一元二次方程测试题(含答案)

合集下载

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)1、(x+4)=5(x+4)解:将等式两边展开,得到x+4=5x+20,移项化简得4x=-16,因此x=-4.2、(x+1)=4x解:将等式两边展开,得到x+1=4x,移项化简得3x=1,因此x=1/3.3、(x+3)=(1-2x)2解:将等式两边展开,得到x+3=1-4x+4x2,移项化简得4x2-4x-2=0,因此x=1+√3或x=1-√3.4、2x2-10x=3解:将等式两边移项化简,得到2x2-10x-3=0,利用求根公式得到x=(5+√37)/2或x=(5-√37)/2.5、(x+5)2=16解:将等式两边展开,得到x2+10x+25=16,移项化简得x2+10x+9=0,因此x=-1或x=-9.6、2(2x-1)-x(1-2x)=0解:将等式两边展开,得到4x-2-x+2x2=0,移项化简得2x2+3x-2=0,因此x=1/2或x=-2.7、x2+6x-5=0解:利用求根公式得到x=(-6±√56)/2,化简得到x=-3+√14或x=-3-√14.8、5x2-2/5=0解:将等式两边乘以5,得到25x2-2=0,移项化简得到x=±√(2/25)=±2/5.9、8(3-x)2-72=0解:将等式两边移项化简,得到8(3-x)2=72,化简得到(3-x)2=9,因此x=0或x=6.10、3x(x+2)=5(x+2)解:将等式两边移项化简,得到3x(x+2)-5(x+2)=0,因此(3x-5)(x+2)=0,因此x=5/3或x=-2.11、(1-3y)2+2(3y-1)=0解:将等式展开化简,得到9y2-18y+9+6y-2=0,移项化简得到9y2-12y+7=0,利用求根公式得到y=(6±√12)/9.12、x2+2x+3=0解:利用求根公式得到x=(-2±√(-8))/2,因为无实数解,所以方程无解。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案) 一元二次方程测试题1.一元二次方程$(1-3x)(x+3)=2x^2+1$化为一般形式为:二次项系数$2$,一次项系数$-7$,常数项$10$。

2.若$m$是方程$x^2+x-1=3mx+1$的一个根,代入可得$m+2\sqrt{m+2013}$的值为$-1$,解得$\sqrt{m+2013}=-\frac{m+1}{2}$,代入可得$m=-2014$。

4.关于$x$的一元二次方程$(a-2)x^2+x+a-4$的一个根为$1$,代入可得$a=5$。

5.若代数式$4x-2x-5$与$2x+1$的值互为相反数,则$x=-\frac{3}{2}$。

6.已知$2y+y-3=2$,代入可得$4y^2+2y+1=27$。

7.若方程$(m-1)x+m\cdot x=1$是关于$x$的一元二次方程,则$m$的取值范围为$m\neq 0$。

8.已知关于$x$的一元二次方程$ax+bx+c(a\neq 0)$的系数满足$a+c=b$,则此方程必有一根为$\frac{c}{a}$。

10.设$x_1,x_2$是方程$x^2+bx+b-1=0$有两个相等的实数根,则$b=2$。

12.若$x=-2$是方程$x^2+mx-6=0$的一个根,则方程的另一个根是$3$。

13.设$m,n$是一元二次方程$x^2+4x+m=0$的两个根,则$m+n=-4$。

14.一元二次方程$(a+1)x^2-ax+a-1=0$的一个根为$1$,代入可得$a=2$。

15.若关于$x$的方程$x^2-2ax+a^2=0$的两个根互为倒数,则$a=\pm\sqrt{2}$。

17.已知关于$x$的方程$x^2-x-2=0$与$2x^2-(a+b)x+ab-1=0$有一个解相同,则$a=1$。

18.$a$是二次项系数,$b$是一次项系数,$c$是常数项,且满足$a-1+(b-2)+|a+b+c|=0$,则满足条件的一元二次方程为$(a-1)x^2+(b-2)x+c=0$。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x)(x+3)=2x2+1 化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:。

2.若m是方程x2+x-1=0的一个根,试求代数式m3+2m2+2013的值为。

3.方程是关于x的一元二次方程,则m的值为。

4.关于x的一元二次方程的一个根为0,则a的值为。

5.若代数式与的值互为相反数,则的值是。

6.已知的值为2,则的值为。

7.若方程是关于x的一元二次方程,则m的取值范围是。

8.已知关于x的一元二次方程的系数满足,则此方程必有一根为。

9.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是。

10.设x1,x2是方程x2﹣x﹣2013=0的两实数根,则= 。

11.已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是。

12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是。

13.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=。

14.一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a= 。

15.若关于x的方程x2+(a﹣1)x+a2=0的两根互为倒数,则a= 。

16.关于x的两个方程x2﹣x﹣2=0与有一个解相同,则a= 。

17.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是.(填上你认为正确结论的所有序号)18.a是二次项系数,b是一次项系数,c是常数项,且满足+(b-2)2+|a+b+c|=0,满足条件的一元二次方程是。

19.巳知a、b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于____.20.已知关于x的方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,则k的值为.21.已知分式,当x=2时,分式无意义,则a= ;当a<6时,使分式无意义的x的值共有个.22.设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a= 。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。

3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。

一元二次方程单元综合测试题含答案

一元二次方程单元综合测试题含答案

方圆学校九年级第21章一元二次方程单元综合测试题一、填空题〔每题2分,共20分〕1.方程,x〔x—3〕=5〔x—3〕的根是___________ .22.以下方程中,是关于x的一元二次方程的有.[1] 2y2+y-1=0;〔2〕x〔2x—1〕=2x2;〔3〕∖—2x=l;〔4〕ax2+bx+c=0;〔5〕x- —x2=0 ・23.把方程[l-2x] [l+2x] =2χ2-l化为一元二次方程的一般形式为.1 2 14.如果一7 ——— 8=0,那么一的值是_________ .X" X X5.关于x的方程[m2-1] x2+〔m—1〕x+2m-1=0是一元二次方程的条件是6.关于x的一元二次方程χ2—χ-3m=0有两个不相等的实数根,那么m的取值围是定_______________ .7. X2-5 | x | ÷4=0的所有实数根的和爰_____________ .8.方程χ4-5χ2+6=0,设y=χ2,那么原方程变形原方程的根为.9.以一1为一根的一元二次方程可为〔写一个即可〕.10.代数式1χ2+8x+5的最小值爰 ___________ .2二、选择题〔每题3分,共18分〕11.假设方程〔a—b〕x2+ [b-c] x+ [c-a] =0是关于x的一元二次方程,那么必有〔〕.B. 一根为1 C∙ 一根为一1 D.以上都不对A∙ a=b=cχ2 —χ-()12.假设分式~的值为0,那么x的值为〔〕.x -3x + 2A. 3 或一2B. 3C. -2D. -3 或213. [x2÷y2+l] [x2÷y2÷3] =8,那么区?+/的值为〔〕.A. -5 或1B. 1C. 5D. 5 或一114.方程χ2+px+q=0的两个根分别是2和一3,那么χ2-pχ+q可分解为〔〕.A. [x+2] [x÷3]B.〔x—2]〔x—3〕C.〔x-2]〔x+3〕D.〔x+2〕〔x—3]15α, 0是方程χ2+2006x+l=0 的两个根,那么[1+2008(1+/] [l÷2008β+β2]的值为〔〕.A. 1B. 2C. 3D. 416.三角形两边长分别为2和4,第三边是方程χ2-6x+8=0的解,那么这个三角形的周长是〔〕.A. 8 .B. 8 或10C. 10D. 8 和10三、用适当的方法解方程〔每题4分,共16分〕17.〔1〕2 tx÷2j 2-8=0; 〔2〕x〔x-3〕=x;〔3〕∖∣3 X2=6X—Λ∕3; 〔4〕〔x+3〕2÷3 fx+3] —4=0.四、解答题[18, 19, 20, 21题每题7分,22, 23题各9分,共46分〕X18.如果χ2 — 10x+y2-16y+89=0,求一的值.)'19.阅读下面的材料,答复以下问题:解方程χ4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设χ2=y,那么χ4=y2,于是原方程可变为y2—5y+4=0 ①,解得%=1, y2=4.当y=l 时,x2=l, .,.x=±lj当y=4 时,X2=4,.*.X=±2J万程有四个根:Xi=l, X2~ - 1, X3=2, X4=-2.〔1〕在由原方程得到方程①的过程中,利用法到达的目的,表达了数学的转化思想.⑵ 解方程(x2+x] 2-4 [x2+x] -12=0.20.如图,是市统计局公布的2000〜2003年全社会用电量的折线统计图.(1)填写统计表:2000 -2003年市全社会用电量统计表:年份200020012002200313.33全社会用电量〔单位:亿kW-h〕〔2〕根据市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率〔保存两个有效数字〕.用电量(亿kW ∙ h)2520151052000 2001 2002 2003 年份21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.〔1〕假设商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?〔2〕试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a, b, c是4ABC的三条边,关于x的方程Lx?+括x+c—'a=0有两个2 2相等的实数根,方程3cx+2b=2a的根为x=0.〔1〕试判断4ABC的形状.〔2〕假设a, b为方程χ2+mχ-3m=0的两个根,求m的值.23.关于x的方程fχ2+〔2a-l〕x+l=0有两个不相等的实数根5, x2.⑴求a的取值围;〔2〕是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.解:〔1〕根据题意,得△=[2a-1] 2-4a2>0,解得av'.4・•・当a<0时,方程有两个不相等的实数根.2a— 1 〔2〕存在,如果方程的两个实数根X],X2互为相反数,那么X1÷X2=--=0a ①,解得经检验,&二;是方程①的根.当a=:时,方程的两个实数根羽与X2互为相反数.a上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A、B、C、D为矩形的4个顶点,AB = 16cm, BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm∕s的速度向点B移动,一直到达点B为止;点Q以2cm∕s的速度向点B移动,经过多长时间P、Q两点之间的距离是10cm?25、如图,在aABC 中,ZB = 90° , BC=12cm, AB = 6cm,点P 从点A 开场段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒,〔1〕当t为何值时,ZiAPQ与4AOB相似?24〔2〕当t为何值时,ZXAPQ的面积为一个平方单位?2、有一边为5cm的正方形ABCD和等腰三角形PQR, PQ=PR=5cm, QR=8cm, 点B、C、Q、R在同一直线1上,当C、Q两点重合时,等腰三角形PQR以lcm/s 的速度沿直线1按箭头方向匀速运动,〔1〕t秒后正方形ABCD与等腰三角形PQR重合局部的面积为5,求时间t;〔2〕当正方形ABCD与等腰三角形PQR重合局部的面积为7,求时间t;B QC R3、如下图,在平面直角坐标中,四边形OABC 是等腰梯形,CB H OA, OA=7, AB=4, ZCOA=60°,点P 为x 轴上的一个动点,点P 不与点0、点A 重合.连结CP,过点P 作PD 交AB 于点D,⑴求点B 的坐标沐⑵当点P 运动什么位置且鲁《求这时点P 的坐标;答案:1. Xι=3, X2=102,〔5〕 点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3. 6χ2-2=04. 4 —2点拨:把一看做一个整体.X5. m≠ ± 16. m>-- 点拨:理解定义是关键.127. 0点拨:绝对值方程的解法要掌握分类讨论的思想. 8. y2 — 5y+6=0 Xi — ^∖∕2 f X2二一Λ∕2 , X3- , X4~ 一 Λ∕3 9. x 2-x=0〔答案不唯一〕 10. -2711. D 点拨:满足一元二次方程的条件是二次项系数不为0. 12. A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13. B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意χ2+F 式子本身的属性.14. C 点拨:灵活掌握因式分解法解方程的思想特点是关键. 15. D 点拨:此题的关键是整体思想的运用.16. C 点拨:此题的关键是对方程解的概念的理解和三角形三边关系定理的运用. 17. ⑴ 整理得〔x+2〕2=4,即 0+2〕=±2,.*.x 1=0, x 2=~4〔2〕x 〔x —3〕— x=0,x 〔x —3—1〕=0, x 〔x —4〕=0, ∙*∙ Xl =0 9 X2=4 9〔3〕整理得 G χ2+ \/3 — 6χ=0,时,4OCP 为等腰三角形,求这时点P 的坐标;(3)当求P 率动什幺住聂时,使<ZCPD=ZOAB,DX2—2λ∕3 x+l=0,由求根公式得X1= V3 + λ∕2 , X2= \/3 — V2 .〔4〕设x+3=y,原式可变为y2+3y-4=0,解得力二-4, y2=l,即x+3=—4, x= —7.由x+3=l,得x=-2.二原方程的解为xi= -7, x2=-2.18.由x2- 10x+y2- 16y+89=0,得〔x—5〕2+〔y—8〕2=0,x 5∕.x=5, y=8,> 819.〔1〕换元降次〔2〕设χ2+x=y,原方程可化为y2-4y-12=0,解得yι=6, y2= -2∙由x2+x=6,得xi= -3, X2=2.由x2+x= — 2,得方程X2÷X+2=0,b2-4ac=l-4×2=-7<0,此时方程无解.所以原方程的解为、二-3, X2=2.20.⑴〔2〕设2001年至2003年平均每年增长率为x,那么2001年用电量为14.73亿kW ∙ h,2002 年为14.73 [l+x]亿kW ∙ h,2003 年为14.73 [l+xj 2亿kW ∙ h.那么可列方程:14.73 [l+x] 2=21.92, 1+X=±1.22,∕.xι=0.22=22%, x2=-2.22〔舍去〕.那么2001〜2003年年平均增长率的百分率为22%.21. [1]设每件应降价x元,由题意可列方程为〔40-x〕∙〔30+2x〕=1200,解得X]=0, X2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.〔2〕设商场每天盈利为W元.W=〔40—x〕(30+2x] =-2X2+50X+1200=-2[X2-25X] +1200=-2 [χ-12.5] 2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22. ∙.∙,χ2+扬x+c-'a=0有两个相等的实数根,2 2判别式=[y[b ] 2—4×一[c -------------- a] =0,2 2整理得a+b-2c=0 ①,又3cx+2b=2a 的根为x=0,**- a—b ②.把②代入①得a=c,Λa=b=c, ∙∙∙4ABC为等边三角形.〔2〕a, b是方程x2+mx-3m=0的两个根,所以I∏2-4X〔一3m〕=0,即f∏2+12m=0,∕.t∏ι=0, m2=-12.当m=0时,原方程的解为x二O〔不符合题意,舍去〕,∕.m=12.23.上述解答有错误.〔1〕假设方程有两个不相等实数根,那么方程首先满足是一元二次方程,二.&2壬0 且满足〔2a-1〕2—4a2>0, .,.a< 一且a#0.4〔2〕a不可能等于!.2〔1〕中求得方程有两个不相等实数根,同时a的取值围是av,且aK0,4而a=—> 一〔不符合题意〕2 4所以不存在这样的&值,使方程的两个实数根互为相反数.。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

(完整版)一元二次方程经典测试题(含答案)

(完整版)一元二次方程经典测试题(含答案)

一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是( )A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x 1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>"或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青"的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0。

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。

一元二次方程经典测试题(含答案)

一元二次方程经典测试题(含答案)

一元二次方程经典测试题(含答案)一元二次方程经典测试题(含答案)1. 解下列一元二次方程:(1)x^2 - 5x + 6 = 0(2)2x^2 - 7x + 3 = 0(3)3x^2 + 4x - 1 = 0(4)4x^2 + 4x + 1 = 0解答:(1)x^2 - 5x + 6 = 0(x - 2)(x - 3) = 0x = 2 或 x = 3(2)2x^2 - 7x + 3 = 0(2x - 1)(x - 3) = 0x = 1/2 或 x = 3(3)3x^2 + 4x - 1 = 0(3x - 1)(x + 1) = 0x = 1/3 或 x = -1(4)4x^2 + 4x + 1 = 0(2x + 1)(2x + 1) = 0x = -1/22. 解下列一元二次方程并给出其图像是否与x轴正向相交:(1)x^2 - 4x + 3 = 0(2)2x^2 + 3x + 2 = 0(3)3x^2 - 6x + 3 = 0(4)4x^2 - 5x + 1 = 0解答:(1)x^2 - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 或 x = 3图像与x轴正向相交。

(2)2x^2 + 3x + 2 = 0该方程无实数解,图像不与x轴正向相交。

(3)3x^2 - 6x + 3 = 0x^2 - 2x + 1 = 0(x - 1)(x - 1) = 0x = 1图像与x轴正向相交。

(4)4x^2 - 5x + 1 = 0(2x - 1)(2x - 1) = 0x = 1/2图像与x轴正向相交。

3. 求解下列一元二次方程的根的范围:(1)x^2 - 6x + 5 > 0(2)2x^2 + 3x + 2 ≤ 0(3)3x^2 - 6x - 9 < 0(4)4x^2 - 5x + 1 ≥ 0解答:(1)x^2 - 6x + 5 > 0(x - 5)(x - 1) > 0x < 1 或 x > 5(2)2x^2 + 3x + 2 ≤ 0该方程无实数解,根的范围为空集。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y 2+1=; (3)(x-a)2=1-2a+a 2(a 是常数) 18.(7分)已知关于x 的一元二次方程x 2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x 的解,你能求出m 和n 的值吗? 19.(10分)已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根. (2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值. 四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率. 答案一、DAABC,DBD 二、 9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2)3;(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k = 四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习(附答案)(1)x^2+17x+72=0答案:x1=-8x2=-9(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(21)x^2+13x-140=0答案:x1=7x2=-20(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(43)x^2+28x+180=0答案:x1=-10x2=-18(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(87)x^2+13x+12=0答案:x1=-1x2=-12(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6。

(完整版)一元二次方程测试题及答案

(完整版)一元二次方程测试题及答案

一元二次方程测试姓名学号一、选择题 (每题3分,共30分):1.下列方程中不一定是一元二次方程的是( )A.(a-3)x 2=8 (a≠3) B.ax 2+bx+c=0232057x +-=2下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+23.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )A. ;B.;C. ; 23162x ⎛⎫-= ⎪⎝⎭2312416x ⎛⎫-= ⎪⎝⎭231416x ⎛⎫-= ⎪⎝⎭D.以上都不对4.关于的一元二次方程的一个根是x ()22110a x x a -++-=0,则值为( )a A 、B 、C 、或 11-11-D 、125.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C.17或19 D.196.已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是(22870xx -+=)A B 、3 C 、6D 、97.使分式 的值等于零的x 是( )2561x x x --+A.6 B.-1或6 C.-1 D.-68.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( )A.k>-B.k≥- 且k≠0C.k≥- 747474D.k> 且k≠0749.已知方程,则下列说中,正确的是( )22=+x x (A )方程两根和是1 (B )方程两根积是2(C )方程两根和是 (D )方程两根积比两根和1-大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共30分)11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.22____)(_____3-=+-x x x 14.若一元二次方程ax 2+bx+c=0(a≠0)有一个根为-1,则a 、b 、c 的关系是______.15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______.16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.17.已知是方程x 2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.20.关于的二次方程有两个相等实根,则符合x 20x mx n ++=条件的一组的实数值可以是 ,.,m n m =n =三、用适当方法解方程:(每小题5分,共10分)22.22(3)5x x -+=230x ++=四、列方程解应用题:(每小题8分,共48分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

(完整)一元二次方程100道计算题练习(附答案)

(完整)一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=16 6、2(2x -1)-x (1-2x)=07、x 2 =64 8、5x 2—52=0 9、8(3 —x )2–72=010、3x (x+2)=5(x+2) 11、(1-3y)2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2—x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x —4=0 24、x 2—3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=—1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x —1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x (5—x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)235、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=一、用因式分解法解下列方程(x -2) 2=(2x —3)2042=-x x 3(1)33x x x +=+x 2—23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x —3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x(x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0。

一元二次方程经典测试题(含答案及解析)

一元二次方程经典测试题(含答案及解析)

WORD格式可编辑专业知识整理分享一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育第Ⅰ卷(选择题)一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m +2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A. B.C.D.第Ⅱ卷(非选择题)二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.219.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 米.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ 0(填:“>”或“=”或“<”).三.解答题(共8小题) 21.(6分)解下列方程.(1)x 2﹣14x=8(配方法) (2)x 2﹣7x ﹣18=0(公式法)(3)(2x +3)2=4(2x +3)(因式分解法)22.(6分)关于x 的一元二次方程(m ﹣1)x 2﹣x ﹣2=0 (1)若x=﹣1是方程的一个根,求m 的值及另一个根. (2)当m 为何值时方程有两个不同的实数根.23.(6分)关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实根. (1)求a 的最大整数值;(2)当a 取最大整数值时,①求出该方程的根;②求2x 2﹣的值.24.(6分)关于x 的方程x 2﹣(2k ﹣3)x +k 2+1=0有两个不相等的实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1x 2+|x 1|+|x 2|=7,求k 的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.WORD 格式 可编辑专业知识整理分享26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米. (1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x 的一元二次方程x 2﹣(m +6)x +3m +9=0的两个实数根分别为x 1,x 2. (1)求证:该一元二次方程总有两个实数根;(2)若n=4(x 1+x 2)﹣x 1x 2,判断动点P (m ,n )所形成的函数图象是否经过点A (1,16),并说明理由.一元二次方程测试题参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选B.2.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P 的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根4WORD 格式 可编辑专业知识整理分享B .有一正根一负根且正根的绝对值大C .有两个负根D .有一正根一负根且负根的绝对值大 【解答】解:x 2+bx ﹣2=0, △=b 2﹣4×1×(﹣2)=b 2+8, 即方程有两个不相等的实数根, 设方程x 2+bx ﹣2=0的两个根为c 、d , 则c +d=﹣b ,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c +d=﹣b 和b <0得出方程的两个根中,正数的绝对值大于负数的绝对值, 故选B .8.x 1,x 2是方程x 2+x +k=0的两个实根,若恰x 12+x 1x 2+x 22=2k 2成立,k 的值为( ) A .﹣1 B .或﹣1 C . D .﹣或1【解答】解:根据根与系数的关系,得x 1+x 2=﹣1,x 1x 2=k . 又x 12+x 1x 2+x 22=2k 2, 则(x 1+x 2)2﹣x 1x 2=2k 2, 即1﹣k=2k 2, 解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去. ∴取k=﹣1. 故本题选A .9.一元二次方程ax 2+bx +c=0中,若a >0,b <0,c <0,则这个方程根的情况是( ) A .有两个正根 B .有两个负根C .有一正根一负根且正根绝对值大D .有一正根一负根且负根绝对值大 【解答】解:∵a >0,b <0,c <0, ∴△=b 2﹣4ac >0,<0,﹣>0,∴一元二次方程ax 2+bx +c=0有两个不相等的实数根,且两根异号,正根的绝对值较大. 故选:C .10.有两个一元二次方程:M :ax 2+bx +c=0;N :cx 2+bx +a=0,其中a ﹣c ≠0,以下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么是方程N 的一个根D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=1【解答】解:A 、在方程ax 2+bx +c=0中△=b 2﹣4ac ,在方程cx 2+bx +a=0中△=b 2﹣4ac , ∴如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根,正确; B 、∵“和符号相同,和符号也相同,∴如果方程M 有两根符号相同,那么方程N 的两根符号也相同,正确; C 、∵5是方程M 的一个根, ∴25a +5b +c=0, ∴a +b +c=0,∴是方程N 的一个根,正确;D 、M ﹣N 得:(a ﹣c )x 2+c ﹣a=0,即(a ﹣c )x 2=a ﹣c , ∵a ﹣c ≠1,∴x 2=1,解得:x=±1,错误. 故选D .11.已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( ) A .7B .11C .12D .16【解答】解:∵m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根, ∴m +n=2t ,mn=t 2﹣2t +4,∴(m +2)(n +2)=mn +2(m +n )+4=t 2+2t +8=(t +1)2+7. ∵方程有两个实数根,∴△=(﹣2t )2﹣4(t 2﹣2t +4)=8t ﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A .B .C .D .【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a <,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a 的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a >﹣,∴﹣<a<0,故选D.二.填空题(共8小题)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=±4.【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=8.【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.6WORD 格式 可编辑专业知识整理分享17.已知关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根,且关于x 的不等式组的解集是x <﹣1,则所有符合条件的整数m 的个数是 4 .【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根, ∴m ﹣1≠0且△=(﹣3)2﹣4(m ﹣1)>0,解得m <且m ≠1,,∵解不等式组得,而此不等式组的解集是x <﹣1, ∴m ≥﹣1, ∴﹣1≤m<且m ≠1,∴符合条件的整数m 为﹣1、0、2、3. 故答案为4.18.关于x 的方程(m ﹣2)x 2+2x +1=0有实数根,则偶数m 的最大值为 2 . 【解答】解:由已知得:△=b 2﹣4ac=22﹣4(m ﹣2)≥0, 即12﹣4m ≥0, 解得:m ≤3,∴偶数m 的最大值为2. 故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 1 米.【解答】解:设人行道的宽度为x 米(0<x <3),根据题意得: (18﹣3x )(6﹣2x )=60, 整理得,(x ﹣1)(x ﹣8)=0.解得:x 1=1,x 2=8(不合题意,舍去).即:人行通道的宽度是1米. 故答案是:1.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ > 0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx +b 的图象经过第一、三、四象限,∴k >0,b <0,∴△=(﹣2)2﹣4(kb +1)=﹣4kb >0. 故答案为>.三.解答题(共8小题) 21.解下列方程.(1)x 2﹣14x=8(配方法) (2)x 2﹣7x ﹣18=0(公式法)(3)(2x +3)2=4(2x +3)(因式分解法) (4)2(x ﹣3)2=x 2﹣9.【解答】解:(1)x 2﹣14x +49=57, (x ﹣7)2=57, x ﹣7=±,所以x 1=7+,x 2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121, x=,所以x 1=9,x 2=﹣2;(3)(2x +3)2﹣4(2x +3)=0, (2x +3)(2x +3﹣4)=0, 2x +3=0或2x +3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m >且m≠1,∴当m >且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x +=2(x2﹣8x)+=2×(﹣9)+=﹣.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k <;(2)∵k <,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k <,∴k=﹣1.8WORD 格式 可编辑专业知识整理分享25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.【解答】解:(1)设一次函数解析式为y=kx +b , 把(90,100),(100,80)代入y=kx +b 得,,解得,,y 与销售单价x 之间的函数关系式为y=﹣2x +280.(2)根据题意得:w=(x ﹣80)(﹣2x +280)=﹣2x 2+440x ﹣22400=1350; 解得(x ﹣110)2=225, 解得x 1=95,x 2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米. (1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x 米. 由题意(60﹣2x )(40﹣2x )=1500, 解得x=5或45(舍弃), 答:通道的宽度为5米.(2)设种植“四季青”的面积为y 平方米. 由题意:y (30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元? 【解答】22.(1)假设甲种商品的进货单价为x 元、乙种商品的进货单价为y 元, 根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m )(500+×100)+500=1000即2m 2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.10。

一元二次方程测试题及答案

一元二次方程测试题及答案

一元二次方程测试题及答案一、选择题(每题3分,共30分)1. 下列哪个方程是一元二次方程?A. x^2 + 2x + 1 = 0B. 2x + 3 = 0C. 3y^2 - 5 = 0D. x^3 - 4 = 0答案:A2. 一元二次方程 ax^2 + bx + c = 0 中,a的取值范围是:A. a ≠ 0B. a > 0C. a < 0D. a ≥ 0答案:A3. 解一元二次方程 x^2 - 5x + 6 = 0 的判别式Δ的值为:A. 1B. 4C. 16D. 25答案:B4. 如果一元二次方程的两个根为x1和x2,那么x1 * x2的值为:A. c/aC. b/aD. a/c答案:A5. 对于方程 x^2 - 4x + 4 = 0,以下哪个说法是正确的?A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断答案:B6. 一元二次方程 2x^2 - 6x + 4 = 0 的根为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B7. 方程 x^2 - 2ax + a^2 - a = 0 的根必定是:A. 0B. 1C. aD. -1答案:B8. 方程 3x^2 - 4x + 1 = 0 的判别式Δ等于:B. -12C. 12D. 20答案:C9. 如果一元二次方程的系数a、b、c都是整数,那么这个方程必有:A. 两个实数根B. 两个共轭复数根C. 两个有理数根D. 两个整数根答案:A10. 方程 x^2 + 3x + 2 = 0 的根的和为:A. -3B. -2C. 3D. 2答案:A二、填空题(每题4分,共20分)11. 一元二次方程的一般形式是____________________。

答案:ax^2 + bx + c = 0(a ≠ 0)12. 如果一元二次方程的判别式Δ < 0,那么该方程____________________。

一元二次方程复习(测试)题(含答案)

一元二次方程复习(测试)题(含答案)

一元二次方程复习(测试)题1.要使分式2541x x x -+-的值为零,x 应当是 ()A. 4B. 4或1C. 1D. –4或-12.[]2210=+x x x ++( )( ); []22( )=-( )x bx x -+3.如果42++ax x 是一个完全平方式,那么a= .4.若n (n ≠0)是关于x 的二次方程x 2+mx +n =0的一个根,则m +n 的值是_______.5. ①方程的根是 。

②方程 0)2)(1(=-+x x 的根是 ;方程x 2=3x 的根是 ;6. 关于x 的方程0142=++x mx 有两个不相等的实数根,则m 的取值范围是 。

7.根据下列表格中代数式ax 2+bx+c 与x 的对应值,判断方程ax 2+bx+c=1(a ≠0)的一个根x 的大致范围为 。

8.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。

9.若m 是一元二次方程2y 2+y-3=0的根,则①4m 2+2m+1的值为 ;②2m ²-33m 的值为。

10.某小化肥厂一月份生产化肥500吨,后来由于改进操作技术,使得第一季度共生产化肥1750吨,若设二、三月份平均每月的增产率为x ,则可列方程为 .11.原价a 元的某商品经过两次降价后,现售价b 元,如果每次降价的百分比都为x ,那么下列各式中正确的是( )()()b x a A =-21; ()()b x a B =-21; ()()a x b C =+21; ()()a x b D =+21。

12.某厂计划在两年内把产量提高44%,如果每年与上一年的增长率相同,那么这增长率是_ 。

13.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,若设每个支干长出x 个小分支,则可列方程为 。

14.解下列方程:⑴26302x x -+=(用配方法) ⑵910402x x +-=(用公式法)⑶2502x x -=(因式分解法) ⑷⑸⑹16)1(22=-x ⑺0222=--x x15. 列方程解应用题:⑴某林场第一年造林100亩,以后造林面积逐年增长,第二年、第三年共造林375亩,后两年平均每年的增长率是多少?⑵现有一块底边BC 长为10cm ,高AD 为8cm 的纸片三角形ABC ,如图所示,在△ABC 中剪下一个矩形,当EF 长为多少时,矩形EFGH 的面积为845 cm 2?⑶某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为25元,则可卖出100件,每涨价1元,就可少卖出10件,同时物价局限定每件商品加价不能超过进价的30%,商店计划要赚480元,需要卖出多少件商品?每件商品应售价多少元?(要求:用两种设法,用其中一种设法完整做出来)⑷要在长32m,宽20m的长方形绿地上修建宽度相同的道路,六块绿地面积共570m2,问道路宽应为多宽?⑸某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?⑹如图所示,利用22米长的墙为一边,用篱笆围成一个长方形养鸡场,中间用篱笆分割出两个小长方形,总共用去篱笆36米,为了使这个长方形ABCD的面积为96平方米,问AB和BC边各应是多少?⑺某水果批发商场经销一种高档水果如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?⑻.读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数; 十位恰小个位三,个位平方与寿符;哪位学生算得快,多少年华属周瑜?16.若规定两数a, b 通过“※”运算, 得到4ab, 即 a ※b = 4ab , 例如 2※6 = 4×2×6 = 48. ⑴.求 3※5的值.⑵.求x ※x + 2 ※x -2※4 = 0 中x 的值.17.阅读下列材料, 解答问题: 阅读材料:为解方程 (x 2 -1 )2 - 5(x 2 -1 ) + 4 = 0, 我们可以将x 2 -1视为一个整体, 然后设 x 2 -1 = y , 则 (x 2 -1 )2 = y 2, 原方程化为 y 2 - 5y + 4 = 0 . ① 解得 y 1 = 1, y 2 = 4.当 y = 1 时, x 2 -1 = 1 , ∴ x 2= 2, ∴x =当 y = 4 时, x 2 -1 = 4 , ∴ x 2= 5, ∴x =∴原方程的解为 1234x x x x ===解答问题 :(1)填空:在由原方程得到①的过程中, 利用______________达到了降次的目的, 体现了_____________的数学思想.(4分) (2)解方程x 4 -x 2 -6 = 0. (5分)一元二次方程复习(测试)题答案1.A2.25 5 14 b 2 12 b 3.±4 4.-1 5. ①x 1=2, x 2=3 ②x 1=0, x 2=36.m <4且m ≠07. 6.18<x <6.198. x 1=1, x 2=- 239. ①7 ②- 1310.500+500(1+x)+500(1+x)2=1750 11.B 12.20% 13. 1+(1+x)+ (1+x)2=91 14. ⑴x=12 (3± 3 ) ⑵x=19 (-5±61 ) ⑶x 1=0, x 2= 52 ⑷x 1=3, x 2=4⑸x 1=8, x 2= 45 ⑹x=1±2 2 ⑺x=14(1±17 )15. ⑴设增长率为x,依题意可列方程为:100(1+x)+100(1+x)2=375 解得x 1=12 =50%, x 2=- 72 (不合题意,舍去) 答:略⑵设EF=x,依题意可列方程得:x (8-45 x )=845解得:x 1=3, x 2=7 答:略⑶设涨价为x 元,依题意可列方程得:(x+4)(100-10x )=480,解得:x 1=2, x 2=4(舍去) 设售价为x 元,依题意可列方程为:(x-21)[100-10(x-25)]=480,解得x 1=27, x 2=29(舍去) ⑷设宽为x 米,依题意可列方程为:(32-2x )(20-x )=570,解得x 1=1, x 2=35(舍去) ⑸设传染x 台,依题意可列方程为:(1+x )2=81,解得x 1=8, x 2=-10(舍去) (1+8)³=729>700⑹设AB=x,依题意可列方程为:x (36-3x )=96,解得x 1=4(舍去), x 2=8 ⑺设涨价x 元,依题意可列方程为:(10+x )(500-20x )=6000, 解得:x 1=5, x 2=10(舍去)⑻设十位数为x,依题意可列方程为:(x+3)2=10x+x+3,解得:x 1=2, x 2=3 当x=2时,(x+3)2=25<30(舍去);当x=3时,(x+3)2=36>30 16. ⑴60 ⑵x 1=2, x 2=-4 17.⑴换元 转化 ⑵x 1,2=± 3。

一元二次方程测试题含答案

一元二次方程测试题含答案

一元二次方程测试题含答案一、选择题1. 解一元二次方程 \( ax^2 + bx + c = 0 \) 的判别式是:A. \( b^2 - 4ac \)B. \( 4b^2 - 4ac \)C. \( b^2 + 4ac \)D. \( 4a^2 - 4ac \)答案:A2. 方程 \( x^2 - 5x + 6 = 0 \) 的根是:A. \( x = 2 \) 或 \( x = 3 \)B. \( x = 1 \) 或 \( x = 6 \)C. \( x = -2 \) 或 \( x = -3 \)D. 无实数解答案:A3. 一元二次方程 \( 2x^2 - 3x + 1 = 0 \) 的判别式 \( \Delta \) 等于:A. 5B. 1C. -1D. 0答案:C二、填空题4. 方程 \( 3x^2 - 4x + 1 = 0 \) 的判别式 \( \Delta \) 为______ 。

答案:75. 方程 \( x^2 + 4x + 4 = 0 \) 的根是 ______ 。

答案:\( x = -2 \)(重根)三、解答题6. 解方程 \( 2x^2 - 7x + 3 = 0 \) 并给出根。

解:首先计算判别式 \( \Delta = b^2 - 4ac = (-7)^2 - 4\times 2 \times 3 = 49 - 24 = 25 \)。

由于 \( \Delta > 0 \),方程有两个不相等的实数根。

使用求根公式 \( x = \frac{-b \pm \sqrt{\Delta}}{2a} \) 得到:\( x_1 = \frac{7 + 5}{4} = 3 \),\( x_2 = \frac{7 - 5}{4} = 0.5 \)。

7. 已知方程 \( ax^2 + bx + c = 0 \) 的两个根为 \( x_1 \) 和\( x_2 \),求 \( x_1 + x_2 \) 和 \( x_1 \cdot x_2 \)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x 2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。

2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。

3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。

6.已知322-+y y 的值为2,则1242++y y的值为 。

7.若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

8.已知关于x的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是 。

10.设x 1,x 2是方程x 2﹣x ﹣2013=0的两实数根,则= 。

11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是 。

12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是 。

13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。

14.一元二次方程(a+1)x 2-ax+a 2-1=0的一个根为0,则a= 。

15.若关于x 的方程x 2+(a ﹣1)x+a 2=0的两根互为倒数,则a = 。

16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。

17.已知关于x 的方程x 2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。

19.巳知a 、b 是一元二次方程x2-2x -1=0的两个实数根,则代数式(a -b )(a+b -2)+ab 的值等于____.20.已知关于x 的方程x 2+(2k +1)x +k 2-2=0的两实根的平方和等于11,则k 的值为 .21.已知分式2-3-5+x x x a,当x =2时,分式无意义,则a = ;当a <6时,使分式无意义的x 的值共有 个.22.设x 1、x 2是一元二次方程x 2+5x ﹣3=0的两个实根,且,则a= 。

23. 方程()012000199819992=-⨯-x x 的较大根为r ,方程01200820072=+-x x 的较小根为s ,则s-r 的值为 。

24. 若=•=-+yx则y x 324,0352 。

25. 已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。

二、选择题:(每题3分共42分)1、关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( )A .1B .1-C .1或1-D .122、关于x 2=-2的说法,正确的是 ( )A.由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程B.x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程C .x 2=-2是一个一元二次方程D.x 2=-2是一个一元二次方程,但不能解3、若2530ax x -+=是关于x 的一元二次方程,则不等式360a +>的解集是( )A .2a >-B .2a <-C .2a >-且0a ≠D .12a >4、关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( )A 、1B 、-1C 、1或-1D 、2 5、下列方程是一元二次方程的是_______。

(1)x 2+x 1-5=0(2)x 2-3xy+7=0 (3)x+12-x =4(4)m 3-2m+3=0(5)22x 2-5=0(6)ax 2-bx=46、已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A 、3或﹣1B 、3C 、1D 、﹣3或17、若一元二次方程式x 2-2x-3599=0的两根为a 、b ,且a >b ,则2a-b 之值为( )A .-57B .63C .179D .1818、若x 1,x 2(x 1<x 2)是方程(x -a )(x -b )=1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( )A 、x 1<x 2<a <bB 、x 1<a <x 2<bC 、x 1<a <b <x 2D 、a <x 1<b <x 2. 9、关于x 的方程:①,②,③;④中,一元二次方程的个数是( )A.1B.2C.3D.410、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=111、已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)=﹣6,则a 的值为( )A.-10B.4C.-4D.1012、若m 是关于x 的一元二次方程02=++m nx x的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.2113、关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条件正确的是( )A.0,0==n mB.0,0≠=n mC.0,0=≠n mD.0,0≠≠n m14、若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )A.1,0B.-1,0C.1,-1D.无法确定三、计算题:(1.2.3.4.5.6每题5分,.7.8.9.10每题7分,共58分)1、证明:关于x 的方程(m 2-8m+17)x 2+2mx+1=0,不论m 取何值,该方程都是一元二次方程.2、已知关于x 的方程x 2+x+n=0有两个实数根﹣2,m .求m ,n 的值.3、已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根 (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值。

4、已知m 是方程x 2﹣x ﹣2=0的一个实数根,求代数式的值.5、已知,关于x 的方程x m mx x 2222+-=-的两个实数根1x 、2x 满足12x x =,求实数m的值.6、当x满足条件时,求出方程x2﹣2x﹣4=0的根..7、关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.8、关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围.(2)若2(x1+x2)+ x1x2+10=0.求m的值.9、已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根:(2)若x1,x2是原方程的两根,且|x1-x2|=22,求m的值,并求出此时方程的两根.10、当m 为何值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。

附加题(15分):已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.一元二次方程测试题参考答案:一、填空题:1、5x 2+8x -2=0 5 8 -22、20143、24、-25、1或32-; 6、11 7、m ≥0 且m ≠1 8、-1 9、2 10、2014 11、3 12、k≤4且k≠0 13、4 14、1 15、-1 16、4 17、①② 18、x 2+2x -3=019、解:∵a、b 是一元二次方程x2-2x -1=0的两个实数根, ∴ab=-1,a+b=2,∴(a -b )(a+b -2)+ab=(a -b )(2-2)+ab=0+ab=-1,故答案为:-1.20、解:设方程方程x 2+(2k +1)x +k 2-2=0设其两根为x 1,x 2,得x 1+x 2=-(2k+1),x 1•x 2=k 2-2, △=(2k+1)2-4×(k 2-2)=4k+9>0,∴k>-49, ∵x 12+x 22=11,∴(x 1+x 2)2-2 x 1•x 2=11,∴(2k+1)2-2(k 2-2)=11,解得k =1或-3;∵k >-49,故答案为k =1.21、解:由题意,知当x=2时,分式无意义,∴分母=x 2-5x +a =22-5×2+a =-6+a =0,∴a =6; 当x 2-5x +a =0时,△=52-4a =25-4a , ∵a <6,∴△>0,∴方程x 2-5x +a =0有两个不相等的实数根,即x 有两个不同的值使分式2-3-5+x x x a无意义.故当a <6时,使分式无意义的x 的值共有2个.故答案为6,2.22、解:∵x 1、x 2是一元二次方程x 2+5x ﹣3=0的两个实根, ∴x 1+x 2=﹣5,x 1x 2=﹣3,x 22+5x 2=3,又∵2x 1(x 22+6x 2﹣3)+a=2x 1(x 22+5x 2+x 2﹣3)+a=2x 1(3+x 2﹣3)+a=2x 1x 2+a=4,∴﹣10+a=4, 解得:a=14. 23、 24、 25、 二、选择题:1、B2、D3、C4、B5、(5)6、B7、D8、解:∵x 1和x 2为方程的两根,∴(x 1-a )(x 1-b )=1且(x 2-a )(x 2-b )=1,∴(x 1-a )和(x 1-b )同号且(x 2-a )和(x 2-b )同号;∵x 1<x 2,∴(x 1-a )和(x 1-b )同为负号而(x 2-a )和(x 2-b )同为正号,可得:x 1-a <0且x 1-b <0,x 1<a 且x 1<b , ∴x 1<a ,∴x 2-a >0且x 2-b >0, ∴x 2>a 且x 2>b ,∴x 2>b , ∴综上可知a ,b ,x 1,x 2的大小关系为:x 1<a <b <x 2.故选C . 9、A 10、 11、C 12、A 13、B 14、C 三、计算题:1、∵m ²-8m+17= m ²-8m+16+1=(m-4)²+1∵(m-4)²≥0 ∴(m-4)²+1²>0即m ²-8m+17>0∴不论m 取何值,该方程都是一元二次方程。

相关文档
最新文档