一次回归正交设计
第七章 回归正交试验设计
个因素之间的函数关系。
因素水平编码表
自然变量xj 规范变量zj 1 -1 0 △j x1 700 300 500 200 x2 2400 1800 2100 300 x3 10 8 9 1
7.1.2一次回归方程的建立
设总的试验次数为N,其中原正交表所规定的二水平试验次数为 mc,零水平试验次数为m0,即有: N 建立回归方程
m
mc m0
ˆ a b j x j bkj xk x j,k 1,2,, m 1( j k ) y
j 1 k j
其系数的计算公式如下:
将被剔除变量的偏回归平方和、自由度并入到剩余平方和与自由度中,
然后再进行相关的方差分析计算。具体例子见书P126~129例8-1。
7.1 一次回归正交试验设计及结果分析
14
用石墨炉原子吸收分光光度计法测定食品中的铅,为提高吸光度,
对x1(灰化温度/℃)、x2(原子化温度/℃)和x3(灯电流/mA)三个
F0.05(1,6)=5.99 F0.01(1,6)=13.74
可见因素z2对指标影响高度显著,所建的回归方程高度显著:
y 0.50475 0.03375z2
7.1 一次回归正交试验设计及结果分析
N 1 SST Lyy ( yi y ) 2 yi2 ( yi ) 2 N i 1 i 1 i 1 N N
7.1 一次回归正交试验设计及结果分析
10
②一次项zj偏回归平方和
SS j m b ,j= 1 , 2, ,m
回归正交试验设计
回归正交试验设计一、概述(1)回归分析与正交试验设计的主要优缺点回归分析的主要优点是可以由试验数据求出经验公式,用于描述自变量与因变量之间的函数关系。
它的主要缺点是毫不关心试验数据如何取得,这样,不仅盲目地增加了试验次数,而且试验数据还往往不能提供充分的信息。
因此,有些工作者将经典的回归分析方法描述成:“这是撒大网,捉小鱼,有时还捉不到鱼”。
所以说,回归分析只是被动地处理试验数据,并且回归系数之间存在相关关系,若从回归方程中剔除某个不显著因素时,需重新计算回归系数,耗费大量的时间。
正交试验设计的主要优点是科学地安排试验过程,用最少的试验次数获得最全面的试验信息,并对试验结果进行科学分析(如方差分析),从而得到最佳试验条件,但是它的主要缺点是试验结果无法用一个经验公式来表达,从而不便于考察试验条件改变后,试验指标将作如何变化。
(2)回归正交试验设计回归正交试验设计,实际上就是将线性回归分析与正交试验设计两者有机地结合起来而发展出的一种试验设计方法,它利用正交试验设计法的“正交性”特点,有计划、有目的、科学合理地在正交表上安排试验,并将试验结果用一个明确的函数表达式即回归方程来表示,从而达到既减少试验次数、又能迅速地建立经验公式的目的。
根据回归模型的次数,回归正交试验设计又分为一次回归试验设计和二次回归试验设计。
二、一次回归正交试验设计(一)一次回归正交试验设计的概念一次回归设计研究的是一个因素z (或多个因素z 1,z 2,……)与试验指标y 之间的线性关系。
当只研究一个因素时,其线性回归模型:y =β0+β1z +e (1)其回归方程为:z y ∧∧∧+=10ββ (2)式中∧0β、∧1β称为回归系数,e 是随机误差,是一组相互独立、且服从正态分布N(0,σ2)的随机变量。
可以证明,∧0β、∧1β和∧y 是β0、β1和y 的无偏估计,即E(∧0β)=β0,E(∧1β)=β1,E(∧y )=y一次回归正交试验设计是通过编码公式x =f(z) −− 即变量变换,将式(2)变为:x b b y 10+=∧(3)且使试验方案具有正交性,即使得编码因素X的各水平之和为零:∑==mi ix1(4)式中m 是因素x 的水平数。
EXCEL和SPSS在回归分析正交试验设计和判别分析中的应用
EXCEL和SPSS在回归分析正交试验设计和判别分析中的应用一、回归分析回归分析是一种统计方法,通过对自变量和因变量之间关系进行建模,预测因变量的值。
EXCEL和SPSS都可以进行回归分析,并提供了丰富的功能和工具。
在EXCEL中,可以使用内置的回归分析工具实现回归分析。
首先,需要将数据输入到工作表中,然后选择“数据”选项卡的“数据分析”,再选择“回归”选项。
接下来,填写变量范围和输出范围,并选择相关的统计信息和图表。
最后,点击“确定”即可得到回归分析的结果。
在SPSS中,进行回归分析的步骤稍有不同。
首先,需要导入数据文件,并选择“回归”选项。
然后,选择因变量和自变量,并设置统计选项。
最后,点击“运行”即可得到回归分析的结果。
二、正交试验设计正交试验设计是一种多因素实验设计方法,可以用于确定影响实验结果的因素及其相互作用关系。
使用正交试验设计可以减少实验次数,提高实验效率。
EXCEL和SPSS都提供了工具支持正交试验设计。
在EXCEL中,可以使用内置的“正交表生成器”来实现正交试验设计。
首先,选择“数据”选项卡的“数据分析”,再选择“正交设计表”。
接下来,填写因素数和水平数,并选择生成正交表的方式。
最后,点击“确定”即可生成正交试验设计的表格。
在SPSS中,进行正交试验设计的步骤稍有不同。
首先,需要定义因素和水平,并选择因素的类型和因素间交互作用。
然后,可以选择“生成”选项卡的“正交表”来生成正交试验设计的表格。
三、判别分析判别分析是一种统计方法,用于确定分类变量与一组预测变量之间的关系。
它可以用于预测一个事物属于哪个类别。
EXCEL和SPSS都可以进行判别分析,并提供了相应的功能和工具。
在EXCEL中,可以使用内置的“数据分析工具包”来实现判别分析。
首先,选择“数据”选项卡的“数据分析”,再选择“判别分析”。
接下来,填写变量范围和输出范围,并选择分类变量和预测变量。
最后,点击“确定”即可得到判别分析的结果。
第8章回归正交试验设计
②二次项的中心化 对二次项的每个编码进行中心化处理 :
(二次项编码)-(二次项编码算术平均值)
z ji
'
z
j
2 i
1 n
n i 1
z
j
2 i
二元二次回归正交组合设计编码表
试验号
z1
1
1
z2
z1 z2
z12
1
1
1
2
1
-1
-1
1
3
-1
1
-1
1
4
-1
-1
1
1
5
1
0
0
1
6
-1
0
0
1
7
0
1
0
0
8
0
-1
0
1.414
1.483
3 1.147 1.353
1.471
1.547
4 1.210 1.414
1.525
1.607
5 1.267 1.471
1.575
1.664
6 1.320 1.525
1.623
1.719
7 1.369 1.575
1.668
1.771
8 1.414 1.623
1.711
1.820
9 1.457 1.668
bkj
i 1 n
(zk z j )i2
i 1
二次项偏回归系数bjj :
n
(
z
' ji
)
yi
b jj
i 1 n
(
z
' ji
)
2
i 1
⑤回归方程显著性检验
一次回归正交设计例子
一次回归正交设计某冶炼厂排出的废水中含有大量的镉、鉀、铅等有害元素,对环境造成严重污染。
考察的试验因素为温度(X i)、碱与硫酸亚铁之比(X2)以及硫酸亚铁用量(刈)对指标除镉效率(y)的影响。
不考虑交互作用。
已知X|= 60~80C, x2= 8~ 12, x3= 1~3ml。
(1)因素水平编码及试验方案的确定由于不考虑交互作用,所以建立一个三元线性方程。
因素水平编码如表1所示。
选正交表L8(27)安排试验,将三个因素分别安排在回归正交表的第1、2、4列,试验方案及试验结果见表2,表中的第9、10、11号试验为零水平试验。
表2试验方案及试验结果⑵回归方程的建立表3试验结果及计算表由表3计算a 」皆 \ 二-72.〕6. 6 182n i.i11回归方程为y = 6.6182 0.5125/ 0.5375Z 2 0.3125Z 3由该回归方程偏回归系数绝对值的大小,可以得到各因素的主次 顺序为:X 2>X 1>X 3,即液固比 >乙醇浓度>回流次数。
又由于各偏回归 系数都为正,所以这些影响因素取上水平时,试验指标最好。
(3)回归方程显著性检验b 2b 3、Z 1i Y ii =1m c ' Z 2i%i =1i =1Z 3i Y im c41二 0.5125843二 0.537582^50. 3125 8SS = m c b 2= 8汉 0.5125 = 2.101 = m c b 荻 8 0.53752二 2.311 SQ = m j b ; = 8 0.31252 = 0.781SQ = SS + SS2 + SS3 + SS 2 + SS 厂 2.101+ 2.311+ 0.781= 5.193SS= SS-S&5. 2 9 6- 5. 1 93 0.方差分析结果见表4。
表4方差分析表差异源 SS df MS F 显著性 Z 1 2.101 1 2.101 142.9 ** Z 2 2.311 1 2.311 157.2 ** Z 3 0.781 1 0.781 53.1 ** 回归 5.193 3 1.731117.8**残差 0.103 70.0147总和5.296n — 1 = 10注:F o.o1(1, 7)= 12.25, F o.o1(3, 7) = 8.45可见,三个因素对试验指标都有非常显著的影响, 所建立的回归 方程也非常显著。
实验设计与数据处理课后答案
《试验设计与数据处理》专业:机械工程班级:机械11级专硕学号:S110805035 姓名:赵龙第三章:统计推断3-13 解:取假设H0:u1-u2≤0和假设H1:u1-u2>0用sas分析结果如下:Sample StatisticsGroup N Mean Std. Dev. Std. Error----------------------------------------------------x 8 0.231875 0.0146 0.0051y 10 0.2097 0.0097 0.0031Hypothesis TestNull hypothesis: Mean 1 - Mean 2 = 0Alternative: Mean 1 - Mean 2 ^= 0If Variances Are t statistic Df Pr > t----------------------------------------------------Equal 3.878 16 0.0013Not Equal 3.704 11.67 0.0032由此可见p值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中由3个字母组成的词的比例均值差异显著。
3-14 解:用sas分析如下:Hypothesis TestNull hypothesis: Variance 1 / Variance 2 = 1Alternative: Variance 1 / Variance 2 ^= 1- Degrees of Freedom -F Numer. Denom. Pr > F----------------------------------------------2.27 7 9 0.2501由p值为0.2501>0.05(显著性水平),所以接受原假设,两方差无显著差异第四章:方差分析和协方差分析4-1 解:Sas分析结果如下:Dependent Variable: ySum ofSource DF Squares Mean Square F Value Pr > FModel 4 1480.823000 370.205750 40.88 <.0001Error 15 135.822500 9.054833Corrected Total 19 1616.645500R-Square Coeff Var Root MSE y Mean0.915985 13.12023 3.009125 22.93500Source DF Anova SS Mean Square F Value Pr > Fc 4 1480.823000 370.205750 40.88 <.0001由结果可知,p值小于0.001,故可认为在水平a=0.05下,这些百分比的均值有显著差异。
试验设计与数据处理复习要点
试验设计与数据处理复习要点1、引言20世纪20年代,英国生物统计学家及数学家费歇提出了方差分析20世纪50年代,日本统计学家田口玄一将正交设计表格化。
数学家华罗庚的“优选法”。
我国数学家王元和方开泰于1978年首先提出了均匀设计。
常用的统计软件:SAS,SPSS,Origin,Excel等。
试验设计与数据处理的意义。
试验设计的目的:合理地安排试验,力求用较少的试验次数获得较好结果数据处理的目的:通过误差分析,评判试验数据的可靠性;确定影响试验结果的因素主次,抓住主要矛盾,提高试验效率;确定试验因素与试验结果之间存在的近似函数关系,并能对试验结果进行预测和优化;获得试验因素对试验结果的影响规律,为控制试验提供思路;确定最优试验方案或配方。
加权平均值:如果某组试验值用不同的方法获得,或由不同的试验人员得到的,则这组数据中不同的精度或可靠性不一致,为了突出可靠性高的数值,则可采用加权平均值。
绝对误差:试验值与真值之差误差根据其性质或产生原因分为:系统误差,随机误差,过失误差1. 随机误差:以不可预知的规律变化着的误差,绝对误差时正时负,时大时小产生的原因:偶然因素(气温的微小变2.仪器的轻微振动等)2. 系统误差:一定试验条件下,由某个或某些因素按照某一确定的规律起作用而形成的误差产生的原因:多方面(仪器不准或操作者观察终点方法不对)3.过失误差:一种显然与事实不符的误差产生的原因:实验人员粗心大意造成精密度、正确度和准确度的含义与区别。
1.精密度:反映了随机误差大小的程度,在一定的试验条件下,多次试验值的彼此符合程度2.正确度:反映系统误差的大小,精密度高并不意味着正确度也高精密度不好,但当试验次数相当多时,有时也会得到好的正确度3.准确度:反映了系统误差和随机误差的综合,表示了试验结果与真值或标准值的一致程度关于权的选择和绝对误差的选择。
权不是任意给定的,除了依据实验者的经验外,还可以按如下方法给予。
一次回归正交设计、二次回归正交设计、二次回归旋转设计说明
一次回归正交设计、二次回归正交设计、二次回归旋转设计说
明
一次回归正交设计是一种广泛应用于实验设计中的设计方式,该设计最基本的特点是每一个自变量只考虑一次。
这种设计方法可以通过排列组合的方式得到各种不同的设计方案,使得实验者可以通过设计来达到用最少的实验次数获取尽可能多的信息的目的。
一次回归正交设计在实验设计中被广泛使用,尤其在化学制药、工业生产等领域得到了广泛运用。
二次回归正交设计是一种基于一次回归正交设计的设计方式,这种设计方式可以进一步增加实验信息的获取。
在二次回归正交设计中,依然按照一次正交设计的方式来设计实验,但是在每个单独的自变量上,提高对其的测量次数,使得对这些自变量的测量更加准确。
同时,在某些需要深入探究的因素上,可以通过将这些因素的实验次数进一步提高,来获取相关信息。
二次回归旋转设计是一种在二次回归正交设计的基础上发展而来的设计方式。
在二次回归旋转设计中,实验者可以通过旋转矩阵来达到实验变量间的协方差为0的目的。
这样可以在保证基本信息获取的同时,增加获取高阶信息的可能性。
旋转设计特别适合于需要同时考虑多个变量的实验设计,可以使各个变量之间更加独立,减少不必要的干扰。
总的来说,在实验设计领域中,三种设计方法各自有着各自的优势。
对于需要更精准的信息获取的实验,应该选择更高阶的设计方法,在更基础的实验中则可以选择更为简单的设计方法。
另外,在选择设计方法的过程中,还应该根据实验具体情况灵活选择,使得实验设计更加科学合理。
第八章-回归的正交设计教程文件
§2 一次回归正交设计及统计分析
(3)选择适合的2水平正交表进行设计。
在应用2水平正交表进行回归设计时,需以“-1”代换 表中的“2”,以“+1”代换表中的“1”,并增加“0”水 平。这种变换的目的是为了适应对因素水平进行编码的需要, 代换后正交表中的“+1”和“-1”不仅表示因素水平的不 同状态,而且表示因素水平数量变化的大小。原正交表经过 上述代换,其交互作用列可以直接从表中相应几列对应元素 相乘而得到。因此原正交表的交互作用列表也就不用了,这 一点较原正交表使用更为方便。
§2 一次回归正交设计及统计分析
(1)确定试验因素的变化范围。
根据试验研究的目的和要求确定试验因素数 ,并在此基 础上拟定出每个因素Zj的变化范围。回归正交试验设计的因 素一般都大于3个,但也不能太多,否则处理过多,方案难 以实施。
各试验因素取值最高的那个水平称为上水平,以Z2j表示; 取值最低的那个水平称为下水平,以Z1j 表示;两者之算术平 均数称为零水平,以Z0j表示,
因此,在对供试因素 Zj 各水平进行了以上的编码以后,就 把试验结果 y 对供试因素各水平 Zi1,Zi2 , … , Zim 的回归问题转 化为在编码空间试验结果 y 对编码值 xi1,xi2 , … , xim 的回归问 题。
今后,不论是一次回归设计还是二次回归设计,我们都先 将各因素进行编码,再去求试验指标 y 对 x1,x2 , … , xm 的回归方程,这种方法在试验设计中是经常被采用的。
因素 1 2 3 4 5 6 7 8 9 … N
§2 一次回归正交设计及统计分析
表13-2 3元一次回归正交设计试验方案
x1 (Z1) 1 (17) 1 (17) 1 (17) 1 (17)
x2 ( Z2 ) 1 (22.6) 1 (22.6) -1 (9.4) -1 (9.4)
一次回归正交设计、二次回归正交设计、二次回归旋转设计
一次回归正交设计
某产品的产量与时间、温度、压力和溶液浓度有关。实际生产中,时间控制 在 30~40min,温度控制在 50~600C,压力控制在 2*105~6*105Pa,溶液浓度控制 在 20%~40%,考察 Z1~Z2 的一级交互作用。
因素编码
Zj(xj)
Z1/min
Z2/oC
Z3/*105Pa
Z4/%
下水平 Z(1j -1)
30
50
2
20
上水平 Z2j
40
60
6
40
(+1)
零水平 Z0j(0)
35
55
4
30
变化间距
5
5
2
10
编码公式 X1=(Z1-35) X2=(Z2-55)/5 X3=(Z3-4)/2 X4=(Z4-30)/10
/5
选择 L8(27)正交表
因素 x1,x1,x3,x4 依次安排在第 1、2、4、7 列,交互项安排在第 3 列。
试验号 X0 X1(Z1) X2(Z2) X3(Z3) X4(Z4) X1X2
Yi
1
1
1
1
1
1
1
9.7
2
1
1
1
-1
-1
1
4.6
3
1
1
-1
1
-1
-1
10.0
.
.
4
1
1
-1
-1
1
-1
11.0
5
1
-1
1
1
-1
-1
9.0
6
1
-1
1
-1
1
正交回归设计(2)
2.检验一次方程的合适性 为了了解是否存在因子间的交互作用,是否有因子的高次效 应,在中心点进行了m=5次试验,结果为: 40.3,40.5,40.7,40.2,40.6 5 其平均值为 y 0 40.46 ,偏差平方和为 S0 ( y0i y0 ) 2 0.172 , i 1 其自由度=4。 采用方法1中的检验统计量t作检验。 ˆ 0 40.425, y 0 40.46 , 现在 y
最后再将编码式
2 206 .23 14 .338 x 2 21 .818 x12 35.868 x 2
x1
F 250 A 3.5 ,x2 109 1.74
代入,即可得y关于F,A的二次回归方程: ˆ 86.5547 1.0497 F 0.0018 F 2 82.9291 A 11.8470 A 2 y 为延长寿命,可以将回归方程对F与A分别求导,并令 其为零以解出最佳水平组合为F=291.58,A=3.50,在该水 平组合下,平均寿命的估计是211.6。
2 2
0 0 0 0
0 0
这里mc=4,2p=4,则n=mc+2p+m0=8+m0,再记
h 4 2 2
f 4 2 4
那么
n 0 0 X X 0 h h 0 0 h 0 0 h 0 0 0 0 0 0 0 0 0 h 0 0 0 f mc h 0 0 0 mc f
1 1 1 1 1 1 1 1 1 X 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 2 2 0 0
回归正交试验设计
z
2
20 10
,x3
z3 0.2 0.1
通过上述变换后,编码空间为中心在原点的立方体,其边
长为2。 在后面我们将会看到,在编码时,有时立方体的边长可以
大于2。
2020/7/18
试验设计与数据处理
20
今后称x (x1, x2 ,, xp ) 的可能取值的空间为编码空间。我们可以 先在编码空间中寻找一个点x0使E(y)满足质量要求,然后通过 编码式寻找到z0。
y b0
bjzj
b
jj
z
2 j
bij zi z j
j
j
i j
为y关于 z1, z2 ,, z p 的多项式回归方程。
2020/7/18
试验设计与数据处理
5
在实际中常用的是如下的一次与二次回归方程(也称一阶 与二阶模型):
yˆ b0 bj z j
j
yˆ b0
bjzj
b jj
著性之前,先对y 的期望是否是 x1, x2 ,, x p的线性函数进行检
验,这种检验称为失拟检验,它要检验如下假设:
H0: Ey 0 1x1 p x p
H1: Ey 0 1x1 p xp 当在 (xi1, xi2 ,, xip )上有重复试验或观察时,将数据记为
(xi1 ,
xi2 ,,
2020/7/18
试验设计与数据处理
21
§7.2 一次回归正交设计 7.2.1 一次回归正交设计
建立一次回归方程的回归设计方法有多种,这里介绍一种常
用的方法,它是利用二水平正交表来安排试验的设计方法。 其主要步骤如下: 1.确定因子水平的变化范围
设影响指标y的因子有p个 z1, z2 ,, z p ,希望通过试验建立y
回归正交实验设计
归正交试验设计前面介绍的正交试验设计一种很实用的试验设计方法,它能? I」用较少的试验次数获得较好的试验结果,但是通过正交设计所得至啲优方案只能限制在已走的水平上,而不是一定试验范围内的最优方案;回归分析是一种有效的数据处理方法,通过所确立的回归方程,可以对试验结果进行预测和优化,但回归分析往往只能对试验数据进行被动的处理和分析,不涉及对试验设计的要求。
如果能将两者的优势统一起来,不仅有合理的试验设计和较少的试验次数,还能建立有效的数学模型,这正是我们所期望的。
回归正交设计(orthogonal regression design)就是这样一种试验设计方法,它可以在因素的试验范围内选择适当的试验点,用较少的试验建立一个精度高、统计性质好的回归方程,并能解决试验优化问题。
一次回归正交试验设计及结果分析—次回归正交设计就是利用回归正交设计原理,建立试验指标(y)与m个试验因素xi, X2 ..................................... x m ,之间的一元回归方程:y = a ++ /?2x2 + • • • 4- b m x m(8 - 1)或者my = a + Yj h j x j+ X b kj x k x j k=l, 2 , f m -1 (j#k ) (8 - 2)7-1 k{j8.1.1 —次回归正交设计的基本方法(1) 确走因素的变化范围根据试验指标y ,选择需要考察的m个因素Xj (j二1,2,…,m),并确走每个因素的取值范围。
设因素%的变化范围为凶1 , X j2],分别称Xji和X R为因素%的下水平和上水平,并将它们的算术平均值称作因素Xj的零水平,用XjO。
表示。
11勺度艾上水平与零水平之差称为因素为的变化间距,用勺表示r 即:(8-4)x n△十七丄 (8-5)(2) 因素水平的编码编码(coding)是将Xj 的0水平进行线性变换,即:(8-6)式(8—6)中可就是因素为的编码,两者是一一对应的。
第5章 回归正交试验设计
第一节 一次回归正交试验设计
(4)失拟性检验
本例中,零水平试验次数m0=3,进行失拟行检验。
FLf
SSLf / dfLf SSe1 / dfe1
0.0963/ 5 0.00667/ 2
5.775
F0.1(5,2)
9.29
表明失拟不显著,回归模型与实际情况拟合得很好。
第一节 一次回归正交试验设计
4 回归方程及偏回归系数的方差分析 4.1 无零水平试验 4.1.2 计算自由度
第一节 一次回归正交试验设计
4 回归方程及偏回归系数的方差分析 4.1 无零水平试验 4.1.3 计算均方
MSj
SS j df j
MSkj
SSkj dfkj
j k,k 1,2,...,(m 1)
n i 1
yi
y
n
z ji yi
bj
i 1
mc
n
(zk z j )i yi
bkj i1 mc
j k,k 1,2,...,(m 1)
第一节 一次回归正交试验设计
3 一次回归方程的建立 通过计算得到回归系数之后,可以直接根据它们绝对值的大
小来判断各因素和交互作用的相对重要性,而不用转换成标准 回归系数。
n
z ji 0
i 1
n
z ji zki 0 ( j k )
i 1
这些特点说明了转换之后的正交表同样具有正交性。
第一节 一次回归正交试验设计
2.4 试验方案的确定
确定试验方案时,将规范变量zj安排在一次回归正交编码表 相应的列中,即进行表头设计。
一次回归正交设计、二次回归正交设计、二次回归旋转设计说明
一次回归正交设计某产品的产量与时间、温度、压力和溶液浓度有关。
实际生产中,时间控制在30~40min,温度控制在50~600C,压力控制在2*105~6*105Pa,溶液浓度控制在20%~40%,考察Z1~Z2的一级交互作用。
因素编码Z j(x j) Z1/min Z2/o C Z3/*105Pa Z4/%下水平Z1j(-1)30 50 2 20上水平Z2j(+1)40 60 6 40零水平Z0j(0)35 55 4 30变化间距 5 5 2 10编码公式X1=(Z1-35)/5 X2=(Z2-55)/5X3=(Z3-4)/2 X4=(Z4-30)/1选择L8(27)正交表因素x1,x1,x3,x4依次安排在第1、2、4、7列,交互项安排在第3列。
试验号X0 X1(Z1) X2(Z2) X3(Z3) X4(Z4) X1X2 Yi1 1 1 1 1 1 1 9.72 1 1 1 -1 -1 1 4.63 1 1 -1 1 -1 -1 10.04 1 1 -1 -1 1 -1 11.05 1 -1 1 1 -1 -1 9.06 1 -1 1 -1 1 -1 10.07 1 -1 -1 1 1 1 7.38 1 -1 -1 -1 -1 1 2.49 1 0 0 0 0 0 7.910 1 0 0 0 0 0 8.111 1 0 0 0 0 0 7.4 Bj=∑xjy 87.4 6.6 2.6 8.0 12.0 -16.0aj=∑xj2 11 8 8 8 8 8bj = Bj7.945 0.825 0.325 1.000 1.500 -2.00/aj393 5.445 0.845 8.000 18.000 32.000Qj =Bj2 /aj可建立如下的回归方程。
Y=7.945+0.825x1+0.325x2+x3+1.5x4-2x1x2显著性检验:1、回归系数检验回归关系的方差分析表变异来源SS平方和Df自由度MS均方F显著水平x1 5.4451 5.44576.250.01 x20.84510.84511.830.05 x38.00018.000112.040.01 x4 18.000118.000252.100.01 x1x2 32.000132.000448.180.01 回归64.29 5 12.858180.080.01 剩余0.357 5 0.0714失拟0.097 3 0.0323 0.25 <1 误差e 0.2620.13总和64.64710经F检验不显著的因素或交互作用直接从回归方程中剔掉,不必再重新进行回归分析。
回归正交试验设计
规范变量z 规范变量 j 上星号臂γ 上星号臂 上水平1 上水平 零水平0 零水平 下水平-1 下水平- 下星号臂- 下星号臂-γ 变化间距 变化间距 j
②确定合适的二次回归正交组合设计 参考表8-22 参考表
正交表的选用 因素数m 因素数 2 3 4(1/2实施) ( 实施 实施) 4 5(1/2实施) ( 实施 实施) 5 选用正交表 L4(23) L8(27) L8(27) L16(215) L16(215) L32(231) 表头设计 1,2列 , 列 1,2,4列 , , 列 1,2,4,7列 , , , 列 1,2,4,8列 , , , 列 1,2,4,8,15列 , , , , 列 1,2,4,8,16列 , , , , 列 mc 22= 4 23= 8
(3)回归方程的建立 ) m0=0,n=mc=8 , = 计算表 计算各回归系数 写出y与规范变量 写出 与规范变量zj的回归方程 与规范变量 根据偏回归系数绝对值大小, 根据偏回归系数绝对值大小,确定因素和交互作用主次 根据偏回归系数正负, 根据偏回归系数正负,得到各因素对试验指标的影响方向 (4)方差分析 ) 与自然变量x (5)回归方程的回代:得到试验指标 与自然变量 j的回归 )回归方程的回代:得到试验指标y与自然变量 方程
1 m0 SSe1 = ∑ ( y0i y 0 ) 2 = ∑ y0i2 (∑ y0i ) 2 m0 i =1 i =1 i =1
m0
m0
重复试验误差的自由度: 重复试验误差的自由度: ②回归方程失拟部分: 回归方程失拟部分: 失拟平方和 :
df e1 = m0 1
SS Lf = SST SS R SS e1 = SS e SS e1
回归平方和 : SS R = ∑ SS 一次项 + ∑ SS 交互项 残差平方和 :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设目标性状y与z1、z2……zm等因素有关,我们可以应用回归分析的方法建立y与诸因素的回归方程,以此对y进行预测和控制,或筛选y的最优指标。z1、z2……zm构成一个因子空间,每一组z1、z2……zm值对应一个y值。如何在因子空间中选择最适当的试验点,以最少的试验点寻求y的最优区域,这就要将回归分析与正交设计结合起来应用,称为回归正交设计。按回归模型的次数,回归正交设计又分为一次回归正交设计和二次回归正交设计。
一、一次回归正交设计
一次回归正交设计主要是应用2水平正交表进行设计,其设计和分析步骤如下。
1.确定试验因素的变化范围
例如研究m个栽培因素z1、z2……zm与作物产量y的数量关系,首先需确定各个栽培因素的变化范围。设因素zj的变化区间为(z1j,z2j),则z1j和z2j分别为因素zj的下水平和上水平。那么
用二水平正交表设计的这种试验具有正交性。若以 表示在第 试验中第j个变量的编码值,于是在试验计划中有
任一列的和
任两列的内积
具有以上两个性质的设计为正交设计。
4.建立回归方程
对于3因素试验,若考虑因素间的交互作用,则回归方程为
例如用L8(27)正交表设计该试验,那么它的结构矩阵为
信息矩阵(系数矩阵)为
-1
1
-1
1
1
7
-1
1
-1
-1
1
1
-1
-1
1
-1
1
8
-1
1
-1
1
-1
-1Байду номын сангаас
-1
1
1
1
-1
9
-1
1
1
-1
-1
-1
1
-1
-1
1
1
10
-1
-1
-1
1
1
1
1
-1
-1
1
-1
11
-1
-1
1
-1
1
-1
1
1
1
-1
-1
12
-1
-1
1
1
-1
1
-1
1
-1
-1
1
如设计一个3因素试验,可选用L8(27)正交表,表中x1、x2、x3分别代表z1、z2、z3的编码值。若因素间有互作存在,在回归中可用非线性项x1x2、x1x3、x2x3等表示。每种交互作用占改造后二水平正交表的1列,该列的取值可由某两列上元素对应相乘得到。如表2L8(27)中x1x2列的元素是由x1与x2列上的对应元素相乘而得。
1
-1
1
-1
-1
y2
3
1
1
-1
1
-1
1
-1
y3
4
1
1
-1
-1
-1
-1
1
y4
5
1
-1
1
1
-1
-1
1
y5
6
1
-1
1
-1
-1
1
-1
y6
7
1
-1
-1
1
1
-1
-1
y7
8
1
-1
-1
-1
1
1
1
y8
Bj
8
8
8
8
8
8
8
B0/8
B1/8
B2/8
B3/8
B12/8
B13/8
B23/8
--
从以上计算可看出,各变量的偏回归平方和 ,与偏回归系数bj的平方成正比。bj的绝对值越大,Qj也越大。这就意味着,在利用正交表所得到的回归方程中,每一个回归系数bj的绝对值大小,反映了对应变量xj对y作用的大小。这是因为经过无量纲编码后,所以变量的取值都是1和-1,它们在所研究的区域内取值是平等的,且不受单位的影响,因此所求回归系数bj直接反映了因素zj作用的大小,回归系数的符号反映因素作用的性质。在要求不太高的情况下,一次回归正交设计可省略方差分析,直接把回归系数与零相差不大的因素从回归方程中剔除,不需重新计算其它回归系数,剔除因素对结果的影响可并入试验误差。但对精度要求较高的试验,应继续进行回归关系的显著性测验。
5.回归方程及回归系数的显著性测验
一次回归正交设计的方差分析如表4。
表4一次回归正交设计的方差分析表
变异来源
自由度
平方和
均方
F值
回归
离回归
总
x1
1
xm
1
x1x2
1
xm-1xm
1
对回归方程的显著性假设测验可通过表4中的F测验进行。但这种测验只是说明m个变量对试验结果的影响是显著的,而在研究区域内回归方程与实测值的拟合情况,即采用一次回归模型是不是最合适,从以上测验中没有得到这方面的信息。为了了解回归方程的拟合情况,需在零水平( )安排一些重复试验,如在安排p次重复试验所得试验结果为 ,其平均数为 ,则
-1
1
1
-1
-1
1
8
-1
-1
-1
1
1
1
-1
L12(211)
试验号
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
-1
-1
-1
-1
-1
-1
3
1
1
-1
-1
-1
1
1
1
-1
-1
-1
4
1
-1
1
-1
-1
1
-1
-1
1
1
-1
5
1
-1
-1
1
-1
-1
1
-1
1
-1
1
6
1
-1
-1
-1
1
-1
表2常用二水平正交表L4(23)
试验号
x1
x3
x3
1
1
1
1
2
1
-1
-1
3
-1
1
-1
4
-1
-1
1
L8(27)
试验号
x1
x2
x3
x1x2
x1x3
x2x3
x1x2x3
1
1
1
1
1
1
1
1
2
1
1
-1
1
-1
-1
-1
3
1
-1
1
-1
1
-1
-1
4
1
-1
-1
-1
-1
1
1
5
-1
1
1
-1
-1
1
-1
6
-1
1
-1
-1
1
-1
1
7
-1
多个因素的编码工作可在因素水平编码表(表1)上进行。
表1因素水平编码表
zj
因素
Z1
Z2
……
Zm
下水平
Z11
Z12
……
Z1m
零水平
Z01
Z02
……
Z0m
上水平
Z21
Z22
……
Z2m
变化间距△j
△1
△2
……
△m
对因素的水平进行编码后,y对z1、z2……zm的回归问题就转化为对x1、x2……xm的回归问题。在z1、z2……zm因子空间选择试验点的问题就转化为x1、x2……xm为坐标轴的编码空间选择试验点。在二次回归设计中也要进行因素的编码工作。
3.选择合适的二水平正交表
常用的二水平正交表有L4(23)、L8(27)、L12(211)、L16(215)等。选用哪一种二水平正交表要依据因素个数及需要研究的交互作用而定。正交表确定以后,把表中的“2”改为“-1”。这样正交表中的“+1”“-1”既表示因素的不同水平,也表示xj的取值。表2列举了经代换后的几张常用二水平正交表。
相关矩阵为
常数项矩阵为
为试验结果,于是可算出回归系数矩阵
那么各类回归系数即由下式算出
回归系数的具体计算可在正交表上进行(表3).表中bj为各回归系数,Qj为偏回归平方和。从而建立回归方程。
表33因素一次回归正交设计计算表
试验号
x0
x1
x2
x3
x1x2
x1x3
x2x3
试验结果
1
1
1
1
1
1
1
1
y1
2
1
1
为因素zj的零水平。
为因素zj的变化区间。
2.对各因素的水平编码
编码就是对各个因素的取值作如下线性变换:
式中xj为编码值。如:
这样就建立了zj与xj的一一对应关系:
下水平z1jx1j(-1)
零水平z0jx0j(0 )
上水平z0jx0j(+1)
通过上面的编码可知,当zj在区间(z1j,z2j)变化时,它的编码值xj就在区间(-1,+1)内变化。