1.1运动的合成与分解
运动的合成与分解笔记
![运动的合成与分解笔记](https://img.taocdn.com/s3/m/fbe57a8f294ac850ad02de80d4d8d15abe230001.png)
运动的合成与分解笔记运动是人类生活中不可或缺的一部分,我们的身体随时随地都在运动着,而这些运动又可以分为合成和分解两种类型。
合成运动是指将多个动作组合在一起,形成一个连贯的动作,而分解运动则是将一个大的动作分解成多个小的动作,以便更好地进行训练。
在本篇文章中,我们将深入探讨运动的合成与分解,以及如何在训练中应用它们。
一、运动的合成1.1 什么是合成运动?合成运动是将多个动作组合在一起,形成一个连贯的动作。
这种运动形式通常需要多个肌肉群协同工作,以完成一个复杂的动作。
例如,引体向上就是一个典型的合成运动,它需要背部、肩部、臂部等多个肌肉群协同工作,以完成一个连续的动作。
1.2 合成运动的好处合成运动有很多好处,其中最主要的一点是它可以锻炼多个肌肉群,使身体得到全面的锻炼。
此外,合成运动也可以提高身体的协调性和平衡性,增强身体的核心力量。
最后,由于合成运动需要多个肌肉群协同工作,因此它可以帮助我们提高身体的耐力和爆发力。
1.3 如何进行合成运动?进行合成运动的关键是要找到合适的动作组合。
在选择动作时,我们需要考虑到每个动作的肌肉群和动作的难度。
通常情况下,我们可以将多个动作组合在一起,形成一个复杂的动作序列。
例如,我们可以将深蹲、俯卧撑和引体向上组合在一起,形成一个连贯的动作序列,以达到全面锻炼的效果。
二、运动的分解2.1 什么是分解运动?分解运动是将一个大的动作分解成多个小的动作,以便更好地进行训练。
这种运动形式通常需要集中训练某一个肌肉群,以达到强化训练的效果。
例如,引体向上可以分解成上拉和下放两个小动作,以便更好地锻炼背部和臂部。
2.2 分解运动的好处分解运动也有很多好处,其中最主要的一点是它可以更好地强化某一个肌肉群。
由于分解运动可以将一个大的动作分解成多个小的动作,因此我们可以更好地集中训练某一个肌肉群,以达到强化训练的效果。
此外,分解运动也可以帮助我们更好地掌握动作技巧,以达到更好的训练效果。
运动合成与分解
![运动合成与分解](https://img.taocdn.com/s3/m/24bc3cfe77eeaeaad1f34693daef5ef7ba0d123e.png)
运动合成与分解运动的合成与分解是运动学中的两个重要概念,它们经常出现在物理、体育等学科中。
所谓“运动合成”,指的是两个或者多个运动的矢量相加,得到合成运动的矢量;而“运动分解”则是将一个运动的矢量分解成多个矢量的过程。
下面就来一步步阐述这两个概念。
一、运动合成运动合成是指,将两个或多个物体所做的运动进行矢量相加,得到一个合成运动的过程。
具体来说,假设物体A和物体B,在同一直线上做匀速直线运动,速度分别为v1和v2,方向分别为x轴正向和x轴负向。
那么,在相对静止的参考系内观察,这两个物体的合成运动的速度v将为v1-v2。
同理,如果A和B做的是具有夹角的运动,那么要通过三角函数来求出合成矢量的大小和方向。
我们假设物体A的速度矢量为v1,方向为θ1;物体B的速度矢量为v2,方向为θ2。
那么,它们的合成速度v可以表示为:v = (v1² + v2² + 2v1v2cos(θ2-θ1))⁽¹/²⁾其中cos(θ2-θ1)是两个速度方向之间的夹角余弦值。
可以看到,两个速度矢量的合成速度的大小是由它们的大小和夹角所决定的。
二、运动分解运动分解则是运动合成的逆过程。
它指的是将一个物体的运动分解成几个运动矢量的过程。
运动分解常用的方法是将原速度矢量分解成两个分量,一个平行于给定距离或线段的矢量,另一个垂直于该距离或线段的矢量。
这样,可以用简单的三角函数关系求出这两个分量。
为了更好地理解运动分解的概念,假设在平面直角坐标系下,有一个物体沿着一条线运动,速度矢量为V,该直线的夹角为α。
我们可以将V分解成沿着该线的速度矢量Vp和垂直该线的速度矢量Vv,分别为:Vp = VcosαVv = Vsinα其中,cosα和sinα为速度方向与线夹角的余弦值和正弦值。
可以看到,这两个矢量的合成就是原始的速度矢量。
总结:综上所述,运动合成与分解是运动学中非常重要的概念。
它们被广泛应用于动力学、物理、机械工程和生物力学等领域中。
《运动的合成与分解》 知识清单
![《运动的合成与分解》 知识清单](https://img.taocdn.com/s3/m/5fb8b0148f9951e79b89680203d8ce2f0166657c.png)
《运动的合成与分解》知识清单一、运动的合成与分解的基本概念1、合运动与分运动一个物体实际发生的运动叫做合运动,而把这个物体实际运动看作同时参与了几个运动,这几个运动就叫做分运动。
2、运动的合成已知分运动求合运动的过程叫做运动的合成。
3、运动的分解已知合运动求分运动的过程叫做运动的分解。
二、运动的合成与分解的遵循原则1、独立性原则一个物体同时参与几个分运动,各分运动独立进行,互不影响。
例如,一个人在水平方向上匀速跑步,同时在竖直方向上自由落体,水平方向的匀速运动和竖直方向的自由落体运动相互独立,互不干扰。
2、等时性原则合运动和分运动经历的时间相等。
比如,小船渡河问题中,小船在水流作用下的运动和船头指向的运动同时开始,同时结束。
3、等效性原则各分运动的合成效果与合运动的效果相同。
就像一个力的分解,几个分力共同作用的效果和原来这个力的作用效果是一样的。
三、运动的合成与分解的方法1、平行四边形定则这是运动合成与分解的基本方法。
以两个分运动为邻边作平行四边形,那么对角线就表示合运动。
假如一个物体同时有水平向右的速度 v1 和竖直向上的速度 v2,那么合速度的大小和方向就可以通过平行四边形定则来确定。
2、正交分解法当分运动较多或者较复杂时,可以建立直角坐标系,将分运动在坐标轴上进行分解,然后再合成。
例如,一个抛体运动,可以将其速度和位移分别在水平和竖直方向上进行正交分解,然后分别研究两个方向上的运动规律。
四、常见的运动合成与分解的实例1、小船渡河问题(1)最短时间渡河当船头垂直于河岸时,渡河时间最短,t = d/v 船(d 为河宽,v 船为船在静水中的速度)。
(2)最短位移渡河分两种情况。
当 v 船> v 水时,合速度垂直于河岸时,渡河位移最短,为河宽 d;当 v 船< v 水时,合速度不可能垂直于河岸,此时以 v 水的末端为圆心,以 v 船的大小为半径画圆,当合速度方向与圆相切时,渡河位移最短,最短位移为 x = d×v 水/v 船。
1.第一讲 运动基础 运动基础 运动的合成与分解
![1.第一讲 运动基础 运动基础 运动的合成与分解](https://img.taocdn.com/s3/m/c300bd0f16fc700abb68fc4d.png)
这一结论对运动参照系是相对于静止参照系作平动还是转动都成立。
当运动参照系相对静止参照系作平动时,加速度也存在同样的关系:
当运动参照系相对静止参照系作转动时,这一关系不成立。这一问题在牛顿运动定律中再做研究。
如果有一辆平板火车正在行驶,速度为 (脚标“火地”表示火车相对地面,下同)。一辆小汽车在火车上行驶,相对火车的速度为 ,那么汽车相对地面的速度为 :
③瞬时速度等物理量是指某一时刻的,故它们的合成分解要讲究瞬时性,即必须取同一时刻的速度。
已知物体的分运动求合运动称为运动的合成,已知物体的合运动求分运动称为运动的分解,二者是两个互逆的过程,其实质上是个等效替代的过程。因此合运动和分运动还具有等效性。
例1.如图示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D。一根轻绳一端固定在C点,并绕过B和D,且BC段水平。当以恒定水平速度v拉绳上的自由端时,A沿水平面前进。求当跨过B的两端绳子的夹角为a时,A的运动速度。
1.矢量的合成与分解
矢量的合成与分解的基本方法是平行四边形定则,即两分量构成平行四边形的两邻边,合矢量为该平行四边形与两分量共点的对角线。由平行四边形法则又衍生出三角形法则,多个矢量的合成又可推导出多边形法则。
同一直线上的矢量的合成与分解可以简化为代数运算,由此,不在同一直线上的矢量的合成与分解一般通过正交分解法进行运算,即把各个矢量向互相垂直的坐标轴投影,先在各轴上进行代数运算之后,再进行矢量运算。
例1.在光滑的水平轨道上有两个半径都是r的小球A和B。当两球球心间的距离大于L时,A球以速度 做匀速运动,B静止。当两球球心间的距离的等于或小于L时,A球做加速度大小为2a的匀减速运动,同时B开始向右做初速度为零的匀加速运动,加速度为a,如图所示。欲使两球不发生接触,则必须满足什么条件?
高中物理课件运动的合成与分解讲义
![高中物理课件运动的合成与分解讲义](https://img.taocdn.com/s3/m/0d8b43605acfa1c7aa00cce1.png)
热点视角
1.平抛运动的规律及其研究方法, 圆周运动的角速度、线速度和向 心加速度是近几年高考的热点, 且多数是与电场力、洛伦兹力联 系起来综合考查. 2.竖直平面内圆周运动也是高考的 热点,该类题型主要综合考查牛 顿第二定律和机械能守恒定律或 能量守恒定律. 3.天体运动、人造卫星的考查频率 很高,主要综合考查万有引力定 律和圆周运动.经常结合航天技 术、人造地球卫星等现代科技的 重要领域进行命题.
第五章 抛体运动与圆周运动 万有引力定律及其应用
3.速率变化情况判断 (1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变.
栏目 导引
第五章 抛体运动与圆周运动 万有引力定律及其应用
如图所示,一物体在水平恒力的作用下沿光滑水平面
第五章 抛体运动与圆周运动 万有引力定律及其应用
2015高考导航
第五章 抛体运动与圆周运动 万有引力定律及其应用
考纲展示
1.运动的合成与分解 Ⅱ 2.抛体运动 Ⅱ 3.匀速圆周运动、角速度、 线速度、向心加速度 Ⅰ
4.匀速圆周运动的向心力 Ⅱ 5.离心现象 Ⅰ 6.万有引力定律及其应用 Ⅱ 7.环绕速度 Ⅱ 8.第二宇宙速度和第三宇宙 速度 Ⅰ 9.经典时空观和相对论时空 观Ⅰ
栏目 导引
第五章 抛体运动与圆周运动 万有引力定律及其应用
1.一个物体在F1、F2、F3、…、Fn共同作用下做匀速直线运 动,若突然撤去外力F2,而其他力不变,则该物体( A ) A.可能做曲线运动 B.不可能继续做直线运动 C.一定沿F2的方向做直线运动 D.一定沿F2的反方向做匀减速直线运动 解析:根据题意,物体开始做匀速直线运动,物体所受的合外 力一定为零,突然撤去F2后,物体所受其余力的合力与F2大小 相等,方向相反,而物体速度的方向未知,故有很多种情况: 若速度和F2在同一直线上,物体做匀变速直线运动,若速度和 F2不在同一直线上,物体做曲线运动,A正确.
1、运动的合成与分解
![1、运动的合成与分解](https://img.taocdn.com/s3/m/de1b0f1ecc7931b765ce1574.png)
根据运动效果认真做好
运动矢量图,是解题的关
v1
键。
例1:一船准备渡河,已知水流速度为v0=1m/s,船在 静水中的航速为v’ =2m/s,则: ①要使船能够垂直地渡过河去,那么应向何方划பைடு நூலகம்? ②要使船能在最短时间内渡河,应向何方划船?
v
v'
v
v0
v0
v'
答案:①θ=600
②垂直于河岸
练习 1 :宽 300 米,河水流速 3 m/s,船在静水中 的航速为 1 m/s,则该船渡河的最短时间为多少 ? 渡河的最短位移为多少?
300 m
t min 300s
smin 900m
思考:要使小船能够到达正对岸,小船在静水 中的速度应满足什么条件?大于河水的速度
练习2:一人横渡40米宽的河,河水流速3 m/s, 下游距下水30米处有一拦河坝,为保证安全渡
三、运动的合成与分解
(一)解题要点: 1.在实际解题时,经常用到矢量三角形法,应注 意掌握。 2.认真分析谁是合运动、谁是分运动。(一般说 来,能够观察到(真实)的运动是合运动) 3.要注意寻求分运动效果。 4.合运动与分运动具有:等时性、独立性、等效 性。 5.分析此类问题的一般方法:运动合成分解法、 微元法。
例1:如图所示,纤绳以恒定速率v沿水平方向通过定 滑轮牵引小船靠岸,当纤绳与水面夹角为θ 时,船靠 岸的速度是 ,若使船匀速靠岸,则纤绳的 速度是 。(填:匀速、加速、减速)
寻 找 分 运 动 效 果
v
v'
答案:
v v' cos
减速
练习1:如图所示,汽车沿水平路面以恒定速度 v前进,则当拉绳与水平方向成θ 角时,被吊起 的物体M的速度为vM= 。
运动的合成和分解
![运动的合成和分解](https://img.taocdn.com/s3/m/1a1b1327e2bd960591c67704.png)
解:1、当船头指向斜上游,与岸夹角为Ѳ时,合 运动垂直河岸,航程最短,数值等于河宽100米。 则cos Ѳ =
v1 v2 3 4
合速度: v 2 v 2 4 2 3 2 m 7 m v 2 1 s s
过河时间:t
d v
100 7
s
100 7
7
例1:一艘小船在100m宽的河中横渡 到对岸,已知水流速度是3m/s,小 船在静水中的速度是4m/s,求: (2)欲使船渡河时间最短,船应 该怎样渡河?最短时间是多少?船 经过的位移多大?
• 如果: 1、在船头始终垂直对岸的情况下,在行驶
到河中间时,水流速度突然增大,过河时 间如何变化?
答案:不变
2、为了垂直到达河对岸,在行驶到河中间 时,水流速度突然增大,过河时间如何变 化?
答案:变长
“绳+物”问题 【问题综述】 此类问题的关键是: 1.准确判断谁是合运动,谁是分运动;实际运动是合运动
vB
v B sin
v P x a v B a c tg v A
在竖直方向上:
v Py vA l al l
x al sin
y l al cos
消去θ
x
2
2 2
y
2 2
a l
l al
1
v Py 1 a v A
相对运动 【问题综述】 此类问题的关键是:
1.准确判断谁是合运动,谁是分运动;实际运动是合运动
2.根据运动效果寻找分运动; 3.根据运动效果认真做好运动矢量图,是解题的关键。 4.解题时经常用到的矢量关系式:
v 绝对 v 相对 v牵连
运动的合成与分解
![运动的合成与分解](https://img.taocdn.com/s3/m/5d82b312f90f76c660371a3d.png)
重点:正交分解、解直角三角形等方法。
说明:(1)分运动合运动例1. 如图1所示,在河岸上用绳拉船,拉绳的速度是,当绳与水平方向夹角为θ时,船的速度为多大?际效果分别是:使绳子缩短和使绳子绕滑轮顺时针旋转,设船速为,沿绳子方向的分速度为,垂直绳子的分速度为,如图2所示。
=/cosθ, 而=得=/ cosθ点评:运动的合成是唯一的,而运动的分解是无限的,在实际问题中通常例2.有关运动的合成,以下说法中正确的是[ ]A.两个直线运动的合运动一定是直线运动B.两个不在一直线上的匀速直线运动的合运动一定是直线运动C.两个初速度为零的匀加速直线运动的合运动一定是匀加速直线运动D. 匀加速运动和匀速直线运动的合运动一定是直线运动解析:两个直线运动合成,其合运动的性质和轨迹由分运动的性质及合初速度与合加速度的方向关系来决定:两个匀速直线运动的合运动无论它们的方向如何,它们的合运动仍是匀速直线运动. 一个匀速直线运动和一个匀变速直线运动的合运动一定是匀变速运动——两者共线时为匀变速直线运动,两者不共线时为匀变速曲线运动。
两个匀变速直线运动的合运动仍为匀变速运动——当合初速度与合加速度共线时为匀变速直线运动,当合初速度与合加速度不共线时为匀变速曲线运动。
所以,正确选项为B、C点拨:判别两个分运动合成的合运动是否为直线运动,要看其合运动的初速度与合运动的加速度是否在同一条直线上。
三、小船过河专题:1.最短时间过河:水流只会将小船推向下游,要使过河时间最短,则船自身的速度v1全部用来过河,即船自身的速度v1垂直于河岸,船舷垂直于河岸,如图3最短时间为t m=s/v=d/v1此过程位移s=vd/v1 v=(1)v1>v2时,为使位移最小,合速度与河岸垂直,v1偏向上游(船舷偏向上游),与上游河岸的夹角为α,如图4。
cosα=v2/v1时间t=s/v=d/(2)v1<v2时,不可能构建图4中的平行四边形,为使路程最小,合速度与河岸夹角尽可能接近直角,如图5所示。
运动的合成与分解课件PPT课件
![运动的合成与分解课件PPT课件](https://img.taocdn.com/s3/m/dfed0e8fab00b52acfc789eb172ded630b1c983a.png)
在实验过程中,应控制误差范围,避免因误差过 大导致实验结果不准确。
进行重复实验
为了验证实验结果的可靠性,可以进行重复实验, 并对结果进行比较和分析。
效率考虑
选择合适的实验方法
在合成与分解过程中,应选择合适的实验方法,以提高实验效率。
优化实验流程
通过优化实验流程,可以缩短实验时间、提高实验效率。
臂、手腕发力等几个子动作。
跳高动作
跳高运动员起跳过杆时,可以将 整个跳高动作分解为助跑、起跳、
翻滚、落地等几个子动作。
游泳动作
游泳运动员在水中划水前进时, 可以将整个游泳动作分解为手臂 划水、腿部踢水等几个子动作。
03
合成与分解的应用
在日常生活中的应用
驾驶汽车
在驾驶汽车时,需要将油门、刹 车、方向盘等动作进行分解,然 后通过协调这些动作来控制汽车
物理实验
在物理实验中,经常需要进行运动的合成与分解,例如速度、加速 度、位移等物理量的合成与分解。
生物实验
在生物实验中,经常需要进行细胞的合成与分解,例如细胞分裂、 细胞死亡等。
在工业生产中的应用
1 2
机械制造
在机械制造中,需要对各个零部件进行分解,然 后按照设计好的方案进行组合,最终制造出合格 的机械产品。
分解运动的方法
按照运动方向分解
按照运动形式分解
将一个复杂运动分解为两个或多个沿 不同方向的简单运动。
将一个复杂运动分解为两个或多个不 同形式的简单运动,如平动、转动等。
按照运动轨迹分解
将一个复杂运动分解为两个或多个沿 不同轨迹的简单运动。
分解运动的实例
投篮动作
篮球运动员投篮时,可以将整个 投篮动作分解为持球、举球、伸
运动的合成和分解位移速度
![运动的合成和分解位移速度](https://img.taocdn.com/s3/m/9b90dc4517fc700abb68a98271fe910ef12daea3.png)
假设有一个飞机在飞行过程中同时进行水平和垂直运动,且已知飞机的总速度和总位移。根据位移速 度的分解原理,可以将飞机的总速度分解为水平方向上的分速度和垂直方向上的分速度。通过分解, 可以更好地理解飞机在水平和垂直方向上的运动情况。
THANKS
感谢观看
体育运动的技术分析
将复杂的体育运动技术分解为若干个基本的动作要领,有助于提高 运动员的技术水平。
03
CATALOGUE
位移速度的合成与分解
位移速度的合成
总结词
位移速度合成是指将两个或多个分速度合成一个总速度的过 程。
详细描述
在物理学中,位移速度的合成遵循平行四边形法则,即两个 分速度可以合成一个总速度。总速度的大小和方向可以通过 分速度的大小和方向以及它们之间的夹角计算得出。
运动的合成和分解
目 录
• 运动的合成 • 运动的分解 • 位移速度的合成与分解 • 运动的合成与分解的实例分析
01
CATALOGUE
运动的合成
合成的基本概念
运动的合成是指将两个或多个 简单运动合成为一个复杂运动 的描述过程。
合成的基本原则是平行四边形 法则,即两个矢量(速度和力 )按照平行四边形的边长和角 度进行合成。
详细描述
在航空航天领域,飞行员需要根据风速和飞机自身的速度进行速度合成与分解,以准确 判断飞行方向和位置;在航海领域,船长需要了解风速、水流速度、船速等参数,通过 速度合成与分解来制定航行计划;在车辆运动领域,驾驶员需要考虑道路状况、车速、
车辆加速度等参数,通过速度合成与分解来控制车辆运动轨迹。
04
合成运动的分析有助于理解物 体在复杂环境中的运动规律, 为实际应用提供理论支持。
合成的方法
专题01 运动的合成与分解——解析版
![专题01 运动的合成与分解——解析版](https://img.taocdn.com/s3/m/8f369896ed3a87c24028915f804d2b160b4e861e.png)
专题1 运动的合成与分解(解析版)一、目标要求目标要求重、难点曲线运动及其发生条件重点运动的合成与分解重点小船过河问题难点牵连体速度分解难点二、知识点解析1.曲线运动的定义物体运动轨迹为曲线的运动称之为曲线运动,其任意时刻的速度方向为曲线的切线方向,且运动速度方向时刻发生变化.图1.1是我们通常讨论的曲线运动,图1.2一般当作分段直线运动处理.2.曲线运动的性质和条件(1)曲线运动的方向时刻在变化,故曲线运动一定是变速运动:一定有加速度,一定受到合外力的作用.(2)当物体运动的初速度v0与合力(实际影响的是加速度Fam)不在同一直线时,物体做曲线运动.同时,根据物体所受合力是否变化可分类为:匀变速曲线运动(合力不变)和非匀变速曲线运动(合力发生变化).3.力对速度的影响合力F合可以分解为沿着运动方向的分力F x和垂直于运动方向的分力F y,与速度方向相同的力F x只影响运动速度的大小,与速度垂直的力F y只影响运动速度的方向.力与速度夹角θ的大小运动性质力的作用效果图1.1图1.2注意:合力永远指向运动轨迹的凹侧,轨迹永远处在速度与合力的夹角之间. 4.合运动与分运动的概念如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动.例如:蜡块在竖直固定的注满清水的玻璃管中运动,可以看到其运动接近匀速直线运动,当蜡块在竖直玻璃管中向上匀速运动的同时,让玻璃管向右匀速直线运动,则蜡块参与了竖直方向、水平方向的两个不同的分运动,物块实际运动的方向即为两物块的合运动.5.运动的合成和分解由几个分运动去求合运动叫运动的合成;将一个运动分解为几个分运动叫做运动的分解.运动的合成与分解都遵循平行四边形定则,包括速度、位移和加速度.6.合运动和分运动的关系(1)独立性:分运动之间没有联系,各自独立;(2)等时性:合运动和分运动同时开始,同时进行,同时结束; (3)等效性:所有分运动的作用效果总和与合运动作用效果相同. 7.小船渡河问题小船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动.(1)渡河时间最少在河宽、船速一定时,一般情况下,渡河时间sin d dt v v θ==⊥船,显然,当90θ=︒时,即船头的指向与河岸垂直,渡河时间最小为dv船.(2)渡河航程最短有两种情况①船速大于水流速度的条件下,合速度v与河岸垂直时航程最短;结论:船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为cos水船vvθ=.②船速v2小于水流速度v1的条件下,合速度v不可能垂直于河岸,无法垂直渡河.所以,我们可以以v1的矢尖为圆心,v2为半径画圆,当v与圆相切时,21cosvvθ=,此时渡河航程最短,最短航程为12cosdvdsvθ==.8.牵连速度问题绳、杆等连接的物体,在运动过程中,其两端物体的速度通常是不一样的,但两端物体的速度是有联系的,称为“关联”速度.解决“关联”速度问题的关键:①物体的实际运动是合运动,要按运动效果进行速度分解;②沿杆(绳)方向的速度分量大小是相等的.因此,求这类问题时,首先要明确物体的速度为合速度,然后将两物体的速度分别分解成沿绳方向和与绳垂直方向,令两物体沿绳方向的速度相等即可求出.(1)处理速度分解的思路①选取合适的连接点(该点必须能明显地体现出参与了某个分运动).②确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.③确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.④作出速度分解的示意图,寻找速度关系.(2)绳模型如下图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?v水v船θv①选取合适的连接点:即物体所在的位置;②如右图所示:绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度;③将v 物按右图所示进行分解.其中:v =v 物cos θ,使绳子收缩,v ⊥=v 物sin θ使绳子绕定滑轮上的A 点转动; ④最后列方程求解:所以cos 物=vv θ. (3)杆模型如图所示,杆AB 的A 端靠在竖直墙上,B 端放在水平面上,此时杆与水平面的夹角为α,且B 端的滑动速度为B v ,求A 端的滑动速度A v .①选取合适的连接点:即上图中的A 、B 两点,这两个点最能体现杆所参与的分运动.②杆下滑的过程中,杆在B 点的实际运动方向沿水平方向,在A 点的实际运动方向为竖直向下(在这两 个方向上速度方向始终不变). ③将v B ,v A 按上图所示进行分解.④最后列方程求解:1sin A A v v α=,1cos B B v v α=,11A B v v =,cot A B v v α=三、考查方向题型1:合力、速度、轨迹的互判典例一:(多选)关于力和运动的关系,下列说法中正确的是( AB ) A .物体做曲线运动,其速度一定改变 B .物体做曲线运动,其加速度可能不变 C .物体在恒力作用下运动,其速度方向一定不变 D .物体在变力作用下运动,其速度方向一定改变【解析】A .既然是曲线运动,它的速度的方向必定是改变的,所以曲线运动一定是变速运动,故A 正确;B .平抛运动是曲线运动,加速度恒定不变,故B 正确;C .物体在恒力作用下运动,其速度方向可能改变,如平抛运动,受到恒力作用,做曲线运动,速度方向时刻改变.故C 错误;D .物体在变力作用下运动,其速度方向不一定改变,例如力的方向不变,大小改变,做变加速(或变减速)直线运动,故D 错误.题型2:合运动性质的判断典例二:关于互成角度的两个初速度不为零的匀变速直线运动的合运动,下述说法正确的是( C ) A .一定是直线运动B .一定是曲线运动C .可能是直线运动,也可能是曲线运动D .以上都不对【解析】:如图,由物体做曲线运动的条件可知,当v 与a 共线时为匀变速直线运动,当v 与a 不共线时,为匀变速曲线运动,故C 正确,ABD 错误题型3:运动的合成与分解的计算典例三:(多选)质量为0.2 kg 的物体在水平面上运动,它的两个正交分速度图像分别如图甲、乙所示,由图可知( AC )A .最初4 s 内物体的位移为82m B .从开始至6 s 末物体都做曲线运动C .最初4 s 内物体做曲线运动,接下来的2 s 内物体做直线运动D .最初4 s 内物体做直线运动,接下来的2 s 内物体做曲线运动【解析】:A .图象与时间轴围成的面积为物体运动的位移,开始4 s 内物体x 方向位移为x =12×4×4m=8m ,y 方向位移y =2×4m=8 m ,所以开始4 s 内物体的位移为82m ,故A 正确;v 2a 1BCD .开始时物体初速度方向为x 方向,加速度方向为y 方向,两者不在一条直线上,所以物体做曲线运动,4 s 末物体的速度方向与x 方向夹角的正切值为yx v v =42=2. 4 s 后加速度大小分别为a x =402-m/s 2=2 m/s 2,a y =202-m/s 2=1 m/s 2,加速度方向与x 方向夹角的正切值为y xa a =2,所以速度方向与加速度方向在同一条直线上,所以物体要做直线运动.故BD 错误,C 正确.题型4:小船过河问题典例四:河宽d =60 m ,水流速度v 1=6 m/s ,小船在静水中的速度v 2=3 m/s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少? 【答案】:(1)船头朝向和对岸,20 s ;(2)与河岸夹角正弦值为12,120 m 【解析】:(1)当静水速的方向与河岸垂直时,渡河时间最短,为:t =c d v =603s=20 s , (2)小船以最短距离过河时,则静水中的速度斜着向上游,合速度与垂直河岸的法线夹角最小,设与河岸的夹角为θ,可以由几何关系解得:sin θ=c s v v =3162=,则渡河的最小位移为:x =120 m . 故答案为20 s ,120 m .题型5:牵连速度问题典例五:如图所示,水平面上有一物体,人通过定滑轮用绳子拉它,在图示位置时,若人的速度为5 m/s ,则物体的瞬时速度为( C )A .5 m/sB .10 m/sC .sD .s【解析】:绳子拉动的速度为物体水平方向运动速度的一个分量12cos30cos60v v v =︒=︒绳,据此12cos30s cos60v v ︒==︒.四、模拟训练一、基础练习1.某同学抛出铅球后铅球的运动轨迹如图所示.已知在B 点时的速度与加速度相互垂直,不计空气阻力,则下列说法中正确的是( A )A .D 点的速率比C 点的速率大B .D 点的加速度比C 点的加速度大 C .从B 点到D 点加速度与速度始终垂直D .从B 点到D 点加速度与速度的夹角先增大后减小【解析】:A .物体从C 点到D 点的过程中,重力的分力提供沿切线方向的加速度,所以速度的大小增大;BC .抛体运动,只受重力,加速度恒为g ,不变;而速度方向沿着轨迹的切线方向,时刻改变;故速度与加速度不是一直垂直;故C 错误;D .从B 到D ,加速度竖直向下,速度与竖直方向的夹角逐渐减小,故从B 到D 加速度与速度的夹角不断减小,故D 错误.2.(多选)一小球在光滑水平面上以某一速度v 0做匀速直线运动,运动途中受到与水平面平行的恒定风力F 作用,则小球的运动轨迹不可能为图中的(D )【解析】:A.若小球受到的力的方向与速度的方向在同一条直线上,小球可能做匀加速直线运动,也可能做匀减速直线运动,运动的轨迹是直线.故A正确;B.小球受到左侧方的风力的作用,向右发生偏转,轨迹可能如图B所示.故B正确;C.小球受到左前方的风力的作用,向右发生偏转,同时沿原来的方向做减速运动,经过比较长的时间后,轨迹可能如图C所示.故C正确;3.关于运动的合成与分解,下列说法不正确的是( C )A.两个速度大小不相等的匀速直线运动的合运动一定是匀速直线运动B.若两个互成角度的分运动分别是匀速直线运动和匀加速直线运动,则合运动一定是曲线运动C.合运动的方向即为物体实际运动的方向,且其速度一定大于分速度D.在运动的合成与分解中速度、加速度和位移都遵循平行四边形法则【解析】:运动的合成即是分速度合成、分加速度合成,再看合速度和合加速度的关系来判断即可.4.如图所示,竖直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中匀速上浮.在红蜡块从玻璃管的下端匀速上浮的同时,玻璃管向右运动.则下列说法中正确的是(A)A.若玻璃管做匀速直线运动,则蜡块的合运动为匀速直线运动B.若玻璃管做匀速直线运动,则蜡块的合运动为匀加速直线运动C.若玻璃管做匀加速直线运动,则蜡块的合运动为匀速直线运动D.若玻璃管做匀加速直线运动,则蜡块的合运动为匀加速直线运动【解析】:AB.红蜡块在玻璃管中做匀速运动,当玻璃管也做匀速直线运动时,红蜡块同时参与两个运动,水平方向的匀速直线运动,竖直方向也是匀速直线运动,此时蜡块的合运动即为匀速直线运动,所以A正确,B错误;CD.当玻璃管做匀加速直线运动时,红蜡块同时参与的两个运动分别为水平方向的匀加速直线运动,竖直方向是匀速直线运动,此时的运动符合类平抛运动的规律,此时蜡块的合运动为匀加速曲线运动,所以CD错误.5.(多选)一物体在光滑的水平桌面上运动,在相互垂直的x 方向和y 方向上的分运动的速度随时间变化的规律如图所示.关于物体的运动,下列说法中正确的是(AC )A .物体做匀变速曲线运动B .物体做变加速直线运动C .物体运动的初速度大小是5 m/sD .物体运动的加速度大小是5 m/s 2【解析】:AB .由图知,x 方向的初速度沿x 轴正方向,做匀速直线运动,加速度为零;y 方向的初速度沿y 轴负方向,做匀变速直线运动,加速度沿y 轴方向,则合运动的初速度方向不在y 轴方向上,合运动的加速度沿y 轴方向,与合初速度方向不在同一直线上,物体做匀变速曲线运动.故A 正确,B 错误;C .根据图象可知物体的初速度为:v 0,故C 正确;D .从图象知物体的加速度大小等于y 轴方向的加速度,大小为a =42=2 m/s 2,故D 错误.6.如图所示,a 图表示某物体在x 轴方向上分速度x v t -的图象,b 图表示该物体在y 轴上分速度y v t -的图象.求:(1)t =0时物体的速度; (2)t =8 s 时物体的速度; (3)t =4 s 时物体的位移.【答案】:(1)v 0=3 m/s ;(2)v =5 m/s ;(3)s【解析】:根据图象可知,物体在x 轴方向上以3 m/s 的速度做匀速直线运动,在y 方向上做初速度为零,加速度为0.5 m/s 2的匀加速直线运动,合运动是曲线运动.(1)由图看出,t =0时x 轴方向分速度为v x =3 m/s ,y 轴方向分速度为v y =0,故t =0时物体的速度为v 0=v x =3m/s ,(2)在t =8 s 时刻,v x =3 m/s ,v y =4 m/s ,所以物体的速度v ,(3)根据v﹣t图象中图象与时间轴围成的面积表示位移,则知在4 s的时间内,x轴方向的分位移为x=3×4m=12 m,y=1×2×4m=4 m,2所以4 s内物体发生的位移为s.7.一艘渔船以一定的速度垂直河岸向对岸驶去,当水流速均匀时,关于渔船所通过的路程、过河时间与水流速的关系,下列说法正确的是(D)A.水速越大,路程越大,时间越长B.水速越大,路程越大,时间越短C.水速越大,路程和时间都不变D.水速越大,路程越大,但时间不变【解析】:运用运动分解的思想,看过河时间只分析垂直河岸的速度,当轮船以一定的速度垂直河岸向对岸开行,即垂直河岸的速度不变,虽水速越大,但过河所用的时间不变;不过由平行四边形定则知这时轮船的合速度越大,因此,轮船所通过的路程越长.所以,选项A、B、C错误,选项D正确.8.如图所示,某人由A点划船渡河,船头指向始终与河岸垂直,则小船能到达对岸的位置是(C)A.正对岸的B点B.正对岸B点的左侧C.正对岸B点的右侧D.正对岸的任意点【解析】:小船在垂直于河岸方向和沿河岸方向都有位移,根据运动的合成,合位移的方向指向下游方向,所以小船到达对岸的位置是正对岸B点的右侧.故C正确,A、B、D错误.故选C.9.如图所示,4个箭头表示船头的指向,每相邻两个箭头之间的夹角都是30°,已知水速是1 m/s,船在静水中的速度是2 m/s.要使船能垂直河岸渡过河,那么船头的指向应是(C)A.①方向B.②方向C.③方向D.④方向【解析】:要使船能垂直河岸渡过河,船在静水中的速度沿河岸方向的分量要与河水的流速大小相等,方向相反,沿B方向时,船在河岸方向上的分量与水速相等且相反,合速度垂直于河岸,能垂直渡河,由于每相邻两个箭头之间的夹角都是30°,且已知水速是1 m/s,船在静水中的速度是2 m/s.那么划船的方向应是③,故ABD错误,C正确.10.(多选)小船横渡一条两岸平行的河流,船本身提供的速度(即静水速度)大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则(AC)A.越接近河岸水流速度越小B.越接近河岸水流速度越大C.无论水流速度是否变化,这种渡河方式耗时最短D.该船渡河的时间会受水流速度变化的影响【解析】:AB.从轨迹曲线的弯曲形状上可以知道,小船先具有向下游的加速度,小船后具有向上游的加速度,故水流是先加速后减速,即越接近河岸水流速度越小,故A正确,B错误;CD.由于船身方向垂直于河岸,无论水流速度是否变化,这种渡河方式耗时最短,故C正确,D错误.11.(多选)小船在静水中速度为3 m/s,它在一条流速为4 m/s,河宽为150 m的河中渡河,则(AD)A.小船不可能垂直河岸正达对岸B.小船渡河时间可能为40 sC.小船渡河时间至少需30 sD.小船在50s时间渡河,到对岸时被冲下200 m【解析】:A.因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸.因此,A正确;BC.当船的静水中的速度垂直河岸时渡河时间最短:1150s50s 3min dtv===,故B、C错误;D.船以最短时间50 s渡河时沿河岸的位移:x=v2t min=4×50m=200 m,即到对岸时被冲下200 m,故D 正确.12.一小船渡河,河宽d=200 m,水流速度v1=5 m/s.若船在静水中的速度为v2=4 m/s,则小船过河最短时间以及此时位移分别为(A)A.50 s,B.50 s,C.40 s,D.40 s,【解析】:要使渡河时间最短,船头要始终正对河岸,即v2方向始终垂直河岸.船渡河时间:t =2d v =2004=50 s , 船登陆的地点离正对岸的距离x =v 1t =250 m ,那么船在最短时间内渡河,渡河位移为sm . 13.用车A 牵引物体B 运动,牵引装置如图所示,已知A 匀速运动速度v 0,则在图示时刻时B 的速度为(A )A.02B0 C .02vD.0【解析】:根据绳两端沿着绳方向物体速度大小一样,可得:000cos60cos 45B v v =,得0B v . 14.在不计摩擦和绳子质量时,小车匀速向右运动时,物体A 的受力情况是(A )A .绳子的拉力大于A 的重力B .绳子的拉力等于A 的重力C .绳子的拉力小于A 的重力D .绳子的拉力先大于A 的重力,后小于A 的重力【解析】:设绳子与水平方向的夹角为θ,将小车的速度分解为沿绳子方向和垂直于绳子方向,沿绳子方向的速度等于A 的速度,根据平行四边形定则得,v A =v cos θ,车子在匀速向右的运动过程中,绳子与水平方向的夹角θ减小,所以A 的速度增大,A 做加速运动,根据牛顿第二定律有:F ﹣mg =ma ,知拉力大于重力.故A 正确,B 、C 、D 错误.15.(多选)如图所示,物体A 和B 的质量均为m ,且分别用轻绳连接跨过定滑轮(不计绳子与滑轮、滑轮与轴之间的摩擦).当用水平变力F 拉物体B 沿水平方向向右做匀速直线运动的过程中(BCD )A .物体A 也做匀速直线运动B .绳子拉力始终大于物体A 所受的重力C .物体A 的速度小于物体B 的速度D .地面对物体B 的支持力逐渐增大【解析】:AB .将B 物体的速度v B 进行分解如图所示,则v A =v B cos α,α减小,v B 不变,则v A 逐渐增大,说明A 物体在竖直向上做加速运动, 由牛顿第二定律T ﹣mg =ma ,可知绳子对A 的拉力:T >mg ,故A 错误,B 正确; C .由于v A =v B cos α,知物体A 的速度小于物体B 的速度.故C 正确; D .B 在竖直方向上平衡,有:T sin α+N =mg运用外推法:若绳子无限长,B 物体距滑轮足够远,即当α→0时,有v A →v B ,这表明,物体A 在上升的过程中,加速度必定逐渐减小,绳子对A 物体的拉力逐渐减小,sin α减小,则支持力增大.故D 正确.16.在河面上方20 m 的岸上有人用长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v =3m/s 拉绳,使小船靠岸,经过5 s 后,(sin53°=0.8,cos53°=0.6)求:(1)小船前进的距离x ; (2)此时小船的速率v 船. 【答案】:(1)19.6 m ;(2)5 m/s【解析】:(1)由几何关系知,开始时河面上的绳长为sin30h︒=40 m ;此时船离岸距离x 1; 5 s 后,绳子向左移动了v t =15 m ,则河面上绳长为40 m ﹣15 m=25 m ;则此时,小船离河边的距离x 2=则小船前进的距离x ﹣15m=19.6 m ;(2)船的速度为合速度,由绳收缩的速度及绳摆动的速度合成得出,则由几何关系可知,cos θ=35,则船速v 船=cos vθ=5 m/s . 二、提升练习1.有一条两岸平直、河水均匀流动、流速恒为v 的大河。
运动的合成与分解
![运动的合成与分解](https://img.taocdn.com/s3/m/b7d6be50be1e650e52ea99e0.png)
一.运动的合成与分解质点在实际运动过程中,可以看做物体同时参与了几个运动,这几个运动就是物体实际运动的分运动。
物体的实际运动(合运动)的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度就是它的分位移、分速度、分加速度。
1.运动的合成:由已知的分运动求其合运动叫运动的合成。
运动的分解:已知合运动求分运动叫运动的分解.描述运动的物理量如位移、速度、加速度都是矢量,运动的合成与分解应遵循矢量运算的法则:(1)如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算.(2)如果分运动互成角度,运动合成或分解要遵循平行四边形定则.注意:合运动的性质和轨迹取决于分运动的情况:①两个匀速直线运动的合运动仍为匀速直线运动②一个匀速运动和一个匀变速运动的合运动是匀变速运动。
讨论:二者共线时,为匀变速直线运动,二者不共线时,为匀变速曲线运动。
③两个匀变速直线运动的合运动为匀变速运动,当合初速度与合加速度共线时为匀变速直线运动,不共线时为匀变速曲线运动。
2.合运动与分运动的特征:(1) 等时性:合运动所需时间和对应的每个分运动所需时间相等.(2) 独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响.(3) 等效性:合运动和分运动是等效替代关系,不能并存;(4) 矢量性:加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。
3.几种常见的速度分解(1)绳端速度的分解:绳子末端运动时,如果实际速度方向不沿着绳子,则绳端速度可以正交分解为沿着绳子和垂直于绳子的两个分速度。
且由于绳子不可伸长,沿着绳子方向的两个分速度相等。
例1.试解决以下问题:绳子左端水平向左匀速运动,求此时物体运动速度vB求物体B下落的速度A求物体A、B的速度大小之比例2.如右图,A 、B 速度大小关系如何变化?B 在什么位置时A 速度为零?(2)应用运动的合成与分解求解面接触物体的速度问题求相互接触物体的速度关联问题时,首先要明确两接触物体的速度,分析弹力的方向,然后将两物体的速度分别沿弹力的方向和垂直于弹力的方向进行分解,令两物体沿弹力方向的速度相等即可求出。
运动的合成与分解
![运动的合成与分解](https://img.taocdn.com/s3/m/6cf2d6ac9f3143323968011ca300a6c30c22f18f.png)
v
运动的合成与分解专题
例:一条河宽500m,水流速度是3m/s,小船在静 水中的速度是5m/s,求
(1)最短渡河的时间是多小? 小船的实际位移,沿 下流的位移是多少?
(2)最短位移渡河的时间是多少? 最短渡河的位移 是多少?
【例题】一船准备渡河,已知水流速度为v2=1m/s,船在静水 中的航速为v1=2m/s,则: ①要使船能够垂直地渡过河去,那么应向何方划船? ②要使船能在最短时间内渡河,应向何方划船?
解析: 合速度与分速度之间的关系满足平行四边形定则,它的大小可
以比分速度大或小或相等,A不正确;两个分运动的时间一定与它们合
山 东
运动的时间相等,B正确;平抛运动是曲线运动,而它的两个分运动分
金 太
别是匀速直线运动和自由落体运动,C不正确;当两个匀变速直线运动 阳 书
的合速度方向与合加速度方向不在同一直线上时,合运动是曲线运动, 业
v
a1
a
a2
v2
加速曲线运动
点评: 运动的合成
1.两互成角度的匀速直线运动的合成
(一定是匀速直线运动)
2.两互成角度的初速为零的匀加速直线 运动的合成 (一定是匀加速直线运动)
3.两互成角度的初速不为零的匀加速直 线运动的合成
(匀变速直线运动或匀变速曲线运动)
4.一个匀速直线运动和一个匀加速直线运 动的合成
d
v水
结论: 欲使船渡河时间最短,船头的方向
应该垂直于河岸。
t最短=
d v船
解1:当船头垂直河岸时, 所用时间最短
最短时间 tmin
d v2
100 4
s
25 s
此时合速度
v
v12 v22
高一课件集第1节 运动的合成与分解
![高一课件集第1节 运动的合成与分解](https://img.taocdn.com/s3/m/866ce81ea21614791711285a.png)
分运动
9
实验总结——运动性质 1.运动的独立性
分运动互相独立,互不影响
2.运动的等时性 分运动和合运动的运动时间相等。
3.运动的等效性 分运动、合运动的运动的效果相同。
10
【例题】一人游泳渡河以垂直河岸不变的速度(相对水)向对
岸游去,河水的流动速度恒定.下列说法中正确的是( D ) A.河水的流动速度对人渡河无任何影响
B.游泳渡河的路线与河岸垂直
C.由于河水流动的影响,人到达对岸的时间与静水中不同
D.由于河水流动的影响,人到达对岸的位置向下游方向偏移 【解析】河水的流动会影响人对河岸的速度,使人具有向 下游方向的分速度,选项A、B错误,D正确.由分运动独立 性可知河水的流动不影响垂直河岸的分速度,不影响渡河
②如果小船的路径要与河岸垂直,该如何行驶?消耗
的时间是多少? [分析]“船头”在这里的意思是船靠自己的动力在静水中要 行驶的方向,如果有水流,它不是船的实际运行方向。
15
( 1 )小船参与了两个方向的运动,垂直河岸到对岸和
顺水漂流,两个运动时间相等。小船渡河时间等于垂直河 岸运动的时间
小船顺水流方向的位移:s水=v水t=2m/s×50s=100m 也就是说,小船到达对岸后,已经沿水流方向向下游运 动了100米。 小船实际运行了:s=
水平方向的分运动和一个沿竖直方向的分运动的合运动。
7
运动的合成与分解的方法
演示实验
实验中腊块实际的运动称为什么?水平方向和竖直 方向的运动又称为什么呢? 概念介绍
8
基本概念
1.物体实际的运动叫合运动 2.物体同时参与合成的运动的运动 叫分运动 3.由分运动求合运动的过程称为运
《运动的合成与分解》教案
![《运动的合成与分解》教案](https://img.taocdn.com/s3/m/e5efc21232687e21af45b307e87101f69e31fba4.png)
《运动的合成与分解》教案第一章:引言1.1 教学目标让学生理解运动的概念让学生了解运动的合成与分解的意义1.2 教学内容运动的定义与分类运动的合成与分解的概念1.3 教学方法讲授法互动讨论法1.4 教学步骤引入运动的概念,引导学生思考运动的分类讲解运动的合成与分解的概念,通过示例让学生理解运动的合成与分解第二章:运动的合成2.1 教学目标让学生掌握运动的合成的方法让学生能够运用运动的合成解决实际问题2.2 教学内容运动的合成的原理运动的合成的方法与步骤2.3 教学方法讲授法互动讨论法2.4 教学步骤讲解运动的合成的原理,引导学生理解运动的合成的意义讲解运动的合成的方法与步骤,通过示例让学生掌握运动的合成的方法第三章:运动的分解3.1 教学目标让学生掌握运动的分解的方法让学生能够运用运动的分解解决实际问题3.2 教学内容运动的分解的原理运动的分解的方法与步骤3.3 教学方法讲授法互动讨论法3.4 教学步骤讲解运动的分解的原理,引导学生理解运动的分解的意义讲解运动的分解的方法与步骤,通过示例让学生掌握运动的分解的方法第四章:运动的合成与分解的应用4.1 教学目标让学生能够运用运动的合成与分解解决实际问题让学生理解运动的合成与分解在生活中的应用4.2 教学内容运动的合成与分解在生活中的应用实例4.3 教学方法讲授法互动讨论法4.4 教学步骤讲解运动的合成与分解在生活中的应用实例,引导学生理解运动的合成与分解的实际意义让学生分组讨论,每组选择一个实例,运用运动的合成与分解的方法解决实例中的问题,并展示解题过程与结果5.1 教学目标让学生了解运动的合成与分解的拓展知识5.2 教学内容运动的合成与分解的拓展知识介绍5.3 教学方法讲授法互动讨论法5.4 教学步骤介绍运动的合成与分解的拓展知识,激发学生的学习兴趣第六章:运动的合成案例分析6.1 教学目标让学生通过案例分析,深化对运动合成方法的理解。
培养学生解决实际问题的能力。
运动的合成与分解 课件-高一下学期物理教科版(2019)必修第二册
![运动的合成与分解 课件-高一下学期物理教科版(2019)必修第二册](https://img.taocdn.com/s3/m/6696aa3b54270722192e453610661ed9ad5155ee.png)
F1
V2
V合
F合
F2
F合与v合共线-匀变速直线运动
V1 F1
V2 F2
V合
F合
F合与v合不共线-匀变速曲线运动
三、两个互成角度的直线运动的合运动的性质和轨迹的判断
判断方法:由两分运动的性质、合初速度与合加速度的关系决定: (1)根据合加速度是否恒定 若合加速度不变且不为零,则合运动为匀变速运动; 若合加速度变化,则合运动为非匀变速运动. (2)根据合加速度与合初速度是否共线 若合加速度与合初速度在同一直线上,则合运动为直线运动; 若合加速度与合初速度不在同一直线上,则合运动为曲线运动.
所需时间:
x t= =
v
x
=
v2 d
v22 - v12
v1 v22 - v12
小船渡河问题小结: 1.船身垂直于河岸,渡河时间最短(分运动垂直于河岸); 2.船实际运动垂直于河岸,船的位移最小(合运动垂直于河岸, 船速大于水速). 3.船在静水的速度与船的合速度垂直时,船的位移最小(船速小于水速)
1.2、运动的合成与分 解
必修二·物理 第一章、 抛体运动
一、矢量的合成与分解
我们已经学了力的合成与分解,如 图两个小朋友分别用力提一桶水, 大人则一个人提一桶水。大人一个 力的效果与两个小朋友两个力的效 果相同。 用一个力代替两个力的效果叫力的 合成。
共线的两个力的合成遵循代数加减法则。 不共线的两个力的合成遵循平行四边形法则
• 在岸上拉水中的小船时,通常在河岸上通过滑轮用钢绳拉船,如图所
示,若匀速拉绳的速度为v1=4 m/s,则小船的运动是匀速的吗?当拉
船的绳与水平方向成60°角时,船的速度是多少? v1
v
ห้องสมุดไป่ตู้
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题1.2 运动的合成与分解
[学习目标]
1. 知道什么是合运动,什么是分运动;理解分运动的特点,知道运动的合成遵循
平行四边形定则。
2. 会求合位移以及合速度的大小。
3. 能用运动的分解思想解决常见的运动及简单的曲线运动。
学习重点:曲线运动的条件及运动的合成与分解法则。
学习难点:运动的合成与分解的方法应用,由已知两个分运动的性质特点来判断合运动的性质及轨迹。
[预习思考]
1、合运动和分运动:叫合运动,叫做分运动。
2、运动的合成与分解:叫运动的合成,叫运动的分解。
3、运算法则:运动的合成与分解是(矢量、标量)的合成与分解,遵
从。
[课内探究]
一、运动的合成与分解
1.运动的合成与分解
演示实验:玻璃管中的红蜡块的运动
分析:红蜡块的运动可以看成是同时参与了下面的两个运动,一个是在玻
璃管中(填方向)的运动(由A到B),一个是随玻
璃管(填方向)的运动(由A到D),红蜡块实际发生
的运动(由A到C)两个运动合成的结果。
结论:运动是可以合成的,满足定则。
2.合运动与分运动
a如果一个物体实际发生的运动产生的效果跟另外两个运动共同产生的效
果,我们就把这一物体实际发生的运动叫做这两个运动的
这两个运动叫做这一实际运动的。
红蜡块沿玻璃管在竖直方向的运动和随管做的水平方向的运动,是
红蜡块实际发生的运动是
b 合运动的位移叫做,分运动的位移叫做。
合运动的速度叫做,分运动的速度叫做。
已知分运动求合运动叫做,反之,已知合运动求分运动叫做。
二、运动合成与分解的特点
1.独立性
2.等时性
三、合位移及合速度的计算
假如蜡块在水平方向及竖直方向上都做匀速直线运动,水平速度为v1,竖直速
度为v2,
(1)任意t时刻,蜡块的位置?
(2)时间t内蜡块的位移如何?
(3)t时刻蜡块的速度如何?
总结合位移与合合速度的求法。
四、例题
1.船在静止水中航行的速度是10km/h,当它在流速是2km/h的河水中向着垂直于河
岸的方向航行时,合速度的大小和方向是怎样的?
2.篮球运动员将篮球向斜上放投出,投射方向与水平方向成60°角。
设其出手速度
为10m/s,这个速度在竖直方向和水平方向的分速度各是多大?
[当堂检测]
1.关于运动的合成和分解下列说法正确的是()
A 合运动的时间等于两个分运动的时间和
B 匀变速运动的轨迹可以是直线,也可以是曲线
C 曲线运动的加速度方向可能与速度在同一直线上
D 分运动是直线运动则合运动必是直线运动
2.在河岸上用细绳拉船,使小船靠岸,拉绳的速度为v=8m/s,当拉船头的细绳与水平
面的夹角为30°时,船的速度大小为。
3.某船在河中向东匀速直线航行,船上的人正相对于船以0.4m/s的速度匀速地竖直向
上升起一面旗帜,当他用20s升旗完毕时,船行驶了9m,那么旗相对于岸的速度大小是多少?。