2,3,4,5,1,2,3,|,A B C z z xy x A y B ====∈∈且,则集合C 中的元素个数为A.3 B .4 C .11 D .12【知识点】集合中元素的特征:确定性,互异性,无序性. A1 【答案】【解析】C 解析:{1,2,3,4,5,6,8,9,10,12,15}C =,故选C. 【思路点拨】利用已知求得集合C 即可.【题文】 2.已知i 为虚数单位,复数123,12z ai z i =-=+,若12z z 复平面内对应的点在第四象限,则实数a 的取值范围为 A. {}|6a a <- B . 3|62a a ⎧⎫-<<⎨⎬⎩⎭ C .3|2a a ⎧⎫<⎨⎬⎩⎭ D . 3|62a a a ⎧⎫<->⎨⎬⎩⎭或 【知识点】复数的运算;复数的几何意义. L4 【答案】【解析】B 解析:12z z ()()()()312332612121255ai i ai a a i i i i ----+===-++-,因为12zz 复平面内对应的点在第四象限,所以32036602a a a ->⎧⇒-<<⎨+>⎩,故选 B.【思路点拨】先把复数z 化为最简形式,在利用复数的几何意义求解.【题文】3.已知θ为第二象限角, sin ,cos θθ是关于x 的方程22x R)∈的两根,则 sin -cos θθ的等于 A .12+ B .12C ..【知识点】已知三角函数式的值,求另一个三角函数式的值. C7 【答案】【解析】A解析:由已知得1sin cos 2θθ+=2sin cos 2θθ⇒=-又θ为第二象限角,所以sin -cos θθ==12+,故选 A.【思路点拨】由已知得1sin cos 2θθ-+=2sin cos 2θθ⇒=-,又θ为第二象限角,所以sin -cos θθ==12+. 【题文】4.下面四个推导过程符合演绎推理三段论形式且推理正确的是A .大前提:无限不循环小数是无理数;小前提:π丌是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提: π是无限不循环小数;结论: π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论: π是无理数D.大前提: π是无限不循环小数;小前提: π是无理数;结论:无限不循环小数是无理数 【知识点】演绎推理的定义及特点. M1【答案】【解析】B 解析:A :小前提不正确;C 、D 都不是由一般性命题到特殊性命题的推理,所以A 、C 、D 都不正确,只有B 正确,故选 B.【思路点拨】演绎推理是由一般性命题到特殊性命题的推理,及其推理的一般模式---“三段论”,由三段论的含义得出正确选项.【题文】5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为 A .38 B . 82π- C . 43π D . 283π-【知识点】几何体的三视图;几何体的结构. G1 G2【答案】【解析】D 解析:由三视图可知此几何体是:棱长为2 的正方体挖去了一个圆锥而形成的新几何体,其体积为3212212833ππ-⨯⨯⨯=-,故选 D.【思路点拨】由几何体的三视图得此几何体的结构,从而求得此几何体的体积.【题文】6.已知 ()f x 是定义在R 上的偶函数,且()f x 在(],0-∞上单调递增,设333(sin )(cos ),(tan )555a fb fc f πππ===,则a,b,c 的大小关系是,A .a<b<cB .b<a<cC .c<a<bD .a<c<b【知识点】函数奇偶性,单调性的应用. B3 B4【答案】【解析】C 解析:∵()f x 是定义在R 上的偶函数,且()f x 在(],0-∞上单调递增, ∴()f x 在[)0,+∞上单调递减,且22coscos 55b f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭, 22tantan 55c f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,又∵2sin 5a f π⎛⎫=⎪⎝⎭,且2220cos sin tan 555πππ<<<,∴ c<a<b ,故选 C.【思路点拨】由已知得函数()f x 在[)0,+∞上单调递减,而2sin5a f π⎛⎫= ⎪⎝⎭, 22coscos 55b f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,22tan tan 55c f f ππ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭,所以只需比较 222cos,sin ,tan555πππ的大小关系即可. 【题文】7.执行如图的程序,则输出的结果等于 A .9950 B .200101 C .14950 D . 15050【知识点】对程序框图描述意义的理解. L1【答案】【解析】A 解析:根据框图中的循环结构知,此程序是求下式的值:1111136104950T =+++++222222612209900=+++++1111212233499100⎛⎫=++++⎪⨯⨯⨯⨯⎝⎭1111111212233499100⎛⎫=-+-+-++- ⎪⎝⎭1992110050⎛⎫=-=⎪⎝⎭,故选A. 【思路点拨】由程序框图得其描述的算法意义.【题文】 8.在△ABC 中,D 为AC 的中点,3BC BE =,BD 与 AE 交于点F ,若 AF AE λ=,则实数λ的值为 A .12 B . 23 C . 34 D . 45【知识点】平面向量的线性运算. F1 【答案】【解析】C 解析:作EFAC 交BD 于G ,因为13BE BC =,所以13EG DC =,因为 D 为AC 的中点,所以13EG AD =,所以1334EF AF AE FA =⇒=,故选C.【思路点拨】画出几何图形,利用平行线分线段成比例定理求得结论.【题文】9.设 12,F F 分别为双曲线 221x y -=的左,右焦点,P 是双曲线上在x 轴上方的点, 1F PF ∠为直角,则 12sin PF F ∠的所有可能取值之和为A .83B .2C .D .2【知识点】双曲线的性质. H6【答案】【解析】D 解析:设P 是第一象限点,且12,PF m PF n ==,则222181m n m m n n ⎧-==⎧⎪⇒⎨⎨+==⎩⎪⎩,所以所求= 2m n c +==,故选 D. 【思路点拨】根据双曲线的定义及勾股定理,求得P 到两焦点的距离,这两距离和与焦距的比值为所求. 【题文】10.曲线 1(0)y x x=>在点 00(,)P x y 处的切线为 l .若直线l 与x ,y 轴的交点分别为A ,B ,则△OAB 的 周长的最小值为A. 4+5+ 【知识点】导数的几何意义;基本不等式求最值. B11 E6 【答案】【解析】A 解析:∵21y x '=-,∴00201:()l y y x x x -=--即20020x x y x +-=, 可得A(02x ,0),B(0,02x ),∴△OAB的周长00224l x x =+≥+当01x =时等号成立.故选 A.【思路点拨】由导数的几何意义得直线l 的方程,从而求得A 、B 的坐标,进而用0x 表示△OAB 的周长,再用基本不等式求得周长的最小值.【题文】11.若直线(31)(1)660x y λλλ++-+-= 与不等式组 70,310,350.x y x y x y +-<⎧⎪-+<⎨⎪-->⎩,表示的平 面区域有公共点,则实数λ的取值范围是 A . 13(,)(9,)7-∞-+∞ B . 13(,1)(9,)7-+∞ C .(1,9) D . 13(,)7-∞-【知识点】简单的线性规划. E5【答案】【解析】A 解析:画出可行域,求得可行域的三个顶点A(2,1),B(5,2),C(3,4) 而直线(31)(1)660x y λλλ++-+-=恒过定点P(0,-6),且斜率为311λλ+-,因为 7810,,253PA PB PC k k k ===,所以由8317512λλ+<<-得λ∈13(,)(9,)7-∞-+∞,故选A.【思路点拨】:画出可行域,求得可行域的三个顶点, 确定直线过定点P(0,-6),求得直线PA 、PB 、PC 的斜率,其中最小值85,最大值72,则由8317512λλ+<<-得λ的取值范围. 【题文】12.在平面直角坐标系中,点P 是直线 1:2l x =-上一动点,点 1(,0)2F ,点Q 为PF 的 中点,点M 满MQ ⊥PF ,且 ()MP OF R λλ=∈.过点M 作圆 22(3)2x y -+= 的切线,切点分别为S ,T ,则 ST 的最小值为A .. C . 72 D. 52【知识点】曲线与方程;距离最值问题. H9 【答案】【解析】A 解析:设M(x,y),1(,2)2P b -,则Q(0,b),由QM ⊥FP 得 (,)(1,2)02()0x y b b x b y b -⋅-=⇒-+-=.由()MP OF R λλ=∈得y=2b,所以点M 的轨迹方程为22y x =,M 到圆心距离=,易知当d 去最小ST 取最小值,此时MT ==,由三角形面积公式得:11222ST ST ==故选A. 【思路点拨】先求得点M 的轨迹方程22y x =,分析可知当M 到圆心距离最小时ST 最小,所以求M 到圆心距离d 得最小值,再用三角形面积公式求得ST 的最小值. 【题文】二、填空题:本大题共4小题,每小题5分,共20分. 【题文】13.设随机变量 2(,)N ξμσ,且 (1)(1),(2)0.3P P P ξξξ<-=>>=,则(20)P ξ-<<= _____________.【知识点】正态分布的意义. I3【答案】【解析】0.2 解析:因为(1)(1)P P ξξ<-=>,所以正态分布曲线关于y 轴对称, 又因为(2)0.3P ξ>=,所以(20)P ξ-<<=120.30.22-⨯=【思路点拨】根据正态分布的性质求解.【题文】14.若正四梭锥P- ABCD 的底面边长及高均为2,刚此四棱锥内切球的表面积为_______.【知识点】组合体的意义;几何体的结构. G1【答案】【解析】2(3π- 解析:根据题意得正四梭锥的底面面积为4,一个侧面面积为R ,则由等体积法得,()111442332R R =⨯⨯⇒=,所以球的表面积为2(3π.【思路点拨】由等体积法求得此四棱锥内切球的半径,再由球的表面积公式求得结论. 【题文】15.将函数 ()sin()223y sin x x ωωπ=+的图象向右平移3π个单位,所得图象关于y轴对称,则正数 ω的最小值为________.【知识点】sin()y A x ωϕ=+的图像与性质. C4 【答案】【解析】 1 解析:函数()sin()223y sin x x ωωπ=+=1sin()sin()cos()2222x x x ωωω⎛⎫+ ⎪ ⎪⎝⎭=21sin ()sin()cos()2222x x x ωωω+=11sin()264x πω-+,向右平移3π个单位后为: 1111sin[()]sin 23642364y x x πππωπωω⎡⎤⎛⎫=--+=-++ ⎪⎢⎥⎝⎭⎣⎦,这时图像关于y 轴对称,所以31362k k πωπππω+=+⇒=+,k Z ∈,所以正数 ω的最小值为1.【思路点拨】先利用两角和与差的三角函数,二倍角公式,把已知函数化为: y=11sin()264x πω-+,再由其平移后关于y 轴对称得31k ω=+,k Z ∈,所以正数 ω的最小值为1.【题文】 16.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b=l ,a= 2c ,则当C 取最大值时,△ABC 的面积为________.【知识点】余弦定理;三角形的面积公式. C8【答案】解析:当C 取最大值时,cosC 最小,由22223111cos 3244a b c c C c ab c c +-+⎛⎫===+≥⎪⎝⎭得,当且仅当c= 3时C 最大,且此时sinC=12,所以△ABC的面积为111sin 21222ab C c =⨯⨯⨯=【思路点拨】由余弦定理求得C 最大的条件,再由三角形面积公式求解.【题文】三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.【题文】17.(本小题满分10分) 已知 {}{},n n a b 均为等差数列,前n 项和分别为 ,n n S T .(1)若平面内三个不共线向量 ,,OA OB OC 满足 315OC a OA a OB =+,且A ,B ,C 三点共线.是否存在正整数n ,使 n S 为定值?若存在,请求出此定值;若不存在,请说明理由。
河北省邯郸市高考第一次模拟考试数学(理)试题含答案
高三数学考试(理科) 第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数1z i =-+,则22z z z +=+( )A .-1B .1C .i -D .i2.设全集(3,)U =-+∞,集合2{|142}A x x =<-≤,则U C A =( ) A .(3,2)[3,)-+∞ B .(2,2)[3,)-+∞ C .(3,2](3,)-+∞ D .[2,2](3,)-+∞3.某电视台夏日水上闯关节目中的前三关的过关率分别为0.8,0.7,0.6,只有通过前一天才能进入下一关,且通过每关相互.一选手参加该节目,则该选手只闯过前两关的概率为( ) A .0.56 B .0.336 C .0.32 D .0.2244.ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 20sin ab C B =,2241a c +=,且8cos 1B =,则b =( )A .6B .42C .35D .75.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .4B .5C .6D .76.若函数221,1()1,1x x f x x ax x ⎧+≥⎪=⎨-++<⎪⎩在R 上是增函数,则a 的取值范围为( ) A .[2,3] B .[2,)+∞ C .[1,3] D .[1,)+∞7.记不等式组22220x y x y y +≤⎧⎪+≥⎨⎪+≥⎩,表示的平面区域为Ω,点P 的坐标为(,)x y .有下面四个命题:1p :P ∀∈Ω,x y -的最小值为6;2p :P ∀∈Ω,224205xy≤+≤; 3p :P ∀∈Ω,x y -的最大值为6;4p :P ∀∈Ω,222525x y ≤+≤其中的真命题是( ) A .1p ,4p B .1p ,2p C .2p ,3p D .3p ,4p8.若(12)n x x -的展开式中3x 的系数为80,其中n 为正整数,则(12)nx x -的展开式中各项系数的绝对值之和为( )A .32B .81C .243D .256 9.我国古代数学名著《九章算术》里有一道关于买田的问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其意思为:“今有好田1亩价值300钱;坏田7亩价值500钱.今合买好、坏田1顷,价值10000钱.问好、坏田各有多少亩?”已知1顷为100亩,现有下列四个程序框图,其中S 的单位为钱,则输出的x ,y 分别为此题中好、坏田的亩数的是( )A .B .C .D .10.若仅存在一个实数(0,)2t π∈,使得曲线C :sin()(0)6y x πωω=->关于直线x t =对称,则ω的取值范围是( )A .17[,)33B .410[,)33C .17(,]33D .410(,]3311.设正三棱锥P ABC -的高为H ,且此棱锥的内切球的半径为R ,若二面角P AB C --的35H R =( )A .5B .6C .7D .812.设双曲线Ω:22221(0,0)x y a b a b -=>>的左顶点与右焦点分别为A ,F ,以线段AF 为底边作一个等腰AFB ∆,且AF 边上的高h AF=.若AFB ∆的垂心恰好在Ω的一条渐近线上,且Ω的离心率为e ,则下列判断正确的是( )A .存在唯一的e ,且3(,2)2e ∈B .存在两个不同的e ,且一个在区间3(1,)2内,另一个在区间3(,2)2内 C .存在唯一的e ,且3(1,)2e ∈ D .存在两个不同的e ,且一个在区间3(1,)2内,另一个在区间3(,2)2内第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.在平行四边形ABCD 中,若AD AC BA λμ=+,则λμ+= .14.若圆C :221()2x y n m ++=的圆心为椭圆M :221x my +=的一个焦点,且圆C 经过M 的另一个焦点,则圆C 的标准方程为 .15.若22cos ()422παβ--13sin()αβ=+-,,(0,)2παβ∈,则tan tan αβ= .16.已知集合1{|}2M x x =≥-,32{|310}A x M x x a =∈-+-=,{|20}B x M x a =∈--=,若集合A B 的子集的个数为8,则a 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21n n n b a -=+,且1222n n n S T n ++=+-.(1)求n nT S -;(2)求数列{}2n n b的前n 项和n R .18.某大型超市在元旦举办了一次抽奖活动,抽奖箱里放有3个红球,3个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取3个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会; ②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;③若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包; ④若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包; ⑤若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包. 抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.(1)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分); (2)记一次抽奖获得的红包奖金数(单位:元)为X ,求X 的分布列及数学期望,并计算这20位顾客(假定每位获得抽奖机会的顾客都会去抽奖)在抽奖中获得红包的总奖金数的平均值.19.如图,在各棱长均为2的正三棱柱111ABC A B C -中,D ,E 分别为棱11A B 与1BB 的中点,M ,N 为线段1C D 上的动点,其中,M 更靠近D ,且1MN C N =.(1)证明:1A E ⊥平面1AC D;(2)若NE 与平面11BCC B 所成角的正弦值为10,求异面直线BM 与NE 所成角的余弦值.20.已知0p >,抛物线1C :22x py =与抛物线2C :22y px =异于原点O 的交点为M ,且抛物线1C 在点M 处的切线与x 轴交于点A ,抛物线2C 在点M 处的切线与x 轴交于点B ,与y 轴交于点C .(1)若直线1y x =+与抛物线1C交于点P ,Q ,且26PQ =OP OQ ⋅;(2)证明:BOC ∆的面积与四边形AOCM 的面积之比为定值.21.已知函数2()3x f x e x =+,()91g x x =-.(1)比较()f x 与()g x 的大小,并加以证明;(2)当0x a <≤时,45()x xe x f x a ++->,且2(3)350m m e m m --++=(02)m <<,证明:0a m <<.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔将所选题目对应的题号右侧方框涂黑,并且在解答过程中写清每问的小题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线M 的参数方程为233233x tty t ⎧=⎪-⎪⎨⎪=⎪-⎩t 为参数,且0t >),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为4cos ρθ=. (1)将曲线M 的参数方程化为普通方程,并将曲线C 的极坐标方程化为直角坐标方程;(2)求曲线M 与曲线C 交点的极坐标(0,02)ρθπ≥≤<. 23.[选修4-5:不等式选讲] 已知函数()413f x x x =-+--.(1)求不等式()2f x ≤的解集;(2)若直线2y kx =-与函数()f x 的图象有公共点,求k 的取值范围.高三数学详细参考答案(理科) 一、选择题1-5: ABDAC 6-10: ACCBD 11、12:CA 二、填空题13. 2 14. 22(1)4x y ++= 15. 2 16.51[,1)(1,)28--- 三、解答题17.解:(1)依题意可得113b a -=,225b a -=,…,21n n n b a -=+,∴n n T S -1212()()n n b b b a a a =++⋅⋅⋅+-++⋅⋅⋅+2(222)n n =+++⋅⋅⋅+122n n +=+-.(2)∵2n n n S S T =+()n n T S --2n n =-,∴22n n nS -=, ∴1n a n =-.又21n n n b a -=+,∴2n n b n=+.∴122n nn b n=+, ∴n R n =+212()222n n ++⋅⋅⋅+,则1122n R n =+23112()222n n +++⋅⋅⋅+, ∴1122n R n =+21111()2222n n n+++⋅⋅⋅+-, 故111222112n n R n +-=+⨯-2222n n n n n +-=+-. 18.解:(1)获得抽奖机会的数据的中位数为110,平均数为1(10110210410810911++++110112115188189200)++++++143813111=≈.(2)X 的可能取值为2,5,10,(10)P X =272235C ==,(5)P X =113327935C C C ==, (2)P X =21342722435C C C ==, 则X 的分布列为X2 5 10P2435935 235故249()253535E X =⨯+⨯2113103535+⨯=.这20位顾客中,有8位顾客获得一次抽奖的机会,有3位顾客获得两次抽奖的机会, 故共有14次抽奖机会.所以这20位顾客在抽奖中获得红包的总奖金数的平均值为1131445.235⨯=元.19.解:(1)证明:由已知得111A B C ∆为正三角形,D 为棱11A B 的中点,∴111C D A B ⊥,在正三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,则11AA C D⊥.又1111A B AA A =,∴1C D ⊥平面11ABB A ,∴11C D A E⊥. 易证1A E AD⊥,又1AD C D D=,∴1A E ⊥平面1AC D.(2)解:取BC 的中点O ,11B C 的中点1O ,则AO BC ⊥,1OO BC⊥,以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则(0,1,0)B ,(0,1,1)E ,1(0,1,2)C -,31(,,2)2D ,设11C N C Dλ=33(,,0)2λλ=,则11NE C E C N=-33(0,2,1)(,,0)22λλ=--33(,2,1)22λλ=---,易知(1,0,0)n =是平面11BCC B 的一个法向量,∴cos ,NE n <>232365λλλ=-+1020=,解得13λ=. ∴33(,,1)2NE =--,112C M C D λ=3(,1,0)=,11BM BC C M =+3(,1,2)=-,,∴cos ,NE BM <>13262101633---=⨯111040=-, ∴异面直线NE 与BM 所成角的余弦值为1110.20.(1)解:由212y x x py =+⎧⎨=⎩,消去y 得2220x px p --=.设P ,Q 的坐标分别为11(,)x y ,22(,)x y ,则122x x p+=,122x x p=-.∴211PQ =+2(2)4(2)26p p ⋅--=0p >,∴1p =.∴1212OP OQ x x y y ⋅=+1212(1)(1)x x x x =+++121221x x x x =+++4211=-++=-.(2)证明:由2222y px x py ⎧=⎪⎨=⎪⎩,得2x y p ==或0x y ==,则(2,2)M p p .设直线AM :12(2)y p k x p -=-,与22x py =联立得221124(1)0x pk x p k ---=.由222111416(1)0p k p k ∆=+-=,得21(2)0k -=,∴12k =.设直线BM :22(2)y p k x p -=-,与22y px =联立得222224(1)0k y py p k ---=.由22222416(1)0p p k k ∆=+-=,得22(12)0k -=,∴212k =.故直线AM :22(2)y p x p -=-,直线BM :12(2)2y p x p -=-,从而不难求得(,0)A p ,(2,0)B p -,(0,)C p , ∴2BOC S p ∆=,23ABM S p ∆=,∴BOC ∆的面积与四边形AOCM 的面积之比为222132p p p =-(为定值).21.(1)解:()()f x g x >. 证明如下:设()()()h x f x g x =-2391x e x x +-+,∵'()329x h x e x =+-为增函数, ∴可设0'()0h x =,∵'(0)60h =-<,'(1)370h e =->,∴0(0,1)x ∈.当0x x >时,'()0h x >;当x x <时,'()0h x <.∴min 0()()h x h x =0200391x e x x =+-+, 又003290x e x +-=,∴00329x e x =-+,∴2min 000()2991h x x x x =-++-+2001110x x =-+00(1)(10)x x =--.∵0(0,1)x ∈,∴00(1)(10)0x x -->,∴min ()0h x >,()()f x g x >.(2)证明:设()45()x x xe x f x ϕ=++-2(3)45(0)x x e x x x =--++>,令'()(2)(2)0xx x e ϕ=--=,得1ln 2x =,22x =, 则()x ϕ在(0,ln 2)上单调递增,在(ln 2,2)上单调递减,在(2,)+∞上单调递增.2(2)92e ϕ=-<,设()2(ln 22)t t ϕ=<<,∵2(3)350m m e m m --++=(02)m <<, ∴2(3)45m m e m m m --++=(02)m <<,即()m m ϕ=(02)m <<. 当0a t <<时,()(0)2x a ϕϕ>=>,则45()xxe x f x a ++->. 当t a m ≤≤时,min ()()x a ϕϕ=,∵45()xxe x f x a ++->,∴()a a ϕ>,∴t a m ≤<. 当2m a <<或2a ≥时,不合题意. 从而0a m <<.22.解:(1)∵y tx =,∴233x x =,即3(2)y x =-,又0t >2330>,∴2x >或0x <,∴曲线M 的普通方程为3(2)y x =-(2x >或0x <).∵4cos ρθ=,∴24cos ρρθ=,∴224x y x +=,即曲线C 的直角坐标方程为2240x x y -+=.(2)由223(2)40y x x x y ⎧=-⎪⎨-+=⎪⎩得2430x x -+=,11 / 11 ∴11x =(舍去),23x =, 则交点的直角坐标为(3,3),极坐标为(23,)6π. 23.解:(1)由()2f x ≤,得1222x x ≤⎧⎨-≤⎩或1402x <<⎧⎨≤⎩或4282x x ≥⎧⎨-≤⎩, 解得05x ≤≤,故不等式()2f x ≤的解集为[0,5].(2)()413f x x x =-+--22,10,1428,4x x x x x -≤⎧⎪=<<⎨⎪-≥⎩, 作出函数()f x 的图象,如图所示,直线2y kx =-过定点(0,2)C -,当此直线经过点(4,0)B 时,12k =;当此直线与直线AD 平行时,2k =-.故由图可知,1(,2)[,)2k ∈-∞-+∞.。
2019年河北高考理科数学真题及答案
2019年河北高考理科数学真题及答案注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N I = A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f(x)=2sincos++x xx x在[,]-ππ的图像大致为A.B.C.D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11167.已知非零向量a,b满足||2||=a b,且()-a b⊥b,则a与b的夹角为A.π6B.π3C.2π3D.5π68.如图是求112122++的程序框图,图中空白框中应填入A.A=12A+B.A=12A+C.A=112A+D.A=112A+9.记nS为等差数列{}n a的前n项和.已知4505S a==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D二、填空题:本题共4小题,每小题5分,共20分。
河北省邯郸市2019届高三第一次模拟考试数学(理)试卷 含解析
高三数学试卷(理科)一、选择题:本大题共12个小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则集合可以为()A. B.C. D.【答案】C【解析】【分析】先解集合A,对照选项即可求解【详解】因为,所以当时,故选:C【点睛】本题考查集合的交集,考查运算求解能力与推理论证能力,是基础题2.在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用复数代数形式的运算化简,再由几何意义确定象限即可【详解】故选:B【点睛】本题考查复数代数形式运算及几何意义,熟记复数的代数表示法及其几何意义,是基础题.3.从某小学随机抽取名同学,将他们的身高(单位:厘米)分布情况汇总如下:有此表估计这名小学生身高的中位数为(结果保留4位有效数字)()A. B. C. D.【答案】C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在,的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则,解x=123.3故选:C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.4.若函数有最大值,则的取值范围为()A. B. C. D.【答案】B【解析】【分析】分析函数每段的单调性确定其最值,列a的不等式即可求解.【详解】由题,单调递增,故单调递减,故,因为函数存在最大值,所以解.故选:B.【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题. 5.位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可以近似地看成抛物线,该桥的高度为,跨径为,则桥形对应的抛物线的焦点到准线的距离为( )A. B. C. D.【答案】D【解析】【分析】以桥顶为坐标原点,桥形的对称轴为轴建立直角坐标系设抛物线,点在抛物线上求出P即可【详解】以桥顶为坐标原点,桥形的对称轴为轴建立直角坐标系,结合题意可知,该抛物线经过点,则,解得,故桥形对应的抛物线的焦点到准线的距离为.故选:D【点睛】本题考查抛物线的标准方程及其基本性质,考查抽象概括能力与建模的数学思想,是基础题6.汉朝时,张衡得出圆周率的平方除以16等于.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为A. 32B. 40C.D.【答案】C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选:C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题7.已知函数,则下列判断错误的是()A. 为偶函数B. 的图像关于直线对称C. 的值域为D. 的图像关于点对称【答案】D【解析】【分析】化简f(x)=1+2cos4x后,根据函数的性质可得.【详解】f(x)=1+cos(4x)sin(4x)=1+2sin(4x)=1+2cos4x,f(x)为偶函数,A正确;4x 得,当k=0时,B正确;因为2cos4x的值域为,C正确;故D错误.故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,准确计算是关键,是基础题8.如图,在直角坐标系中,边长为的正方形的两个顶点在坐标轴上,点分别在线段上运动,设,函数,则与的图像为()A. B.C. D.【答案】A【解析】【分析】由题,将向量坐标化即可求解f(x)和g(x)的表达式,对照选项即可判断【详解】由已知得,则,所以,由图知A正确故选.【点睛】本题考查函数的图像的应用,考查向量坐标运算,准确计算向量坐标是关键,是基础题9.已知,设满足约束条件的最大值与最小值的比值为,则()A. 为定值B. 不是定值,且C. 为定值D. 不是定值,且【答案】C【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,进一步求出最值,结合最大值与最小值的差为3求得实数m的值..【详解】画出m>0,x,y满足约束条件的可行域如图:当直线z=x+y经过点A(2,m+4),z取得最大值,当直线经过B(﹣1,﹣2)时,z取得最小值,故k2为定值.故选:C.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.设为等差数列的前项和,若,则的最小值为()A. B. C. D.【答案】A【解析】【分析】将用表示,解方程组求得,再设函数求导求得的最小值即可.【详解】∵解得∴设当0<x<7时,当x>7时,,故的最小值为f(7)=-343.故选:A.【点睛】本题考查等差数列通项及求和,考查函数的思想,准确记忆公式,熟练转化为导数求最值是关键,是中档题.11.过点引曲线的两条切线,这两条切线与轴分别交于两点,若,则()A. B. C. D.【答案】B【解析】【分析】设切点坐标为,求出切线方程,进一步求出切点横坐标,由,解a即可【详解】设切点坐标为,,即. 解得或,,即.故.故选:B【点睛】本题考查导数的几何意义,考查数形结合以及化归与转化的数学思想,熟记切线方程的求法,准确转化是关键,是中档题12.正方体的棱上(除去棱AD)到直线与的距离相等的点有个,记这个点分别为,则直线与平面所成角的正弦值为()A. B. C. D.【答案】D【解析】【分析】正方体ABCD﹣A1B1C1D1的棱上到直线A1B与CC1的距离相等的点分别为:D1,BC的中点,B1C1的四等分点(靠近B1),假设D1与G重合,BC的中点为E,B1C1的四等分点(靠近B1)为F,以D为坐标原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AC1与平面EFG所成角的正弦值.【详解】解:正方体ABCD﹣A1B1C1D1的棱上到直线A1B与CC1的距离相等的点分别为:D1,BC的中点,B1C1的四等分点(靠近B1),假设D1与G重合,BC的中点为E,B1C1的四等分点(靠近B1)为F,以D为坐标原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,设AB=2,则E(1,2,0),F(,2,2),G(0,0,2),A(2,0,0),C1(0,2,2),∴(),(),(﹣2,2,2),设平面EFG的法向量(x,y,z),则,即,取x=4,得(4,﹣3,﹣1).设直线AC1与平面EFG所成角为θ,则直线AC1与平面EFG所成角的正弦值为sinθ=|cos|.故选:D.【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.二、填空题:本大题共4个小题,把答案填在答题卡中的横线上.13.的展开式的第项为_______.【答案】【解析】【分析】由二项式定理的通项公式求解即可【详解】由题展开式的第2项为故答案为【点睛】本题考查二项式定理,熟记公式,准确计算是关键,是基础题.14.若函数则_____.【答案】6【解析】【分析】确定,再由对数的运算性质代入求值即可【详解】由题-故答案为6【点睛】本题考查对数运算,函数的综合应用,考察抽象概括能力与计算能力,是中档题.15.若存在等比数列,使得,则公比的取值范围为___.【答案】【解析】【分析】由题得,看做关于的方程,讨论二次项系数:当时满足题意,当时,方程有解,利用判别式得q的不等式,解不等式即可求解【详解】,,.当时,易知满足题意,但;当时,,解得,综上,.故答案为【点睛】本题考查等比数列,考查函数与方程的数学思想以及运算求解能力,注意转化为的方程是关键,注意等比数列公比q≠0,是易错题16.已知分别是双曲线的左、右顶点,为上一点,且在第一象限.记直线的斜率分别为,当取得最小值时,的垂心到轴的距离为______.【答案】【解析】【分析】易证,利用基本不等式求解取最小值时,进而得的方程为,与双曲线联立解得的坐标为由,得=0,向量坐标化解得y即可【详解】易证,则,当且仅当,即时,等号成立,此时直线的方程为,与联立,得,解得或(舍去),则的坐标为,设的垂心的坐标为,由,得,解得,则到轴的距离为.故答案为2【点睛】本题考查双曲线的综合,考察抽象概括能力与运算求解能力,掌握双曲线的常见二级结论,转化垂心为垂直关系是关键,是中档题三、解答题:本大题共6小题.解答应写出文字说明、证明过程或演算步骤.17.在中,.证明:为等腰三角形.若的面积为,为边上一点,且求线段的长.【答案】(1)详见解析;(2).【解析】【分析】由正弦定理得,由得,利用余弦定理求得b=c即可证明;由的面积求a,设,在中运用余弦定理求得x,即为所求【详解】(1)证明:,,设的内角的对边分别为,,,由余弦定理可得即,则为等腰三角形.(2),则的面积解得.设,则,由余弦定理可得,解得(负根舍去),从而线段的长为.【点睛】本题考查正余弦定理,同角三角函数基本关系,证明三角形形状,熟练运用定理及三角公式,准确计算是关键,是中档题18.某厂销售部以箱为单位销售某种零件,每箱的定价为元,低于箱按原价销售,不低于箱则有以下两种优惠方案:①以箱为基准,每多箱送箱;②通过双方议价,买方能以优惠成交的概率为,以优惠成交的概率为.甲、乙两单位都要在该厂购买箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;某单位需要这种零件箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?【答案】(1);(2)选择方案①更划算.【解析】【分析】(1)利用对立事件概率公式即可得到结果;(2)设在折扣优惠中每箱零件的价格为X元,则X=184或188.得到相应的分布列及期望值,计算两种方案购买总价的数学期望从而作出判断.【详解】(1)因为甲单位优惠比例低于乙单位优惠比例的概率为0.4×0.6=0.24,所以甲单位优惠比例不低于乙单位优惠比例的概率1-0.24=0.76.(2)设在折扣优惠中每箱零件的价格为X元,则X=184或188.X的分布列为则EX=184×0.6+188×0.4=185.6.若选择方案②,则购买总价的数学期望为185.6×650=120640元.若选择方案①,由于购买600箱能获赠50箱,所以该单位只需要购买600箱,从而购买总价为200×600=120000元.因为120640>120000,所以选择方案①更划算.评分细则:第(1)问中,分三种情况求概率,即所求概率为0.6×0.4+0.42+0.62=0.76同样得分;第(2)问中,在方案②直接计算购买总价的数学期望也是可以的,解析过程作如下相应的调整:设在折扣优惠中购买总价为X元,则X=184×650或188×650.X的分布列为则EX=184×650×0.6+188×650×0.4=120640.【点睛】本题考查了离散型随机变量的期望,概率的计算,考查推理能力与计算能力,属于中档题.19.如图,在多面体中,四边形为正方形,,,.(1)证明:平面平面.(2)若平面,二面角为,三棱锥的外接球的球心为,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】【分析】证明平面即可证明平面平面(2)由题确定二面角的平面角为,进而推出为线段的中点,以为坐标原点建立空间直角坐标系由空间向量的线面角公式求解即可【详解】(1)证明:因为四边形为正方形,所以,又,,所以平面.因为平面,所以平面平面.(2)解:由(1)知平面,又,则平面,从而,又,所以二面角的平面角为.以为坐标原点建立空间直角坐标系,如图所示,则,,.因为三棱锥的外接球的球心为,所以为线段的中点,则的坐标为,.设平面的法向量为,则,即令,得.易知平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本题考查面面垂直的判定,空间向量计算线面角,第二问确定球心O的位置是关键,是中档题.20.已知椭圆的左、右焦点分别为为上的一个动点,且的最大值为,的离心率与椭圆的离心率相等.求的方程;直线与交于两点(在轴的同侧),当时,求四边形面积的最大值.【答案】(1) (2)2【解析】【分析】依题意可知解得a,c即可延长交于点,由可知,设,设的方程为,与椭圆联立得,①设与的距离为,转化S为,进一步列出,将①的韦达定理代入得面积表达式,利用基本不等式求最值即可【详解】依题意可知解得则,故的方程为.延长交于点,由可知,设,设的方程为,由得,故设与的距离为,则四边形的面积为S,当且仅当,即时,等号成立,故四边形面积的最大值为.【点睛】本题考查椭圆的综合,考察直线与椭圆的位置关系,面积公式,转化与化归思想,第二问利用椭圆对称性,将面积转化是关键,是中档题21.已知函数的导函数满足对恒成立.判断函数在上的单调性,并说明理由.若,求的取值范围.【答案】(1)在上单调递增;(2).【解析】【分析】(1)对求导利用已知条件即可判断单调性;(2)将代入条件,转化为恒陈立,求,讨论的正负求解即可【详解】(1)由,,得.,则,故在上单调递增.(2)∵,∴,即.设函数,,∵,∴,为增函数,则.当,即时,,则在上单调递增,从而.当,即时,则,,若,;若,.从而,这与对恒成立矛盾,故不合题意.综上,的取值范围为.【点睛】本题考查导数与函数的单调性问题,不等式恒成立问题,明确第二问分类讨论的标准是关键,是中档题.22.[选修4-4:坐标系与参数方程]在直角坐标系中,直线的参数方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为若与相交于两点,,求;圆的圆心在极轴上,且圆经过极点,若被圆截得的弦长为,求圆的半径【答案】(1)6;(2)13.【解析】【分析】(1)将代入,利用t的几何意义及韦达定理即可求解;(2)化直线和圆为普通方程,利用圆的弦长公式求得半径【详解】(1)由,得,将代入,得,则,故.(2)直线的普通方程为,设圆的方程为.圆心到直线的距离为,因为,所以,解得(舍去),则圆的半径为13.【点睛】本题考查直线参数方程,圆的弦长公式,熟练运用直线与圆的位置关系,准确计算是关键,是中档题.23.[选修4-5:不等式选讲]设函数求不等式的解集;证明:【答案】(1);(2)详见解析.【解析】【分析】(1)零点分段法去绝对值解不等式即可;(2)零点分段分情况证明再由绝对值不等式证明即可【详解】(1)∵,∴,即,当时,显然不合;当时,,解得;当时,,解得.综上,不等式的解集为.(2)证明:当时,;当时,,则;当时,,则.∵,∴.∵,∴.故.【点睛】本题考查绝对值不等式的解法,证明不等式,熟练运算是关键,是中档题。
2019-2020学年河北省邯郸市第十四中学高三数学理模拟试卷含解析
2019-2020学年河北省邯郸市第十四中学高三数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若函数在区间(π,2π)内没有最值,则的取值范围是()A. B. C. D.参考答案:B易知函数的单调区间为,.由得因为函数在区间内没有最值,所以在区间内单调,所以,所以,解得.由得当时,得当时,得又,所以综上,得的取值范围是故选B.2. 某地实行阶梯电价,以日历年(每年1月1日至12月31日)为周期执行居民阶梯电价,即:一户居民用户全年不超过2880度(1度=千瓦时)的电量,执行第一档电价标准,每度电0.4883元;全年超过2880度至4800度之间的电量,执行第二档电价标准,每度电0.5383元;全年超过4800度以上的电量,执行第三档电价标准,每度电0.7883元.下面是关于阶梯电价的图形表示,其中正确的有1②③参考数据:0.4883元/度2880度=1406.30元,0.5383元/度(4800-2880)度+1406.30元=2439.84元.(A) ①②(B) ②③(C) ①③(D)①②③参考答案:B【考点】分段函数,抽象函数与复合函数【试题解析】①错,当用电量为超过2880度至4800度之间时,不是所有的单价都是0.5383元,只是超出2800的部分单价为0.5383,不超过2800的部分单价还是0.4883元。
②③都正确。
3. 若复数的实部与虚部互为相反数,b= (▲)A.0B.1C.-1D.参考答案:B略4. 气象台预报“茂名市明天降雨的概率是80%”,下列理解正确的是( )。
A.茂名市明天将有80%的地区降雨 B.茂名市明天将有80%的时间降雨C.明天出行不带雨具肯定要淋雨 D.明天出行不带雨具淋雨的可能性很大参考答案:D5. 已知集合,集合,则集合A. B. C. D.参考答案:D6. 在中,内角A,B,C的对边分别是,若()A. B.60C.120 D.150参考答案:A略7. 阅读右面的程序框图,若输出的,则输入的的值可能为()A. B.C. D.参考答案:试题分析:若输入,符合条件,得到不合题意;若输入,符合条件,得到不合题意;若输入,符合条件,得到符合题意.故选.考点:算法与程序框图.8. 执行如图所示的程序框图,输出的n的值为()A.10 B.11 C.12 D.13参考答案:C【考点】程序框图.【分析】模拟执行程序框图,求出s=时n的值是11,得到n=12时,s>,输出n的值为12.【解答】解:第一次循环,s=,n=2,第二次循环,s=+,n=3,第三次循环,s=++,n=4,…,第m次循环,s=+++…+=(1﹣)=,解得:m=10,n=m+1=11,第m+1次循环,s>,n=12,输出n=12;故选:C.9. 若i为虚数单位,且复数满足,则复数的虚部是()A.B.C.D.参考答案:D略10. (文)函数的图象如右图所示,则导函数的图象的大致形状是参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知如下算法语句输入t;If t<5 Then y=t2+1;Else if t<8 Then y=2t-1;Else y=;End IfEnd if输出y若输入t=8,则下列程序执行后输出的结果是.参考答案:9略12. 在△ABC中,D是BC的中点,AD=8,BC=20,则的值为.参考答案:-3613. 已知数列{a n}满足:对任意的n∈N*均有a n+1=ka n+2k﹣2,其中k为不等于0与1的常数,若a i∈{﹣272,﹣32,﹣2,8,88,888},i=2、3、4、5,则满足条件的a1所有可能值的和为.参考答案:【考点】数列递推式.【分析】依题意,可得a n+1+2=k(a n+2),再对a1=﹣2与a1≠﹣2讨论,特别是a1≠﹣2时对公比k分|k|>1与|k|<1,即可求得a1所有可能值,从而可得答案.【解答】解:∵a n+1=ka n+2k﹣2,∴a n+1+2=k(a n+2),∴①若a1=﹣2,则a1+1+2=k(a1+2)=0,a2=﹣2,同理可得,a3=a4=a5=﹣2,即a1=﹣2复合题意;②若a1≠﹣2,k为不等于0与1的常数,则数列{a n+2}是以k为公比的等比数列,∵a i∈{﹣272,﹣32,﹣2,8,88,888},i=2,3,4,5,a n+2可以取﹣270,﹣30,10,90,∴若公比|k|>1,则k=﹣3,由a2+2=10=﹣3(a1+2)得:a1=﹣;若公比|k|<1,则k=﹣,由a2+2=﹣270=﹣(a1+2)得:a1=808.综上所述,满足条件的a1所有可能值为﹣2,﹣,808.∴a1所有可能值的和为:﹣2=.故答案为:.14. 定义在R上的函数满足,则=_________。
2019年河北省邯郸市高考数学一模试卷(理科)(解析版)
2019年河北省邯郸市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2>4},A∩B={x|x<﹣2},则集合B可以为()A.{x|x<3}B.{x|﹣3<x<1}C.{x|x<1}D.{x|x>﹣3} 2.(5分)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如表:由此表估计这100名小学生身高的中位数为()(结果保留4位有效数字)A.119.3B.119.7C.123.3D.126.74.(5分)若函数f(x)=有最大值,则a的取值范围为()A.(﹣5,+∞)B.[﹣5,+∞)C.(﹣∞,﹣5)D.(﹣∞,﹣5] 5.(5分)位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为5m,跨径为12m,则桥形对应的抛物线的焦点到准线的距离为()A.m B.m C.m D.m6.(5分)汉朝时,张衡得出圆周率的平方除以16等于,如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为()A.32B.40C.D.7.(5分)已知函数f(x)=2cos2(2x+)+sin(4x+),则下列判断错误的是()A.f(x)为偶函数B.f(x)的图象关于直线x=对称C.f(x)的值域为[﹣1,3]D.f(x)的图象关于点(﹣,0)对称8.(5分)如图,在直角坐标系xOy中,边长为1的正方形OMNP的两个顶点在坐标轴上,点A,B分别在线段MN,NP上运动.设PB=MA=x,函数f(x)=,g(x)=,则f(x)与g(x)的图象为()A.B.C.D.9.(5分)已知m>0,设x,y满足约束条件,z=x+y的最大值与最小值的比值为k,则()A.k为定值﹣1B.k不是定值,且k<﹣2C.k为定值﹣2D.k不是定值,且﹣2<k<﹣110.(5分)设S n为等差数列{a n}的前n项和,若a7=5,S5=﹣55,则nS n的最小值为()A.﹣343B.﹣324C.﹣320D.﹣24311.(5分)过点M(﹣1,0)引曲线C:y=2x3+ax+a的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则a=()A.﹣B.﹣C.﹣D.﹣12.(5分)正方体ABCD﹣A1B1C1D1的棱上到直线A1B与CC1的距离相等的点有3个,记这3个点分别为E,F,G,则直线AC1与平面EFG所成角的正弦值为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.(5分)(x﹣)7的展开式的第2项为.14.(5分)若函数f(x)=1+|x|+,则f(lg2)+f(lg)+f(lg5)+f(lg)=.15.(5分)若存在等比数列{a n},使得a1(a2+a3)=6a1﹣9,则公比q的取值范围为.16.(5分)已知A,B分别是双曲线C:x2﹣=1的左、右顶点,P为C上一点,且P 在第一象限.记直线P A,PB的斜率分别为k1,k2,当2k1+k2取得最小值时,△P AB的垂心到x轴的距离为.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在△ABC中,3sin A=2sin B,tan C=2.(1)证明:△ABC为等腰三角形.(2)若△ABC的面积为2,D为AC边上一点,且BD=3CD,求线段CD的长.18.(12分)某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售.不低于100箱则有以下两种优惠方案:①以100箱为基准,每多50箱送5箱;②通过双方议价,买方能以优惠8%成交的概率为0.6,以优惠6%成交的概率为0.4.(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;(2)某单位需要这种零件650箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?19.(12分)如图,在多面体ABCDEF中,四边形ADEF为正方形,AD∥BC,AD⊥AB,AD=2BC=1.(1)证明:平面ADEF⊥平面ABF.(2)若AF⊥平面ABCD,二面角A﹣BC﹣E为30°,三棱锥A﹣BDF的外接球的球心为O,求二面角A﹣CD﹣O的余弦值.20.(12分)已知椭圆E:=1(a>b>0)的左,右焦点分别为F1,F2,P为E上的一个动点,且|PF2|的最大值为2+,E的离心率与椭圆Ω:=1的离心率相等.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM面积的最大值.21.(12分)已知函数f(x)的导函数f′(x)满足(x+xlnx)f′(x)>f(x)对x∈(1,+∞)恒成立.(1)判断函数g(x)=在(1,+∞)上的单调性,并说明理由;(2)若f(x)=e x+mx,求m的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)若l与C相交于A,B两点P(﹣2,0),求|P A|•|PB|;(2)圆M的圆心在极轴上,且圆M经过极点,若l被圆M截得的弦长为1,求圆M的半径.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣1|+|x+3|.(1)求不等式|f(x)﹣6|<1的解集;(2)证明:4﹣x2≤f(x)≤2|x|+4.2019年河北省邯郸市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:A={x|x<﹣2,或x>2};∴B={x|x<1}时,A∩B={x|x<﹣2}.故选:C.2.【解答】解:∵==,∴在复平面内对应的点的坐标为(2,11),位于第一象限.故选:A.3.【解答】解:设中位数为t,则有:=0.5,解得t≈123.3.故选:C.4.【解答】解:函数f(x)=,当x≤1时,函数是增函数,x>1时,函数是减函数,由题意可得:f(1)=a+4≥=﹣1,解得a≥﹣5.故选:B.5.【解答】解:(1)设抛物线的解析式为:x2=﹣2py,p>0,∵抛物线过(6,﹣5),则36=10p,可得p=,抛物线的焦点到准线的距离为:.故选:D.6.【解答】解:根据几何体的三视图:转换为几何体,它有半个圆锥和半个圆柱组成.故:,由于,所以:.故:.故选:C.7.【解答】解:f(x)=1+cos(4x+)+sin(4x+)=1+2sin(4x++)=1+2cos4x,则A,B,C均正确,D错误.故选:D.8.【解答】解:由已知可得A(1,x),B(x,1),x∈[0,1],则=(1﹣x,x﹣1),=(1,x),=(x,1),所以f(x)=•=1﹣x+x(x﹣1)=(x﹣1)2,g(x)==2x,故选:A.9.【解答】解:画出m>0,x,y满足约束条件的可行域如图:当直线z=x+y经过点A(2,m+4),z取得最大值,当直线经过B(﹣1﹣,﹣2)时,z取得最小值,故k=﹣2为定值.故选:C.10.【解答】解:由题意可得,解可得a1=﹣19,d=4,∴S n=﹣19n=2n2﹣21n,∴nS n=2n3﹣21n2,设f(x)=2x3﹣21x2,f′(x)=6x(x﹣7),当0<x<7时,f′(x)<0;函数是减函数;当x>7时,f′(x)>0,函数是增函数;所以n=7时,nS n取得最小值:﹣343.故选:A.11.【解答】解:设切点坐标为(t,2t3+at+a),由y=2x3+ax+a,得y′=6x2+a,∴,即4t3+6t2=0,解得:t=0或t=﹣.∵|MA|=|MB|,∴,即2a+6×,故a=﹣.故选:B.12.【解答】解:正方体ABCD﹣A1B1C1D1的棱上到直线A1B与CC1的距离相等的点分别为:D1,BC的中点,B1C1的四等分点(靠近B1),假设D1与G重合,BC的中点为E,B1C1的四等分点(靠近B1)为F,以D为坐标原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,设AB=2,则E(1,2,0),F(,2,2),G(0,0,2),A(2,0,0),C1(0,2,2),∴=(),=(),=(﹣2,2,2),设平面EFG的法向量=(x,y,z),则,即,取x=4,得=(4,﹣3,﹣1).设直线AC1与平面EFG所成角为θ,则直线AC1与平面EFG所成角的正弦值为sinθ=|cos<>|=.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.【解答】解:(x﹣)7的展开式的第2项为T2=••x5=﹣x5,故答案为:﹣x5.14.【解答】解:f(x)=1+|x|+,∴f(﹣x)+f(x)=2+2|x|,∵lg=﹣lg2,lg=﹣lg5,∴f(lg2)+f(lg)+f(lg5)+f(lg)=2×2+2(lg2+lg5)=6,故答案为:615.【解答】解:∵a1(a2+a3)=6a1﹣9,∴a12(q+q2)﹣6a1+9=0,当q+q2=0时,易知q=﹣1,满足题意,当q≠0,当q+q2≠0,△=36﹣36(q+q2)≥0,解得≤q≤,且q≠0,故公比q的取值范围为{q|≤q≤,且q≠0},故答案为:{q|≤q≤,且q≠0}16.【解答】解:设M(﹣a,0),N(a,0),P(x,y)由题意,k1=,k2=,∴k 1k2==2,2k1+k2≥2=4,当且仅当2k1=k2时取等号,此时k1=1,P A的方程为y=x+1,与x2﹣=1联立,可得x2﹣2x﹣3=0,解得x=3或x=﹣1,则P的坐标(3,4),设△P AB的垂心H(3,y),由P A⊥BH,可得:=8+4y=0,解得y=﹣2,则,△P AB的垂心到x轴的距离为:2.故答案为:2.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.【解答】(1)证明:∵tan C=2>0,∴C为锐角,且sin C=,cos C=.过A做AH⊥BC,垂足为H,则CH=b cos C=,∵3sin A=2sin B,∴3a=2b,即a=,∴H是BC的中点,又AH⊥BC,∴AB=AC,∴△ABC为等腰三角形.(2)解:AH=b sin C=,∴S△ABC===2,解得b=3,∴BC=2,在△BCD中,由余弦定理得cos C==,解得:CD=.18.【解答】解:(1)∵甲单位的优惠比例低于乙单位的优惠比例的概率为:0.4×0.6=0.24,∴甲单位优惠比例不低于乙单位优惠比例的概率P=1﹣0.24=0.76.(2)设在折扣优惠中每箱零件的价格为X元,则X=184或188,P(X=184)=0.6,P(X=188)=0.4,∴X的分布列为:则E(X)=184×0.6+188×0.4=185.6.若选择方案②,则购买总价的数学期望为:185.6×650=120640元;若选择方案①,由于购买600箱能获赠50箱,∴该单位只需要购买600箱,从而购买总价为200×600=120000元,∵120640>120000,∴选择方案①更划算.19.【解答】证明:(1)∵四边形ADEF是正方形,∴AD⊥AF,又AD⊥AB,AB∩AF=A,∴AD⊥平面ABF,∵AD⊂平面ADEF,∴平面ADEF⊥平面ABF.(2)由(1)知AD⊥平面ABF,又是AD∥BC,则BC⊥平面ABF,∴BC⊥BF,∵BC⊥AB,∴二面角A﹣BC﹣E的平面角为∠ABF=30°,以A为坐标原点,建立空间直角坐标系,则D(0,1,0),C(,0),F(0,0,1),A(0,0,0),∵三棱锥A﹣BDF的外接球的球心为O,∴O为线段BE的中点,则O(),=(,0,﹣),=(﹣,,0),设平面OCD的法向量=(x,y,z),则,取x=1,得=(1,2),平面ACD的一个法向量=(0,0,1),设二面角A﹣CD﹣O的平面角为θ,则cosθ==.∴二面角A﹣CD﹣O的余弦值为.20.【解答】解:(1)由题意可得,解得a=2,c=则b2=a2﹣c2=1,故E的方程为+y2=1.(2)延长MF1交E于点M′,由(1)可知F1(﹣,0),F2(,0),设M(x1,y1),M′(x2,y2),设直线MF1的方程为x=my﹣,由可得(m2+4)y2﹣2y﹣1=0,∴y1+y2=,y1y2=﹣∴|y1﹣y2|===,设F1M与F2N的距离为d,则四边形的F1F2NM面积S=(|F1M|+|F2N|)d=(|F 1M|+|F2M′|)d=|MM′|d=S,∴S=S=+=|F1F2||y1﹣y2|==≤=2,故四边形F1F2NM面积的最大值为2.21.【解答】解:(1)由(x+xlnx)f′(x)>f(x),x∈(1,+∞),得(1+lnx)f′(x)﹣f(x)>0,g′(x)=,则g′(x)>0,故g(x)在(1,+∞)递增;(2)∵f(x)=e x+mx,∴(x+xlnx)(e x+m)>e x+mx,即(x+xlnx)(e x+m)﹣e x﹣mx=e x(x﹣1+xlnx)+mxlnx>0,设函数h(x)=e x(x﹣1+xlnx)+mxlnx,(x>1),h′(x)=(1+lnx)[(x+1)e x+m],∵x>1,∴1+lnx>0,p(x)=(x+1)e x+m是增函数,则p(x)>p(1)=2e+m,当2e+m≥0即m≥﹣2e时,h′(x)>0,则h(x)在(1,+∞)递增,从而h(x)>h(1)=0,当2e+m<0即m<﹣2e时,则存在x0>1,p(x0)=0,若1<x<x0,h′(x)<0,若x>x0,h′(x)>0,从而h(x)min=h(x0)<h(1)=0,这与h(x)>0对x∈(1,+∞)恒成立矛盾,故m<﹣2e不合题意,综上,m的范围是[﹣2e,+∞).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.【解答】解:(1)由ρ=,得x2+y2=10,将代入x2+y2=10,得t2﹣2t﹣6=0,设A,B两点对应的参数分别为t1,t2,则t1t2=﹣6,故|P A||PB|=|t t2|=6.(2)直线l的普通方程为﹣y+2=0,设圆M的方程为(x﹣a)2+(y﹣b)2=a2(a>0)圆心(a,0)到直线l的距离为d=,因为2=1,所以d2=a2﹣=,解得a=18(a=﹣1<0,舍去),则圆M的半径为13,.[选修4-5:不等式选讲]23.【解答】解:(1)∵|f(x)﹣6|<1,∴﹣1<f(x)﹣6<1,即﹣5<f(x)<7,当﹣3≤x≤1时,f(x)=4,显然不合题意,当x<﹣3时,5<﹣2x﹣2<7,解得﹣<x<﹣,当x>1时,5<2x+2<7,解得<x<,综上不等式的解集为,(﹣,﹣)∪(,).证明:(2)∵f(x)=|x﹣1|+|x+3|≤|x|+1+|x|+3=2|x|+4,当且仅当x=0时等号成立,∴f(x)≤2|x|+4∵f(x)=|x﹣1|+|x+3|≥|1﹣x+x+3|=4,∴f(x)≥4,∵4﹣x2>4,∴4﹣x2≤f(x),∴4﹣x2≤f(x)≤2|x|+4.。
河北省邯郸市2019届高三第一次模拟考试数学(文)试题(解析版)
高三数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列格式的运算结果为实数的是()A. B.C. D.【答案】D【解析】【分析】利用复数运算化简每个选项即可求解【详解】对A,对B,对C,对D,故选:D【点睛】本题考查复数的运算,熟记运算法则是关键,是基础题2.设集合,则集合可以为()A. B.C. D.【答案】C【解析】【分析】首先根据一元二次不等式的解法求得集合B,之后根据集合交集中元素的特征,选择正确的结果. 【详解】因为,所以当时,,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.3.在平行四边形中,,,则点的坐标为()A. B. C. D.【答案】A【解析】【分析】先求,再求,即可求D坐标【详解】,∴,则D(6,1)故选:A【点睛】本题考查向量的坐标运算,熟记运算法则,准确计算是关键,是基础题4.从某小学随机抽取名同学,将他们的身高(单位:厘米)分布情况汇总如下:有此表估计这名小学生身高的中位数为(结果保留4位有效数字)()A. B. C. D.【答案】C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在,的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则,解x=123.3故选:C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.5.如图,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为()A. B. C. D.【答案】B【解析】【分析】分析图知2a,2b,则e可求.【详解】由题2b=16.4,2a=20.5,则则离心率e=.故选:B.【点睛】本题考查椭圆的离心率,熟记a,b的几何意义是关键,是基础题.6.若函数,则()A. B. C. D.【答案】C【解析】【分析】根据对数的运算的性质计算即可.【详解】f(x)=1+|x|,∴f(﹣x)+f(x)=2+2|x|,∵lg lg2,lg lg5,∴f(lg2)+f(lg)+f(lg5)+f(lg)=2×2+2(lg2+lg5)=6,故选:C【点睛】本题考查了对数的运算,函数基本性质,考查了抽象概括能力和运算求解能力,是基础题7.汉朝时,张衡得出圆周率的平方除以16等于.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为A. 32B. 40C.D.【答案】C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选:C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题8.若存在等比数列,使得,则公比的最大值为()A. B. C. D.【答案】D【解析】【分析】将原式表示为的关系式,看做关于的二次型方程有解问题,利用判别式列不等式求解即可.【详解】由题设数列的公比为q(q≠0),则,整理得=0,当时,易知q=-1,符合题意;但q≠0,当≠0时,,解得故q的最大值为故选:D【点睛】本题考查等比数列,考查函数与方程的思想,准确转化为的二次方程是关键,是中档题.9.已知函数,则下列判断错误的是()A. 为偶函数B. 的图像关于直线对称C. 的值域为D. 的图像关于点对称【答案】D【解析】【分析】化简f(x)=1+2cos4x后,根据函数的性质可得.【详解】f(x)=1+cos(4x)sin(4x)=1+2sin(4x)=1+2cos4x,f(x)为偶函数,A正确;4x得,当k=0时,B正确;因为2cos4x的值域为,C正确;故D错误.故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,准确计算是关键,是基础题10.已知,设满足约束条件的最大值与最小值的比值为,则()A. 为定值B. 不是定值,且C. 为定值D. 不是定值,且【答案】C【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,进一步求出最值,结合最大值与最小值的差为3求得实数m的值..【详解】画出m>0,x,y满足约束条件的可行域如图:当直线z=x+y经过点A(2,m+4),z取得最大值,当直线经过B(﹣1,﹣2)时,z取得最小值,故k2为定值.故选:C.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.在棱长为的正方体中,为棱上一点,且到直线与的距离相等,四面体的每个顶点都在球的表面上,则球的表面积为()A. B. C. D.【答案】D【解析】【分析】由题,先确定F的位置,由互相垂直,构造以为棱的长方体,求其外接球半径即可求得球的表面积【详解】过做面B,∴面NF,∴FN为到直线的距离,则,设解得x=,互相垂直, 以为棱的长方体球心即为O,则球的表面积为4故选:D【点睛】本题考查椎体的外接球,明确点F的位置是突破点,构造长方体是关键,是中档题12.已知函数的导函数满足对恒成立,则下列不等式中一定成立的是()A. B.C. D.【答案】A【解析】【分析】求出函数g(x)的导数,判断函数的单调性,从而得出答案.【详解】令由(x+xlnx)f′(x)<f(x),得(1+lnx)f′(x)f(x)<0,g′(x),则g′(x)<0,故g(x)在递减;故,即,∴故选:A【点睛】本题考查抽象函数的单调性,构造函数,准确构造新函数是突破,准确判断单调性是关键,是中档题二、填空题:将答案填在答题卡中的横线上.13.小张要从种水果中任选种赠送给好友,其中芒果、榴莲、椰子是热带水果,苹果、葡萄是温带水果,则小张送的水果既有热带水果又有温带水果的概率为________.【答案】【解析】【分析】确定基本事件个数即可求解【详解】由题从种水果中任选种的事件总数为小张送的水果既有热带水果又有温带水果的基本事件总数为小张送的水果既有热带水果又有温带水果的概率为故答案为14.函数的值域为________.【答案】【解析】【分析】由函数性质确定每段的值域,再求并集即可【详解】由题单调递增,∴,又=,故函数的值域为故答案为【点睛】本题考查分段函数的值域,三角函数性质,指数函数的性质,熟记函数性质,准确计算是关键,是基础题15.已知分别是双曲线的左、右顶点,为上一点,则的外接圆的标准方程为_______.【答案】【解析】【分析】由点为上,求m,由外心设外心坐标M(0,t),M在PB的中垂线上求t即可【详解】为上一点,,解得m=1,则B(1,0),∴PB中垂线方程为+2,令x=0,则y=3,设外接圆心M(0,t),则M(0,3),,∴ 外接圆的标准方程为故答案为【点睛】本题考查圆的标准方程,双曲型方程,熟记外心的基本性质,准确计算是关键,是基础题16.设为等差数列的前项和,若,则的最小值为______.【答案】【解析】【分析】分别利用等差数列的通项公式及求和公式表示已知条件,然后求出得a1,d,在代入求和公式,并利用导数判单调性求最值即可求解.【详解】由题意可得,解可得a1=﹣19,d=4,∴S n=﹣19n2n2﹣21n,∴nS n=2n3﹣21n2,设f(x)=2x3﹣21x2,f′(x)=6x(x﹣7),当0<x<7时,f′(x)<0;函数是减函数;当x>7时,f′(x)>0,函数是增函数;所以n=7时,nS n取得最小值:﹣343.故答案为-343【点睛】本题主要考查了等差数列的通项公式及求和公式的简单应用,准确计算是关键,属于基础试题.三、解答题.解答应写出文字说明、证明过程或演算步骤.17.在中,.证明:为等腰三角形.若的面积为,为边上一点,且求线段的长.【答案】(1)详见解析;(2).【解析】【分析】由正弦定理得,由得,利用余弦定理求得b=c即可证明;由的面积求a,设,在中运用余弦定理求得x,即为所求【详解】(1)证明:,,设的内角的对边分别为,,,由余弦定理可得即,则为等腰三角形.(2),则的面积解得.设,则,由余弦定理可得,解得(负根舍去),从而线段的长为.【点睛】本题考查正余弦定理,同角三角函数基本关系,证明三角形形状,熟练运用定理及三角公式,准确计算是关键,是中档题18.如图,在三棱柱中,平面,为边上一点,证明:平面平面.若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由. 【答案】(1)证明见解析;(2)A1C与平面ADB1平行.体积为.【解析】【分析】(1)利用平面,证得平面,得到,利用余弦定理证得,由此证得平面,从而证得平面平面.(2)取的中点,连接,通过证明四边形为平行四边形,证得,同理证得,所以平面平面,由此证得平面.利用求得三棱锥的体积.【详解】(1)证明:因为AA1⊥平面ABC,所以BB1⊥平面ABC,因为,所以AD⊥BB1.在△ABD中,由余弦定理可得,,则,所以AD⊥BC,又,所以AD⊥平面BB1C1C,因为,所以平面ADB1⊥平面BB1C1C.(2)解:A1C与平面ADB1平行.证明如下:取B1C1的中点E,连接DE,CE,A1E,因为BD=CD,所以DE∥AA1,且DE=AA1,所以四边形ADEA1为平行四边形,则A1E∥AD.同理可证CE∥B1D.因为,所以平面ADB1∥平面A1CE,又,所以A1C∥平面ADB1.因为AA1∥BB1,所以,又,且易证BD⊥平面AA1D,所以.【点睛】本小题主要考查面面垂直的证明,考查线面垂直的证明以及三棱锥体积的求法,属于中档题.19.某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为)的学生给父母洗脚的百分比进行了调查统计,绘制得到下面的散点图.由散点图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明.建立关于的回归方程,并据此预计该校学生升入中学的第一年(年纪代码为)给父母洗脚的百分比.附注:参考数据:参考公式:相关系数若,则与的线性相关程度相当高,可用线性回归模型拟合与的关系.回归方程中斜率与截距的最小二乘估计公式分别为:,.【答案】(1)详见解析;(2).【解析】【分析】(1)计算得,代入计算公式求值即可判断与的线性相关程度;(2)由公式计算求带入回归直线求得进而求得回归方程,将x=7代入直线,即可确定百分比【详解】(1)因为所以,所以,因为所以,所以由于与的相关系数约为,说明与的线性相关程度相当高,从而可用线性回归模型拟合与的关系.(2)因为,所以所以回归方程为将,代入回归方程可得,所以预计该校学生升入中学的第一年给父母洗脚的百分比为.【点睛】本题考查相关系数r,回归直线方程,熟练运用公式计算是关键,是基础题20.已知点是抛物线上一点,为的焦点.(1)若,是上的两点,证明:,,依次成等比数列.(2)过作两条互相垂直的直线与的另一个交点分别交于,(在的上方),求向量在轴正方向上的投影的取值范围.【答案】(1)详见解析;(2).【解析】【分析】(1)由在抛物线上求P,再利用焦半径公式求,,,再利用等比数列定义证明即可(2)设直线的方程为,与联立,得,由,求k的范围,并求得P坐标,同理求得Q坐标,则向量在轴正方向上的投影为,求函数的范围即求得结果【详解】(1)证明:在抛物线上,,.,,,,,依次成等比数列.(2)设直线的方程为,与联立,得则,,设,,则,即在的上方,则.以代,得,则向量在轴正方向上的投影为,设函数,则在上单调递减,在上单调递增,从而,故向量在轴正方向上的投影的取值范围为.【点睛】本题考查抛物线的简单性质与应用,直线与抛物线位置关系,范围问题,熟练运用定义,准确计算P,Q坐标,将在轴正方向上的投影表示为k的函数时关键,是中档题.21.已知函数.讨论的单调性.若,求的取值范围.【答案】(1)在上单调递增,在上单调递减,在上单调递增;(2).【解析】【分析】讨论当,时导数符号变化情况求得单调性由的讨论知:时,,解;时,<0,解符合;当时,,构造函数,,求导判单调性解a的不等式;时,,解a范围,则问题得解【详解】(1)当时,,;,.所以在上单调递增,在上单调递减,在上单调递增.当时,对恒成立,所以在上单调递增.当时,,;,.所以在上单调递增,在上单调递减,在上单调递增.(2)①当时,由(1)知在上单调递增,则在上单调递增,所以,解得②当时,由(1)知在上单调递减,在上单调递增.当时,在上单调递增.所以对恒成立,则符合题意;当时,在上单调递减,在上单调递增.所以.设函数,,易得知时,所以,故对恒成立,即符合题意.当时,在上单调递减.所以对恒成立,则符合题意.综上所述:的取值范围为.【点睛】本题考查函数与导数的综合问题,导数与函数单调性与最值,不等式有解问题,分类讨论思想,明确分类标准,不重不漏是关键,是中档题22.[选修4-4:坐标系与参数方程]在直角坐标系中,直线的参数方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为若与相交于两点,,求;圆的圆心在极轴上,且圆经过极点,若被圆截得的弦长为,求圆的半径【答案】(1)6;(2)13.【解析】【分析】(1)将代入,利用t的几何意义及韦达定理即可求解;(2)化直线和圆为普通方程,利用圆的弦长公式求得半径【详解】(1)由,得,将代入,得,则,故.(2)直线的普通方程为,设圆的方程为.圆心到直线的距离为,因为,所以,解得(舍去),则圆的半径为13.【点睛】本题考查直线参数方程,圆的弦长公式,熟练运用直线与圆的位置关系,准确计算是关键,是中档题.23.[选修4-5:不等式选讲]设函数求不等式的解集;证明:【答案】(1);(2)详见解析.【解析】【分析】(1)零点分段法去绝对值解不等式即可;(2)零点分段分情况证明再由绝对值不等式证明即可【详解】(1)∵,∴,即,当时,显然不合;当时,,解得;当时,,解得.综上,不等式的解集为.(2)证明:当时,;当时,,则;当时,,则.∵,∴.∵,∴.故.【点睛】本题考查绝对值不等式的解法,证明不等式,熟练运算是关键,是中档题。
河北省邯郸市大名县2019届高三模拟考试数学试题(理)含答案
2019届4月模拟考试(NC )理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U R =,集合(){}{}x 2|y log 1,|y 2A x x B y ==-==,则()U A C B 为( )A. ()0,+∞B. [)1,+∞C. (]0,1D. ()1,22.复数()21aiz a R i+=∈+在复平面内对应的点在虚轴上,则a =( ) A. 2 B. 2- C. 1 D.1-3.已知191log 3a =,数列132n a ⎧⎫+⎨⎬⎩⎭是公比为12的等比数列,则8a =( ) A.19132 B. 19132- C. 9516 D. 9516-4.已知命题:cos 0p α≠是()2k k z απ≠∈的充分必要条件,命题q :设随机变量()0,1N ξ,若32P m ξ⎛⎫≥= ⎪⎝⎭,则31022P m ξ⎛⎫-<<=- ⎪⎝⎭,下列命题是假命题是为( )A. p q ∧B.p q ∨C. p q ⌝∧D. p ⌝∨5.已知变量,x y 满足20250,20x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩则2x y +的最大值为( )A. B. C. D.6.已知函数()()()2sin 0f x x ωϕω=+>的图象与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象的对称中心完全相同,则ϕ=( ) A.6π B. 6π- C. 3πD.3π-7.当双曲线C 不是等轴双曲线,我们把以双曲线C 的实轴、虚轴的端点作为顶点的椭圆称为双曲线C 的“伴生椭圆”)A.B. 12C.8.执行如图所示的程序框图,若输出的S 的值为52,则实数k 的取值范围为( )A. [)16,64B. [)16,32C. [)32,64D. ()32,64 9.某几何体的三视图如图所示,则该几何体的体积为( ) A. 6 B. 8 C. 10 D. 1210.某校文化艺术节要安排六个节目,其中高一年级准备3个节目,高二年级准备2个节目,高三年级准备1个节目,则同一年级的节目不相邻的安排种数为( )A. 72B. 84C. 120D. 14411.已知点P的球面上,过点P 作球的两两垂直的三条弦,,PA PB PC ,若PA PB =,则PA PB PC ++的最大值为( )A.B. 1C. 2+D. 312.定义:如果函数()f x 在区间[],a b 上存在()1212,x x axx b<<<满足()()()()()()()()12,f b f a f x b a f b f a f x b a ''-=--=-,则称函数()f x 是区间[],a b 上的“双中值函数”.已知函数()32f x x x a =-+是[]0,a 上的“双中值函数”,则实数a 的取值范围是( )A. 11,32⎛⎫⎪⎝⎭ B. 3,32⎛⎫⎪⎝⎭ C. 1,13⎛⎫ ⎪⎝⎭ D.1,12⎛⎫ ⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分.13.已知向量1,2a b ==,若3a b -=,则向量,a b 的夹角为 . 14.设圆C 的圆心是抛物线214y x =的焦点,且与直线30x y ++=相切,则圆C 的方程是 . 15.设()f x 是6212x x ⎛⎫+ ⎪⎝⎭展开式的中间项,若()fx mx ≤在区间2⎣上恒成立,则实数m 的取值范围是 .16.若数列{}n a 与{}n b 满足,()()1113111,,2n nn n n n n b a b a b n N -*+++-+=-+=∈,且12a =,设数列{}n a 的前n 项和为n S ,则61S = .三、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC 中,,,a b c 分别是角,,A B C 的对边,已知()2223sin sin 3sin 2sin sinC.B C A B +=+(1)若sin B C =,求tan C 的值;(2)若2,a ABC =的面积为S =,且b c >,求,b c 的值.18.(本小题满分12分)某市交管部门随机抽取了89名司机调查有无酒驾习惯,汇总数据得到下表:已知在这89人随机抽取1人,抽到无酒驾习惯的概率为57.89(1)将上表空白部分的数据补充完整;(2)若从有酒驾习惯的人中按性别用分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽取2人,记抽到女性的人数为X ,求X 的分布列和数学期望.19.(本小题满分12分)如图,四棱锥S ABCD -中,//,,AB CD BC CD ⊥侧面SAB 为等边三角形,2, 1.AB BC CD SD ====(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.20(本小题满分12分)如图,在平面直角坐标系xoy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,左顶点()4,0-,过点A 作斜率为()0k k ≠的直线l 交椭圆C 于点D ,交y 轴于点E.(1)求椭圆的方程;(2)已知点P 为AD 的中点,是否存在定点Q ,对于任意的()0k k ≠,都有OP EQ ⊥?若存在,求出Q 点的坐标,若不存在,请说明理由.21.(本小题满分12分)已知函数()()()2ln ,3.f x x x g x x ax a R ==-+-∈ (1)若对()0,x ∀∈+∞,恒有不等式()()12f x g x ≥,求a 的取值范围; (2)证明:对()0,x ∀∈+∞,恒有12ln x x e ex>-.请考生从第22、23、24三题中任选一题作答.注意:只能做所选的题目.如果多做,则按所做的第一个题计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,圆O 是ABC 的外接圆,BAC ∠的平分线交BC 于点F ,D 是AF 的延长线与O 的交点,AC 的延长线与O 的切线DE 交于点E. (1)求证:;CE DEBD AD= (2)若2,6,BD EC CA ===,求BF 的值.23.(本小题满分10分)选修4-4:坐标系与参数方程选讲已知直线l的参数方程为112x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρθ=.(1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P 的直角坐标为()1,0,圆C 与直线l 交于A,B 两点,求PA PB +的值.24.(本小题满分10分)不等式选讲 已知函数() 1.f x x =-(1)解关于x 的不等式()210f x x +->(2)若()()()3,g x x m f x g x =-++<的解集非空,求实数m 的取值范围.2019届4月模拟考试(NC )理科数学2019届高三模拟考试数学(理科)参考答案一、选择题CBDACDDBCCAD二、填空题13. 14.; 15.[5, 16.527.三、解答题 17、解:∵∴ 即 ……………………… 2分∴ ………………………… 3分(1)由得……………………………5分所以……………………………6分(2)因为所以由余弦定理得:4①……………8分又,所以……………………… 10分联立①②,且b>c得:b= ,c=……………………… 12分18、(1)……………………4分(2)因为从有酒驾的人中按性别用分层抽样的方法抽取8人,所以男性抽出所以X可取的值为0,1,2; ……………………5分X服从超几何分布P(x=0)= P(x=1)= P(x=0)=……………………8分所以X的分布列为……………………10分E(X)=2=……………………12分19.(1)计算,又因为SD=1,于是,利用勾股定理,可知,同理,可证,又SA ∩SB=S 因此SD ⊥平面SAB ……………………4分(2)过D 做DZ 平面ABCD ,如图建立空间直角坐标系D-xyz 则D(0,0,0)A(2,-1,0),B(2,1,0),C(0,1,0)设S=(x,y,z)则 即解之得:S () ……………………6分设平面SBC 的一个法向量是则即令c=2则, ……………………8分=(0,2,0)所以=…………………………11分设AB 与平面SBC 所成角为。
河北省邯郸市2019届高三第一次模拟考试数学(文)试题(解析版)
高三数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列格式的运算结果为实数的是()A. B.C. D.【答案】D【解析】【分析】利用复数运算化简每个选项即可求解【详解】对A,对B,对C,对D,故选:D【点睛】本题考查复数的运算,熟记运算法则是关键,是基础题2.设集合,则集合可以为()A. B.C. D.【答案】C【解析】【分析】首先根据一元二次不等式的解法求得集合B,之后根据集合交集中元素的特征,选择正确的结果. 【详解】因为,所以当时,,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.3.在平行四边形中,,,则点的坐标为()A. B. C. D.【答案】A【解析】【分析】先求,再求,即可求D坐标【详解】,∴,则D(6,1)故选:A【点睛】本题考查向量的坐标运算,熟记运算法则,准确计算是关键,是基础题4.从某小学随机抽取名同学,将他们的身高(单位:厘米)分布情况汇总如下:有此表估计这名小学生身高的中位数为(结果保留4位有效数字)()A. B. C. D.【答案】C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在,的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则,解x=123.3故选:C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.5.如图,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为()A. B. C. D.【答案】B【解析】【分析】分析图知2a,2b,则e可求.【详解】由题2b=16.4,2a=20.5,则则离心率e=.故选:B.【点睛】本题考查椭圆的离心率,熟记a,b的几何意义是关键,是基础题.6.若函数,则()A. B. C. D.【答案】C【解析】【分析】根据对数的运算的性质计算即可.【详解】f(x)=1+|x|,∴f(﹣x)+f(x)=2+2|x|,∵lg lg2,lg lg5,∴f(lg2)+f(lg)+f(lg5)+f(lg)=2×2+2(lg2+lg5)=6,故选:C【点睛】本题考查了对数的运算,函数基本性质,考查了抽象概括能力和运算求解能力,是基础题7.汉朝时,张衡得出圆周率的平方除以16等于.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为A. 32B. 40C.D.【答案】C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选:C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题8.若存在等比数列,使得,则公比的最大值为()A. B. C. D.【答案】D【解析】【分析】将原式表示为的关系式,看做关于的二次型方程有解问题,利用判别式列不等式求解即可.【详解】由题设数列的公比为q(q≠0),则,整理得=0,当时,易知q=-1,符合题意;但q≠0,当≠0时,,解得故q的最大值为故选:D【点睛】本题考查等比数列,考查函数与方程的思想,准确转化为的二次方程是关键,是中档题.9.已知函数,则下列判断错误的是()A. 为偶函数B. 的图像关于直线对称C. 的值域为D. 的图像关于点对称【答案】D【解析】【分析】化简f(x)=1+2cos4x后,根据函数的性质可得.【详解】f(x)=1+cos(4x)sin(4x)=1+2sin(4x)=1+2cos4x,f(x)为偶函数,A正确;4x 得,当k=0时,B正确;因为2cos4x的值域为,C正确;故D错误.故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,准确计算是关键,是基础题10.已知,设满足约束条件的最大值与最小值的比值为,则()A. 为定值B. 不是定值,且C. 为定值D. 不是定值,且【答案】C【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,进一步求出最值,结合最大值与最小值的差为3求得实数m的值..【详解】画出m>0,x,y满足约束条件的可行域如图:当直线z=x+y经过点A(2,m+4),z取得最大值,当直线经过B(﹣1,﹣2)时,z取得最小值,故k2为定值.故选:C.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.在棱长为的正方体中,为棱上一点,且到直线与的距离相等,四面体的每个顶点都在球的表面上,则球的表面积为()A. B. C. D.【答案】D【解析】【分析】由题,先确定F的位置,由互相垂直,构造以为棱的长方体,求其外接球半径即可求得球的表面积【详解】过做面B,∴面NF,∴FN为到直线的距离,则,设解得x=,互相垂直, 以为棱的长方体球心即为O,则球的表面积为4故选:D【点睛】本题考查椎体的外接球,明确点F的位置是突破点,构造长方体是关键,是中档题12.已知函数的导函数满足对恒成立,则下列不等式中一定成立的是()A. B.C. D.【答案】A【解析】【分析】求出函数g(x)的导数,判断函数的单调性,从而得出答案.【详解】令由(x+xlnx)f′(x)<f(x),得(1+lnx)f′(x)f(x)<0,g′(x),则g′(x)<0,故g(x)在递减;故,即,∴故选:A【点睛】本题考查抽象函数的单调性,构造函数,准确构造新函数是突破,准确判断单调性是关键,是中档题二、填空题:将答案填在答题卡中的横线上.13.小张要从种水果中任选种赠送给好友,其中芒果、榴莲、椰子是热带水果,苹果、葡萄是温带水果,则小张送的水果既有热带水果又有温带水果的概率为________.【答案】【解析】【分析】确定基本事件个数即可求解【详解】由题从种水果中任选种的事件总数为小张送的水果既有热带水果又有温带水果的基本事件总数为小张送的水果既有热带水果又有温带水果的概率为故答案为14.函数的值域为________.【答案】【解析】【分析】由函数性质确定每段的值域,再求并集即可【详解】由题单调递增,∴,又=,故函数的值域为故答案为【点睛】本题考查分段函数的值域,三角函数性质,指数函数的性质,熟记函数性质,准确计算是关键,是基础题15.已知分别是双曲线的左、右顶点,为上一点,则的外接圆的标准方程为_______.【答案】【解析】【分析】由点为上,求m,由外心设外心坐标M(0,t),M在PB的中垂线上求t即可【详解】为上一点,,解得m=1,则B(1,0),∴PB中垂线方程为+2,令x=0,则y=3,设外接圆心M(0,t),则M(0,3),,∴ 外接圆的标准方程为故答案为【点睛】本题考查圆的标准方程,双曲型方程,熟记外心的基本性质,准确计算是关键,是基础题16.设为等差数列的前项和,若,则的最小值为______.【答案】【解析】【分析】分别利用等差数列的通项公式及求和公式表示已知条件,然后求出得a1,d,在代入求和公式,并利用导数判单调性求最值即可求解.【详解】由题意可得,解可得a1=﹣19,d=4,∴S n=﹣19n2n2﹣21n,∴nS n=2n3﹣21n2,设f(x)=2x3﹣21x2,f′(x)=6x(x﹣7),当0<x<7时,f′(x)<0;函数是减函数;当x>7时,f′(x)>0,函数是增函数;所以n=7时,nS n取得最小值:﹣343.故答案为-343【点睛】本题主要考查了等差数列的通项公式及求和公式的简单应用,准确计算是关键,属于基础试题.三、解答题.解答应写出文字说明、证明过程或演算步骤.17.在中,.证明:为等腰三角形.若的面积为,为边上一点,且求线段的长.【答案】(1)详见解析;(2).【解析】【分析】由正弦定理得,由得,利用余弦定理求得b=c即可证明;由的面积求a,设,在中运用余弦定理求得x,即为所求【详解】(1)证明:,,设的内角的对边分别为,,,由余弦定理可得即,则为等腰三角形.(2),则的面积解得.设,则,由余弦定理可得,解得(负根舍去),从而线段的长为.【点睛】本题考查正余弦定理,同角三角函数基本关系,证明三角形形状,熟练运用定理及三角公式,准确计算是关键,是中档题18.如图,在三棱柱中,平面,为边上一点,证明:平面平面.若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.【答案】(1)证明见解析;(2)A1C与平面ADB1平行.体积为.【解析】【分析】(1)利用平面,证得平面,得到,利用余弦定理证得,由此证得平面,从而证得平面平面.(2)取的中点,连接,通过证明四边形为平行四边形,证得,同理证得,所以平面平面,由此证得平面.利用求得三棱锥的体积.【详解】(1)证明:因为AA1⊥平面ABC,所以BB1⊥平面ABC,因为,所以AD⊥BB1.在△ABD中,由余弦定理可得,,则,所以AD⊥BC,又,所以AD⊥平面BB1C1C,因为,所以平面ADB1⊥平面BB1C1C.(2)解:A1C与平面ADB1平行.证明如下:取B1C1的中点E,连接DE,CE,A1E,因为BD=CD,所以DE∥AA1,且DE=AA1,所以四边形ADEA1为平行四边形,则A1E∥AD.同理可证CE∥B1D.因为,所以平面ADB1∥平面A1CE,又,所以A1C∥平面ADB1.因为AA1∥BB1,所以,又,且易证BD⊥平面AA1D,所以.【点睛】本小题主要考查面面垂直的证明,考查线面垂直的证明以及三棱锥体积的求法,属于中档题.19.某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为)的学生给父母洗脚的百分比进行了调查统计,绘制得到下面的散点图.由散点图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明.建立关于的回归方程,并据此预计该校学生升入中学的第一年(年纪代码为)给父母洗脚的百分比.附注:参考数据:参考公式:相关系数若,则与的线性相关程度相当高,可用线性回归模型拟合与的关系.回归方程中斜率与截距的最小二乘估计公式分别为:,.【答案】(1)详见解析;(2).【解析】【分析】(1)计算得,代入计算公式求值即可判断与的线性相关程度;(2)由公式计算求带入回归直线求得进而求得回归方程,将x=7代入直线,即可确定百分比【详解】(1)因为所以,所以,因为所以,所以由于与的相关系数约为,说明与的线性相关程度相当高,从而可用线性回归模型拟合与的关系. (2)因为,所以所以回归方程为将,代入回归方程可得,所以预计该校学生升入中学的第一年给父母洗脚的百分比为.【点睛】本题考查相关系数r,回归直线方程,熟练运用公式计算是关键,是基础题20.已知点是抛物线上一点,为的焦点.(1)若,是上的两点,证明:,,依次成等比数列.(2)过作两条互相垂直的直线与的另一个交点分别交于,(在的上方),求向量在轴正方向上的投影的取值范围.【答案】(1)详见解析;(2).【解析】【分析】(1)由在抛物线上求P,再利用焦半径公式求,,,再利用等比数列定义证明即可(2)设直线的方程为,与联立,得,由,求k的范围,并求得P坐标,同理求得Q 坐标,则向量在轴正方向上的投影为,求函数的范围即求得结果【详解】(1)证明:在抛物线上,,.,,,,,依次成等比数列.(2)设直线的方程为,与联立,得则,,设,,则,即在的上方,则.以代,得,则向量在轴正方向上的投影为,设函数,则在上单调递减,在上单调递增,从而,故向量在轴正方向上的投影的取值范围为.【点睛】本题考查抛物线的简单性质与应用,直线与抛物线位置关系,范围问题,熟练运用定义,准确计算P,Q坐标,将在轴正方向上的投影表示为k的函数时关键,是中档题.21.已知函数.讨论的单调性.若,求的取值范围.【答案】(1)在上单调递增,在上单调递减,在上单调递增;(2).【解析】【分析】讨论当,时导数符号变化情况求得单调性由的讨论知:时,,解;时,<0,解符合;当时,,构造函数,,求导判单调性解a的不等式;时,,解a范围,则问题得解【详解】(1)当时,,;,.所以在上单调递增,在上单调递减,在上单调递增.当时,对恒成立,所以在上单调递增.当时,,;,.所以在上单调递增,在上单调递减,在上单调递增.(2)①当时,由(1)知在上单调递增,则在上单调递增,所以,解得②当时,由(1)知在上单调递减,在上单调递增.当时,在上单调递增.所以对恒成立,则符合题意;当时,在上单调递减,在上单调递增.所以.设函数,,易得知时,所以,故对恒成立,即符合题意.当时,在上单调递减.所以对恒成立,则符合题意.综上所述:的取值范围为.【点睛】本题考查函数与导数的综合问题,导数与函数单调性与最值,不等式有解问题,分类讨论思想,明确分类标准,不重不漏是关键,是中档题22.[选修4-4:坐标系与参数方程]在直角坐标系中,直线的参数方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为若与相交于两点,,求;圆的圆心在极轴上,且圆经过极点,若被圆截得的弦长为,求圆的半径【答案】(1)6;(2)13.【解析】【分析】(1)将代入,利用t的几何意义及韦达定理即可求解;(2)化直线和圆为普通方程,利用圆的弦长公式求得半径【详解】(1)由,得,将代入,得,则,故.(2)直线的普通方程为,设圆的方程为.圆心到直线的距离为,因为,所以,解得(舍去),则圆的半径为13.【点睛】本题考查直线参数方程,圆的弦长公式,熟练运用直线与圆的位置关系,准确计算是关键,是中档题. 23.[选修4-5:不等式选讲]设函数求不等式的解集;证明:【答案】(1);(2)详见解析.【解析】【分析】(1)零点分段法去绝对值解不等式即可;(2)零点分段分情况证明再由绝对值不等式证明即可【详解】(1)∵,∴,即,当时,显然不合;当时,,解得;当时,,解得.综上,不等式的解集为.(2)证明:当时,;当时,,则;当时,,则.∵,∴.∵,∴.故.【点睛】本题考查绝对值不等式的解法,证明不等式,熟练运算是关键,是中档题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.{x|x>﹣3}
2.(5 分)
在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.(5 分)从某小学随机抽取 100 名学生,将他们的身高(单位:厘米)分布情况汇总如表:
身高
(100,110] (110,120] (120,130] (130,140] (140,150]
频数
5
35
30
20
10
由此表估计这 100 名小学生身高的中位数为( )(结果保留 4 位有效数字)
A.119.3
B.119.7
C.123.3
D.126.7
4.(5 分)若函数 f(x)=
有最大值,则 a 的取值范围为( )
A.(﹣5,+∞) B.[﹣5,+∞)
C.(﹣∞,﹣5) D.(﹣∞,﹣5]
.
16.(5 分)已知 A,B 分别是双曲线 C:x2﹣ =1 的左、右顶点,P 为 C 上一点,且 P
在第一象限.记直线 PA,PB 的斜率分别为 k1,k2,当 2k1+k2 取得最小值时,△PAB 的
垂心到 x 轴的距离为
.
三、解答题:本大题共 5 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.第
18.(12 分)某厂销售部以箱为单位销售某种零件,每箱的定价为 200 元,低于 100 箱按原
第 3 页(共 16 页)
价销售.不低于 100 箱则有以下两种优惠方案:①以 100 箱为基准,每多 50 箱送 5 箱; ②通过双方议价,买方能以优惠 8%成交的概率为 0.6,以优惠 6%成交的概率为 0.4. (1)甲、乙两单位都要在该厂购买 150 箱这种零件,两单位都选择方案②,且各自达成 的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率; (2)某单位需要这种零件 650 箱,以购买总价的数学期望为决策依据,试问该单位选择 哪种优惠方案更划算? 19.(12 分)如图,在多面体 ABCDEF 中,四边形 ADEF 为正方形,AD∥BC,AD⊥AB, AD=2BC=1. (1)证明:平面 ADEF⊥平面 ABF. (2)若 AF⊥平面 ABCD,二面角 A﹣BC﹣E 为 30°,三棱锥 A﹣BDF 的外接球的球心 为 O,求二面角 A﹣CD﹣O 的余弦值.
17~21 题为必考题,每道试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答.(一)
必考题:共 60 分.
17.(12 分)在△ABC 中,3sin A=2sin B,tanC=2 .
(1)证明:△ABC 为等腰三角形.
(2)若△ABC 的面积为 2 ,D 为 AC 边上一点,且 BD=3CD,求线段 CD 的长.
A.
B.
C.
D.
。
11,,
第 2 页(共 16 页)
9.(5 分)已知 m>0,设 x,y 满足约束条件
,z=x+y 的最大值与最小值的比
值为 k,则( )
A.k 为定值﹣1
B.k 不是定值,且 k<﹣2
C.k 为定值﹣2
D.k 不是定值,且﹣2<k<﹣1
10.(5 分)设 Sn 为等差数列{an}的前 n 项和,若 a7=5,S5=﹣55,则 nSn 的最小值为( )
。.
2019 年河北省邯郸市高考数学一模试卷(理科)
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.(5 分)设集合 A={x|x2>4},A∩B={x|x<﹣2},则集合 B 可以为( )
A.{x|x<3}
B.{x|﹣3<x<1} C.{x|x<1}
C.f(x)的值域为[﹣1,3] D.f(x)的图象关于点(﹣ ,0)对称
8.(5 分)如图,在直角坐标系 xOy 中,边长为 1 的正方形 OMNP 的两个顶点在坐标轴上,
点 A,B 分别在线段 MN,NP 上运动.设 PB=MA=x,函数 f(x)=
,g(x)=
,则 f(x)与 g(x)的图象为( )
A.﹣343
B.﹣324
C.﹣320
D.﹣243
11.(5 分)过点 M(﹣1,0)引曲线 C:y=2x3+ax+a 的两条切线,这两条切线与 y 轴分别
交于 A,B 两点,若|MA|=|MB|,则 a=( )
A.﹣
B.﹣
C.﹣
D.﹣
12.(5 分)正方体 ABCD﹣A1B1C1D1 的棱上到直线 A1B 与 CC1 的距离相等的点有 3 个,记 这 3 个点分别为 E,F,G,则直线 AC1 与平面 EFG 所成角的正弦值为( )
边长为 1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得
该几何体的体积为(
)
。.
第 1 页(共 16 页)
A.32
B.40
C.
D.
7.(5 分)已知函数 f(x)=2cos2(2x+ )+ sin(4x+ ),则下列判断错误的是( )
A.f(x)为偶函数 B.f(x)的图象关于直线 x= 对称
5.(5 分)位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥
形可近似地看成抛物线,该桥的高度为 5m,跨径为 12m,则桥形对应的抛物线的焦点到
准线的距离为( A. m
) B. m
C. m
D. m
6.(5 分)汉朝时,张衡得出圆周率的平方除以 16 等于 ,如图,网格纸上的小正方形的
A.
B.
C.
D.Biblioteka 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在答题卡中的横线上.
13.(5 分)(x﹣ )7 的展开式的第 2 项为
.
14.(5 分)若函数 f(x)=1+|x|+
,则 f(lg2)+f(lg )+f(lg5)+f(lg )=
.
15.(5 分)若存在等比数列{an},使得 a1(a2+a3)=6a1﹣9,则公比 q 的取值范围为
20.(12 分)已知椭圆 E:
=1(a>b>0)的左,右焦点分别为 F1,F2,P 为 E 上
的一个动点,且|PF2|的最大值为 2+ ,E 的离心率与椭圆 Ω:
=1 的离心率相
等. (1)求 E 的方程; (2)直线 l 与 E 交于 M,N 两点(M,N 在 x 轴的同侧),当 F1M∥F2N 时,求四边形 F1F2NM 面积的最大值. 21.(12 分)已知函数 f(x)的导函数 f′(x)满足(x+xlnx)f′(x)>f(x)对 x∈(1, +∞)恒成立.