无脊椎动物的进化简述

合集下载

无脊椎动物的比较解剖与进化

无脊椎动物的比较解剖与进化
一、无脊椎动物体壁和体腔的演化及其意义
• 水螅:体壁分为外胚层、中胶层、内胚层;
具有原始的消化循环腔。
<进化> 水螅(腔肠动物)开始 分化出简单的组织;其上皮细胞 内包含有肌肉纤维,故兼具皮肤 和肌肉组织的功能,称为上皮肌 肉细胞,简称皮肌细胞。由内外 胚层细胞所围成的体内的腔,即 胚胎发育中的原肠腔,具有消化 和循环的功能,故称消化循环腔
唇片上和泄殖孔前后的乳突均有感觉功能。
背唇
神经系统仍有向前集中的趋
腹唇
势,但因为营寄生生活,神 经系统和感觉器官均不发达
腹唇
六、无脊椎动物神经系统和感觉器官
结构与功能的演化及其影响因子
• 环毛蚓:典型的链状神经系统。其中中枢神 经系统包括咽上神经节(脑)、围咽神经、 咽下神经节和其后的腹神经索。每个体节内 有一神经节,而从这些神经节分出的神经称 为周围神经系统,可以完成简单的反射弧。
一、无脊椎动物体壁和体腔的演化及其意义
<进化> 蛔虫(线虫动物)属于三胚层假体腔动物。 体壁最外层出现了角质膜,能选择性透过某些 离子和有机化合物,调节这些物质的进出,对保护虫 体、保持体腔液所产生的流体静力压有重要作用。因 只有纵肌而无环肌颉颃,只能通过流体骨骼传导压力 变化,产生特殊的拍打运动[thrashing movements]。 假体腔从胚胎期的囊胚腔发育而来,仅在体壁 上有中胚层来源的组织结构,在肠壁外没有,无体腔 膜。然而相对于无体腔动物,假体腔内充满体腔液, 加大了运动的自由度,为消化、排泄和生殖系统的发 育和分化提供了空间;丰富的体腔液有助于全身物质 的循环和分布,对运动起到了流体静力骨骼的作用。
五、无脊椎动物循环系统结构与功能的演化 及其影响因子
• 棉蝗:仅有一条背血管,分心脏和大动脉两 部分。心脏搏动力不强,主要依靠身体和附 肢的活动(通过贴在背板上的翼状肌)增加 血液循环的压力。血压较低,不易大量失血

无脊椎动物总结

无脊椎动物总结

特点与功能
特点
无脊椎动物形态各异,生活环境多样 ,适应性强。
功能
无脊椎动物在生态系统中扮演着重要 的角色,如分解有机物、传播种子、 控制害虫等。
无脊椎动物在生态系统中的作用
生产者
部分无脊椎动物如蚯蚓、蜣螂 等能够分解有机物,为生态系
统提供养分。
消费者
无脊椎动物中的许多种类是其 他动物的猎物,如昆虫、蜘蛛 等。
02
泥盆纪鱼类时代的结束与泥盆纪 晚期生物大灭绝事件密切相关, 约有70%的鱼类物种消失,为脊 椎动物的崛起提供了机会。
04
CATALOGUE
无脊椎动物的应用价值
食用与药用价值
食用价值
无脊椎动物是全球许多地区的重要食物来源,如贝类、甲壳类、昆虫等。它们 富含蛋白质和其他营养成分,对人类健康有益。
无脊椎动物总结
contents
目录
• 无脊椎动物概述 • 无脊椎动物的种类 • 无脊椎动物的进化历程 • 无脊椎动物的应用价值
01
CATALOGUE
无脊椎动物概述
定义与分类
定义
无脊椎动物是指没有脊柱的动物 ,是动物界中种类最多、数量最 大的一类。
分类
无脊椎动物主要包括节肢动物、 软体动物、棘皮动物、线形动物 等。
其他生物的数量和分布。
03
CATALOGUE
无脊椎动物的进化历程
寒武纪生命大爆发
寒武纪时期,地球上出现了大量无脊 椎动物,如海绵动物、软体动物、节 肢动物等,这些动物的出现标志着地 球生物多样性的飞速发展。
寒武纪生命大爆发的原因至今仍是一 个谜,但科学家们普遍认为这与地球 大气成分、气候变化和海洋环境等多 种因素有关。
软体动物在生态系统中扮演着重要的角色,如贝类是海洋生态系统中的重要滤食者 ,而蜗牛和蛞蝓等则以腐食为主。

人教版七年级生物课件-无脊椎动物的进化简述

人教版七年级生物课件-无脊椎动物的进化简述

細胞數目的變化(最基本的變化) 和分化
• 動物向多細胞進化過程中最早的變化當屬 細胞數目的增加------群體的原生動物 。
• 細胞增多以後就必然會導致細胞的分化。 • 分化出來生殖細胞 ,表皮細胞 ---
• 細胞的分化是一個長期的過程,在經歷了 漫長的地質年代的量變的進化後,產生了 細胞分化這一質的變化。
• 參考文獻:
• 1:劉淩雲,鄭光美 《普通動物學》 高等 教育出版社
• 2:堵南山 《無脊椎動物學》 華東師範大 ห้องสมุดไป่ตู้出版社
• 3:廖家遺 無脊椎動物進化面面觀 中山 大學學報論從
• Thank you!
胚層的分化
• 細胞出現了胚層的分化,胚層的分化不僅 是動物的細胞簡單分層排列,而且各胚層 來源的細胞形成的結構在動物體內的位置 和功能也不同。
• 外胚層細胞形成的結構一般位於體表 • 內胚層形成的消化系統和呼吸系統,多接
近於身體中心 • 中胚層形成的結構位於體表和消化道之間 • 三個胚層是一種高級和穩定的進化現象
(2):迴圈、排泄系統:
• 原生動物主要靠體表進行呼吸和物質的排泄。腔 腸動物只是簡單的水溝系。在扁形動物階段形成 了原腎管系統,這是原始的排泄系統。由於次生 體腔的出現,環節動物具有較完善的循環系統— —形成了閉管式循環系統。而軟體動物的次生體 腔極度退化變為了開管式循環系統,在排泄器官 上進化成了後腎管系統。節肢動物作為無脊椎動 物最高級的階段,具有了高效的呼吸器官——氣 管,獨特的消化系統和新出現的馬氏管。
無脊椎動物的進化簡述
• 生物的多樣性其緣由就應該是無脊椎動物 的多樣性。無脊椎動物在進化過程中形成 的許多基本的形態結構在脊索動物中不同 程度地保存了下來,並對後來的動物產生 了重大的影響。因此,觀察、分析和研究 無脊椎動物在進化過程中所發生的一些變 化,對了解動物是如何進化的是很有幫助 的。我在生物學學習中對無脊椎動物的進 化產生了興趣,現將無脊椎動物的進化做 一個簡單的總結,願和大家一起討論。

无脊椎动物的消化系统与进化课件

无脊椎动物的消化系统与进化课件
指导环境保护
对无脊椎动物消化系统的研究可以帮助我们更好地理解生态系统中的 生物过程,为环境保护和生态修复提供科学依据。
无脊椎动物在地球生态系统中的作用与价值
生态平衡维护
无脊椎动物在生态系统中占据重要地位,它们是食物链中 的重要环节,能够控制其他生物的数量和分布,维持生态 平衡。
物质循环
无脊椎动物参与了地球上许多物质循环过程,如土壤中的 有机质分解、营养物质的循环等,对维持地球生态系统稳 定起着重要作用。
生存竞争
具有高效消化系统的物种 能够在竞争中获得更多的 能量和营养,有助于提高 生存机会。
03
无脊椎动物的进化历程
无脊椎动物的起源与早期演化
寒武纪生命大爆发
在距今约5.4亿年的寒武纪时期,无脊椎动物开始多样化发展。
埃迪卡拉纪的生物群
埃迪卡拉纪时期出现了多种无脊椎动物,包括软体动物、环节动物 等。
前寒武纪的生物遗迹
在南非的布尔吉斯页岩和中国的澄江化石群中,保存了大量无脊椎 动物的化石。
无脊椎动物的辐射与分化
古生代的辐射
01
在古生代时期,无脊椎动物经历了多次辐射和分化,产生了多
种多样的生物种类。
奥陶纪与志留纪的生物群
02
奥陶纪和志留纪时期出现了许多无脊椎动物的化石,如三叶虫
、笔石等。
泥盆纪的辐射
消化系统的演化与变异是无脊椎 动物进化的重要组成部分,为适 应环境变化和进化提供必要的支
持。
消化系统结构与功能的比较进化
无脊椎动物的消化系统由口、 食道、胃、肠道等组成,不同 种类的消化系统各有特点。
不同种类无脊椎动物的消化系 统在结构和功能上具有一定的 相似性和差异性。
通过比较不同种类无脊椎动物 的消化系统,可以深入了解无 脊椎动物的进化历程和适应机 制。

无脊椎动物的进化历程4则

无脊椎动物的进化历程4则

无脊椎动物的进化历程4则以下是网友分享的关于无脊椎动物的进化历程的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。

《无脊椎动物的进化范文一》一、体制:无对称→球形对称→辐射对称→两侧对称(1)无脊椎动物原生动物:变形虫——无对称放射虫、太阳虫、团藻——球形对称(通过一个中心点,有无数对称轴,可将球体切成相等的对称面)→适应于悬浮在水中草履虫——两侧对称多孔动物、腔肠动物:基本上为辐射对称(通过身体中央轴有许多切面可以把身体分成相等的部分)→适应于固着在水中海葵——两辐对称(海葵由于有口、口道沟的存在,身体只能通过体轴作平行与垂直口道沟的两个对称面)扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物:生活方式从固着、漂浮演化成爬行方式或游泳,身体呈两侧对称→适应于爬行生活,是动物由水生进化到陆生的重要条件之一。

二、胎层:单细胞→单细胞层→二胚层→三胚层(分化盲支:多孔动物门胚胎发育存在逆转)原生动物:单细胞动物没有胚层的概念;即使是团藻也只有一层细胞,;(真正地多细胞动物有胚层的分化)肠腔动物:二胚层扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物:出现三胚层(在动物进化上有着极为重要的意义)三、体腔:无体腔→假体腔→真体腔(是高等无脊椎动物的重要标志之一)原生动物、多孔动物、腔肠动物、扁形动物:无体腔线形动物(假体腔动物):假体腔(初生体腔,即直接跟体壁的肌肉层和消化管道的壁相接触没有中胚层形成的体腔膜包围,也不和外界相通)←胚胎时期的囊胚腔所形成的环节动物、节肢动物、棘皮动物(软体动物真体腔退化): 真体腔(体腔的位置处于中胚层之间,外围由中胚层形成的体腔膜所包围)→造成了各种器官的进一步特化四、体节和身体分布:同律分节→异律分节(身体分节是高等无脊椎动物的重要标志之一)原生动物、多孔动物、腔肠动物:不分节扁形动物、线形动物:原始分节(机体各部分结构和机能分化,但身体不分节)环节动物:同律分节节肢动物、软体动物、棘皮动物:异律分节(导致了动物的身体分部)五、体表和骨骼:细胞膜→细胞外有壳→外有纤毛→有角质层→体外有壳→体外含几丁质原生动物:仅细胞膜(部分植物性鞭毛虫有细胞壁,部分有壳肉足虫具外壳、含角质、石灰质等); 扁形动物:有体表纤毛;线形动物、环节动物:体表有角质层;软体动物:有石灰质壳节肢动物、棘皮动物:有几丁质外壳(骨骼是维持体形的支架,无脊椎动物的骨骼一般由外胚层分化而成,故称外骨骼;但棘皮动物的骨骼是起源于中胚层;软体动物头足类的软骨也是起源于中胚层)六、运动器官和附肢原生动物:鞭毛、伪足和纤毛;多孔动物:鞭毛;腔肠动物:有了原始的肌肉细胞;幼虫以纤毛运动;扁形动物:中胚层形成的肌肉使动物体得以蠕动;体表有纤毛用于运动;寄生种类的幼体有纤毛;线形动物:用体壁纵肌作蛇行运动;环节动物:用肌肉、刚毛和疣足运动;软体动物:用肉质的足作爬行运动;节肢动物:用附肢运动棘皮动物;用腕和管足运动。

无脊椎动物的演化进程

无脊椎动物的演化进程


有性生殖——大多雌雄异体,精卵结合。个体发育 中经浮浪幼虫。有性生殖生活史为世代交替。
扁形动物主要特征

两侧对称——适于游泳和爬行,有前后左右之分
中胚层出现——引起了更多的组织分化;促进新陈代谢,
促使排泄系统形成 排泄系统——原肾管



体壁——有环肌、纵肌、斜肌的肌肉结构
棘皮动物主要特征

后口动物,无脊椎动物中最高等的
五辐射对称,是次生性的 有水管系统,能使躯体运动,同时有呼吸、排泄及辅助摄 食的功能 血系统多退化,围血系统包围在血系统之外 有中胚层形成的内骨骼,支持保护作用 神经系统——无神经节或神经中枢,但有 3 个神经系(口 神经系、下神经系、反口神经系) 生殖系统——生殖系统较简单,有生殖腺和生殖导管。多 雌雄异体,体外受精。个体发育要经过不同的幼虫期
呼吸系统——没有呼吸器官,靠体表进行气体交换,寄生种类为厌氧
性 神经系统——咽部有围咽神经环,有若干条神经索

生殖系统——大多雌雄异体,雄虫有交合刺,雌虫阴道开口于泄殖孔,
是卵胎生
环节动物主要特征
体分节(同律分节) 真体腔(由中胚层发育而来,使结构进一步 复杂、完善) 有疣足和刚毛(增强运动功能) 排泄系统——出现后肾管,排泄功能增强 神经系统 —— 神经细胞更为集中,脑神经节
无脊椎动物的演化进程
原生动物门
特点:单细胞、结构简单 消化、呼吸、排泄、感应和生殖等都由 单个细胞完成。也有多个个体形成的群体,但 只有体细胞与生殖细胞的分化,仍不能算作多 细胞生物。 代表生物:鞭毛纲——眼虫 孢子纲——疟原虫
纤毛纲——草履虫
肉足纲——大变形虫
草履虫和结构示意图

无脊椎动物的进化历程

无脊椎动物的进化历程

原始的无脊椎动物,包括腔肠动物、扁形动物、线形动物、软体动物和环节动物等,
这几类动物的结构越来越复杂,但是,它们大都需要生活在有水的环境中.后来发展到了原始的节
肢动物,它们有外骨胳和分节的足,比如昆虫等,对陆地环境的适应能力较强,脱离了水生环境. 地球上最早出来的脊堆动物是古代的鱼类.以后,经过极其漫长的年代,某些鱼类进化成为原始的两栖类,某些两栖类进化成原始的爬行类,某些爬行类又进化成为原始的鸟类和哺乳类.各类
动物的结构逐渐变得复杂,生活环境逐渐由水中到陆地,最终完全适应了陆上生活.
总之,生物的进化历程可以概括为:由简单到复杂,由低等到高等,由水生到陆生.。

动物进化历程

动物进化历程

动物进化历程动物进化是生物学的一大研究领域,涉及到了地球上各种各样的动物物种的起源、演化和扩散过程。

数百万年来,动物在面临环境变化和自然选择的压力下,不断适应和进化,形成了如今多样的生命形态。

本文将从原始无脊椎动物到现代哺乳动物,探讨动物进化的不同阶段和关键特点。

1. 原始无脊椎动物在地球历史的早期,最早的动物是原始无脊椎动物,如海绵、海葵、刺胞动物等。

这些动物体内没有脊柱,也没有发达的神经系统,但它们以各自独特的方式适应了水生环境,并且一直存在至今。

2. 软体动物和节肢动物的出现随着时间的推移,动物王国逐渐多样化。

软体动物如蜗牛、蛞蝓和章鱼等开始出现,它们具有柔软的外壳或无外壳的身体结构。

与此同时,节肢动物如昆虫、螃蟹和蜘蛛也迅速进化,它们的身体被分割成多个节段,并具有外骨骼的保护。

3. 脊椎动物的演化约5亿年前,脊椎动物首次出现在地球上。

最早的脊椎动物是鱼类,其特征是具有脊柱和内外鳞片。

随着时间的推移,鱼类逐渐演化出各种形态,包括硬骨鱼和软骨鱼。

硬骨鱼最终演化成了两栖动物,如青蛙和蝾螈,它们可以在水与陆地之间生存。

4. 爬行动物和鸟类的兴起在过去的地质时期,爬行动物成为主导物种。

以恐龙为代表的巨大爬行动物统治了地球,同时,生物界中出现了第一批飞行的动物-鸟类。

距今约6,500万年前,某些小型恐龙逐渐演化成为鸟类,并迅速占领了空中领域。

5. 哺乳动物的崛起哺乳动物是目前地球上最为多样化的动物类群之一。

哺乳动物具有特化的骨骼系统、进化的牙齿和毛发覆盖。

它们能够在不同的环境中生存,并发展出各种各样的适应性特征。

从最早的哺乳动物到现代的大象、虎和猿人,哺乳动物的进化历程长期研究和探索。

总结:动物进化历程是一个涉及数亿年漫长时间的精彩过程。

从原始无脊椎动物到现代哺乳动物,动物进化经历了多个阶段,并且在适应环境和生存优势方面不断演化。

通过对动物进化的研究和理解,我们能够更好地认识和保护地球上丰富多样的动物物种。

无脊椎动物的进化

无脊椎动物的进化

一、体制:无对称→球形对称→辐射对称→两侧对称(1)无脊椎动物原生动物:变形虫——无对称放射虫、太阳虫、团藻——球形对称(通过一个中心点,有无数对称轴,可将球体切成相等的对称面)→适应于悬浮在水中草履虫——两侧对称多孔动物、腔肠动物:基本上为辐射对称(通过身体中央轴有许多切面可以把身体分成相等的部分)→适应于固着在水中海葵——两辐对称(海葵由于有口、口道沟的存在,身体只能通过体轴作平行与垂直口道沟的两个对称面)扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物:生活方式从固着、漂浮演化成爬行方式或游泳,身体呈两侧对称→适应于爬行生活,是动物由水生进化到陆生的重要条件之一。

二、胎层:单细胞→单细胞层→二胚层→三胚层(分化盲支:多孔动物门胚胎发育存在逆转)原生动物:单细胞动物没有胚层的概念;即使是团藻也只有一层细胞,;(真正地多细胞动物有胚层的分化)肠腔动物:二胚层扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物:出现三胚层(在动物进化上有着极为重要的意义)三、体腔:无体腔→假体腔→真体腔(是高等无脊椎动物的重要标志之一)原生动物、多孔动物、腔肠动物、扁形动物:无体腔线形动物(假体腔动物):假体腔(初生体腔,即直接跟体壁的肌肉层和消化管道的壁相接触没有中胚层形成的体腔膜包围,也不和外界相通)←胚胎时期的囊胚腔所形成的环节动物、节肢动物、棘皮动物(软体动物真体腔退化):真体腔(体腔的位置处于中胚层之间,外围由中胚层形成的体腔膜所包围)→造成了各种器官的进一步特化四、体节和身体分布:同律分节→异律分节(身体分节是高等无脊椎动物的重要标志之一)原生动物、多孔动物、腔肠动物:不分节扁形动物、线形动物:原始分节(机体各部分结构和机能分化,但身体不分节)环节动物:同律分节节肢动物、软体动物、棘皮动物:异律分节(导致了动物的身体分部)五、体表和骨骼:细胞膜→细胞外有壳→外有纤毛→有角质层→体外有壳→体外含几丁质原生动物:仅细胞膜(部分植物性鞭毛虫有细胞壁,部分有壳肉足虫具外壳、含角质、石灰质等); 扁形动物:有体表纤毛;线形动物、环节动物:体表有角质层;软体动物:有石灰质壳节肢动物、棘皮动物:有几丁质外壳(骨骼是维持体形的支架,无脊椎动物的骨骼一般由外胚层分化而成,故称外骨骼;但棘皮动物的骨骼是起源于中胚层;软体动物头足类的软骨也是起源于中胚层)六、运动器官和附肢原生动物:鞭毛、伪足和纤毛;多孔动物:鞭毛;腔肠动物:有了原始的肌肉细胞;幼虫以纤毛运动;扁形动物:中胚层形成的肌肉使动物体得以蠕动;体表有纤毛用于运动;寄生种类的幼体有纤毛;线形动物:用体壁纵肌作蛇行运动;环节动物:用肌肉、刚毛和疣足运动;软体动物:用肉质的足作爬行运动;节肢动物:用附肢运动棘皮动物;用腕和管足运动。

无脊椎动物的进化历程无脊椎动物眼睛的进化与适应

无脊椎动物的进化历程无脊椎动物眼睛的进化与适应

无脊椎动物的进化历程无脊椎动物眼睛的进化与适应2011.大自然编者按:众所周知,眼睛是人体最重要的感觉器官,大脑中约80%的知识和记忆是通过眼睛获取的。

令人惊叹的是,在无脊椎动物的多个演化序列中,眼睛各自独立地从头开始演化了几十次之多。

可见眼睛在动物身体中的重要地位与复杂程度。

动物为什么有视觉?眼睛是如何工作的?不同生物看到的大自然都是一样的吗?2010年12月30日,“看的展览———眼睛与视觉的奥秘”在北京自然博物馆隆重推出了。

这是一个融多媒体展示与新理念于一体、观众可以亲自参与体验与互动的展览,相信本文与这个展览能够带领读者一起揭开关于眼睛的更多奥秘。

无脊椎动物眼睛的进化与适应殷学波身体迅速地隐藏在泥沙中。

大多数海星具有负趋光性第一文库网,不喜欢光亮,所以海星大多在夜间活动。

水母属于腔肠动物门。

海月水母体为白色透明的盘状,在伞的边缘生有触手,并有8个缺刻,每个缺刻中有一个感觉器。

感觉器的外面有眼点,里面还有平衡石。

花水母的眼点位于触手基部的感觉器的外面,在外胚层的内陷部;其眼点有晶体,色素细胞和感觉细胞交替排列。

钵水母的眼点是黑、红、绿等色的小点。

瑞士灯水母的眼点非常发达。

环节动物中的蚯蚓没有眼睛,但它依靠散布在皮肤上的感光细胞也能感知光线的强弱。

而在同为多门类原始动物的眼点自起源时起,生物就需要感知环境。

生物用于感知环境中光线的器官,我们称之为视觉器官,这就是“眼”。

单细胞生物的眼点是由埋在无色基质中的含有类胡萝卜素、血红素成分的小颗粒组成的。

例如绿眼虫(即眼虫藻),其眼点可通过遮光来调节鞭毛的运动。

当其他藻类还在一片混沌中乱撞的时候,绿眼虫却可以根据眼点的感光情况随时调整运动方向,使自己能够趋向光线明亮的地方,更好地进行光合作用。

在一些原始的多细胞生物体中,也分散着一些感光细胞。

柔软的海绵看起来并没长着眼睛,然而它的感光细胞就高踞在每个触手的顶端。

海星属于棘皮动物,其每只腕足的末端都有一个红色的眼点,能感知光线的明暗及光源的大概方向。

无脊椎动物的进化与演变

无脊椎动物的进化与演变

无脊椎动物的进化与演变张明月20141641067(内江师范学院;生命科学学院;内江;641112)摘要:无脊椎动物总的演化趋势是由低级到高级,从简单到复杂,从水生到陆生,从分散到集中。

对这个总的趋势,起柱石作用的是无脊椎动物各大系统的演化趋势。

无脊椎动物二十多个门,从进化树上来看,越高等一点的类群,其神经系统越发达;越低级一点的类群,其神经系统就越简单。

消化系统也从不完整进化为完整,然后出现专门的消化腺,今天我们谈论无脊椎动物的进化与演变,主要从神经系统与消化系统两个方面来探究。

关键字:无脊椎动物神经系统消化系统引言:无脊椎只动物在地球上的总数和数量远远多于脊椎动物。

种类多样化,结构也多样化。

换而言之,无脊椎动物的多样性导致了生物的多样性。

由原生动物开始,无脊椎动物经过了细胞数量,形态,受精卵裂,囊胚及原肠胚的形成,中胚层及体腔的形成,胚层的分化。

由单细胞的原生动物开始逐渐发展,出现了腔肠动物,扁形动物、线形动物、环节动物、软体动物和节肢动物。

实现了生物由简单到复杂、由低等到高等的生物进化。

无脊椎动物神经系统的进化与演变原生动物是真核单细胞动物,是动物界里最原始,最低等的动物,它们的主要特征是身体由单个细胞构成因此也称单细胞动物。

它没有像高等动物那样的器官,系统而是由细胞分化出不同的部分来完成各种生理活动。

如有些种类分化出鞭毛和纤毛完成运动的机能,有些种类分化出胞口,胞咽摄取食物后在体内形成食物泡进行消化,完成营养的机能等。

从腔肠动物起出现了原始的神经系统——神经网。

神经网是动物界里最简单最原始的神经系统,一般认为它基本上是由二极和多极神经的细胞组成。

这些细胞具有形态上的相似突起,相互连接形成一个输送的网,因此称神经网。

有些种类只有一个神经网存在于外胚层的基部,有些种类则有两个神经网分别存在于内,外胚层的基部。

还有些除了内外胚层的神经网外,在中胶层也有神经网,神经细胞之间的连接,经电子显微镜证明,一般是以突触相连接。

动物的进化历程6篇

动物的进化历程6篇

动物的进化历程6篇以下是网友分享的关于动物的进化历程的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇1简述动物界演化的历程一、无脊椎动物的演化历程地球上最早的动物是单细胞的原生动物。

多细胞动物是由原始的单细胞动物演变而来的。

一般认为多细胞动物起源于原始的鞭毛虫类,因为它们有许多种类表现出向多细胞状态发展的倾向,如团藻、空球藻等。

低等多细胞动物有多孔动物和腔肠动物。

它们具有内外两胚层。

内胚层是由囊胚细胞内陷或移入形成。

在多孔动物,内胚层围的原肠腔不具有消化能力,只有细胞内消化,被认为是进化过程的侧生动物;而在腔肠动物,原肠腔即消化循环腔,原肠胚的开口则成为将来的口。

腔肠、扁形、原腔、环节、软体、节肢动物等各门动物都为原口动物。

扁形动物是无体腔的三胚层动物,环节动物、软体动物在个体发育上都有担轮幼虫期,被认为是由原始的担轮动物祖先演变而来的。

节肢动物和环节动物有许多共同特点,如相似的体形,两侧对称,分节现象,链状神经系统,因此节肢动物被认为是由古代的环节动物演变而来的。

在棘皮动物、半索动物和脊索动物,它们的口是在原口的相对的一端发生的,原口封闭为肛门,而在相对的一端发生口,故称为后口动物。

后口动物中棘皮动物虽体呈辐射对称,但幼体是两侧对称的,这说明其祖先仍然是两侧对称的动物。

棘皮动物的幼虫和半索动物的幼虫很相似,这说明两者的亲缘关系。

二、脊椎动物的演化从进化的过程和规律看,脊椎动物应该是从无脊椎动物演化而来的,其间一定具有许多中间类型的阶段。

由于无脊椎动物没有坚硬的骨骼,所以只有从比较解剖学和比较胚胎学方面的材料来寻找演化的线索。

脊椎动物个体发育过程中具有脊索、咽腮裂和背神经管,因此脊椎动物与原索动物有着共同的祖先,即原始无头类,推测可能发生在寒武纪。

原始无头类演化出前端具有脑、感官和头骨的原始有头类,即成为脊椎动物的祖先。

而尾索动物和头索动物可能是原始无头的两个特化分支。

脊椎动物的演化可以分为三个阶段:水中的演化;从水中到陆地的演化——两栖类、爬行类的演化;鸟类和哺乳类的演化。

无脊椎动物的进化简述

无脊椎动物的进化简述
无脊椎动物的进化简述
北京师范大学生命科学学院 姚键 03221041
• 生物的多样性其缘由就应该是无脊椎动物 的多样性。无脊椎动物在进化过程中形成 的许多基本的形态结构在脊索动物中不同 程度地保存了下来,并对后来的动物产生 了重大的影响。因此,观察、分析和研究 无脊椎动物在进化过程中所发生的一些变 化,对了解动物是如何进化的是很有帮助 的。我在生物学学习中对无脊椎动物的进 化产生了兴趣,现将无脊椎动物的进化做 一个简单的总结,愿和大家一起讨论。
• 生物从简单的无机小分子开始经历了千万 年的进化发展成现在这样的多种多样。这 个变化是非常神奇的,以至于现在的科学 仍然不能解释很大一部分的物种起源和进 化规律。不同的生活环境选择了不同形态 的动物,从动物界中最简单的原生动物开 始,动物的发展就大致沿着自己的一条线 不断的发展。
• 无脊椎动物的进化代表着可从细胞数目的 变和分化,胚层的分化,身体的对称的进 化,头部的分化,体的腔和管道的进化几 个方面来阐述,从而大体上了解无脊椎动 物进化的进化方向
• 参考文献: • 1:刘凌云,郑光美 《普通动物学》 高等 教育出版社 • 2:堵南山 《无脊椎动物学》 华东师范大 学出版社 • 3:廖家遗 无脊椎动物进化面面观 中山 大学学报论从
• Thank you!
4:头部的分化
• 在进化为两侧对称的过程中,动物产生了 头部。可以说头部书动物定向运动的结果。
5:体的腔和管道
• 单细胞、群体动物,体积较小,体内物质的运输、 和外界环境的物质交换靠细胞质的流动及细胞膜 就可以了。 • 随着细胞数目的增多,体积的增大,体内物质的 运输及和外界的沟通就有了困难。为解决这一问 题,动物体内形成了腔和管。 • 腔如海绵的中央腔,腔肠动物的消化循环腔,线 形动物的原体腔,其他动物的真体腔、混合体腔, 管有肠管、血管、肾管、气管和生殖管道等 • 体腔的发展是动物发展的一个重要特征

无脊椎动物总结

无脊椎动物总结

无脊椎动物总结、体壁,体表外胚层表皮,适应生活环境,寄生(角质膜,皮层,合胞体、微毛)陆生,保护防失水,外骨骼,表膜→皮层、中胶层和胃层(海绵动物)→外胚层、中胶层和内胚层(腔肠动物)→皮肌囊(扁形动物、原腔动物及环节动物)→外骨骼(节肢动物)、支持保护细胞骨架,流体静力骨骼,细胞分泌外骨骼,中胚层形成内骨骼、消化:消化系统从扁形动物开始出现细胞内消化→细胞外消化,有口无肛门的不完全消化系统→有口有肛门完全消化系统,食物与粪便分开,(原腔动物)→消化道壁出现肌肉、出现分化消化腺(环节动物)→分化分工、结构复杂化,咽、食道、胃(贲门胃幽门胃)、肠→出现各种口器(节肢动物),附属结构:齿舌、晶杆、胃盾、磨胃,腺细胞→腺体分泌消化酶,咽腺、食道腺、肝,肝胰脏四、排泄:代谢过程中产生氨、尿素、尿酸,水、盐分,调节体内渗透压平衡细胞膜、体表渗透扩扩散排出,从扁形动物开始出现原肾管——外胚层形成,只有体表开口,废物靠渗透作用进入排泄管。

→腺型、管型。

后肾管——中胚层和外胚层共同形成,体腔内有开口,体表也有开口,废物直接或渗透进入排泄管。

——→后肾特化形成腺体,绿腺、颚腺、基节腺。

鲍雅诺腺马氏管——中胚层或外胚层形成,适应陆生生活的排泄器官。

蛛形纲有两套排泄系统:基节腺和马氏管。

废物:水生多排泄氨,陆生排泄尿酸,五、循环:物质和气体的运输原生质:原生动物和细胞借助水流动:原生动物、腔肠动物消化循环腔、侧生动物水沟系、棘皮动物水管体腔液流动:原腔动物从纽形动物、环节动物开始出现,有开管式循环和闭管式循环两种。

从效能角度来讲,闭管式较开管式进化,适应躯体结构生活习性。

开管式:蛭纲、软体动物(头足纲除外)、节肢动物闭管式:环节动物(蛭纲除外)、软体动物的头足纲。

棘皮动物为血系统和围血系统。

体腔液、血液、血淋巴六、呼吸:好氧、厌氧呼吸无呼吸器官:细胞膜、体表皮肤:简单扩散作用完成,原生动物、侧生动物、扁形动物、环节动物、低等甲壳动物呼吸器官水呼吸器官,真正的始于软体动物鳃(多毛类、软体动物、甲壳动物):栉鳃、羽鳃、丝鳃、瓣鳃、盾鳃;关节鳃、足鳃书鳃(肢口纲)、呼吸树(海参)空气呼吸肺:蜗牛等书肺(蛛形纲)、气管(蛛形纲、多足纲、昆虫纲)通气:增加气体交换界面的分压差,提高气体交换效率机体内物质能量代谢交换、转运平衡、稳定十一、生殖与生殖系统无性生殖:迅速增加个体数量细胞分裂如裂体生殖(二分裂、复分裂、)、质裂、孢子生殖;出芽、芽球、再生,有性生殖:增加遗传变异多样性接合、配子(同配、异配、卵式)、幼体、孤雌生殖系统:从扁形动物开始出现生殖系统,包括生殖腺、生殖导管及其附属腺。

无脊椎动物的进化简述

无脊椎动物的进化简述

(2):循环、排泄系统:
原生动物主要靠体表进行呼吸和物质的排泄。腔 肠动物只是简单的水沟系。在扁形动物阶段形成 了原肾管系统,这是原始的排泄系统。由于次生 体腔的出现,环节动物具有较完善的循环系统— —形成了闭管式循环系统。而软体动物的次生体 腔极度退化变为了开管式循环系统,在排泄器官 上进化成了后肾管系统。节肢动物作为无脊椎动 物最高级的阶段,具有了高效的呼吸器官——气 管,独特的消化系统和新出现的马氏管。
细胞出现了胚层的分化,胚层的分化不仅是 动物的细胞简单分层排列,而且各胚层来源 的细胞形成的结构在动物体内的位置和功能 也不同。
外胚层细胞形成的结构一般位于体表 内胚层形成的消化系统和呼吸系统,多接近
于身体中心 中胚层形成的结构位于体表和消化道之间 三个胚层是一种高级和稳定的进化现象
3:身体的对称
Hale Waihona Puke 参考文献:堵南山 《无脊椎动物学》 华东 师范大学出版社
刘凌云,郑光美 《普通动物学》 高等教育出版社
廖家遗 无脊椎动物进化面面观 中山大学学报论从
感谢您的观看
Thank you! 汇报日期
腔如海绵的中央腔,腔肠动物的消化循环腔,线形动物的原体腔, 其他动物的真体腔、混合体腔,管有肠管、血管、肾管、气管和 生殖管道等
体腔的发展是动物发展的一个重要特征
两个主要系统的进化
(1):神经系统:
最早的原生动物是靠原生质开感受外界的刺激,其神经传导速率很底。发展 到腔肠动物便形成了原始的神经系统——神经网。它基本上是由二极和多极 神经细胞组成。这些细胞具有形态上相似的突起,相互连接形成一个疏松的 网,称为神经网。这种神经系统没有中枢,因此也称为扩散神经系统。其神 经传导的速度也比较慢,比人的神经系统的传导速度慢车1000倍以上。扁形 动物的神经系统比腔肠动物有了显著的进步,神经系统向前集中,形成“脑” 并向后形成神经索,出现了原始的神经系统。经过原腔动物的发展到了环节 动物就形成了索式神经系统。软体动物则分化出了触角、眼、嗅检器及平衡 囊等感觉器官,感觉灵敏。到了节肢动物就形成了无脊椎动物最高级的神经 系统,出现了脑的分化,形成了前脑、中脑和后脑三部分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
7
a
8
3:身体的对称

最简单的原生动物有一定的形状,细胞增多后的 动物也要呈现一定的形状。

早期物种是不对称的或辐射对称(如变形虫和海 绵)

两侧对称体制的动物身体有前后、左右和背腹之 分。

某项原因而又回到了不对称的阶段,如腹足纲的 动物;或转到五辐射对称,如棘皮动物。
• 这说明动物在进化过程中,对采取何种体制进行 了不同的尝试,适应生存环境的体制都保存了下 来。
a
9
a
10
4:头部的分化
• 在进化为两侧对称的过程中,动物产生了 头部。可以说头部书动物定向运动的结果。
a
11

5:体的腔和管道
• 单细胞、群体动物,体积较小,体内物质的运输、 和外界环境的物质交换靠细胞质的流动及细胞膜 就可以了。
• 随着细胞数目的增多,体积的增大,体内物质的 运输及和外界的沟通就有了困难。为解决这一问 题,动物体内形成了腔和管。
a
16
• 参考文献:
• 1:刘凌云,郑光美 《普通动物学》 高等 教育出版社
• 2:堵南山 《无脊椎动物学》 华东师范大 学出版社
• 3:廖家遗 无脊椎动物进化面面观 中山 大学学报论从
a
17
a
18
• Thank you!
a
19
漫长的地质年代的量变的进化后,产生了 细胞分化这一质的变化。
a
5
a
6
胚层的分化
• 细胞出现了胚层的分化,胚层的分化不仅 是动物的细胞简单分层排列,而且各胚层 来源的细胞形成的结构在动物体内的位置 和功能也不同。
• 外胚层细胞形成的结构一般位于体表 • 内胚层形成的消化系统和呼吸系统,多接
近于身体中心 • 中胚层形成的结构位于体表和消化道之间 • 三个胚层是一种高级和稳定的进化现象
a
2
• 生物从简单的无机小分子开始经历了千万 年的进化发展成现在这样的多种多样。这 个变化是非常神奇的,以至于现在的科学 仍然不能解释很大一部分的物种起源和进 化规律。不同的生活环境选择了不同形态 的动物,从动物界中最简单的原生动物开 始,动物的发展就大致沿着自己的一条线 不断的发展。
a
3
• 无脊椎动物的进化代表着可从细胞数目的 变和分化,胚层的分化,身体的对称的进
a
15
分析与讨论:
• 在无脊椎动物的进化中,两侧对称和头部的形成,是动 物形态结构复杂化的关键。无脊椎动物为以后的脊椎动物 提供了丰富的进化材料。
• 在漫长的地质年代中,从无生命的无机质开始,经单细胞 动物的原生动物,经历了一系列重要的身体的进化,才形 成了今天这样形形色色千百万多姿多彩的动物。无脊椎动 物相对于脊椎动物来说身体结构更简单,但数目巨大,所 以研究的材料也就更多。因此无脊椎动物是研究物种进化 的好素材。无脊椎动物也是所有动物的基础,难以想象如 果没有无脊椎动物的至关重要的进化,动物仍然是简单的 少数细胞体,单胚层,那今天的世界将会是什么样子。
a
14
(2):循环、排泄系统:
• 原生动物主要靠体表进行呼吸和物质的排泄。腔 肠动物只是简单的水沟系。在扁形动物阶段形成 了原肾管系统,这是原始的排泄系统。由于次生 体腔的出现,环节动物具有较完善的循环系统— —形成了闭管式循环系统。而软体动物的次生体 腔极度退化变为了开管式循环系统,在排泄器官 上进化成了后肾管系统。节肢动物作为无脊椎动 物最高级的阶段,具有了高效的呼吸器官——气 管,独特的消化系统和新出现的马氏管。
化,头部的分化,体的腔和管道的进化几
个方面来阐述,从而大体上了解无脊椎动 物进化的进化方向
a
4
细胞数目的变化(最基本的变化) 和分化
• 动物向多细胞进化过程中最早的变化当属 细胞数目的增加------群体的原生动物 。
• 细胞增多以后就必然会导致细胞的分化。 • 分化出来生殖细胞 ,表皮细胞 --• 细胞的分化是一个长期的过程,在经历了
• 腔如海绵的中央腔,腔肠动物的消化循环腔,线 形动物的原体腔,其他动物的真体腔、混合体腔, 管有肠管、血管、肾管、气管和生殖管道等
• 体腔的发展是动物发展的一个重要特征
a
12
•两个主要系统的进 化
a
13
(1):神经系统:
• 最早的原生动物是靠原生质开感受外界的刺激,其神经传 导速率很底。发展到腔肠动物便形成了原始的神经系统— —神经网。它基本上是由二极和多极神经细胞组成。这些 细胞具有形态上相似的突起,相互连接形成一个疏松的网, 称为神经网。这种神经系统没有中枢,因此也称为扩散神 经系统。其神经传导的速度也比较慢,比人的神经系统的 传导速度慢车1000倍以上。扁形动物的神经系统比腔肠动 物有了显著的进步,神经系统向前集中,形成“脑”并向 后形成神经索,出现了原始的神经系统。经过原腔动物的 发展到了环节动物就形成了索式神经系统。软体动物则分 化出了触角、眼、嗅检器及平衡囊等感觉器官,感觉灵敏。 到了节肢动物就形成了无脊椎动物最高级的神经系统,出 现了脑的分化,形成了前脑、中脑和后脑三部分。
无脊椎动物的进化简述
北京师范大学生命科学学院 姚键 03221041
a
1
• 生物的多样性其缘由就应该是无脊椎动物 的多样性。无脊椎动物在进化过程中形成 的许多基本的形态结构在脊索动物中不同 程度地保存了下来,并对后来的动物产生 了重大的影响。因此,观察、分析和研究 无脊椎动物在进化过程中所发生的一些变 化,对了解动物是如何进化的是很有帮助 的。我在生物学学习中对无脊椎动物的进 化产生了兴趣,现将无脊椎动物的进化做 一个简单的总结,愿和大家一起讨论。
相关文档
最新文档