两招破解三角形解的个数问题

合集下载

全等三角形判定解题方法

全等三角形判定解题方法

全等三角形判定解题方法嘿,同学们!今天咱就来好好唠唠全等三角形判定解题方法。

全等三角形啊,就像是一对双胞胎,长得一模一样呢!要判断两个三角形全等,那可得有几招厉害的办法。

就好比你要认出两个长得很像的人,得从一些关键地方去看。

先来说说“边边边”吧,这就好像是给三角形量三围一样。

如果两个三角形的三条边都对应相等,那它们肯定全等啦!你想想,连尺寸都一模一样,那能不是同一个嘛!然后是“边角边”,这就像是先抓住一个人的主要特征,再看看其他方面是不是也对得上。

两条边和它们的夹角相等,那这两个三角形也就全等咯。

“角边角”也很重要呀!两个角和它们夹的边相等,就跟找到了关键的标识一样,能确定它们是全等的。

还有“角角边”呢,这就有点神奇了,两个角和其中一个角的对边相等,它们也能成为全等的好兄弟。

咱在解题的时候啊,可不能瞎蒙。

得仔细观察题目给了啥条件,就像侦探找线索一样。

看到边的条件,就想想边边边或者边角边;看到角的条件,就往角边角那些方法上靠。

比如说,题目告诉你有两条边相等,还有一个角相等,那你就得琢磨琢磨,这是不是符合哪个判定方法呀。

要是没找对,那可就像走岔了路,找不到正确答案啦!有时候啊,题目会故意给你一些干扰条件,就像路上的小陷阱。

可别被它们骗了,得保持清醒的头脑,抓住关键信息。

再给大家举个例子吧,就好像有两个三角形,它们的边和角看起来都差不多,但是仔细一分析,就能发现有的条件不满足判定方法。

这时候可不能随便就说它们全等哦!全等三角形的判定方法就像是我们解题的法宝,掌握好了它们,那些难题就都不在话下啦!大家在学习的时候,一定要多做练习,多去实践,把这些方法都用熟了。

这样以后再遇到全等三角形的问题,就能轻松搞定啦!别害怕犯错,错了就改,这样才能越来越厉害嘛!总之啊,全等三角形判定解题方法可是很重要的,大家可得好好学,好好用。

相信自己,一定能把这些方法掌握得牢牢的!加油吧!同学们!。

三招破解三角形解的个数问题(打印)

三招破解三角形解的个数问题(打印)

案例二:直角三角形解的个数问题
总结词
直角三角形解的个数问题需要利用勾股定理和三角形的基本性质,通过数形结合和分类 讨论求解。
详细描述
直角三角形有一个角为90度,可以利用勾股定理求出斜边长度。然后利用三角形的性 质,通过数形结合的方式,进行分类讨论求解。同样需要注意排除不符合三角形基本性
质的解。
案例三:等边三角形解的个数问题
三招破解三角形解 的个数问题(打印)
目 录
• 三角形解的个数问题的概述 • 三角形解的个数问题的解题方法 • 三角形解的个数问题的应用场景 • 三角形解的个数问题的案例分析 • 三角形解的个数问题的总结与展望
01
三角形解的个数问题 的概述
三角形解的个数问题的定义
01
三角形解的个数问题是指在给定 一组边长后,判断这组边长能否 构成三角形,以及构成三角形的 可能个数。
具体例子:在求解与正弦、余弦函数有关的代数方程时, 需要考虑方程在不同区间上的解的个数,以及是否满足三 角函数的周期性和图像性质。
代数题
代数题中三角形解的个数问题通常涉及到代数方程的解的个数,需要利用代数方程的性质和求解方法 来判断解的个数。例如,在求解与三角形边长和角度有关的代数方程时,需要考虑不同情况下解的个 数。
的方法。
三角函数法主要涉及三角函数的 周期性和振幅,通过分析三角函 数的图像来确定三角形的解的个
数。
三角函数法需要熟练掌握三角函 数的性质和图像,对于一些特殊 的问题可能需要找到合适的三角
函数表达式。
03
三角形解的个数问题 的应用场景
几何题
三角形解的个数问题在几何题中常常涉及到三角形边长和角 度的关系,需要利用三角形的性质和定理来判断解的个数。 例如,在求解等腰三角形、直角三角形、等边三角形等问题 时,需要考虑不同情况下解的个数。

高中数学专题讲义:利用正(余)弦定理破解解三角形问题

高中数学专题讲义:利用正(余)弦定理破解解三角形问题

第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.
第三步:求结果.
类型二、利用正(余)弦定理判断三角形形状
【例 3】在 中,

.
(1)求证:
是直角三角形;
(2)若点 在 边上,且
,求 .
【答案】(1)见解析;(2)
(2)设
,则
所以 在
中,



, ,

由正弦定理得,

所以 【点睛】 本题主要考查的知识点是运用正弦定理和余弦定理解三角形,注意角之间的表示,本题需要一 定的计算 【例 4】【浙江省“七彩阳光”联盟高三期初联考】在 中,角 所对的边分别为 ,已 知且 (1)判断 的形状;
A 为锐角
A 为钝角或直角
图形
bsinA<a
关系式 a<bsinA a=bsinA
a≥b
a>b
a≤b
<b
解的 个数
无解
一解
两解
一解
一解
无解
4.三角形常用的面积公式 (1)S=12a·ha(ha 表示 a 边上的高).(2)S=12absinC=12acsinB=21bcsinA=a4bRc. (3)S=12r(a+b+c)(r 为内切圆半径).
高中数学专题讲义:利用正(余)弦定理破解解三角形问题
考纲要求:
1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
2.会利用三角形的面积公式解决几何计算问题 S 1 absin C . 2
基础知识回顾:
1.sina A=sinb B=sinc C=2R,其中 R 是三角形外接圆的半径.
由正弦定理可以变形:(1) a∶b∶c=sin A∶sin B∶sin C;(2) a=2Rsin A,b=2Rsin B,

三角形解的个数问题

三角形解的个数问题

三角形解的个数问题解析对于三角形个数问题,主要有两种方法进行判断,在具体的做题过程中,大家需要熟练运用,本文重点给大家梳理一下第二种方法,画圆法。

方法一、大角对大边,正弦定理求解在已知的ABC 的边长,,a b A ,且已知,a b 的大小关系时,常利用正弦定理结合“大角对大边”来判断三角形解的个数。

例、在ABC中,已知45,a b B ===︒,求,,A C c 。

分析:由正弦定理可得,sin sin 2a B A b ==因为459060,120B A =︒<︒∴=︒︒,所以这个地方A 的值就有两个了。

剩下的就不再进行赘述。

注意的是,往往很多时候,sin sin a b A B A B >⇔>⇔>,这是一个隐含条件,大家要记得挖掘使用。

方法二、画圆法方法说明:已知ABC 中,A 为已知角(这个地方先不讨论直角),先画出A ,确定顶点A ,再在A 的一边上确定顶点C ,使AC 边长为已知长度,最后以顶点C 为圆心,以BC 边长为半径画圆,看该圆与A 的另一边是否有交点,如果没有交点,则说明三角形的个数为0个;若有一个交点,则说明该三角形解的个数为1个;若有两个交点,则说明该三角形解的个数为2个。

详细步骤:①当A为钝角或者直角时:如上图所示,只有当a b>时才能有一解,否则无解。

②当A为锐角时:Case1、如果a b≥,则只有一解。

Case2、如果a b<,可以细分为以下三种情况:◎若sina b A>,则有两个解;画图说明:◎若sina b A=,则只有一解;◎若sina b A,则无解。

专题24-解三角形中的最值、范围问题(解析版)

专题24-解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换及解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-=(2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值 4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:其中由cos cos>⇔>仅在A B A B>⇔<利用的是余弦函数单调性,而sin sinA B A B一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值)(2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设及面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a 的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:可知:,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小;(2)设向量,边长,当取最大值时,求边的长.【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小;(2)因为由此可求当取最大值时,求边的长.(2)因为所以当时, 取最大值,此时, 由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值. 【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值. 详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当 时,由正弦定理 , 所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若4a =,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<, 【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解及三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.例8.【2018届甘肃省张掖市高三三诊】已知3cos ,cos 44x x m ⎛⎫=⎪⎝⎭,sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) ⎛ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤,由此可求 ()f B 的取值范围.(当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤, ()311f B +<≤,综上, ()f B 的取值范围为311,2⎛⎤⎥⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c , ()()()222sin 3cos b a c B C ac A C --+=+(1)求A 的大小; (2)求代数式b c a+的取值范围.【答案】(1)3π(2)32b ca+≤ 【解析】试题分析:(1)由()()()222sin 3cos b a c B C ac A C --+=+及余弦定理的变形可得2cos sin 3cos B A B -=,因为cos 0B ≠,故得3sin 2A =,从而可得锐角ABC∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b c a+的取值范围即可.试题解析:(1)∵2222cos b a c ac B --=-, ()()()222sin 3cos b a c B C ac A C --+=+, ∵ABC ∆为锐角三角形,且3A π= ∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭.2b c a +<≤.故代数式b c a +的取值范围2⎤⎦.点睛:(1)求b c a+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+ ⎪⎝⎭的范围,以达到求解的目的.例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角A 的值;(2)已知ABC ∆的外接圆半径为3,求ABC ∆周长的取值范围.【答案】(1) 3A π= (2) (]4,6【解析】试题分析:(1)由//m n ,得62)0c cosA acosB -+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得4332sin 232a R A ==⨯=.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-,即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号,所以b c +的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为(]4,6.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( ) A.B.C.D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A. B.C.D. 【答案】C【解析】,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, 2AB =,1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时, BD =__________.【答案】102【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时BD 的值.4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】【解析】由+得,所以,即,再由余弦定理得,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和及两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.即4bc ≤,所以ABC ∆的最大值为max 11sin 422S bc A ==⨯=. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin cos b A B =.(1)求角B ;(2)若b =,求ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan B =,从而得解;(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值. 试题解析: (1)∵sin cos b A B =,∴由正弦定理可得sin sin cos B A A B =,即ABC面积的最大值为33. 8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II)若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A的值. (II)先根据有且只有一解利用正弦定理和三角函数的图像得到m的取值范围,再写出S的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin 3cos a C c A =.(1)求角A 的大小;(2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 31⎡⎤⎣⎦. 在ABC ∆中,由正弦定理,得sin sin b cB C=,∴22sin 2sin 3cos 3311sin sin B C B c B B π⎛⎫- ⎪⎝⎭===+=,∵43B ππ≤≤,∴1tan 3B ≤≤231c ≤≤,即c 的取值范围为31⎡⎤⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角,,A B C 的对边分别为,,a b c , ABC ∆的面积S 满足2223a b c =+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(3tan 3C =-,又0C π<<, 23C π∴=.(2)()33cos2cos =cos2cos 2cos2322A A B A A A A π⎛⎫+-+-=+ ⎪⎝⎭=3sin 23A π⎛⎫+ ⎪⎝⎭11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, S 为ABC ∆的面积,求82cos cos S A C +的取值范围.【答案】(1) 4b =(2) (【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值;(2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=-⎪⎝⎭限制角A的范围,求出cos S A C +的取值范围. (2)由正弦定理sin sin b c B C=得114sin 4sin sin sin 22sin4S bc A A C A C π==⋅⋅=在ABC ∆中,由3040{202A A C A Cπππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 2,142A π⎛⎫⎛⎫∴-∈ ⎪ ⎪⎪⎝⎭⎝⎭12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭. (1)求角A ;(2)若a =ABC ∆周长的取值范围.【答案】(1) 3A π=(2) (3试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =,∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r,则22a r sinA===,∴1r =.∴ABC ∆周长的取值范围是(3+.。

重点突破:判断三角形解的个数问题

重点突破:判断三角形解的个数问题
2 3 a sinA
0
=
b sinB
,即 1 =
2
3
3 3 sinB
∴B=60°或 B=120°. 故选:C . 点睛:本题主要考查正弦定理解三角形,属于简单题.在解与三角形有关的问题时,正弦定理、余弦定理是两个
主要依据. 解三角形时, 有时可用正弦定理, 有时也可用余弦定理, 应注意用哪一个定理更方便、 简捷一般来说 , 当条件中同时出现 ab 及b2 、a2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运 用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 5.D 【解析】分析:利用正弦定理即可得出. 详解:由正弦定理可得:
5 1 , B 1500 符合两解。选 D. 9 2
bsinA 0 , A 中 sinB 1, B 90 , 1 解, 不符。 C 中 sinB 2 1 , a
【点睛】
在己知两边一对角的题型中,有钝角或直角最多一解,己知角所对边为大边,最多一解,其余情况根据三角形内 角和 180 ,大边对大角来判断。 4.C【解析】分析:利用正弦定理求出 sinB,得出 B,利用内角和定理进行检验. 详解:由正弦定理得 ∴sinB= .π 2π π源自)B.2π 3
C.
π 3
D.
π 4
2.已知 ABC 中, a A. 0 个 B. 1个
0
2, b 3, A 45 ,则三角形的解的个数(
D. 0 个或 1个


C. 2 个
3.在 ABC 中,利用正弦定理理解三角形时,其中有两解的选项是( A. a 3, b 6, A 30 B. a 6, b 5, A 150 D. a

如何反驳学生认为三角形有六个外角?

如何反驳学生认为三角形有六个外角?

如何反驳学⽣认为三⾓形有六个外⾓?我认为这个问题极具教研价值。

在我的教学⽣涯中,每当在教到这个章节时,特别是多边形外⾓和时,必然要牵扯到多边形外⾓的个数问题?虽然没有学⽣当⾯质疑,但总觉得少数学⽣没有⼼服,只有⼝服。

这是教师在教学时常⾯临的两难:不提不知道,提出更困惑。

明知少数爱思考的学⽣可能会困惑,但限于⼤多数学⽣知识和认知的局限,教师不会主动提出(除⾮有学⽣主动提出),以免引起更多⼈认知上的困惑。

看罢题主的描述,我认为师⽣的交锋分两轮:第⼀轮:⽼师认为:三⾓形有三个外⾓。

学⽣认为:三⾓形有六个外⾓。

第⼆轮:师⽣都认为:三⾓形的外⾓和等于三⾓形所有外⾓的和。

但因为师⽣第⼀轮认知冲突,导致第⼆轮表⾯看起来好像师⽣达成共识,其实不然!师⽣对“所有”⼆字的理解,显然是不同的。

⽼师理解的“所有”是“三个”,学⽣理解的“所有”是“六个”。

争议的焦点在于:1.三⾓形到底有⼏个外⾓?2.三⾓形的外⾓和是指三⾓形所有外⾓的和吗?并由此联想到:n边形到底有⼏个外⾓? n边形的外⾓和是指n边形所有外⾓的和吗?任何新概念的引⼊都是在已有认知基础之上的。

⽆论是三⾓形的外⾓,还是三⾓形的外⾓和,它们都来源于已有的认知(相对应于三⾓形的内⾓、三⾓形的内⾓和)。

原有的认知对新概念的建⽴产⽣的影响,有时候是积极的,起促进作⽤;有时候是消极的,有⼲扰作⽤。

教学的最理想的状态,就是能够引起学⽣的认知上冲突,在最近发展区调动学⽣学习的积极性,发挥其潜能,扩⼤已有认知的积极影响,克服消极影响,从⽽超越最近发展区,进⼊⼀个发展阶段。

对学⽣是这样,有时候对教师也是这样的!所谓教学相长,意即如此。

本⽂师⽣的两轮交锋就是实现这种教学状态难得的教学资源。

1.三⾓形到底有⼏个外⾓?三⾓形的到底有⼏条边,⼏个内⾓?----图1----三⾓形有三个顶点,三条边,三个内⾓。

顶点数,边数,内⾓个数是⼀⼀对应的关系,这是不争的事实。

但是,学⽣对三⾓形的边,内⾓的认知,是以对线段,⾓的认知为基础的。

大招3二级结论法秒杀焦点三角形问题

大招3二级结论法秒杀焦点三角形问题

大招3 二级结论法秒杀焦点三角形问题我们在解题过程中积累了许多的二级结论,由于选择题、填空题的阅卷评分标准是只看答案是否正确,不管过程是否详细,所以在解答选择题、填空题的过程中应用这些二级结论,可以缩短解题路径,大大节省我们的解题时间,事半而功倍.解决此类问题的关键点如下:Step1 识别模型®根据题目所给的信息,设当地创造条件,转化为符合二级结论的题目模型Step2 应用模型®代入熟悉的二级结论的数学解题模型,求解相应的数值,解决模型【典例1】已知1F 、2F 是椭圆C 的两个焦点,P 是椭圆C 上的一点,若12PF PF ^,且2160PF F Ð=°,则C 的离心率为( )A.1B.21【大招指引】利用二级结论1212121221sin 22sin sin F F F PF cce a a PF PF PF F PF F Ð====+Ð+Ð进行求解.【解析】如图,由211260PF F PF PF Ð=°ìí^î得1230PF F Ð=°,所以121221sin sin 901sin sin sin 30sin 60F PF e PF F PF F а===Ð+а+°.【题后反思】如图,12PF PF ^, 2160PF F Ð=°,故可设122F F =,21PF =,所以C 的离心率1.【温馨提醒】焦点三角形下求椭圆、双曲线的离心率,可以研究焦点三角形的内角正弦值之比,即:如图1所示,1212121221sin 22sin sin F F F PF c ce a a PF PF PF F PF F Ð====+Ð+Ð;如图2所示,1212122112sin 22sin sin F F F PF cce a a PF F PF F PF PF Ð====Ð-Ð-..【举一反三】1.设F 1,F 2是双曲线C ,22221a x y b -=(a>0,b>0)的两个焦点.若在C 上存在一点P .使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________________.【典例2】已知点P 是椭圆22:12516x y C +=上一点,12,F F 是其左、右焦点,且1260F PF Ð=°,则12F PF △的面积为______.【大招指引】利用二级结论122tan2F PF S b qD =×进行求解.【解析】由题意知,椭圆C 中5a =,4b =,又因为1260F PF q =Ð=°,所以122tan 16tan302F PF S b q °=×==△【题后反思】 本题也可以按常规方法进行求解:由题意知,椭圆C 中5a =,4b =,则2229c a b =-=.由椭圆定义知,12210PF PF a +==,在12F PF △中,由余弦定理得222121212122cos F F PF PF PF PF F PF Ð=+-×,则()2212121243100336c PF PF PF PF PF PF =+-×=-×=,得12643PF PF ×=,故1212121164sin 223F PF S PF PF F PF =´Ð=´=△【温馨提醒】焦点三角形下求椭圆、双曲线、抛物线的面积,可以用焦距对应的张角,即:如图1所示,122tan 2F PF S b q D =×;如图2所示,2tan2b S q =.(其中∠F 1PF 2=θ)【举一反三】2.已知抛物线2:6C y x =的焦点为F ,O 为坐标原点,倾斜角为q 的直线l 过点F 且与C 交于M ,N 两点,若OMN V的面积为 ( )A.sin q =B .24MN =C .以MF 为直径的圆与y 轴仅有1个交点D.MF NF=或MF NF =3.已知1F 、2F 为双曲线C :221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12·PF PF =A .2B .4C .6D .84.已知椭圆C :22143x y +=的左、右焦点分别是1F ,2F ,04,3M y æöç÷èø为椭圆C 上一点,则下列结论不正确的是( )A .12MF F △的周长为6B .12MF F △C .12MF F △D .12MF F △的外接圆的直径为32115.已知1F ,2F 分别是椭圆()2222:10x y C a b a b +=>>的左、右焦点,若椭圆C 上存在点M 使得()1220F MF a a Ð=¹,则椭圆C 的离心率e 的取值范围为( )A .(]0,sin 2a B .(]0,sin a C .[)sin 2,1a D .[)sin ,1a 6.已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ×=×uuu r uuu u r uuu r uuu u r 12,则12F PF △的面积为 .7.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A ,B 两点,若2ABF △是正三角形,则这条双曲线的离心率为.8.已知P 、Q 为椭圆()2222:10x y C a b a b+=>>上关于原点对称的两点,点P 在第一象限,1F 、2F 是椭圆C 的左、右焦点,2OP OF =,若11QF PF ³,则椭圆C 的离心率的取值范围为.参考答案:11+;【详解】设点P 在双曲线右支上,由题意,在Rt △F 1PF 2中,|F 1F 2|=2c,∠PF 1F 2=30°,得|PF 2|=c,|PF 1根据双曲线的定义:|PF 1|-|PF 2|=2a,即e=c a2.AC【分析】设直线3:2l x my =+,()11,M x y ,()22,N x y ,联立直线与抛物线方程,消元、列出韦达定理,由121322OMN S y y =´-´=V 2m ,即可判断A ,再由弦长公式求出MN 即可判断B ,利用抛物线的几何意义判断C ,求出1y 、2y ,由12MF y NFy =即可判断D.【详解】依题意3,02F æöç÷èø,设直线3:2l x my =+,()11,M x y ,()22,N x y ,由2326x my y xì=+ïíï=î,整理得2690y my --=,则()2Δ3610m =+>,所以126y y m +=,129y y =-,所以12133224OMN S y y =´-´=´=V ,解得231m =,所以222cos 1sin 3m q q ==,又22sin cos 1q q +=,解得23sin 4q =,所以sinq =,又[)0,πq Î,所以sin q =A 正确;因为4683MN ==´=,故B 错误;因为132MF x =+,又线段MF 的中点到y轴的距离为1322x +,所以以MF为直径的圆与y 轴相切,即仅有1个交点,故C 正确;因为12MF y NFy =,若m =,则290y --=,解得y =或y =若m =290y +-=,解得y =y =-即1y =、2y =或2y =、1y =所以13MF NF=或3MF NF=,故D 错误.故选:AC3.B【详解】本试题主要考查双曲线的定义,考查余弦定理的应用.由双曲线的定义得122PF PF -=①,又01212260F F c F PF ==Ð=,由余弦定理2221212128PF PF PF PF F F +-==②,由①2-②得124PF PF =,故选B .4.D【分析】根据焦点三角形的性质即可求解AB ,根据等面积法即可求解C ,根据面积公式以及正弦定理及可求解D.【详解】由题意知,2a =,b =1c =,由椭圆的定义知,1224MF MF a +==,1222F F c ==,∴12MF F △的周长为1212426MF MF F F ++=+=,即A 正确;将04,3M y æöç÷èø代入椭圆方程得24314æöç÷èø,解得0y =,∴12MF F △的面积为12012S F F y =×=,即B 正确;设12MF F △的内切圆的半径为r ,则()121212S MF MF F F r =++×,162r =´´,∴r =C 正确;不妨取43M æççè,则243MF =,183MF =,∴12MF F △的面积为12121sin 2S MF MF F MF =×Ð,12148sin 233F MF =×××Ð,∴12sin F MF Ð由正弦定理知,12MF F △的外接圆的直径1212sin F F D F MF ===ÐD 错误,故选:D.5.D【分析】在12F MF △中,由余弦定理用122F MF a Ð=表示出12×MF MF ,再由三角形的面积公式得到关于a c 、的不等关系,从而得到离心率e 的范围.【详解】由题,02a p <<,则02pa <<.设1MF m =,2MF n =,则由椭圆的定义得2m n a +=.在12F MF △中,由余弦定理得()()()222222cos 221cos 2c m n mn m n mn a a =+-=+-+,所以()22244221cos 21cos 2a c b mn a a-==++,所以1221sin 2sin 221cos 2F MF b S mn aa a==+△.设()00,M x y ,则0y b £,所以120122F MF S c y bc =××£V ,所以2sin 21cos 2b bc a a£+,所以sin cos b c a a £,两边同时平方得()22222sin cos a c c a a -£,解得sin e a £,又01e <<,所以sin 1e a £<.故选:D .6.##323【分析】由向量的夹角公式可得1260F PF Ð=o,利用余弦定理、椭圆定义可得1212×=uuu r uuu u rPF PF ,再由三角形面积公式可得答案.【详解】因为53a b ==,,4==c ,所以1210PF PF +=uuu r uuu u r,若1212121cos ,2×==×uuu r uuu u ruuu r uuu u r uuu r uuu u r PF PF PF PF PF PF ,因为120,180PF PF °££°uuu r uuu u r ,则可得1260F PF Ð=o,由余弦定理可得22212121212cos 60,2+-==×o uuu r uuu u r uuu r uuu u r uuu r uuu u rPF PF F F PF PF PF PF ()2121212264122+-×-==×uuu r uuu u r uuu r uuu u ruuu r uuu u rPF PF PF PF PF PF ,所以1212×=uuu r uuu u rPF PF ,则12121sin 6012122△===×´o uuu r uuu u rF PF PF PF故答案为:7【分析】由2ABF △22b c a=,再根据222c a b -=,将式子化成齐次式,再计算可得;【详解】解:因为2ABF △把x c =-代入双曲线的标准方程可得22221c y ab-=,解得2by a=±.22b c a =,所以220c a --=.因为c e a=,所以两边都除以2a ,得210e --=,解得ee =.【点睛】本题考查了双曲线的标准方程及其性质、等边三角形的性质,属于基础题.8.1ùúû【分析】结合题目条件可得四边形12PFQF 是矩形,设12PF F a Ð=,由11QF PF ³可得3045a °£<°,又121221sin 22sin sin F PF c ce a a PF F PF F Ð===Ð+Ð,化简计算即可得解.【详解】如图,2121212OP OF OP F F PF PF =Þ=Þ^,显然四边形12PFQF 是矩形,所以12QF PF =,由题意,11QF PF ³,所以21PF PF ³,设12PF F a Ð=,则21tan PF PF a =³,所以30a ³°,又点P 在第一象限,所以21PF PF <,故tan 1a <,即45a <°,所以3045a °£<°,椭圆C 的离心率()121221sin 212sin sin sin sin 90F PF c c e a a PF F PF F a a Ð====Ð+Ð+°-1sin cos a a ==+由3045a °£<°可得754590a °£+°<°,又()1sin 75sin 3045sin 30cos 45sin 45cos302°=°+°=°°+°°==()sin 451a +°<,1.故答案为:1ù-úû.。

专题72 三角形中的新定义问题(解析版)-2023年中考数学重难点解题大招复习讲义-新定义问题

专题72 三角形中的新定义问题(解析版)-2023年中考数学重难点解题大招复习讲义-新定义问题

例题精讲【例1】.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA==.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=1;(2)对于0°<A<180°,∠A的正对值sadA的取值范围是0<sadA<2;(3)如图,已知cos A=,其中∠A为锐角,试求sadA的值.解:(1)根据正对定义,当顶角为60°时,等腰三角形底角为60°,则三角形为等边三角形,则sad60°==1.故答案为:1.(2)当∠A接近0°时,sadA接近0,当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadA接近2.于是sadA的取值范围是0<sadA<2.故答案为0<sadA<2.(3)如图,过B作BD⊥AC于D.在Rt△ABD中,cos A==.设AD=4k,AB=5k,则BD=3k,∴DC=5k﹣4k=k.在Rt△BDC中,BC==k,∴sadA==.变式训练【变1-1】.定义:如果三角形的一个内角是另一个内角的2倍,那么称这个三角形为“倍角三角形”.若△ABC是“倍角三角形”,∠A=90°,BC=4,则△ABC的面积为4或2.解:∵△ABC是“倍角三角形”,∴分四种情况:当∠A=2∠B=90°时,∴∠B=45°,∴△ABC是等腰直角三角形,∵BC=4,∴AB=AC===2,∴△ABC的面积=AB•AC=×2×2=4;当∠A=2∠C=90°时,同理可得:△ABC的面积为4;当∠B=2∠C时,∵∠A=90°,∴∠B+∠C=90°,∵∠B=2∠C,∴∠C=30°,∠B=60°,∵BC=4,∴AB=BC=2,AC=AB=2,∴△ABC的面积=AB•AC=×2×2=2;当∠C=2∠B时,∵∠A=90°,∴∠B+∠C=90°,∵∠C=2∠B,∴∠B=30°,∠C=60°,∵BC=4,∴AC=BC=2,AB=AC=2,∴△ABC的面积=AB•AC=×2×2=2;综上所述:△ABC的面积为4或2,故答案为:4或2.【变1-2】.定义:如果三角形的两个内角α与β满足α+2β=100°,那么我们称这样的三角形为“奇妙三角形”.(1)如图1,△ABC中,∠ACB=80°,BD平分∠ABC.求证:△ABD为“奇妙三角形”(2)若△ABC为“奇妙三角形”,且∠C=80°.求证:△ABC是直角三角形;(3)如图2,△ABC中,BD平分∠ABC,若△ABD为“奇妙三角形”,且∠A=40°,直接写出∠C的度数.(1)证明:∵BD平分∠ABC,∴∠ABC=2∠ABD.在△ABC中,∵∠ACB=80°,∴∠A+∠ABC=180°﹣∠ACB=180°﹣80°=100°,即∠A+2∠ABD=100°,∴△ABD为“奇妙三角形”.(2)证明:在△ABC中,∵∠C=80°,∴∠A+∠B=100°,∵△ABC为“奇妙三角形”,∴∠C+2∠B=100°或∠C+2∠A=100°,∴∠B=10°或∠A=10°,当∠B=10°时,∠A=90°,△ABC是直角三角形.当∠A=10°时,∠B=90°,△ABC是直角三角形.由此证得,△ABC是直角三角形.(3)解:∵BD平分∠ABC,∴∠ABC=2∠ABD,∵△ABD为“奇妙三角形”,∴∠A+2∠ABD=100°或2∠A+∠ABD=100°,①当∠A+2∠ABD=100°时,∠ABD=(100°﹣40°)÷2=30°,∴∠ABC=2∠ABD=60°,∴∠C=80°;②当2∠A+∠ABD=100°时,∠ABD=100°﹣2∠A=20°,∴∠ABC=2∠ABD=40°,∴∠C=100°;综上得出:∠C的度数为80°或100°.【例2】.定义:如果三角形有两个内角的差为60°,那么这样的三角形叫做“准等边三角形”.【理解概念】(1)顶角为120°的等腰三角形不是“准等边三角形”.(填“是”或“不是”)【巩固新知】(2)已知△ABC是“准等边三角形”,其中∠A=35°,∠C>90°.求∠B的度数.【解决问题】(3)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,,点D在AC边上,若△BCD是“准等边三角形”,求BD的长.解:(1)∵等腰三角形的顶角为120°,∴等腰三角形的两个底角度数分别为30°,30°,∴顶角为120°的等腰三角形不是“准等边三角形”;(2)∵△ABC是“准等边三角形”,∠A=35°,∠C>90°,∴分两种情况:当∠C﹣∠A=60°时,∴∠C=∠A+60°=95°,∴∠B=180°﹣∠C﹣∠A=50°;当∠C﹣∠B=60°时,∵∠A=35°,∴∠C+∠B=180°﹣∠A=145°,∴2∠B=85°,∴∠B=42.5°;综上所述:∠B的度数为50°或42.5°;(3)∵∠ACB=90°,∠A=30°,,∴∠ABC=90°﹣∠A=60°,AB=2BC=2+2,∵△BCD是“准等边三角形”,∴分两种情况:当∠C﹣∠CBD=60°时,∴∠CBD=∠C﹣60°=30°,∴BD=2CD,∵CD2+BC2=BD2,∴CD2+(1+)2=(2CD)2,解得:CD=或CD=﹣(舍去),∴BD=2CD=;当∠BDC﹣∠CBD=60°时,过点D作DE⊥AB,垂足为E,∵∠C=90°,∴∠BDC+∠CBD=90°,∴2∠BDC=150°,∴∠BDC=75°,∴∠ABD=∠BDC﹣∠A=45°,∴△BDE是等腰直角三角形,∴BE=DE,BD=DE,设DE=BE=x,在Rt△ADE中,∠A=30°,∴AE=DE=x,∵BE+AE=AB,∴x+x=2+2,解得:x=2,∴BE=DE=2,∴BD=DE=2;综上所述:BD的长为或2.变式训练【变2-1】.新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”如图所示,△ABC中AF、BE是中线,且AF⊥BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果∠ABE=30°,AB=6,那么此时AC的长为3.解:如图,∵AF⊥BE,∴∠APB=∠APE=90°,在Rt△ABP中,∵∠ABP=30°,∴AP=AB=3,BP=AP=3,∵AF、BE是中线,∴AE=CE,点P为△ABC的重心,∴PE=BP=,在Rt△APE中,AE==,∴AC=2AE=3.故答案为3.【变2-2】.【了解概念】定义:如果一个三角形一边上的中线等于这个三角形其中一边的一半,则称这个三角形为半线三角形,这条中线叫这条边的半线.【理解运用】(1)如图1,在△ABC中,AB=AC,∠BAC=120°,试判断△ABC是否为半线三角形,并说明理由;【拓展提升】(2)如图2,在△ABC中,AB=AC,D为BC的中点,M为△ABC外一点,连接MB,MC,若△ABC和△MBC均为半线三角形,且AD和MD分别为这两个三角形BC边的半线,求∠AMC的度数;(3)在(2)的条件下,若MD=,AM=1,直接写出BM的长.解:(1)△ABC是半线三角形,理由如下:取BC得中点D,连接AD,∵AB=AC,点D为BC的中点,∴AD⊥BC,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABD中,∠B=30°,∴AD=AB,∴△ABC是半线三角形.(2)过点A作AN⊥AM交MC于点N,如图,∵MD为△MBC的BC边的半线,∴MD=BC=BD=CD,∴∠DBM=∠DMB,∠DMC=∠DCM,∴∠BMC=90°,同理∠BAC=90°,又∵∠MOB=∠AOC,∴∠MBA=∠MCA,∵∠MAN=∠BAC=90°,∴∠MAB=∠NAC.∵AB=AC,∴△MAB≌△NAC(ASA),∴AM=AN,又∵∠MAN=90°,∴∠AMC=∠ANM=45°.(3)由题意可知,BC=2MD=3,由(2)知△MAB≌△NAC(ASA),∴MB=NC,AM=AN=1,∴MN=,在Rt△MBC中,由勾股定理可得,MB2+MC2=BC2,∴MB2+(+MB)2=32,解得,MB=2﹣(负值舍去).故MB的值为2﹣.1.当三角形中一个内角β是另外一个内角α的时,我们称此三角形为“友好三角形”,α为友好角.如果一个“友好三角形”中有一个内角为42°,那么这个“友好三角形”的“友好角α”的度数为42°或84°或92°.解:①42°角是α,则友好角度数为42°;②42°角是β,则α=2β=84°,∴友好角α=84°;③42°角既不是α也不是β,则α+β+42°=180°,所以,α+α+42°=180°,解得α=92°,综上所述,友好角度数为42°或84°或92°.故答案为:42°或84°或92°.2.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“奇妙三角形”,其中α称为“奇妙角”.如果一个“奇妙三角形”的一个内角为60°,那么这个“奇妙三角形”的另两个内角的度数为30°,90°或40°,80°.解:由题意得:①当60°的角为“奇妙角”时,有另一个角为30°,∴第三个内角为180°﹣60°﹣30°=90°;②当60°的角不是“奇妙角”时,设另两个内角分别为∠1,∠2,且∠1=2∠2,有∠1+∠2+60°=180°,即2∠2+∠2=120°,解得:∠2=40°,故∠1=80°.综上所述:这个“奇妙三角形”的另两个内角的度数为30°,90°或40°,80°.故答案为:30°,90°或40°,80°.3.新定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.根据准外心的定义,探究如下问题:如图,在Rt△ABC中,∠C=90°,AB=10,AC=6,如果准外心P在BC边上,那么PC的长为4或.解:在Rt△ABC中,∵C=90°,AB=10,AC=6,∴BC===8,若PB=PA,连接PA,设PC=x,则PA=PB=8﹣x,在Rt△PAC中,∵PA2=CP2+AC2,∴(8﹣x)2=x2+62,∴x=,即PC=,若PB=PC,则PC=4,若PA=PC,由图知,在Rt△PAC中,不可能,故PC的长为:4或.故答案是:4或.4.定义:锐角三角形三条高的垂足形成的三角形称为垂足三角形.在锐角三角形ABC的每条边上各取一点D,E,F,△DEF称为△ABC的内接三角形.垂足三角形的性质:在锐角三角形ABC的所有内接三角形中,周长最短的三角形是它的垂足三角形.已知,在△ABC中,点D,E,F分别为AB,BC,AC上的动点,AB=AC=5,BC=6,则△DEF周长的最小值为.解:∵AB=AC=5,BC=6,∴BE=CE=3,∴AE==4,∵CD⊥AB,BF⊥AC∴DE=EF=BC=3,=AC•BF=BC•AE,∵S△ABC∴BF=,∴CF==,∴AF=,∵△ADF∽△ABC,∴=,∴DF=,∴△DEF的周长的最小值=3+3+=.故答案为:.5.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB =AC,顶角A的正对记作sadA,这时sadA=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=1.(2)sad90°=.(3)如图②,已知sin A=,其中∠A为锐角,试求sadA的值.解:(1)sad60°=1;(2)sad90°=;(3)设AB=5a,BC=3a,则AC=4a,在AB上取AD=AC=4a,作DE⊥AC于点E,如图所示:则DE=AD•sin A=4a•=,AE=AD•cos A=4a•=,CE=4a﹣=,a,∴sadA=.6.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图①,△ABC是顶角为36°的等腰三角形,这个三角形的三分线已经画出,判断△DAB与△EBC是否相似:是(填“是”或“否”);(2)如图②,△ABC中,AC=2,BC=3,∠C=2∠B,则△ABC的三分线的长为和.解:(1)是,故答案为:是;(2)如图3所示,CD、AE就是所求的三分线.设∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α,此时△AEC∽△BDC,△ACD∽△ABC,设AE=AD=x,BD=CD=y,∵△AEC∽△BDC,∴x:y=2:3,∵△ACD∽△ABC,∴2:x=(x+y):2,所以联立得方程组,解得,即三分线长分别是和.故答案为:和.7.概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角开中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念:(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用:(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.动手操作:(3)在△ABC中,若∠A=50°,CD是△ABC的等角分割线,请求出所有可能的∠ACB 的度数.解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°﹣∠A﹣∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°﹣∠DCB﹣∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)当△ACD是等腰三角形,如图2,DA=DC时,∠ACD=∠A=50°,∴∠ACB=∠BDC=50°+50°=100°,当△ACD是等腰三角形,如图3,DA=AC时,∠ACD=∠ADC=65°,∠BCD=∠A=50°,∴∠ACB=50°+65°=115°,当△ACD是等腰三角形,CD=AC的情况不存在,当△BCD是等腰三角形,如图4,DC=BD时,∠ACD=∠BCD=∠B==,∴∠ACB=,当△BCD是等腰三角形,如图5,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°﹣2x,则∠ACD=∠B=180°﹣2x,由题意得,180°﹣2x+50°=x,解得,x=,∴∠ACD=180°﹣2x=,∴∠ACB=,综上所述:∠ACB的度数为100°或115°或或.8.定义:在△ABC中,若BC=a,AC=b,AB=c,a,b,c满足ac+a2=b2则称这个三角形为“类勾股三角形”.请根据以上定义解决下列问题:(1)命题:“直角三角形都是类勾股三角形”是假(填“真”或“假”)命题.(2)如图1所示,若等腰三角形ABC是“类勾股三角形”,AB=BC,AC>AB,请求∠A的度数.(3)如图2所示,在△ABC中,∠B=2∠A,且∠C>∠A,求证:△ABC为“类勾股三角形”.志明同学想到可以在AB上找一点D使得AD=CD,再作CE⊥BD,请你帮助志明完成证明过程.(1)解:在类勾股△ABC中,ab+a2=c2,在Rt△ABC中,∠C=90°,由勾股定理得:b2+a2=c2,∴ab+a2=b2+a2,∴a=b,∴当直角三角形是等腰直角三角形时,这个直角三角形是类勾股三角形,∴命题:“直角三角形都是类勾股三角形”是假命题,故答案为:假;(2)解:∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°;(3)证明:∵AD=CD,∴∠ACD+∠A,∴∠CDB=∠ACD+∠A=2∠A,∵∠B=2∠A,∴∠CDB=∠B,∴CD=CB=a,∵∠ACD=∠A,∴AD=CD=a,∴DB=AB﹣AD=c﹣a,∵CE⊥AB,∴DE=BE=(c﹣a),∴AE=AD+DE=a+(c﹣a)=(a+c),在Rt△ACE中,CE2=AC2﹣AE2=b2﹣[(c+a)]2,在Rt△BCE中,CE2=BC2﹣BE2=a2﹣[(c﹣a)]2,∴b2﹣[(a+c)]2=a2﹣[(c﹣a)]2,∴b2=ac+a2,∴△ABC是“类勾股三角形”.9.我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC中,AB=AC,的值为△ABC的正度.已知:在△ABC中,AB=AC,若D是△ABC边上的动点(D与A,B,C不重合).(1)若∠A=90°,则△ABC的正度为;(2)在图1,当点D在腰AB上(D与A、B不重合)时,请用尺规作出等腰△ACD,保留作图痕迹;若△ACD的正度是,求∠A的度数.(3)若∠A是钝角,如图2,△ABC的正度为,△ABC的周长为22,是否存在点D,使△ACD具有正度?若存在,求出△ACD的正度;若不存在,说明理由.解:(1)若∠A=90°,,则△ABC的正度为,故答案为:;(2)用尺规作出等腰△ACD,如图1,作AC的中垂线交AB于点D,交AC于点E.∴AD=CD,DE⊥AC,AC=2AE.∵△ACD的正度是,∴,∴,∴.在Rt△ADE中,设AD=x,AE=x,∴.∴DE=AE.∴△ADE是等腰直角三角形.∴∠A=45°.(3)存在点D,使△ACD具有正度.∵△ABC的正度为,△ABC的周长为22,∴.设AB=3x,BC=5x,则AC=3x.∵△ABC的周长为22,∴3x+5x+3x=22.∴x=2.∴AB=6,AC=6,BC=10,作AH⊥BC于H,则BH=CH=5,∴AH=.①当AD=DC时,如图2所示,设AD=DC=y,则HD=5﹣y,由AH2+HD2=AD2,得11+(5﹣y)2=y2.解得y=,即AD=.∴△ACD的正度为.②当AC=DC=6时,如图3所示,DH=DC﹣CH=6﹣5=1,∴DA=.∴△ACD的正度为.综上所述,△ACD的正度为或.10.定义:一个内角等于另一个内角两倍的三角形,叫做“倍角三角形”.(1)下列三角形一定是“倍角三角形”的有②③(只填写序号).①顶角是30°的等腰三角形;②等腰直角三角形;③有一个角是30°的直角三角形.(2)如图1,在△ABC中,AB=AC,∠BAC≥90°,将△ABC沿边AB所在的直线翻折180°得到△ABD,延长DA到点E,连接BE.①若BC=BE,求证:△ABE是“倍角三角形”;②点P在线段AE上,连接BP.若∠C=30°,BP分△ABE所得的两三角形中,一个是等腰三角形,一个是“倍角三角形”,请直接写出∠E的度数.(1)解:若顶角是30°的等腰三角形,∴两个底角分别为75°,75°,∴顶角是30°的等腰三角形不是“倍角三角形”,若等腰直角三角形,∴三个角分别为45°,45°,90°,∵90°=2×45°,∴等腰直角三角形是“倍角三角形”,若有一个是30°的直角三角形,∴另两个角分别为60°,90°,∵60°=2×30°,∴有一个30°的直角三角形是“倍角三角形”,故答案为:②③;(2)①证明:∵AB=AC,∴∠ABC=∠ACB,∵将△ABC沿边AB所在的直线翻折180°得到△ABD,∴∠ABC=∠ABD,∠ACB=∠ADB,BC=BD,∴∠BAE=2∠ADB,∵BE=BC,∴BD=BE,∴∠E=∠ADB,∴∠BAE=2∠E,∴△ABE是“倍角三角形”;②解:由①可得∠BAE=2∠BDA=2∠C=60°,如图,若△ABP是等腰三角形,则△BPE是“倍角三角形”,∴△ABP是等边三角形,∴∠APB=60°,∴∠BPE=120°,∵△BPE是“倍角三角形”,∴∠BEP=2∠EBP或∠PBE=2∠BEP,∴∠BEP=20°或40°;若△BPE是等腰三角形,则△ABP是“倍角三角形”,∴∠ABP=∠BAP=30°或∠APB=∠BAE=30°或∠ABP=2∠APB或∠APB=2∠ABP,∴∠APB=90°或30°或40°或80°,∴∠BPE=90°或150°或140°或100°,∵△BPE是等腰三角形,∴∠BEP=45°或15°或20°或40°,综上所述:∠BPE的度数为45°或15°或20°或40°.11.定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S N.①若△DEF的面积为10000,当n为何值时,2<S n<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)②当n>1时,请写出一个反映S n﹣1,S n,S n+1之间关系的等式.(不必证明)解:(1)如图:割线CD就是所求的线段.理由:∵∠B=∠B,∠CDB=∠ACB=90°,∴△BCD∽△ACB.(2)①△DEF经N阶分割所得的小三角形的个数为,∴S n=.当n=5时,S5=≈9.77,当n=6时,S6=≈2.44,当n=7时,S7=≈0.61,∴当n=6时,2<S6<3.②S n2=S n﹣1×S n+1.12.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的所有“好点”点D;(2)△ABC中,BC=7,,tan C=1,点D是BC边上的“好点”,求线段BD 的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连结CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.解:(1)如图1,斜边AB的中点D与斜边AB上的高CD'的垂足D'均为AB边长的“好点”.(2)如图2,作AE⊥BC于E,在Rt△ABE中,tan B=,∴设AE=3a,BE=4a,tan C=,∴CE=AE=3a,∴3a+4a=7,∴a=1,∴AE=CE=3,BE=4,∴AB=5,设BD=x,∴DE=|4﹣x|,在Rt△ADE中,由勾股定理得,AD2=DE2+AE2=(4﹣x)2+32,∵点D是BC边上的“好点”,∴AD2=BD•CD=x•(7﹣x),∴x•(7﹣x)=(4﹣x)2+32,∴x1=5,x2=,即BD=5或.(3)如图3,①证明:∵点H是△BCD中CD边上的“好点”,∴BH2=CH•HD,∵∠CAB=∠CBD,∠ACD=∠ABD,∴△ACH∽△DBH,∴,∴CH•HD=AH•BH,∴BH2=AH•BH,∴AH=BH,∴OH⊥AB;②连接AD,设OH=a,则OA=3a,由①知,OH⊥AB,又∵OH∥BD,∴BD⊥AB,∴∠ABD=90°,∴AD是⊙O的直径,∴OA=OD=3a,在Rt△AOH中,由勾股定理得,AH=,∵AH=BH=,OA=OD,∴BD=2a,在Rt△BDH中,由勾股定理得,DH==,由BH2=CH•DH得:,∴CH=,∴.13.定义1:如图1,若点H在直线l上,在l的同侧有两条以H为端点的线段MH、NH,满足∠1=∠2,则称MH和NH关于直线l满足“光学性质”;定义2:如图2,在△ABC中,△PQR的三个顶点P、Q、R分别在BC,AC、AB上,若RP和QP关于BC满足“光学性质”,PQ和RQ关于AC满足“光学性质”,PR和QR关于AB满足“光学性质”,则称△PQR为△ABC的光线三角形.阅读以上定义,并探究问题:在△ABC中,∠A=30°,AB=AC,△DEF三个顶点D、E、F分别在BC、AC,AB上.(1)如图3,若FE∥BC,DE和FE关于AC满足“光学性质”,求∠EDC的度数;(2)如图4,在△ABC中,作CF⊥AB于F,以AB为直径的圆分别交AC,BC于点E,D.①证明:△DEF为△ABC的光线三角形;②证明:△ABC的光线三角形是唯一的.(1)解:如图3中,∵AB=AC,∠A=30°,∴∠B=∠C=75°,∵EF∥CB,∴∠AEF=75°,∵DE和FE关于AC满足“光学性质”,∴∠AEF=∠DEC=75°,∴∠EDC=180°﹣∠DEC﹣∠DCE=180°﹣75°﹣75°=30°;(2)①证明:如图4中,∵AB=AC,∠A=30°,∴∠B=∠ACB=75°,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∴BD=CD,∠BAD=∠CAD,∴=,∴BD=DE,∵CF⊥AB,∴∠CFB=90°,∵DB=DC,∴DF=DB=DC,∴DF=DB=DE=DC,∴∠B=∠DFB=75°,∠DCE=∠DEC=75°,∴∠FDB=∠EDC=30°,∴DF,DE关于BC满足光学性质,∵∠DEF=180°﹣30°﹣30°=120°,DE=DF,∴∠DEF=∠DFE=30°,∴∠DEF=∠EDC,∴EF∥BC,∴∠AEF=∠ACB=75°,∠AFE=∠B=75°,∴∠AFE=∠DFB=75°,∠AEF=∠DEC=75°,∴FE,DE关于AC满足光学性质,EF,DF关于AB满足光学性质,∴△DEF是为△ABC的光线三角形;②证明:由①可知,DE=DF=DB=DC,∠EDF=120°,∴△DFE是顶角为120°,腰长为BC的一半的等腰三角形,∴△DEF是唯一确定的,∴△ABC的光线三角形是唯一的.14.新定义:顶角相等且顶角顶点重合的两个等腰三角形互为“兄弟三角形”.(1)如图①中,若△ABC和△ADE互为“兄弟三角形”,AB=AC,AD=AE.写出∠BAD,∠BAC和∠BAE之间的数量关系,并证明.(2)如图②,△ABC和△ADE互为“兄弟三角形”,AB=AC,AD=AE,点D、点E 均在△ABC外,连接BD、CE交于点M,连接AM,求证:AM平分∠BME.(3)如图③,若AB=AC,∠BAC=∠ADC=60°,试探究∠B和∠C的数量关系,并说明理由.(1)解:∠BAD+∠BAC=∠BAE,理由如下:∵△ABC和△ADE互为“兄弟三角形”,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠CAE=∠BAD,∴∠BAD+∠BAC=∠CAE+∠BAC=∠BAE;(2)证明:如图②,过点A作AG⊥DM于G,AH⊥EM于H,∵△ABC和△ADE互为“兄弟三角形”,∴∠BAC=∠DAE,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠CAE=∠BAD,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∵AG⊥DM,AH⊥EM,∴AG=AH,∵AG⊥DM,AH⊥EM,∴AM平分∠BME.(3)∠B+∠C=180°,理由如下:如图③,延长DC至点P,使DP=AD,∵∠ADP=60°,∴△ADP为等边三角形,∴AD=AP,∠DAP=60°,∵∠BAC=60°,∴∠BAD=∠CAP,在△BAD和△CAP中,,∴△BAD≌△CAP(SAS),∴∠B=∠ACP,∵∠ACD+∠ACP=180°,∴∠B+∠ACD=180°.15.我们定义:三角形中,如果有一个角是另一个角的2倍,那么称这个三角形是2倍角三角形.(1)定义应用如果一个等腰三角形是2倍角三角形,则其底角的度数为45°或72°;(2)性质探索小思同学通过从“特殊到一般”的过程,对2倍角三角形进行研究,得出结论:如图1,在△ABC中,如果∠A=2∠B,那么BC2=AC(AB+AC).下面是小思同学对其中一种特殊情形的证明方法.已知:如图2,在△ABC中,∠A=90°,∠B=45°.求证:BC2=AC(AB+AC).证明:如图2,延长CA到D,使得AD=AB,连接BD.∴∠D=∠ABD,AB+AC=AD+AC=CD∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°∴∠D=45°,∵∠ABC=45°,∴∠D=∠ABC,又∠C=∠C∴△ABC∽△BCD∴∴BC2=AC•CD∴BC2=AC(AB+AC)根据上述材料提供的信息,请你完成下列情形的证明:已知:如图1,在△ABC中,∠A=2∠B.求证:BC2=AC(AB+AC).(3)性质应用已知:如图3,在△ABC中,∠C=2∠B,AB=12,BC=10,则AC=8;(4)拓展应用已知:如图4,在△ABC中,∠ABC=3∠A,AC=6,BC=4,求AB的长.(1)解:当等腰三角形的内角分别为x,x,2x时,4x=180°,解得x=45°,当等腰三角形的内角分别为x,2x,2x时,5x=180°,解得x=36°,2x=72°,∴底角的度数为45°或72°,故答案为45°或72°;(2)如图1,作AD平分∠BAC,交BC于D,∴∠BAC=2∠DAC=2∠BAD,∵∠BAC=2∠B,∴∠ABC=∠DAC=∠BAD,∴BD=AD,∵∠ABC=∠DAC,∠ACD=∠ACB,∴△ACD∽△BCA,∴,∴AC2=BC•CD,AC•AB=BC•AD=BC•BD,∴AC2+AC•AB=BC•CD+BC•BD=BC•(BD+CD),∴BC2=AC(AC+AB).(3)由性质探索可知:AB2=AC(BC+AC),∴AC2+10AC﹣144=0,解得AC=8或﹣18(舍弃).故答案为8;(4)如图3,作∠CBD=∠A,交AC于点D,则∠ABD=2∠A,∴△ABD是2倍角三角形.∴AD2=BD(BD+AB),∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=3∠A,∴∠BDC=∠ABC=3∠A,又∵∠C=∠C,∴△CBD∽△CAB,∴,∴CD=,,∴AD=AC﹣CD=,设BD=2x,则AB=3x,∴()2=2x(2x+3x),∴x=或x=﹣(不合题意舍去),∴AB=3x=.16.在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),这个点中,能与点O组成“和谐三角形”的点是A、B,“和谐距离”是2;(2)连接BD,点M,N是BD上任意两个动点(点M,N不重合),点E是平面内任意一点,△EMN是以MN为“和谐边”的“和谐三角形”,求点E的横坐标t的取值范围;(3)已知⊙O的半径为2,点P是⊙O上的一动点,直线y=−x+b与x轴、y轴分别交于点H、G,点Q是线段HG上一点,若存在△OPQ是“和谐三角形”,且“和谐距离”是2,直接写出b的取值范围.解:(1)根据题意得,当A(2,0),B(0,4)与原点O构成三角形时,AB边上的中线等于AB边的一半,即点A、B能与点O组成“和谐三角形”,∵AB==2,∴“和谐距离”是,故答案为:A、B,;(2)根据题意作图如下:以BD为直径,线段BD的中点为圆心,过圆心作x轴的平行线交圆于点E和点E',点E和E'在图中位置时为t的临界值,∵BD==5,A(2,0),∴点E的横坐标为2﹣=﹣,点E'的横坐标为+2=,∴﹣;(3)当PQ为和谐边时,∠POQ=90°,∵“和谐距离”是2,设PQ的中点为F,∴OF=2,PQ=4,∴OQ==2,∴点Q在以O为圆心,2为半径的圆上,∵直线y=﹣x+b与x轴、y轴分别交于点H、G,∴当直线GH与点Q所在的圆相切于点Q时,b取最值,∴GH=2OQ=4,∴OG=OH=4×sin45°=2,当点Q在y轴上时,即点G处时,|b|=2,∴b的取值范围是:2≤b≤2或﹣2≤b≤﹣2;当OQ为和谐边时,∠OPQ=90°,∵“和谐距离”是2,设PQ的中点为F',则点Q在以O为圆心,4为半径的圆上,即OQ=4,当直线GH与该圆相切时,GH=8,∴OG=8×sin45°=4,当点Q在y轴上时,即点G处时,|b|=4,∴b的取值范围是:4≤b≤4或﹣4≤b≤﹣4;当OQ为和谐边时,∠OQP=90°,∵OP=2,∴OP边上的中线不可能是2,即“和谐距离”不为2,不符合题意;综上,b的取值范围为:2≤b≤2或﹣2≤b≤﹣2或4≤b≤4或﹣4≤b≤﹣4.17.定义:若连结三角形一个顶点和对边上一点的线段能把该三角形分成一个等腰三角形和一个直角三角形,我们称这条线段为该三角形的智慧线,这个三角形叫做智慧三角形.(1)如图1,在智慧三角形ABC中,AD⊥BC,AD为该三角形的智慧线,CD=1,AC =,则BD长为2,∠B的度数为45°.(2)如图2,△ABC为等腰直角三角形,∠BAC=90°,F是斜边BC延长线上一点,连结AF,以AF为直角边作等腰直角三角形AFE(点A,F,E按顺时针排列),∠EAF =90°,AE交BC于点D,连结EC,EB.当∠BDE=2∠BCE时,求证:ED是△EBC 的智慧线.(3)如图3,△ABC中,AB=AC=5,BC=.若△BCD是智慧三角形,且AC为智慧线,求△BCD的面积.(1)解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵CD=1,AC=,∴AD===2,∵△ABC是智慧三角形,∴△ADB是等腰直角三角形,∴BD=AD=2,∠B=45°,故答案为:2,45°(2)证明:如图2中,∵∠BAC=∠EAF=90°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠ABC=∠ACB=45°,∴∠ABE=∠ACF=135°,∴∠EBD=90°,∵∠BDE=∠DCE+∠DEC,∠BDE=2∠DCE,∴∠DCE=∠DEC,∴DE=DC,∴△DEC是等腰三角形,∵△EDB是直角三角形,∴△BEC是智慧三角形;(3)解:如图3中,过点A作AH⊥BC于点H.有两种情形:当CD⊥BD时,或当CD′⊥AC时,△BCD,△BCD′是智慧三角形.∵AB=AC=5,AH⊥BC,∴BH=CH=2,∴AH===,=•BC•AH=•AB•CD,∵S△ABC∴CD==4,∴AD===3,=•BD•CD=×8×4=16,∴S△BCD∵∠ACD′=90°,∠ADC=∠CDD′=90°,∴∠ACD+∠DCD′=90°,∠CAD+∠ACD=90°,∴∠CAD=∠DCD′,∴△ADC∽△CDD′,∴=,∴=,∴DD′=,∴BD′=BD+DD′=8+=,∴S=××4=,△CBD′解法二:设CD′=x,DD′=y,则有,解得,=××4=,可得S△CBD′综上所述,满足条件的△BCD的面积为16或.18.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三=S△BCD.角形”,并且S△ACD应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE =BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=8,点D在线段AB上,连接CD,△ACD和△BCD 是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC 重合部分的面积等于△ABC面积的,求出△ABC的面积.应用:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)解:∵△AOE和△DOE是友好三角形,=S△DOE,AE=ED=AD=3,∴S△AOE∵△AOB与△AOE是友好三角形,=S△AOE,∴S△AOB∵△AOE≌△FOB,=S△FOB,∴S△AOE=S△ABF,∴S△AOD=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.∴S四边形CDOF探究:解:分为两种情况:①如图1,=S△BCD.∵S△ACD∴AD=BD=AB=4,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×8=4,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,=S△ABC=S△BDC=S△ADC=S△A′DC,∴S△DOC∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=4,过B作BM⊥AC于M,∵AB=8,∠BAC=30°,∴BM=AB=4=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==4,∴△ABC的面积是×BC×AC=×4×4=8;②如图2,=S△BCD.∵S△ACD∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×8=4,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,=S△ABC=S△BDC=S△ADC=S△A′DC,∴S△DOC∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=4,过C作CQ⊥A′D于Q,∵A′C=4,∠DA′C=∠BAC=30°,∴CQ=A′C=2,=2S△ADC=2S△A′DC=2××A′D×CQ=2××4×2=8;∴S△ABC即△ABC的面积是8或8.19.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A=20°;(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=4.若BD是∠ABC的平分线,①求证:△BDC是“近直角三角形”;②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连结AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求AD的长.解:(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°,故答案为20;(2)①如图1,设∠ABD=∠DBC=β,∠C=α,则α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在边AC上是否存在点E(异于点D),使得△BCE是“近直角三角形”,AB=3,AC=4,则BC=5,则∠ABE=∠C,则△ABC∽△AEB,即,即,解得:AE=,则CE=4﹣=;(3)①如图2所示,连接DE,当∠ACB+2∠DBC=90°时,又∵∠ACB+∠ABC=90°,∴∠ABD=∠DBC=β,∴AD=DE,∵BD是直径,∴∠BAD=∠BED=90°,∴∠ADB=∠BDE,∴AB=BE,∴BD垂直平分AE,∴BF===4,∵∠DAE=∠DBE=∠ABD,∠AFD=∠AFB=90°,∴△ADF∽△BAF,∴=,∴=,∴AD=;②如图3所示,当2∠C+∠DBC=90°时,又∵∠DBC+∠C+∠ABD=90°,∴∠ABD=∠C=β,过点A作AH⊥BE交BE于点H,交BD于点G,则点G是圆的圆心(BE的中垂线与直径的交点),∵∠AEB=∠DAE+∠C=α+β=∠ABC,∴AE=AB=5,∴EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,则AF:EF=AG:DE=3:2,则DE=2k,则AG=3k=R(圆的半径)=BG,点H是BE的中点,则GH=DE=k,在△BGH中,BH===2k,∵AG=3k,GH=k,∴AH=4k,∵∠C+∠ABC=90°,∠ABC+∠BAH=90°,∴∠C=∠BAH,∴tan C=tan∠BAH=tan∠ABD==,∴,∴AD=,综上所述:AD的长为或.20.爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN 是ABC的中线,AM⊥BN于点P,像ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当∠PAB=45°,c=时,a=4,b=4;如图2,当∠PAB=30°,c=2时,a2+b2=20;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF 的长.解:(1)在Rt△APB中,∠PAB=45°,c=,则PA=PB=c=4,∵M、N分别为CB、CA的中点,∴MN=AB=2,MN∥AB,∴△APB∽△MPN,∴===,∴PM=PN=2,∴BM==2,∴a=2BM=4,同理:b=2AN=4,如图2,连接MN,在Rt△APB中,∠PAB=30°,c=2,∴PB=c=1,∴PA==,∴PN=,PM=,∴BM==,AN==,∴a=,b=,∴a2+b2=20,故答案为:4;4;20;(2)a2+b2=5c2,理由如下:如图3,连接MN,设PN=x,PM=y,则PB=2PN=2x,PA=2PM=2y,∴BM==,AN==,∴a=2,b=2,∴a2+b2=20(x2+y2),∵c2=PA2+PB2=4(x2+y2),∴a2+b2=5c2;(3)取AB的中点H,连接FH并延长交DA的延长线于点P,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴△AHP∽△BHF,∴==1,∴AP=BF,∵AD=3AE,BC=3BF,AD=3,∴AE=BF=,∴PE=FC,∴四边形PFCE为平行四边形,∵BE⊥CE,∴BG⊥FH,∵AE∥BF,AE=BF,∴AG=GF,∴△ABF为“中垂三角形”,∴AB2+AF2=5BF2,即32+AF2=5×()2,解得:AF=4.21.定义:若△ABC中,其中一个内角是另一个内角的一半,则称△ABC为“半角三角形”.(1)若Rt△ABC为半角三角形,∠A=90°,则其余两个角的度数为45°,45°或30°,60°.(2)如图1,在▱ABCD中,∠C=72°,点E在边CD上,以BE为折痕,将△BCE向上翻折,点E恰好落在AD边上的点F,若BF⊥AD,求证:△EDF为半角三角形;(3)如图2,以△ABC的边AB为直径画圆,与边AC交于M,与边BC交于N,已知△ABC的面积是△CMN面积的4倍.①求证:∠C=60°.②若△ABC是半角三角形,直接写出∠B的度数.解:(1)∵Rt△ABC为半角三角形,∠A=90°,∴∠B=∠C=45°,或∠B=60°,∠C=30°或∠B=30°,∠C=60°,∴其余两个角的度数为45°,45°或30°,60°,故答案为45°,45°或30°,60°.(2)如图1中,∵平行四边形ABCD中,∠C=72°,∴∠D=108°,由翻折可知:∠EFB=72°,∵BF⊥AD,∴∠EFD=18°,∴∠DEF=54°,∴∠DEF=∠D,即△DEF是半角三角形.(2)①如图2中,连接AN.∵AB是直径,∴∠ANB=90°,∵∠C=∠C,∠CMN=∠B,∴△CMN∽△CBA,∴()2=,即=,在Rt△ACN中,sin∠CAN==,∴∠CAN=30°,∴∠C=60°.②∵△ABC是半角三角形,∠C=60°,∴∠B=30°或40°或80°或90°.22.定义:若两个三角形有一对公共边,且另有一组对应边和一对对应角分别对应相等,那么这两个三角形称为邻等三角形.例如:如图1,△ABC中,AD=AD,AB=AC,∠B=∠C,则△ABD与△ACD是邻等三角形.(1)如图2,⊙O中,点D是的中点,那么请判断△ABD与△ACD是否为邻等三角形,并说明理由.(2)如图3,以点A(2,2)为圆心,OA为半径的⊙A交x轴于点B(4,0),△OBC 是⊙A的内接三角形,∠COB=30°.①求∠C的度数和OC的长;②点P在⊙A上,若△OCP与△OBC是邻等三角形时,请直接写出点P的坐标.解:(1)△ABD与△ACD是邻等三角形,理由如下:∵点D是的中点,∴BD=CD,∠BAD=∠CAD,∵AD=AD,∴△ABD与△ACD是邻等三角形.(2)①如图2,作AH⊥OB,连接AO,AB,∵OA=OB,∴OH=BH,∵点A的坐标是(2,2),∴AH=OH=BH=2,∴∠OAB=90°,∴∠C=∠OAB=45°,作BK⊥OC,在Rt△BOK中,OB=4,∠BOK=30°,∴BK=2,OK=2,在Rt△BKC中,∠C=45°,。

2019年高考数学(文)一轮复习精品资料:专题20正弦定理和余弦定理(教学案)含解析

2019年高考数学(文)一轮复习精品资料:专题20正弦定理和余弦定理(教学案)含解析

2019年高考数学(文)一轮复习精品资料1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理 内容sin A a =sin B b =sin C c=2Ra 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见 变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =2R a ,sin B =2R b ,sin C =2R c; (3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A , b sin C =c sin B ,a sin C =c sin A cos A =2bc b2+c2-a2; cos B =2ac c2+a2-b2;cos C =2ab a2+b2-c22. 三角形中常用的面积公式(1)S =21ah(h 表示边a 上的高). (2)S =21bcsinA =21acsinB =21absinC.(3)S =21r(a +b +c)(r 为三角形的内切圆半径). 3.在△ABC 中,已知a ,b 和A 时,三角形解的情况4.重要结论在△ABC 中,常有以下结论(1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin 2A +B =cos2C ;cos 2A +B=sin2C .(5)tan A +tan B +tan C =tan A ·tan B ·tan C . (6)∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________. 【答案】32π(2)[2017·全国卷Ⅱ]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________. 【答案】3π【解析】由2b cos B =a cos C +c cos A 及正弦定理, 得2sin B cos B =sin A cos C +sin C cos A . ∴2sin B cos B =sin(A +C ). 又A +B +C =π,∴A +C =π-B . ∴2sin B cos B =sin(π-B )=sin B . 又sin B ≠0,∴cos B =21.∴B =3π. ∵在△ABC 中,a cos C +c cos A =b , ∴条件等式变为2b cos B =b ,∴cos B =21. 又0<B <π,∴B =3π.【变式探究】(1)在△ABC 中,已知a =2,b =,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定(2)在△ABC 中,已知sin A ∶sin B =∶1,c 2=b 2+bc ,则三内角A ,B ,C 的度数依次是________. (3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =,sin B =21,C =6π,则b =________. 【答案】(1)B (2)45°,30°,105° (3)1【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断.②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.【变式探究】(1)已知在△ABC中,a=x,b=2,B=45°,若三角形有两解,则x的取值范围是()A.x>2 B.x<2C.2<x<2 D.2<x<2(2)在△ABC中,A=60°,AC=2,BC=,则AB=________.【答案】(1)C(2)1高频考点二利用正弦、余弦定理判定三角形的形状例2、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定 【答案】B【解析】∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴A =2π,故△ABC 为直角三角形. 【方法技巧】判定三角形形状的两种常用途径(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断. (2)利用正弦定理、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.提醒 在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.【变式探究】在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =4π,b 2-a 2=21c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=21c 2及正弦定理得sin 2B -21=21sin 2C .【感悟提升】(1)对于面积公式S =21ab sin C =21ac sin B =21bc sin A ,一般是已知哪一个角就使用哪一个公式. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .② 由①②得cos C =21,BD =, 因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积 S =21AB ·DA sin A +21BC ·CD sin C =×3×21sin60°=2.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定【答案】B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论.(2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =32,AB =3,AD =3,则BD 的长为______.【答案】(1)D (2)【解析】(1)∵c -a cos B =(2a -b )cos A , C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,高频考点三 和三角形面积有关的问题【例3】[2017·全国卷Ⅰ]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为3sinA a2. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得21ac sin B =3sinA a2,即21c sin B =3sinA a. 由正弦定理得21sin C sin B =3sinA sinA. 故sin B sin C =32.(2)由题设及(1)得cos B cos C -sin B sin C =-21, 即cos(B +C )=-21.所以B +C =32π,故A =3π.由题意得21bc sin A =3sinA a2,a =3,所以bc =8. 由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =.故△ABC 的周长为3+.【变式探究】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =,△ABC 的面积为23,求△ABC 的周长.【方法规律】三角形面积公式的应用原则(1)对于面积公式S =21ab sin C =21ac sin B =21bc sin A ,一般是已知哪一个角就使用哪一个公式. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.解 (1)根据正弦定理,(2a -b )cos C -c cos B =0可化为(2sin A -sin B )cos C -sin C cos B =0.整理得2sin A cos C =sin B cos C +sin C cos B =sin(B +C )=sin A . ∵0<A <π,∴sin A ≠0,∴cos C =21. 又∵0<C <π,∴C =3π.(2)由(1)知cos C =21,又a +b =13,c =7,∴由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =169-3ab =49,解得ab =40. ∴S △ABC =21ab sin C =21×40×sin 3π=10.高频考点四 利用均值不等式破解三角函数最值问题例4、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2(tan A +tan B )=cosB tanA +cosA tanB. (1)证明:a +b =2c ;(2)求cos C 的最小值.【变式探究】已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c tan C =(a cos B +b cos A ).(1)求角C ;(2)若c =2,求△ABC 面积的最大值.解 (1)∵c tan C =(a cos B +b cos A ),∴sin C tan C =(sin A cos B +sin B cos A ),∴sin C tan C =sin(A +B )=sin C ,∵0<C <π,∴sin C ≠0, ∴tan C =,∴C =3π.(2)∵c =2,C =3π,由余弦定理c 2=a 2+b 2-2ab cos C ,得12=a 2+b 2-ab ≥2ab -ab , ∴ab ≤12,∴S △ABC =21ab sin C ≤3,当且仅当a =b =2时,△ABC 的面积取得最大值3.1. (2018年全国III 卷)的内角,,的对边分别为,,.若的面积为,则A. B. C. D.【答案】C【解析】由题可知,所以由余弦定理,所以,,故选C.2. (2018年浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =,b =2,A =60°,则sin B =___________,c =___________.【答案】 (1).(2). 33. (2018年全国I卷)△的内角的对边分别为,已知,,则△的面积为________.【答案】【解析】根据题意,结合正弦定理,可得,即,结合余弦定理可得,所以A为锐角,且,从而求得,所以△的面积为。

非学科数学学培训 -三角函数的概念及其简单计算

非学科数学学培训 -三角函数的概念及其简单计算

自学资料一、解直角三角形【知识探索】1.解直角三角形的类型与解法:类型一︰已知一边一角(角为两锐角之一)第1页共11页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训类型二︰已知两边(两直角边或一条直角边与斜边)【解题技巧】计算边时,可以用以下口诀来解题:有斜求对乘正弦,有斜求邻乘余弦,无斜求对乘正切,无斜求邻乘余切.【错题精练】例1.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A. 3sin40°B. 3sin50°C. 3tan40°D. 3tan50°第2页共11页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第3页 共11页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例2.如图,△ABC 中,∠ACB =90°,sinA =45,BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为点E .(1)求线段CD 的长; (2)求cos∠ABE 的值.例3.某楼梯的侧面如图所示,其中∠A =Rt∠BAC ,测得AB =2.5米,AC =6米,则tan∠ACB 等于( )A. 513; B. 1213; C.125; D. 512.例4.如图,AD 是△ABC 的中线,tanB =13,cosC =√22,AC =√2.求:(1)BC 的长;(2)尺规作图(保留作图痕迹,不写作法):作出△ABC 的外接圆,并求外接圆半径.例5.如图,四边形ABCD 中,∠ABC =Rt∠,已知∠A =α,外角∠DCE =β,BC =a ,CD =b ,则下列结论错误的是( )A. ∠ADC =90∘−α+β;B. 点D 到BE 的距离为b ⋅sinβ;C. AD=a+b⋅cosB;cosαD. 点D到AB的距离为a+bcosβ.例6.如图,AB是⊙O的直径,BE⊥CD于E.(1)求证:AB⋅BE=BC⋅BD;(2)若AB=26,CD=24,求sin∠CBD.【举一反三】1.在△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线与∠BAC的外角平分线交于点D,连结BD,则tan∠BDC的值是(); B. √3;A. √33C. √2; D. 1.22.如图,一根长为10米的竹竿AB斜靠在垂直于地面的墙上(∠O=90∘),竹竿AB的倾斜角为α.当竹竿的顶端A下滑到点A′时,竹竿的另一端B向右滑到了点B′,此时倾斜角为β,则线段AA′的长为10(sinα−sinβ)米.当竹竿AB滑到A′B′位置时,AB的中点P滑到了A′B′的中点P′位置,则点P所经过的路线长为米.(两空格均用含α、的式子表示)3.在Rt△ABC中,∠C=90∘,若AB=4,sinA=3,则斜边AB边上的高CD的长为.5第4页共11页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训4.如图,cosB=,sinC=,AC=10,则△ABC的面积是()A. 42B. 43C. 44D. 455.△ABC中,AB=AC,且AB=10,BC=12,则sin∠ABC=()A. 43; B. 34;C. 45; D. 35.6.如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为4,△ABC的顶点都在格点.(1)求每个小矩形的长与宽;(2)在矩形网格中找出所有的格点E,使△ABE为直角三角形;(描出相应的点,并分别用E1,E2…表示)(3)求sin∠ACB的值.二、锐角三角函数的定义【知识探索】1.对于锐角的每一个确定的值,有唯一确定的值与它对应,所以是的函数.同样地,、也是的函数.的正弦、余弦、正切都是的锐角三角函数(trigonometric function of acute angle).【错题精练】第5页共11页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例1.如图,△ABC的顶点都在方格纸的格点上,则sinA的值是()A.B.C.D.例2.在正方形网格中,∠α的位置如图所示,则tanα的值是()A.B.C.D. 2例3.已知,在Rt△ABC中,∠C=90°,AB=,AC=1,那么∠A的正切tanA等于()A.B. 2C.D.【举一反三】1.在Rt中,°,AC=12,BC=5,则sinA的值为__________ 。

3.7正弦定理和余弦定理

3.7正弦定理和余弦定理
1 sin C=1∶ 3 ∶ ,即a∶b∶c=2∶ 3 ∶1. 2
2
3.在△ABC中,a=15,b=10,A=60°,则cos B等于(
6 6 D. 3 3 15 10 【解析】选D.因为 a = b , 所以 = , sin 60 sin B sin A sin B 所以sin B= 2 3 = 3 . 3 2 3 A.- B. C.- 2 2 3 2 2 3
)
又因为a>b,A=60°,所以B<60°, 所以cos B= 1 为角A,B,C所对的边,若a= 2bcos C,则此三角形一定是( A.等腰直角三角形 C.等腰三角形 )
B.直角三角形 D.等腰三角形或直角三角形
【解析】选C.因为a=2bcos C,所以由余弦定理得:a=
A. 3 B. 2 3 C. 3 4 D. 5 6
)
【解题视点】(1)根据锐角三角形三边关系,并结合余弦定理求 解. (2)将条件统一为边,然后把三边用一个量表示,最后根据余 弦定理求解.
1 3 a 2 2 2 【规范解答】(1)选B.若a是最大边,则 1 3 a , a>3, 所以3<a< 10 ; 1 a 3 2 2 2 若3是最大边,则 1 a 3 1<a<3, 所以2 2 <a<3;
2
解得c=2.
答案:2
6.(2014·长沙模拟)在△ABC中,内角A,B,C的对边分别为
a,b,c,若b2+c2-a2-bc=0,则A= 【解析】由b2+c2-a2-bc =0得 b2+c2-a2=bc,所以 所以A=60°. 答案:60°
b2 c2 a 2 1 cos A , 2bc 2
当a=3时符合题意,综上2 2 <a< 10 ,故选B.

(高中段)大题考法解三角形2

(高中段)大题考法解三角形2

又 B∈π6,π2,∴tan1 B∈(0, 3),∴c∈(1,4), ∵S△ABC=12bcsin A= 23c,∴S△ABC∈ 23,2 3. 故△ABC 面积的取值范围为 23,2 3.
题型通法点拨| 解三角形问题重在“变”——变角、变式 尽管解三角形的解答题起点低、位置前,但由于其公式多、性质繁,使得 不少同学对其有种畏惧感.突破此难点的关键在于“变”——变角与变式,从 “变角”来看,主要有:已知角与特殊角的变换、已知角与目标角的变换、角 与其倍角的变换、两角与其和差角的变换以及三角形内角和定理的变换运用, 如:α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α +β=2·α+2 β,α+2 β=α-β2-α2-β等.从“变式”来看,在解决解三角形的 问题时,常利用正、余弦定理化边为角或化角为边等.
(2)记∠ABM=α,则∠MBC=α. 在 Rt△MCB 中,BC=cos α, 在 Rt△ACB 中,cos∠ABC=BACB,即 cos 2α=co6s α, 即 2cos2α-1=co6s α,∴cos α=34或-23(舍去), ∴cos∠ABM=34.
2.(2020·郑州模拟)在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知(a -c)(sin A+sin C)=(b-c)sin B. (1)求角 A 的大小; (2)若 a=2bcos C,试判断△ABC 的形状并给出证明.
解:(1)∵(a-c)(sin A+sin C)=(b-c)sin B, ∴由正弦定理得(a-c)(a+c)=(b-c)b, ∴b2+2cb2c-a2=12,根据余弦定理知 cos A=12. 又∵角 A 为△ABC 的内角,∴A=π3.
(2)△ABC 为等边三角形.证明如下: ∵a=2bcos C, ∴由正弦定理得 sin A=2sin Bcos C. 由三角形内角和公式得 A=π-(B+C), 故 sin A=sin(B+C), ∴sin(B+C)=2sin Bcos C, 整理得 sin Bcos C-cos Bsin C=0, ∴sin(B-C)=0, 又 B-C∈(-π,π),∴B=C. 又由(1)知 A=π3,∴△ABC 为等边三角形.

怎样把一个钝角三角形分成若干个锐角三角形

怎样把一个钝角三角形分成若干个锐角三角形

怎样把一个钝角三角形分成若干个锐角三角形这是我最喜欢的几何谜题之一:你能否在纸上画一个钝角三角形,然后把它分割成若干个锐角三角形?令人难以置信的是,这竟然是可以办到的!继续看下去之前,大家不妨先自己想一会儿。

每次我在课堂上提出这个问题的时候,学生们总会疯狂而盲目地进行尝试。

根据我的观察,绝大多数人都会先画一个不那么钝的钝角三角形(其实这本质上并不会简化我们的问题),然后作出一系列类似于图 1 的尝试,但最后都以失败告终。

此时我往往会反复强调:要有方法啊,要有方法!首先,想必很多人已经注意到了,我们必须在钝角里引出一条线(如图 2 所示),这样才能把钝角给消除掉。

接下来,则是很少有人意识到的一点:我们不能让这条线一直延伸到对边,否则原三角形将会被分成一个锐角三角形和一个钝角三角形(或者两个直角三角形),这并不能解决根本问题。

也就是说,这条线在到达对边前就必须得分岔。

最后一个关键的问题就是,分成几岔?显然,分成三岔(如图 3 所示)是不够的,因为这样只能把一个周角分成四份,它们不可能都是锐角。

为了让所有的角都是锐角,我们至少要让这条线分成四岔(如图 4 所示)。

最后,再把一些没有连起来的点连起来,我们就得到一个像模像样的答案了(如图 5 所示)。

有的读者或许会说,等等,等等,你怎么敢肯定,图5 中的每个小三角形都是锐角三角形呢?其实,我也不敢肯定。

不过,我并没有说图 5 就是最终的答案。

为了证明确实有一个钝角三角形能被分成若干个锐角三角形,我们需要给出一个确凿的、能供他人进行验证的例子。

图 5 并不是一个确凿的例子,但它给我们提供了构造这种例子的思路,或者更贴切地说,构造这种例子的模板。

借助这个模板,我们很容易得到下面这种构造方案。

如图,首先,画一个正五边形ADEFG 。

然后,找出它的中心O ,将它分别与A 、 D 、 E 、 F 、G 相连。

最后,延长AD 和FE 并交于点 B ,延长AG 和EF 并交于点 C 。

高考数学 第四章 三角函数与解三角形 专题17 解三角形考场高招大全-人教版高三全册数学试题

高考数学 第四章 三角函数与解三角形 专题17 解三角形考场高招大全-人教版高三全册数学试题

专题十七解三角形考点37 正弦定理与余弦定理考场高招1 应用正、余弦定理的解题技巧1.解读高招技巧解读适合题型典例指引边化角将表达式中的边利用公式a=2R sin A,b=2R sinB,c=2R sin C化为角的关系等式两边是边的齐次形式典例导引1(1)角化边将表达式中的角利用公式转化为边,出现角的正弦值用正弦定理转化,出现角的余弦值由余弦定理转化等式两边是角的齐次形式、a2+b2-c2=λab形式典例导引1(2)和积互化a2=b2+c2-2bc cos A=(b+c)2-2bc(1+cos A).可联系已知条件,利用方程思想进行求解三角形的边出现b+c,bc等结构形式典例导引1(4)方积互化与重要不等式相联系,由b2+c2≥2bc,得a2=b2+c2-2bc cos A≥2bc-2bc cos A=2bc(1-cos A),可探求边或角的X围问题求边、角、面积等取值X围问题典例导引1(3)2.典例指引1(1)△ABC的三个内角A,B,C对边的长分别为a,b,c,若a sin A sin B+b cos2A=a,则等于()A.2B.2C.D.(2)在△ABC中,内角A,B,C的对边长分别为a,b,c,已知a2-c2=b,且sin(A-C)=2cos A sin C,则b等于()A.6B.4C.2D.1(3)已知△ABC的三边a,b,c成等比数列,a,b,c所对的角依次为A,B,C,则sin B+cos B的取值X围是()A. B. C.(1, ] D.(4)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足a sin B=b cos A.若a=4,则△ABC周长的最大值为(2)(角化边)由题意,得sin A cos C-cos A sin C=2cos A sin C,即sin A cos C=3cos A sin C,由正、余弦定理,得a·=3c·,整理得2(a2-c2)=b2.①又a2-c2=b, ②联立①②得b=2,故选C.(3)设y=sin B+cos B=sin.∵a,b,c成等比数列,∴b2=ac,∴cos B=,∴0<B<<sin≤1,1<sin,故选C.(4)由正弦定理,可将a sin B=b cos A化为sin A sin B=sin B cos A.∵在△ABC中,sin B>0,∴si n A=cos A,即tan A=.∵0<A<π,∴A=.由余弦定理,得a2=16=b2+c2-2bc cos A=(b+c)2-3bc≥(b+c)2-3,则(b+c)2≤64,即b+c≤8(当且仅当b=c=4时等号成立),所以△ABC的周长=a+b+c=4+b+c≤12,即最大值为12.【答案】 (1)D(2)C(3)C(4)123.亲临考场1.(2016某某,理3)在△ABC中,若AB= 13,BC=3,∠C=120°,则AC=()A.1B.2C.3D.4【答案】 A由余弦定理得13=9+AC2+3AC⇒AC=1.故选A.2.(2016课标Ⅱ,理13)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=.【答案】2113【解析】因为cos A=,cos C=,且A,C为△ABC的内角,所以sin A=,sin C=,sin B=sin[π-(A+C)]=sin(A+C)=sin A cos C+cos A sin C=.又因为,所以b=.3.(2015某某,理11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sin B=,C=,则b=.考点38 解三角形及其应用考场高招2 判断三角形形状问题的规律1.解读高招规律解读典例指引角化边利用正弦、余弦定理把已知条件转化为只含边的关系,从而判断三角形的形状典例导引2(1)边化角利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论典例导引2(2)温馨提醒注意在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解2.典例指引2(1)在△ABC中,角A,B,C的对边分别为a,b,c,若,(b+c+a)(b+c-a)=3bc,则△ABC的形状是() A.直角三角形 B.等腰非等边三角形C.等边三角形D.钝角三角形(2)已知△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若=2c ,则△ABC 的形状是()A.等边三角形B.锐角三角形C.等腰直角三角形D.钝角三角形(2)∵=2c ,∴由正弦定理可得=2sin C , 而≥2=2,当且仅当sin A=sin B 时取等号.∴2sin C ≥2,即sin C ≥1. 又sin C ≤1,故可得sin C=1,∴∠C=90°.又∵sin A=sin B ,∴A=B ,故三角形为等腰直角三角形,故选C. 【答案】 (1)C(2)C 3.亲临考场1.在△ABC 中,若sin B ·sin C =cos 2A2,且sin 2B +sin 2C =sin 2A ,则△ABC 是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【答案】D【解析】sin B ·sin C =1+cos A2,∴2sin B ·sin C =1+cos A =1-cos(B +C ), ∴cos(B -C )=1,∵B 、C 为三角形的内角,∴B =C ,又sin2B+sin2C=sin2A,∴b2+c2=a2,综上,△ABC为等腰直角三角形.2.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为( ) A.锐角三角形B.直角三角形C.钝角三角形D.不确定考场高招3 解三角形应用题的规律1.解读高招规律解读典例指引1实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解典例导引3(1)2 实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解典例导引3(2)温馨提醒解三角形应用题的一般步骤:分析(画出图形)——建模(建立解斜三角形模型)——解模(利用正余弦定理有序地求解)——检验(检验上述所求三角形是否有实际意义)2.典例指引3(1)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高度是60 m,则河流的宽度BC等于()A.240(-1) mB.180(-1) mC.120(-1) mD.30(+1) m(2)(2016某某某某一模)如图,为了测量河对岸A,B两点之间的距离,观察者找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到:CD=2,CE=2,∠D=45°,∠ACD=105°,∠ACB=48.19°,∠BCE=75°,∠E=60°,则A,B两点之间的距离为.(2)依题意知,在△ACD中,∠A=30°,由正弦定理得AC==2,在△BCE中,∠CBE=45°,由正弦定理得BC==3.∵在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC cos∠ACB=10,∴AB=.3.亲临考场1.(2017某某,11)我国古代数学家X徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.【答案】【解析】将正六边形分割为6个等边三角形,则S6=6×.2.(2015某某,理13)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.【答案】100考场高招4三角形与不等式相结合解题的规律1.解读高招方法解读典例指引利用三角形有解已知三角形的边a及对角A,求三角形有两解时边b的X围,根据b sinA<a<b,解出相应的不等式即可典例导引4(1)利用基本不等式余弦定理与重要不等式a2+b2≥2ab,三角形两个边的和与基本不等式a+b≥2,三角形面积公式与ab≤,通过这些结合点,求解X围问题,注意等号成立的条件典例导引4(2)利用函通过建立参数与已知角或边的关系,把角或边作为自变量,参数作为函典例导引数的值域数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利4(3)用条件中的X围限制,以及三角形自身X围限制2.典例指引4(1)(2017某某某某调研)在△ABC中,角A,B,C的对边分别是a ,b,c,若a=2b,△ABC的面积记作S ,则下列结论一定成立的是()A.B>30°B.A=2BC.c<bD.S≤b2(2)(2017某某某某、某某摸底联考)已知△ABC 中,角B, C,A成等差数列,且△ABC的面积为 ,则AB边的最小值是.(3)在等腰三角形ABC中,AB=AC,AC边上的中线BD长为6,则当△ABC的面积取得最大值时,AB的长为. 【解析】 (1)由a=2b,得sin A=2sin B ≤1,则sin B ≤,∵B不是最大角,∴B≤30°,故A错;sin A=2sin B与A=2B没有关系,故B错;若a=4,b=2,c=5,符合a=2b,但c>b,所以C错;三角形面积S=ab sin C=b2sin C≤b2,故选D.(2)∵B,C,A成等差数列,∴A+B=3C.又∵A+B+C=π,∴C=,由S△ABC=ab sin C=1+,得ab=2(2+).∵c2=a2+b2-2ab cos C=a2+b2-ab,a2+b2≥2ab,∴c2≥(2-)ab=4,解得c≥2,∴c的最小值为2.(3)根据题意,可设AB=AC=2x,则AD=x(2<x<6),由余弦定理,得cos A=,∴sin A=,∴S△ABC=AB·AC sin A=×4x2=2≤24,当x2=20,即x=2时等号成立,所以当△ABC的面积取得最大值时,AB的长为4.【答案】(1)D(2)2(3)43.亲临考场1.(2015课标Ⅰ,理16)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值X围是.【答案】()2.(2014课标Ⅰ,理16)已知a,b,c分别为△ABC三个内角A,B,C的对边, a=2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为【答案】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两招破解三角形解的个数问题 学了正、余弦定理后,不少同学为判断三角形的解的个数而烦恼,当三角形中已知两边和其中一边的对角时,可能出现一解、二解、无解等情况,虽然书上也有相应的方法,可是一些同学茫然依旧,下面提供“两招”供同学们选择,希望能帮助同学们顺利破解。

第一招:大角对大边 在已知三角形ABC 中的边长a ,b 和角A ,且已知a ,b 的大小关系,常利用正弦定理结合“大边对大角”来判断三角形解的个数,一般的做法如下,首先利用大边对大角,判断出角B 与角A 的大小关系,然后求出B 的值,根据三角函数的有界性求解。

例1. 在△ABC 中,已知3a =,2b =,︒=45B ,求A 、C 及c 。

解:由正弦定理,得
23245sin 3b B sin a A sin =︒==
, 因为︒<︒=9045B ,a b <,所以︒=60A 或︒120。

当︒=60A 时,︒=75C , 22645sin 75sin 2B sin C sin b c +=︒︒==

当︒=120A 时,︒=15C , 22645sin 15sin 2B sin C sin b c -=︒︒==。

点评:在三角形中,B sin A sin B A b a >⇔>⇔>这是个隐含条件,在使用时我们要注意挖掘。

第二招:二次方程的正根个数
一般地,在△ABC 中,已知a ,b 和角A ,常常可对角A 应用余弦定理,并将其整理为关于c 的一元二次方程0a b A cos bc 2c 2
22=-+-,若该方程无解或只有负数解,则该三角形无解;若方程有一个正数解,则该三角形有一解;若方程有两个不等的正数解,则该三角形有两解。

例2. 如图,在四边形ABCD 中,已知AD ⊥CD ,AD=10,AB=14,∠BDA=︒60,∠BCD=︒135,求BC 的长。

解:在△ABD 中,设BD=x ,
则BDA cos AD BD 2AD BD BA 222∠⋅⋅-+=,
即︒⋅⋅-+=60cos x 10210x 14222,
整理得096x 10x 2=--,解得16x 1=,6x 2-=(舍去)。

由正弦定理,得
2830sin 135sin 16CDB sin BCD sin BD BC =︒⋅︒=∠⋅∠=。

点评:已知三角形两边和其中一边的对角,我们可以采用正弦定理或余弦定理求解,从
上述例子可以看出,利用余弦定理结合二次方程来判断显得更加简捷。

相关文档
最新文档