非金属材料
非金属材料标准手册
非金属材料标准手册非金属材料是一类广泛应用于工业生产和日常生活中的材料,其种类繁多,性能各异。
本手册旨在对非金属材料的标准进行系统整理和介绍,帮助读者更好地了解非金属材料的相关知识和应用。
一、塑料材料。
塑料是一种常见的非金属材料,具有轻质、耐腐蚀、绝缘等特点。
在工业生产中,塑料被广泛应用于注塑成型、挤出成型、吹塑成型等工艺中。
常见的塑料材料有聚乙烯、聚丙烯、聚氯乙烯等,它们在不同的温度、压力下具有不同的性能表现,因此需要按照相关的标准进行选择和应用。
二、橡胶材料。
橡胶是一种具有弹性的非金属材料,常见的有天然橡胶、合成橡胶等。
橡胶材料具有良好的密封性能和耐磨损性能,被广泛应用于汽车制造、机械设备等领域。
标准手册中对橡胶材料的硬度、拉伸强度、耐热性等性能进行了详细的规定,以便用户选择合适的材料。
三、陶瓷材料。
陶瓷是一种耐高温、绝缘、耐磨损的非金属材料,常见的有氧化铝陶瓷、氮化硅陶瓷等。
陶瓷材料在电子、化工、航空航天等领域有着重要的应用价值。
标准手册中对陶瓷材料的成分、烧结工艺、力学性能等方面进行了详细的规定,以确保其在不同工况下的稳定性和可靠性。
四、复合材料。
复合材料是由两种或两种以上的材料组合而成的新材料,具有优异的综合性能。
常见的复合材料有玻璃钢、碳纤维复合材料等,它们具有轻质、高强度、耐腐蚀等特点,在航空航天、汽车制造等领域有着广泛的应用。
标准手册中对复合材料的成分比例、工艺要求、性能测试等方面进行了详细的规定,以确保其在不同领域的可靠应用。
五、纤维材料。
纤维材料是一种具有高强度、轻质、耐磨损的非金属材料,常见的有玻璃纤维、碳纤维等。
纤维材料在建筑、航空航天、体育器材等领域有着重要的应用价值。
标准手册中对纤维材料的拉伸强度、断裂伸长率、热稳定性等方面进行了详细的规定,以确保其在不同工况下的稳定性和可靠性。
六、综合应用。
非金属材料在现代工业生产和日常生活中有着广泛的应用,其种类繁多,性能各异。
通过本手册的学习,读者可以更好地了解非金属材料的相关知识和应用,选择合适的材料,提高生产效率,降低生产成本,推动工业的可持续发展。
非金属材料
常用工程材料
❖ 非金属材料
1.1 高分子材料 1.2 陶瓷材料 1.3 复合材料
机械工业中使用的非金属材料可分为三大类:高分子材料(如 塑料、胶粘剂、合成橡胶、合成纤维等)、陶瓷(如日用陶瓷、金 属陶瓷等)、复合材料等。
常用工程材料
1.1 高分子材料
1. 工程塑料 密度小 强度、 硬度低 工程塑料
常用工程材料
1.3 复合材料
2. 复合材料的分类(按增强相的性质和形态)
(3)颗粒复合材料
颗粒复合材料是一种或多种颗粒均匀分布在基体材料内而 制成的
颗粒起增强作用
常用工程材料
1.3 复合材料
2. 复合材料的分类(按增强相的性质和形态)
(3)颗粒复合材料
常用的颗粒复合材料有两类:
•一类是颗粒与树脂复合 •另一类是陶瓷粒与金属复合
常用工程材料
1.3 复合材料
2. 复合材料的分类(按增强相的性质和形态)
(1)纤维增强复合材料
玻璃纤维增强复合材料是以玻璃纤维及制品为增强剂,以树脂 为粘结剂而制成的,俗称玻璃钢
碳纤维增强复合材料是以碳纤维或其织物为增强剂,以树脂、 金属、陶瓷等粘结剂而制成的
常用工程材料
1.3 复合材料
2. 复合材料的分类(按增强相的性质和形态)
机械制造基础
常用工程材料 1.2 陶瓷材料
常用工程材料
1.3 复合材料
复合材料是由两种或两种以上物理、化学性质不同的物质,经人工 合成的多相固体材料
复合材料既保持了各组成材料的最佳性能特点,又具有组合后新的 特性
常用工程材料
1.3 复合材料
1. 复合材料的性能特点
(1)比强度和比模量高 (2)抗疲劳性能好 (3)减震性 除了上述几种特性外,复合材料还具有较高的耐热性和断裂安全性, 良好的自润滑和耐磨性等。但复合材料伸长率小,抗冲击性差,横向强 度较低,成本较高
常用的非金属材料介绍
常用的非金属材料介绍常用非金属材料可分为陶瓷、磨料、碳和石墨、石棉等无机材料及塑料、橡胶、胶粘剂等有机材料两大类。
1、塑料塑料的强度及刚度远低于金属材料,只适于制造承受载荷不大、对刚度要求不高的零件,如壳体、支架、手柄、手轮、防护挡板、仪表盖或框、覆盖板等,可以选用聚苯乙烯、酸性聚乙烯、聚碳酸酯、聚苯醚、有机玻璃等。
传动零件一般承受载荷不大,低速时可用低压聚乙烯、聚乙烯、聚氯乙烯,大的齿轮、齿条、凸轮、蜗轮、带轮等也可用塑料制造。
要求稍高一些的框架类零件且工作条件相对苛刻一些时,可选择的塑料有尼龙、MC尼龙、聚甲醛、聚碳酸酯、聚氯醚(氯化聚醚)、夹布酚醛等。
受力较小的滑动轴承、轴套、导轨和某些密封圈,以及对材料的力学性能要求不高,但要求有良好的自润滑性能、低的摩擦系数和一定的耐油性及耐热性的,可以选用低压聚乙烯、尼龙1010、MC尼龙、聚氯醚、聚甲醛、聚四氟乙烯等。
在载荷不大的情况下,与无机耐蚀材料相比,塑料具有一定的优越性,因此塑料的应用比重日益增大。
由于不同的塑料品种,有的耐酸、有的耐碱、有的耐溶剂,因此要针对腐蚀条件选择塑料品种。
一般腐蚀条件可选用聚烯烃类塑料,若同时还要求有较高的力学性能时,可选聚气醚;既要求耐强酸、强氧化酸,又要求耐强碱时,采用氟塑料(如聚四氟乙烯)。
要求耐蚀的容器或其他零件,可采用塑料衬里结构、加强复合结构和涂层结构。
塑料因其优异的绝缘性能,也常用来制造电器零件。
普通电器元件要求绝缘、耐弧、耐燃及具有一定的强度和耐热性,可选用聚烯烃塑料、酚醛塑料、胺烃和环氧塑料等。
高压绝缘件选用交联聚乙烯、聚碳酸酯、氟塑料和环氧塑料。
高频绝缘件选用聚烯烃、氟塑料、聚酰亚胺、有机硅、聚丙醚、聚苯乙烯和聚丙烯等。
2、合成橡胶合成橡胶按用途分为通用橡胶和特种橡胶。
通用橡胶用来生产轮胎、传送带、传动带、胶管、胶辊、密封装置、减振装置等。
特种橡胶用来制造在特殊条件(如高温、低温,需要耐碱、耐酸、耐油及防辐射等)下使用的橡胶产品。
非金属材料
非金属材料非金属材料是指在常温下不具有金属性质的材料,主要包括陶瓷材料、高分子材料和复合材料等。
陶瓷材料是一种以无机非金属材料为主要成分的材料,具有很高的硬度和耐热性。
陶瓷材料可以分为结晶体陶瓷和非晶体陶瓷两大类。
结晶体陶瓷由结晶颗粒组成,如氧化铝陶瓷、氧化锆陶瓷等,具有较高的强度和抗磨性能,广泛应用于机械零件、刀具等领域。
非晶体陶瓷由非晶体或微晶体组成,如玻璃、陶瓷线圈等,具有较好的透明性和绝缘性能,常用于电子器件的封装和绝缘材料。
高分子材料是由长链状分子组成的一类大分子材料,具有较高的延展性和可塑性。
根据聚合方式不同,高分子材料可以分为线性聚合物(如聚乙烯、聚丙烯等)、交联聚合物(如橡胶)和网状聚合物(如树脂)等。
高分子材料具有较好的绝缘性、耐腐蚀性和吸震性能,广泛应用于塑料制品、橡胶制品、纤维材料等领域。
复合材料是由两种或多种不同材料组成的材料,通过各材料的优势互补,具有独特的综合性能。
常见的复合材料包括纤维增强复合材料、层合板和粉末冶金复合材料等。
纤维增强复合材料由纤维增强体和基体组成,如碳纤维增强复合材料、玻璃纤维增强复合材料等,具有较高的强度和刚度,常用于航空航天、汽车工业等领域。
层合板由多层薄板材料组成,具有较好的强度和稳定性,广泛应用于建筑、器械制造等领域。
粉末冶金复合材料由金属和非金属粉末组成,具有较高的耐高温和耐磨性能,常用于摩擦材料、刀具等领域。
非金属材料具有较好的绝缘性、耐腐蚀性和吸震性能,在电子器件、化工管道、建筑材料等领域有着广泛的应用前景。
然而,由于非金属材料的强度和韧性较差,易受热膨胀、收缩和化学侵蚀等因素影响,在一些特殊环境下需要采取合适的防护措施,以确保其使用寿命和安全性。
常见非金属材料汇总
常见⾮⾦属材料汇总⾮⾦属材料与⾦属材料都是⼯业发展的重要材料。
随着材料技术的发展,⾮⾦属材料在⼯业发展中的重要性也越来越⼤。
⾮⾦属材料⼀般具有以下特点:密度⼩质量轻、耐压强度⾼、硬度⼤、耐⾼温、抗腐蚀。
可以⼤概分为有机材料、⽆机材料及复合材料三种:1.有机材料:⽊材、⽪⾰、胶粘剂和⾼分⼦合成材料——合成橡胶、合成树脂、合成纤维等;2.⽆机材料:耐⽕材料、陶瓷、磨料、碳和⽯墨材料、⽯棉等;3.以⾮⾦属纤维增强树脂基所构成的复合材料。
在机械⼯程中,⾮⾦属材料的应⽤也是越来越⼴,下⾯把在⼯作中较为常见的⾮⾦属材料做了汇总,以⽅便⽐较选⽤:⼀、普通⼯程塑料1.聚氯⼄烯【牌号】PVC【俗称】PVC【代号】PVC【英⽂名】Polyvinyl Chloride【颜⾊】透明/灰⾊/⽩⾊/蓝⾊【密度】1.380【特性】1.聚氯⼄烯的最⼤特点是阻燃,因此被⼴泛⽤于防⽕应⽤。
但是聚氯⼄烯在燃烧过程中会释放出氯化氢和其他有毒⽓体,例如⼆恶英。
2.聚氯⼄烯有较好的电⽓绝缘性能,可作低频绝缘材料,其化学稳定性也好。
由于聚氯⼄烯的热稳定性较差,长时间加热会导致分解,放出HCL⽓体,使聚氯⼄烯变⾊,所以其应⽤范围较窄,使⽤温度⼀般在-15~55℃之间。
3.聚氯⼄烯是世界上产量最⼤的塑料品种之⼀.聚氯⼄烯树脂为⽩⾊或浅黄⾊粉末.根据不同的⽤途可以加进不同的添加剂,使聚氯⼄烯塑件呈现不同的物理性能和⼒学性能.在聚氯⼄烯树脂中加⼈适量的增塑剂,就可制成多种硬质、软质和透明制品.纯聚氯⼄烯的密度为1.4g/cm3,加进了增塑剂和填料等的聚氯⼄烯塑件的密度⼀般在1.15 ~ 2.00g/cm3范围内.硬聚氯⼄烯不含或含有少量的增塑剂,有较好的抗拉、抗弯、抗压和抗冲击性能,可单独⽤作结构材料.软聚氯⼄烯含有较多的增塑剂,它的柔软性、断裂伸长率、耐冷性增加,但脆性、硬度、拉伸强度会降低。
【应⽤】由于聚氯⼄烯的化学稳定性⾼,所以可⽤于防腐管道、管件、输油管离⼼泵、⿎风机等.聚氯⼄烯的硬板⼴泛⽤于化学产业上制作各种贮槽的衬⾥,建筑物的⽡楞板、门窗结构、墙壁装饰物等建筑⽤材.由于电⽓尽缘性能优良⽽在电⽓、电⼦产业中,⽤于制造插座、插头、开关、电缆.在⽇常⽣活中,⽤于制造凉鞋、⾬⾐、玩具、⼈造⾰等。
非金属材料
塑料的分类2
通用塑料
应用范围广,生产量大,价廉 聚氯乙烯,聚苯乙烯,聚烯烃,酚醛塑料和氨基塑料。
工程塑料
综合工程性能(机械性能,耐热耐寒性能,耐蚀性和绝 缘性等)良好。 如:聚甲醛,聚酰胺,聚碳酸酯,ABS等。
特殊塑料
可在较高温度下工作(100~200℃)耐蚀,不燃等。 如:聚四氟乙烯,聚三氟氯乙烯,有机硅树脂,环氧树 脂。
塑料制品1
塑料制品2
橡胶
橡胶:
在使用温度范围内,处于高弹性的高分子材料。 可用作弹性材料、密封材料和防震材料等。
橡胶的组成
橡胶组成:生胶+配合剂+增强材料 生胶: 天然生胶:橡树、杜仲树上流出的乳胶,经凝固干燥压片成生胶 合成生胶:用化学方法人工合成的高聚物。单体源于石油、天然气、煤。 如丁二烯、苯乙烯、顺丁-聚丁二烯等。 配合剂 硫化剂:由线性分子结构立体分子结构。 硫磺、含硫化合物、过氧化苯甲酰等。 硫化促进剂:缩短硫化时间。 活化剂:助促进剂,ZnO、MgO,减少促进剂用量。 填充剂:提高强度,降低成本,如碳黑、 ZnO、MgO 增塑剂:提高橡胶的塑性,如石腊、凡士林、硬脂酸。 防老化剂:石腊等易氧化物质,形成稳定的氧化膜。 增强材料:提高强度、硬度、耐磨性、刚性 如:纤维织物,金属丝,纺织物、钢线、细布帆布等。
次重大飞跃。
陶瓷的分类
普通陶瓷(传统陶瓷) 其原料的来源 特种陶瓷(先进陶瓷) 普通陶瓷是以天然硅酸盐矿物为原料(粘土、长石、石 英),经过原料加工、成型、烧结而成,因此又叫硅酸盐 陶瓷。 特种陶瓷是采用纯度较高的人工合成化合物(如Al2O3、 ZrO2、SiC、Si3N4、BN),经配料、成型、烧结而制得。
橡胶的性能
极好的弹性:
非金属材料有哪些
非金属材料有哪些
非金属材料是指那些不含金属元素的材料,它们在工业生产和日常生活中起着
重要的作用。
非金属材料通常具有较轻的质量、良好的绝缘性能和较低的成本,因此在许多领域得到了广泛的应用。
下面我们将介绍一些常见的非金属材料。
首先,陶瓷是一种重要的非金属材料。
陶瓷材料具有优良的耐磨、耐腐蚀性能,因此被广泛应用于制造陶瓷器、建筑材料、化工设备等领域。
陶瓷材料还具有良好的绝缘性能,因此在电子器件和电气设备中也得到了广泛的应用。
其次,塑料是另一种重要的非金属材料。
塑料具有质轻、耐腐蚀、易加工成型
等特点,因此在包装、建筑、医疗器械、日用品等领域得到了广泛的应用。
随着科技的发展,新型的高强度、高耐热的工程塑料也在汽车、航空航天等领域得到了广泛的应用。
再次,橡胶是一种具有高弹性的非金属材料。
橡胶材料具有良好的密封性能和
吸振性能,因此在汽车、机械设备、建筑工程等领域得到了广泛的应用。
橡胶材料还具有优良的耐磨性和耐老化性能,因此在轮胎、密封件、管道等领域也得到了广泛的应用。
最后,玻璃是一种常见的无机非金属材料。
玻璃材料具有良好的透明性、耐腐
蚀性和化学稳定性,因此在建筑、家具、日用品、光学仪器等领域得到了广泛的应用。
随着技术的进步,新型的功能玻璃材料也在光电子、光伏发电等领域得到了广泛的应用。
综上所述,非金属材料在现代工业生产和日常生活中扮演着重要的角色。
随着
科学技术的不断发展,我们相信非金属材料将会在更多的领域得到应用,并为人类社会的发展做出更大的贡献。
非金属材料有哪些
非金属材料有哪些非金属材料是指那些不含金属元素的材料,它们在工业生产和日常生活中都有着重要的应用。
非金属材料的种类繁多,包括塑料、橡胶、陶瓷、玻璃、纤维等。
接下来,我们将对非金属材料进行分类介绍,并探讨它们在不同领域的应用。
首先,塑料是一种常见的非金属材料。
它具有轻质、耐腐蚀、绝缘等特点,被广泛应用于包装、建筑、家居用品等领域。
例如,聚乙烯是一种常见的塑料材料,用于制作塑料袋、塑料瓶等包装材料;聚氯乙烯被用于制作水管、地板等建筑材料。
此外,塑料还被广泛应用于汽车、电子产品等制造业。
其次,橡胶也是一种重要的非金属材料。
橡胶具有弹性好、耐磨损、耐高温等特点,被广泛用于轮胎、密封件、橡胶管等领域。
例如,天然橡胶是一种常见的橡胶材料,用于制作轮胎、橡胶鞋等;合成橡胶则被用于制作汽车零部件、工业密封件等。
另外,陶瓷是一种古老而又重要的非金属材料。
它具有耐高温、耐腐蚀、绝缘等特点,被广泛应用于建筑、化工、电子等领域。
例如,瓷砖是一种常见的陶瓷材料,用于室内地面、墙面装饰;氧化铝陶瓷被用于制作化工设备、电子陶瓷等。
此外,玻璃也是一种重要的非金属材料。
它具有透明、硬度高、耐腐蚀等特点,被广泛用于建筑、家居、汽车等领域。
例如,玻璃被用于制作窗户、玻璃瓶、玻璃器皿等;钢化玻璃则被用于制作汽车玻璃、建筑幕墙等。
最后,纤维也是一种重要的非金属材料。
它具有轻质、高强度、耐磨损等特点,被广泛应用于纺织、航空航天、体育用品等领域。
例如,棉纤维是一种常见的纤维材料,用于制作衣服、床上用品等;碳纤维则被用于制作航空航天器材、汽车零部件等。
综上所述,非金属材料种类繁多,应用广泛。
它们在包装、建筑、制造业等领域都发挥着重要作用,推动着社会的发展和进步。
希望本文对非金属材料有哪些这一问题有所帮助,让读者对非金属材料有一个更加全面的了解。
非金属材料包括哪三大类
非金属材料包括哪三大类非金属材料是指在常温下不具有金属特性的材料,它们在工程领域中具有广泛的应用。
根据其性质和用途的不同,非金属材料可以分为三大类,陶瓷材料、高分子材料和复合材料。
首先,陶瓷材料是一类重要的非金属材料,它主要由氧化物、氮化物、碳化物等无机化合物构成。
陶瓷材料具有高熔点、硬度大、耐磨损、耐腐蚀等特点,因此在工程领域中得到广泛应用。
陶瓷材料可以分为结构陶瓷和功能陶瓷两大类。
结构陶瓷主要用于制作机械零件、研磨材料等,而功能陶瓷则主要用于制作电子元器件、光学器件等。
其次,高分子材料是另一类重要的非金属材料,它由大量重复单元构成的聚合物组成。
高分子材料具有质轻、绝缘、耐腐蚀、易加工等特点,因此在航空航天、汽车制造、电子产品等领域得到广泛应用。
根据其结构和性质的不同,高分子材料可以分为塑料、橡胶和纤维三大类。
塑料主要用于制作包装材料、建筑材料等,橡胶主要用于制作密封件、橡胶制品等,而纤维则主要用于制作纺织品、绝缘材料等。
最后,复合材料是由两种或两种以上的材料组成的材料,具有优良的综合性能。
复合材料可以根据其基体和增强材料的不同分为无机复合材料和有机复合材料两大类。
无机复合材料主要包括金属基复合材料、陶瓷基复合材料和碳基复合材料,它们具有高强度、高刚性、耐高温等特点,广泛应用于航空航天、汽车制造、建筑等领域。
有机复合材料主要包括纤维增强复合材料、层状复合材料等,具有质轻、高强度、耐腐蚀等特点,广泛应用于航空航天、体育器材、汽车制造等领域。
综上所述,非金属材料包括陶瓷材料、高分子材料和复合材料三大类。
它们在工程领域中具有重要的应用价值,为各行各业的发展做出了积极贡献。
希望本文能够帮助读者更好地了解非金属材料的分类和特点,为相关领域的研究和应用提供参考。
非金属材料
非金属材料引言在材料科学中,材料通常可分为金属材料和非金属材料两大类。
非金属材料是指那些由非金属元素或其化合物制成的材料,具有不同于金属的特性和应用。
非金属材料广泛应用于各个领域,包括建筑、电子、医疗等。
本文将介绍非金属材料的种类、特性以及应用领域。
非金属材料的种类陶瓷材料陶瓷材料是一类具有特殊的化学成分和结构的材料。
它们通常由氧化物和非氧化物组成,具有高熔点、高硬度、耐腐蚀等特点。
陶瓷材料可分为普通陶瓷和工程陶瓷两大类。
普通陶瓷广泛应用于日常生活中的瓷器、砖瓦等;工程陶瓷则用于高技术领域,如电子器件、机械零件等。
聚合物材料聚合物材料是由高分子化合物组成的材料,具有轻质、绝缘、可塑性好等特点。
聚合物材料可分为热塑性和热固性两大类。
热塑性聚合物可在一定温度下融化并再次固化,而热固性聚合物在加热过程中不可逆地固化。
聚合物材料广泛应用于塑料制品、纤维材料等领域。
复合材料复合材料由两种或多种不同性质的材料组合而成。
通过合理地组合不同的材料,复合材料可以充分发挥各种材料的优点,同时弥补材料的缺点。
常见的复合材料有纤维增强复合材料、金属基复合材料等。
复合材料在航空航天、汽车制造等领域得到广泛应用,具有重量轻、强度高等优点。
玻璃材料玻璃材料是由玻璃原料经过高温熔化后快速冷却而成的无定形材料。
玻璃材料具有透明、坚硬、耐热等特点,广泛应用于建筑、光学、仪器等领域。
随着科技的发展,玻璃材料的种类越来越多,如光纤、液晶玻璃等。
非金属材料的特性非金属材料具有以下几个特性:1.绝缘性:非金属材料通常具有较好的绝缘性能,能够有效阻止电流的传导,因此广泛应用于电子领域,如绝缘子、电容器等。
2.耐热性:部分非金属材料具有出色的耐热性能,在高温环境下仍能保持稳定的性能。
例如,陶瓷材料在高温下不易软化、熔化,可用于制作耐火材料、炉具等。
3.耐腐蚀性:非金属材料通常具有出色的耐腐蚀性能,能够抵御酸、碱等腐蚀介质的侵蚀。
例如,聚合物材料在酸碱环境中具有较好的稳定性,可用于制作化学容器等。
非金属材料及其他新型材料PPT
为了降低非金属材料生产成本,研究者们致力于研究新的低成本制备技术和回收再利用方案。例如,利用3D打印 技术可以实现定制化、小批量生产,降低生产成本;同时,对使用过的非金属材料进行回收再利用,也可以有效 降低生产成本。
非金属材料的可持续性问题挑战
总结词
非金属材料在生产、使用和处理过程中 对环境的影响日益受到关注,其可持续 性成为重要挑战。
详细描述
陶瓷材料广泛应用于工业、建筑、航空航天等领域,如陶瓷刀具、陶瓷轴承、 陶瓷绝缘子等。其制备工艺主要包括原料制备、成型、烧成等步骤。
玻璃材料
总结词
玻璃材料是一种无机非金属材料,具有光学性能优异、化学 稳定性好等特点。
详细描述
玻璃材料广泛应用于建筑、电子、光学等领域,如窗户玻璃 、眼镜片、显示屏等。其制备工艺主要包括原料混合、熔化 、成型和退火等步骤。
污水处理膜
非金属材料如聚乙烯(PE) 和聚丙烯(PP)用于制造 污水处理膜,实现废水的 过滤和净化。
土壤修复材料
非金属矿物如沸石和膨润 土用于土壤修复,改善土 壤质量,降低污染风险。
非金属材料在其他领域的应用
生物医学材料
建筑领域
非金属材料如钛和钛合金用于制造人 工关节、牙种植体等生物医学植入物, 提高医疗效果。
详细描述
复合材料广泛应用于航空航天、汽车、 建筑等领域,如碳纤维复合材料飞机、 玻璃纤维复合材料汽车外壳等。其制 备工艺主要包括层压法、缠绕法、喷 射法等。
03
新型非金属材料介绍
石墨烯
石墨烯是一种由单层碳原子组成的二维材料,具有极高的热导率和电导率,被广泛 应用于电子器件、传感器、电池和复合材料等领域。
气凝胶
Байду номын сангаас01
非金属材料的分类和应用范围
非金属材料的分类和应用范围
(一)非金属材料分类
1.树脂类
(1)热塑性树脂:ABS树脂、HIPS树脂、PP树脂、PVC树脂、PE树脂等;(2)热固性树脂:环氧树脂、硅树脂、硬脂酸树脂、氨基树脂、烷基氯丙烷树脂等;
(3)改性树脂:玻璃改性树脂、共聚物改性树脂(合成橡胶)、聚氨酯树脂(PU)、环氧树脂改性树脂等。
2.有机非金属材料:聚丙烯、聚苯乙烯、聚乙烯、聚碳酸酯、聚醚醚酮、聚酯纤维、氯丁橡胶、氟橡胶、聚砜、乙烯基乙烯醯乙烯、脂肪醯交联聚乙烯、聚醚醚酮等。
3.替代金属材料:聚酰胺、聚碳酸酯、玻璃纤维、碳纤维、二氧化硅等。
(二)非金属材料的应用范围
1.树脂类:可用于制造机电、电子、塑料制品等设备件,广泛应用于家电、电子、汽车、通讯等行业。
2.有机非金属材料:常用于电线电缆、纺织品、医药、工业制品及建筑等领域,对其具有一定要求的应用如街路、抗水、防水等。
3.替代金属材料:可应用于盔甲、飞机、船舶、防弹衣、汽车防弹玻璃、仪器仪表等行业。
非金属材料的名词解释
非金属材料的名词解释在我们生活的世界中,非金属材料无处不在,它们构成了我们周围的大部分物质。
然而,对于非科学或非工程背景的人来说,这些名词或许仍然含义模糊。
因此,本文将对几个常见的非金属材料进行解释,以帮助读者更好地理解它们的特性和应用。
1. 陶瓷(Ceramic)陶瓷是一种由非金属元素组成的材料,如氧化锆、氧化铝和硅酸铝等。
它们具有高温稳定性、耐化学侵蚀性和优异的绝缘性能。
因此,陶瓷在高温、高压环境下具有广泛的应用,如先进陶瓷刀具、航空发动机部件和核能设备。
此外,陶瓷也被广泛应用于电子器件的制造,如集成电路基板和陶瓷电容器。
2. 复合材料(Composite)复合材料是由两种或更多种不同组分(如纤维和基体)通过热固化或化学反应等方式结合而成的材料。
由于其结构多样性,复合材料具有比单一材料更高的强度、刚性和耐腐蚀性。
常见的复合材料包括碳纤维增强复合材料(CFRP)、玻璃纤维增强复合材料(GFRP)和陶瓷基复合材料。
3. 聚合物(Polymer)聚合物是一类由长链或网络结构的重复单元组成的高分子材料。
根据不同的化学结构和性质,聚合物可以分为热塑性聚合物和热固性聚合物。
热塑性聚合物具有可塑性和可加工性,如聚乙烯和聚丙烯等,常用于制造各种塑料制品。
而热固性聚合物在加热后会发生化学反应,变得坚硬和耐高温,如环氧树脂和不饱和聚酯树脂,常用于制造复合材料和涂料。
4. 橡胶(Rubber)橡胶是一种弹性良好的高分子材料,主要由天然橡胶或合成橡胶制成。
它具有良好的弹性、耐磨性和耐化学侵蚀性,因此被广泛应用于轮胎制造、密封件制造和减振器等领域。
此外,橡胶还用于制造运动器材、日常用品和医疗器械。
5. 纤维(Fiber)纤维是一种具有高比表面积和高拉伸强度的材料,通常是由多个薄而长的结构单元组成。
纤维可以分为天然纤维和合成纤维两类。
天然纤维主要来自植物和动物,如棉、麻、羊毛和蚕丝等。
合成纤维则是通过化学合成或聚合制备的,如聚酯纤维、尼龙纤维和碳纤维等。
非金属材料
பைடு நூலகம்金属材料
除金属以外,诸如塑料、橡胶、玻璃、陶瓷、合成纤维、胶粘剂、摩擦 材料和涂装材料等均为非金属材料。
一、塑料 塑料是在一定温度和压力下可塑制成形的高分子合成材料的通称,是当
前机械工业中应用最广泛的高分子材料。 1.塑料的分类
(1)按塑料的用途分,可分为通用塑料和工程塑料。 (2)按树脂的热性能可分为热塑性塑料和热固性塑料两大类。 2.塑料的特点 与金属材料相比,塑料的性能有以下特点: (1)质量轻、强度低、刚度低。(2)耐热性差,易老化。 (3)热膨胀系数大。 (4)绝缘性好。(5)耐蚀性好。 (6)导热性差。 (7)减摩性能、耐磨性能差异大。
二、橡胶 橡胶是一种具有极高弹性的高分子材料,其弹性变形量可达 100%-l
000%,且回弹性好。同时,它还具有一定的耐磨、吸振、绝缘、隔音特性, 是常用的弹性、密封、减振防振和传动材料,其主要缺点是易老化,耐油性 差。 三、玻璃
玻璃是由二氧化硅和各种金属氧化物组成的无机化合物,由石英等硅酸 盐矿物质材料经过配料、熔制而成。
四、陶瓷
陶瓷是指以天然或人工合成的各种化合物为基本原料,经原料处理、 成形、干燥、高温烧结而成的一种无机非金属固体材料。其高的硬度、抗 压强度、熔点、高温强度及抗氧化能力,较好的绝缘性能,但抗拉强度较 低,韧性和疲劳性能较差。目前在汽车上应用的陶瓷材料主要有普通陶瓷、 工程陶瓷和功能陶瓷。
什么是非金属材料呢
什么是非金属材料呢?非金属材料是金属材料以外的其他材料,是由非金属元素或化合物构成的材料。
非金属材料如何分类呢?按材料的来源,可分为天然非金属材料和人造非金属材料。
天然非金属材料有:木材、棉、毛、麻、丝、皮革等等。
人造非金属材料有:塑料、橡胶、纤维等等。
按化学组成来分,非金属材料又可分为有机非金属材料和无机非金属材料。
有机非金属材料有:塑料、橡胶、纤维等等。
无机非金属材料有:陶瓷、玻璃、石棉等等。
什么是高分子材料呢?高分子材料是分子质量很大的有机化合物。
每个大分子都是由一种或几种单体,也就是低分子化合物,重复连接,聚合而成,高分子材料又称为聚合物或高聚物。
有人工合成的高分子材料,例如塑料、合成橡胶等等。
还有天然高分子材料:例如松香、蚕丝蛋白质、天然橡胶等等。
什么是塑料?塑料是以高聚物为主要成分,在加工的某阶段可流动成形的材料。
(1)塑料的分类1)塑料按用途分类:可分为通用塑料和工程塑料。
①通用塑料:有聚乙烯(PE )、聚氯乙烯(PVC )等等。
通用塑料的:力学性能和使用温度较低。
主要应用于:日常生活用品、包装材料等等。
②工程塑料:有聚酰胺(尼龙PA)、聚甲醛(POM)、环氧树脂等等。
工程塑料:的力学性能和使用温度较高,但价格较高。
主要应用于:制造机械零件和工程构件。
2)按受热时的性能分类:可分为热塑性塑料和热固性塑料。
什么是热塑性塑料呢?热塑性塑料是在整个特征温度范围内,能反复加热软化和冷却硬化,并且在软化状态通过流动能反复模塑为制品的塑料:例如聚乙烯(PE ) 、聚酰胺(尼龙PA)、聚四氟乙烯(PTFE) 等等。
热塑性塑料的:力学性能较好,加工成形方便,但耐热性较差。
什么是热固性塑料呢?热固性塑料是加热和通过其它方法,例如辐射、催化等固化时,能变成基本不溶解、不熔化的产物的塑料:例如环氧树脂、酚醛塑料(PF)、氨基塑料(AF) 等等。
热固性塑料:有较高的耐热性,受压时也不易变形,但力学性能较差。
九种非标自动化常用非金属材料特点及应用
九种非标自动化常用非金属材料特点及应用1.亚克力(PMMA)又叫有机玻璃特点:透光性极好,可透过光线的99%,在一定条件下,尺寸稳定,容易加工,可折弯性好,表面硬度不大,易刮花。
应用场景:自动化中常用来与铝型材搭配机器外罩,或透明防护板。
2.PC板(聚碳酸酯)特点:透光率高,可达89%,耐冲击,在塑料中抗冲击能力最高,可折弯性好,可长期抗紫外线照射,阻燃,表面不易刮花。
应用场景:自动化中常用于防护罩,观察窗,门板等。
3.POM(赛钢)特点:非标设备中应用较多的材料之一,高硬度、高刚性、高熔点。
耐磨、耐冲击、耐有机溶剂,但不耐酸和强碱,绝缘性高。
应用场景:自动化设计中一般用来做结构件、耐磨件,治具底板、皮带支撑板、挡板、导向零件等。
加工长度过大时易产生变形。
(类型有防静电和不防静电)4.尼龙特点:该材料耐磨自润滑,使其摩擦系数低,几何精度比较高。
可以加工轴承,齿轮等零件。
但是其在水中浸泡容易吸水膨胀而导致精度变化。
应用场景:适用于制作耐磨零件,传动结构件。
标准件:尼龙齿轮,尼龙滚轮,脚轮等。
PA66:疲劳强度和钢性较高,耐热性较好,摩擦系数低,耐磨性好,但吸湿性大,尺寸稳定性不够。
应用:中等载荷,适用温度(100-120)度无润滑或少润滑条件下工作的耐受力传动零件。
PA6:疲劳强度,钢性,耐热性低于PA66,但弹性好,有较好的消振,减振能力。
应用:轻载荷,中等温度(80-100)无润滑或者少润滑。
要求噪音低的条件下工作的耐磨受力传动零件。
5.特氟龙(聚四氟乙烯PTFE)特点:特氟龙类型很多常用是PTFE,高分子材料,具有良好的化学稳定性,耐强酸碱腐蚀,绝缘性好,摩擦系数极低,高润滑不沾性。
应用场景:自动化设备常用于防刮伤产品、防粘、绝缘的工况。
特氟龙胶带贴在需要滑动导向的零件或者防粘的零件上。
6.聚氨酯(PU、优力胶)特点:具有良好的耐油性、韧性、耐磨性、耐老化性和粘合性,具有塑料的刚性,又有橡胶的弹性。
非金属材料
非金属材料1 非金属材料常用种类2 常用非金属材料的特性和应用2.1 橡胶橡胶分为天然橡胶和合成橡胶;从性能上分为普通橡胶、耐酸碱橡胶、耐油橡胶、耐热橡胶。
主要特性及应用:具有高弹性,有良好的耐磨性、绝缘性和阻尼性;用作动静态密封件,减震、防震件,传动件及各种耐磨件等。
天然橡胶可塑性和工艺加工性能好;但不耐老化,且耐热性、耐酸性、耐油性差。
合成橡胶加工性能差,其种类不同,性能也有区别。
其中丁腈橡胶有优异的耐油性,广泛用于耐油橡胶制品;氯丁橡胶耐老化性极好,耐热性、耐燃性好;用途极为广泛。
比如现场中使用的油封、O形橡胶密封圈所用橡胶需耐油性好的耐油橡胶;2.2 氟橡胶应用范围为-40℃~230℃。
氟橡胶是含有氟原子的橡胶统称,耐高温,耐蚀性良好,耐各类酸、碱、盐、石油产品、烃类等,但耐溶剂性不及氟塑料。
在化工方面可用于耐高温和强腐蚀环境。
2.3 塑料2.3.1 分类常用塑料有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、有机玻璃、尼龙(PA)、聚四氟乙烯(F4)、酚醛塑料(PF)等。
2.2.2 特性及应用2.4 聚四氟乙烯(F4)2.4.1 特点1.聚四氟乙烯素称“塑料王”,具有高度的化学稳定性,对强酸、强碱、强氧化剂、有机溶剂军耐腐蚀,只有对熔融状态的碱金属及高温下的氟元素才不耐蚀;2.有异常好的润滑性;3.可在260℃长期连续使用,也可在-250℃的低温下满意的使用;4优异的电绝缘性;耐大气老化性能非常好;6.突出的表面不粘性,几乎所有粘性物质都不能附在它的表面上;7.其缺点:强度低,刚性差,冷流形大,必须用冷压烧结法成型,工艺较麻烦。
2.4.2 用途1.作耐腐蚀化工设备及其衬里与零件;2.作减摩自润滑零件,如轴承、活塞环、密封圈等;3.作电绝缘材料与零件。
2.5 石墨及碳作为结构材料的石墨和碳是由焦炭高温烧制而成。
在1400℃煅烧的制品为碳,在2000~2400℃以上煅烧制品具有晶体结构称为“石墨”。
材料学概论-非金属材料
单击添加副标题
第一节 高分子材料 第二节 陶瓷材料 第三节 复合材料
指金属以外的其它材料。机械工程主要使用的非金属材料有高分子材料、陶瓷材料以及复合材料。
复合材料船体
第一节 高分子材料
一、基本概念
以高分子化合物为主要组分的材料
1、物理性能
高聚物的基本性能及特点 重量轻 绝缘好 减摩、耐磨性 耐热差 耐腐蚀
(1)磨损失效 ;(2)接触疲劳失效 ;(3)腐蚀失效
零件失效与很多因素有关。设计、材料、加工工艺和安装等
7.1 概述(2)
7.2 材料选用的原则正常工作所必须具备的性能。
包括:力学性能、物理性能和化学性能
首要任务是正确地分析零件的工作条件和主要的失效形式,准确地判断零件所要求的主要力学性能指标。
2、力学性能
高弹性 滞弹性 实际强度低 开裂现象 老化
三、工程高分子材料
塑料 合成橡胶 合成纤维
塑料 以树脂为基础,再加入用来改善性能的各种添加剂,如填充剂、增塑剂、稳定剂、固化剂、着色剂、润滑剂等 高分子材料
挤压成形 吹塑成形 注射成形
聚氯乙烯、聚苯乙烯、聚烯烃、酚酸塑料和氨基塑料
①通用塑料 ②工程塑料 ③塑料成形工艺
7.2 材料选用的原则和方法
7.2 材料选用的原则和方法
工艺性能原则
7.2 材料选用的原则和方法
01
经济性原则
02
材料的价格
03
应该尽量低
7.2 材料选用的原则和方法
经济性原则
7.2 材料选用的原则和方法
7.2 材料选用的原则和方法
经济性原则
材料应该来源丰富并顾及我国资源状况。 注意生产所用材料的能源消耗,尽量选用耗能低的材料。 对某—工厂来说,所选材料种类、规格,应尽量少而集中,以便于采购和管理。 总结:在首先保证材料满足使用性能的前提下,再考虑使材料的工艺性能尽可能良好和材料的经济性尽量合理。
非金属材料有哪些
非金属材料有哪些非金属材料是除了金属材料外的一类材料,通常不具备导电性和磁性。
非金属材料广泛应用于建筑、电子、化工、医疗等行业中。
下面是一些常见的非金属材料。
1. 石材:石材是一种常见的建筑材料,如大理石、花岗岩、砂岩等。
石材具有高硬度、耐磨性和耐高温性能,广泛应用于建筑装饰、地板、墙壁等。
2. 陶瓷:陶瓷是一类由非金属氧化物制成的材料,如瓷器、陶器、磁砖等。
陶瓷材料具有高硬度、耐磨性、耐高温和绝缘性能,用于制作器皿、建筑材料、电子零部件等。
3. 玻璃:玻璃是由石英砂等成分熔融而成的无定形非金属材料。
玻璃具有透明、硬度较大、耐腐蚀、绝缘等特点,广泛应用于建筑、容器、光学器件等领域。
4. 塑料:塑料是由合成树脂通过加工制作而成的可塑性材料,如聚乙烯、聚丙烯、聚氯乙烯等。
塑料具有轻质、耐腐蚀、绝缘、可塑性好等特点,广泛应用于包装、建筑、电子、汽车等行业。
5. 纤维:纤维是一类由高分子合成材料制成的长而细的线状物。
常见的纤维材料有棉、麻、丝、毛、尼龙、涤纶等。
纤维具有轻质、柔软、吸湿性好等特点,广泛用于纺织、服装、家居等领域。
6. 橡胶:橡胶是由高分子合成材料制成的具有弹性的材料,如天然橡胶、合成橡胶等。
橡胶具有良好的弹性、耐磨性、电绝缘性等特点,广泛应用于轮胎、密封件、橡胶制品等。
7. 石膏:石膏是一种由石膏石经煅烧后制成的非金属材料。
石膏具有吸水性好、可塑性强等特点,广泛应用于建筑装饰、雕塑等领域。
除了以上列举的材料外,还有许多其他的非金属材料,如纸张、木材、胶水、胶带等,它们在生活中得到广泛应用。
这些材料在不同的领域中发挥着重要的作用,满足人们的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、请阐述一下非晶态高聚物的力学特点?答:线性定型高聚物是典型的非晶态结构,线形非晶态高聚物有三种力学状态,温度不同,高聚物处于不同的力学状态,性能也不同:1)玻璃态,在Tg温度以下,变形量小,而弹性模量较高,高聚物较刚硬,处于玻璃态,此时的变形是可逆的,形变属于普弹性变。
2)高弹态:Tg之后,变形量很大但弹性模量显著降低。
外力去除之后形变可以恢复,即弹性是可逆的。
高弹态是橡胶使用状态,Tf称为粘流温度。
3)粘流态。
温度高于Tf之后,形变迅速发展,弹性模量再次很快下降,高聚物开始产生粘性流动,处于粘流态,此时变形已为不可逆,高聚物成型加工时,都是在粘流态下进行。
2、什么是Tg,影响因素?请举例说明其应用?答:玻璃化温度Tg是温度升降时,高聚物由玻璃态向高弹态或者由高弹态向玻璃态转化的温度,其本质是高聚物的分子链段运动被解冻或被冻结的温度。
凡影响高聚物的柔顺性和分子间作用力的因素都会影响玻璃化温度。
主要有:分子量;分子链的柔顺性;添加剂。
高聚物的分子量增加,Tg也随之升高,当分子量升高到临界分子量时,Tg趋向一恒定值,高聚物的分子链的柔顺性越好,Tg也就越低。
高聚物中的添加剂通过影响分子链运动而对Tg产生强烈的影响。
应用举例:如研究了玻璃化温度对可再分散性胶粉质量的影响和作用,指出低可再分性胶粉的玻璃化温度可以提高可再分性散性胶粉的变形性和韧性。
3、高分子材料的典型特征是什么?请举例?答:1)密度小,与镁铝相当,比钢铁轻得多;2)有足够的强度和模量能够代替部分金属材料制造各种机械零件;3)优良电绝缘性能;4)优良减摩,耐磨和自润滑性能;5)优良耐腐蚀性能;6)易于合金化;7)高弹性;8)优良透光性;9)优良的隔热、隔音性;10)富于粘结力;11)耐热性差,高分子材料使用温度一般低于200℃;12)可燃性;13)易老化。
4、橡胶为什么有弹性?答:橡胶之所以具有高弹性,与橡胶的结构有关,由于橡胶大分子链上C—C键,C—O键,Si—O键等都易于内旋,部分孤立的C=C双键虽然不能内旋,但却能促进邻近的C—C键更好旋转,使其分子链表现出很好的柔顺性。
而且橡胶分子量很大,分子链长度可达4000——8000A,而直径仅约为3——7.5A,处于卷曲状态,虽然硫化交联使长链分子出现交联键,但未改变其卷曲状态,相反使大分子链所受拉伸与回缩应为更大,从而大大增强其回弹性。
5、高分子化合物的单体,链节,聚合度,多分散性,平均分子量,分子质量分布的概念是什么?答:单体:可以聚合成高分子化合物的低分子化合物;链节;组成高分子化合物相同的结构单元;聚合度:大分子链中链节的重复次数;多分散性:高分子化合物中各个链的分子量不相等的现象;平均分子量:由于高分子化合物的多分散性,任何一种高分子化合物没有确切分子质量,常用平均分子量来表示,常有重均分子量和数均分子量;分子质量分布:用以表示具体每一种分子质量在高分子化合物中所占比例的大小和范围的量。
6、加成聚合与缩合聚合的不同?答:(1)反应的单体不同:加成聚合的单体必须具有不饱和的键,并能形成两个和两个以上的新键,缩合聚合的单体应该具有两个或两个以上的反应基团的低分子化合物。
(2)反应产物不同:加成聚合没有副产物,反应产物与单体成分相同,缩聚反应有低分子物质的析出,缩聚产物与单体成分不同7、影响大分子链柔顺性的主要因素?答:A,主链结构:主链全由单链组成时,柔顺性最好,主链含有芳杂环时,柔顺性很低,主链含有孤立双链时,柔顺性增大B,取代基特性:随取代基极性的减小,大分子的柔顺性增加,取代基的体积越大,柔顺性越差,取代基的分布越对称,柔顺性越大。
此外,取代基沿分子链的分布距离,分子间化学键交联的密度等机构因素,都对大分子的柔顺性有影响8、高分子自取代物的取向,结晶以及分子量大小对其物理性能各有什么影响?答:高聚物取向和结晶都能增加分子间作用力,有利于抗拉强度的提高,同样结晶度太高时,会降低高聚物的冲击韧性。
同时,晶相的形态大小对高聚物也有影响。
同样的结晶度,晶相为球晶所组成,表现为低强度,高脆性。
晶相为微晶所组成,表现为高强度,高韧性。
随分子量的增大,分子间力增大,强度升高,当分子量增大到一定值后,由于分子间力远大于分子键力时,外力作用先使分子键断裂,而不是导致大分子间相对滑动,所以高聚物强度不在随分子量增大而增大。
9、作为高分子材料,塑料和橡胶分别在何种状态下使用?答:塑料在玻璃态下使用,橡胶在高弹态下使用。
11,何为高聚物的老化、预防、机理、改性?答:高聚物在加工,储存和使用过程中,随时间推移,由于受内外因素综合作用,其物理性能和化学性能逐渐变坏的现象叫老化。
预防措施有:a.改性b.防老化设计 c.改进生产工艺d.表面处理 e.控制环境条件f.加入稳定剂。
机理:热氧老化、光氧老化、化学介质老化、生物老化。
共混、填充、复合增强、化学介质、表面改性12,塑料的组成是什么,请分别阐述?答:塑料由合成树脂及各种添加剂组成。
合成树脂:常温下呈固态,半固态或流动态的高分子化合物。
填充剂:为满足各种应用领域性能要求,采用无机物和有机物等加入到塑料中的填充材料。
增塑剂:能够增加树脂的塑性,改善加工性,赋予制品柔韧性的添加剂。
稳定剂:为防止和抑制树脂在加工和使用过程中因热光和氧化作用发生老化变质而添加到塑料中的物质。
润滑剂:为改善塑料熔体加工成型流动性,防止成型加工时发生粘附损害塑料外观而添加的物质。
固化剂:热固性树脂组成的塑料,成型时添加能使线型结构变为体型结构的化合物。
着色剂:在塑料成型时添加赋予制品色彩或特殊光学性能的物质。
13.热塑性和热固性塑料在性能及结构上有何区别?答:结构上:热塑性材料具有线型或支链型分子结构,受热可软化或熔融;热固性材料在成型加工中线型或支链型结构的树脂受热产生化学交联反应,固化成体型结构,成为不熔不溶材料。
性能上:热塑性材料易加工成型,力学性能较好,但耐热性和刚性较差;热固性塑料的耐热性能高,在负荷的作用下不易变形,抗蠕变性强,但性硬且脆,力学性能不高。
14、塑料的成型方法?答:A、注射成型B、挤出成型C、压制成型D、吹塑成型E、压延成型。
15、塑料的选用原则?答:A、使用性能:是保证零件完成规定功能的必要条件,是选材首要考虑问题。
B、工艺性能:是表示材料加工的难易程度,一些使用性能很好,但工艺性能很差的材料尽量不取。
C、经济性:在满足上述两个条件的前提下,选材应注意经济性。
15、橡胶的组成?答:橡胶制品通常由生胶、配合剂和增强材料三大部分组成。
凡未加配合剂的橡胶统称为生胶。
它是橡胶的主要组成部分,对其它配合剂与增强材料而言起着粘结剂的作用。
为了提高橡胶及其制品的使用性能或改善成型加工的工艺性能而加入的各种添加剂称之为配合剂。
增强材料又称为骨架材料,主要用来增加胶制品的强度并限制其变形。
16、胶制品的成型工艺?答:A、槊炼B、混炼C、压型D、硫化17、橡胶老化是什么?影响因素?如何防止?答:生胶和橡胶制品,在贮存和使用过程中,会出现变色、发粘、发脓及龟裂等现象,使橡胶失去原有的性能,以致失去使用价值,这种现象叫做橡胶的老化。
影响因素有:氧化作用、臭氧的作用、热、光金属及机械疲劳的作用。
防治措施:(1)选用耐老化性好的橡胶,在分子结构中无双键的橡胶,耐老化性能都比较好(2)在橡胶原料中加入适量的蜡类物质或在制品表面涂以涂料(3)在橡胶中加入防老化剂(4)正确掌握硫化工艺(5)橡胶制品尽量不要受压或暴晒18、分别比较常用橡胶和特种橡胶的性能?答:常用橡胶:丁苯橡胶弹性和强度差、黏着性不好,硫化速度慢,耐寒性比天然橡胶差,顺丁橡胶的突出特征是弹性高,耐磨性好,耐低温性能优异,但其抗湿滑性能和抗撕裂性能差,加工性能和黏着性不好。
特种橡胶:丁晴橡胶耐磨性、耐热性比天然橡胶和氯丁橡胶好,硅橡胶的独特性能是既耐热又南韩,氟氯橡胶的突出性能是耐磨性。
19、胶黏剂的组成是什么?请分别阐述?.答:胶黏剂的组成:A基料,是胶黏剂的基本成分,又称基体,为胶黏剂的骨架。
B 固化剂是使线型分子链结构变成网状或者体型结构,从而使胶黏剂固化。
C 增塑剂与增韧剂,增塑剂是一种高沸点液体或低熔点固体有机物,它与基料有良好的相容性;增韧剂的作用是提高固化产物的韧性。
D 稀释剂:作用是降低粘度,以便于涂料,同时可延长胶黏剂的使用寿命.E 填料,主要作用是改善胶黏剂的性能和客服在固化过程中造成的缺陷,或赋予胶黏剂某些特殊的性能。
F 其他:如固化促进剂,防老剂,偶联剂等。
20、试述胶黏剂胶接的基本原理?答:关于胶结的基本原理有如下理论:A 吸附理论:认为粘合作用是有胶黏剂呗粘物分子在界面上接触并产生次价键所引起。
B 化学键理论:某些胶黏剂与被粘物表面鞥够形成化学键。
C 扩散理论:认为物质的分子始终处于运动中,由于胶黏剂中的高分子链具有柔顺性,在胶结过程中胶黏剂分子与被粘物分子相互产生扩散作用。
E 电子胶合理论,由于胶黏剂和被粘物具有不同的电子亲合力,当他们接触时就会在界面上产生接触电势,形成双电层,类似一个电容器。
F 机械结合理论:胶接职务是一个机械过程,是胶黏剂对相邻两个胶合面机械附着作用的结果。
21、无机非金属材料的特点?答:比金属的浸提结构复杂;没有自由电子;具有比金属件和纯共价键稳定的离子键和混合键;结晶化合物的熔点比许多金属和有机分子高;硬度高,抗化学腐蚀能力强;绝大多数是绝缘体,高温导电能力比金属低;化学性能优良,制成薄膜时大多是透明的;一般比金属的导热性低;在大多数情况下观察不到变形。
总的来说,无机非金属材料有许多优良的性能。
22、试述无机非金属材料的结构特点?答:无机非金属材料的结构从存在形式来说,是晶体结构,非晶体结构,孔结构以及它们不同形式且错综复杂的组合或复合;从尺寸上讲,可分为为微观结构,亚微观结构,显微结构和宏观结构四个层次。
23、陶瓷的性质及分类?答:性质:硬度高,化学稳定性好,耐高温,耐腐蚀,耐磨,但苏醒差,担忧脆硬性。
分类:按组成分为硅酸盐陶瓷,氧化物陶瓷,非氧化物陶瓷;按性能分为普通陶瓷和特种陶瓷;按用途分为日用陶瓷艺术瓷化工瓷等;按性能特点和应用分为压电陶瓷,高温陶瓷,磁性陶瓷,电容陶瓷,贴点陶瓷等。
24、陶瓷的主要成型方法?答:注浆成型,可塑成型和压制成型。
24、试述特种陶瓷的性能与用途?答:性能;高强度,高硬度,耐腐蚀,绝缘,磁性,透光,半导体以及压电,铁电,光电,电光,声光,磁光,超导,生物相容性等。
用途,可应用在高温,机械,电子,宇航,医学等方面,成为近代尖端科技必不可少的材料。
25、复合材料的定义,如何分类?答:定义,指由两种或两种以上的独立的物理向包括粘结材料和粒料,纤维或片状材料组成的一种固体产物;分类:可按性能高低,用途来份,但结构材料基本由增强体组成,通常按不同的集体来分26、复合材料有何特性?答:比强度,比模量高,抗疲劳性能好减震能力强,高温性能好,工作的断裂安全性高。