手机喇叭振膜材料介绍
振膜
振膜对微型扬声器的放声性能有着至关重要的作用,它决定了扬声器由力到声的转换质量。
决定着扬声器的承受功率和重放音质的优劣。
一:振膜材料:振膜材料要求:密度小、刚性好和阻尼适中三个最基本的条件。
1.密度小:密度越小,质量越轻,振动速度最快。
2.振膜的刚性要好弹性模量E要足够大。
振膜的刚度主要决定了扬声器可能出现的分割振动频率。
作为一个理想的单元,我们不希望出现分割振动现象,而希望无论在任何频率振膜都是一种整体的同步运动。
3.振膜的内部阻尼适中材料内部要有适当的吸收。
振膜的理想振动的情况是:音圈启动时振膜要立即启动,当音圈没有音频电流流过停止动运时,振膜也要立即停住。
前者要求振膜的阻尼要小,而后者则要求振膜的阻尼要大,所以兼顾前后振膜的内部阻尼适中为好。
二:振膜结构圆形振膜花纹的形状可大致分为二类,一种是太阳花形,另一种是平膜形,全频段的耳机一般采用太阳花形的花纹。
太阳花形膜片的基本形状:球顶部高度和R 的大小,振膜中部曲线的曲率半径和幅度是决定频响的主要因素,膜片上雕刻花纹的数目、形状、位置、方向等决定着膜片的承受功率和产品的f0,再加上对于模具的处理,膜片上还可以咬花、喷沙和磨沙等都可以增加膜片的强度,改善膜片的性能。
振膜结构如下图:影响中高频的主要是锥体和球顶部分,折环部分主要影响中低频部分。
1.球顶曲率越小(越陡),高频截止频率越高。
2.锥体部分曲率越小(越陡)中高频越好,且低频的力度会增强,但越陡中频谷的深度也会越深。
锥体外径越大,辐射面积越大,泛音也更丰富。
3.折环加宽变软,低频部分会越好,但相应的高频部分会衰减得更厉害,而且中频谷会加深。
上述的锥体和折环部分有很多地方相互矛盾,如锥体部分越大,折环部分就会越窄,此时振膜的辐射面积就越大,泛音也会更丰富;但此时锥体的强度就会变差,而折环的强度变强,此时中低频变差,中频谷也会加深。
因此必须选择一个合适的比例。
振膜的花纹如下:花纹改变的主要是膜片的强度,从而起到改善分割振动的效果。
扬声器振膜材料介绍
或者,相对于消极的避让,也可积极的改进缺点,那就是加强振膜的阻尼:三明治夹层结构、涂布阻尼物都是不错的方式。市面上这类的产品已经愈来愈多,其中也不乏相当成功的例子,如Elac,或是声音和价钱都很高贵的瑞士Ensemble。
除了高频共振不好对付之外,振膜重量是另一项不利因素。因为成本的关系,还没见过用钛金属制作的中音单元。所以,金属盆的中音或低音单元虽可在强劲驱动下表现出色的动态,但整体的发声效率事实上还是偏低,一般需要较大的功率来伺候。
或者,更积极的作法是对这种材质加以改良,也就是以PP为基础,再混入一些添加物,以加强其刚性。这个动作的确能带来一定程度的改善,使得制作出来的单元在动态、失真率、细节表现,和发声效率上都有不同程度的进步。如Dynaudio和Infinity/Genesis都有采用此类处理的单元,虽然混入的添加物和制作方式不尽相同,但成效都颇明显。
(注1:多年前曾读过一篇洪怀恭先生现身说法所写的一篇有关纸盆制作的文章,除了浩叹纸盆所含的学问博大精深之外,更令我深深佩服洪前辈的研究精神。我在本文中轻描淡写的几句话,可是无法道尽多少年来先贤先烈们流血流汗所累积的精髓。)
一般来说,纸盆的声音特性为平顺自然,明快清晰而不神经质。因为内含无数的纤维相互交织,因此在其中传递的能量可以很快被吸收掉,形成很好的阻尼,因此在发声频域的高端造成的盆分裂共振不明显,滚降的截止带也就很平顺。这可说是一种很好的特性,因为这样就可以用很简单的分音器,不需额外的剪裁,系统的整合也就很健康。
虽不像纸盆那样有吸水气的问题,但PP振膜会有随温度改变特性的倾向。幸好这点应该不至于困扰我们,因为就像纸盆和湿度的问题一样,这样的变化应属缓慢而渐进,就别太担心了!
综观以上,PP好象因为刚性较差和质量较高的关系而不适于制作振膜,其实应该说是看我们如何在诸多妥协下作取舍了。就像前面提到的Scan单元,虽然用上被我批评得很惨的PP振膜,但一样还是可以做出很成功的产品,整体表现一样很出色。
动圈振膜材料
动圈振膜材料
活动圈振膜材料是指具有活动圈振膜性能的材料,是用于制造活动圈振角器(speakers)的特殊材料。
活动圈振膜材料一般分为非金属性和金属性两种。
非金属膜材料主要指碳纤维膨胀膜、橡胶膜、发泡聚氨酯膜、玻璃纤维膨胀膜等;金属膜材料主要指铝箔、锡箔等金属膨胀膜。
活动圈振膜材料的性能直接决定了活动圈振角器的声音质量,包括音质的清晰度、响度、范围、立体感等。
一般而言,这类材料具有良好的声学性能,体积小、重量轻。
此外,它还具有良好的自我消音性能,即能够吸收声音,减少反射,从而提高声学效果。
凯夫拉纤维振膜
凯夫拉纤维振膜
凯夫拉纤维振膜是**一种利用凯夫拉(Kevlar)这种高性能材料制成的扬声器振膜**。
凯夫拉是美国杜邦公司研制的一种芳纶纤维材料的品牌名,其学名为“聚对苯二甲酰对苯二胺”。
它诞生于20世纪60年代末,是一种高科技合成纤维,以其超高的拉伸强度和高杨氏模量而闻名,同时也具有极高的化学稳定性、优异的机械性能和耐热性能。
这些特性使得凯夫拉纤维在许多领域都有广泛的应用,尤其是在防弹产品领域,它是理想的防弹材料之一。
在音响领域,凯夫拉纤维也被用作制作扬声器振膜的材料。
由于其出色的机械性能,凯夫拉纤维振膜能够提供清晰、准确的音频响应,同时具有较高的刚性和轻量化的特点,这使得扬声器能够产生更好的声音效果。
然而,由于凯夫拉纤维与其他功能材料的相容性较低,这在一定程度上限制了其在音响领域的应用。
为了克服这一难题,研究人员通常会对商用凯夫拉进行特殊处理,以便与其他材料结合,制备出性能更优的复合材料。
总的来说,凯夫拉纤维振膜因其独特的物理和化学性质,在音响设计中提供了新的可能性,尽管在实际应用中还存在一些技术挑战。
扬声器振膜资料介绍[探析]之欧阳法创编
扬声器振膜资料介绍[探析]扬声器振膜材料介绍纸盆振膜应该算是最古老的材质了。
简单的说,把纸浆悬浮液流入事先设计好的盆型网状模子上,纸浆便沉积其上,将沉积至适当厚度的纸浆抄出,再行干燥等后续加工处理,便成了一个纸盆振膜。
而其中纸浆的成份,如纤维的种类、长短,及填料成份,和抄纸的制程及后段处理方式(如风干或热压等),都会影响最后成品的特性,也直接影响了发声特性,这些当然就是各家不外传的商业机密了(注1)……。
(注1:多年前曾读过一篇洪怀恭先生现身说法所写的一篇有关纸盆制作的文章,除了浩叹纸盆所含的学问博大精深之外,更令我深深佩服洪前辈的研究精神。
我在本文中轻描淡写的几句话,可是无法道尽多少年来先贤先烈们流血流汗所累积的精髓。
)一般来说,纸盆的声音特性为平顺自然,明快清晰而不神经质。
因为内含无数的纤维相互交织,因此在其中传递的能量可以很快被吸收掉,形成很好的阻尼,因此在发声频域的高端造成的盆分裂共振不明显,滚降的截止带也就很平顺。
这可说是一种很好的特性,因为这样就可以用很简单的分音器,不需额外的剪裁,系统的整合也就很健康。
另外,纸盆的刚性颇佳,对于瞬时反应和听感的细节表现有很好的成绩。
别看手边常见的纸张都是软软的,在适当的形状和厚度下,纸的刚性是能够做得很不错。
再者,若设计和制作得当,纸盆可以做得很轻,比最轻的塑料振膜还轻15,以上。
虽比起最新的高科技合成纤维材料,纸质还是稍重了点,但其实相差不大,因此发声效率高。
Audax的6.5吋纸盆中音PR170系列,效率便高达100dB/W。
纸盆可能的弱点是其特性会随环境湿度而变化,因纸吸收了湿气后其密度会变高(变重)、刚性会变差(变软),所以发声的特性也会受影响。
至于这样的改变是好是坏也很难说,英国的Lowther俱乐部成员便宣称在下雨天时,家里的Lowther喇叭特别好听。
较令人担心的应该是干湿循环次数多了之后,可能会造成材料本身的疲劳,进而改变其原本的特性。
石墨烯振膜
石墨烯振膜
石墨烯振膜,是一种较新的声学应用技术,主要应用于话筒和扬声器等领域。
它是以
石墨烯为基材,制作出微米级的振动膜,实现声波的传递和转化。
石墨烯具有很强的力学和电学性能,它的强度非常高,相对应的,石墨烯振膜的厚度
也相当薄,只有几纳米左右。
这种薄膜可以很好的响应声波,同时又具备良好的导电性,
使得其可以更好地传递和转化信号。
石墨烯振膜的制备主要是通过化学气相沉积和溅射等工艺来实现。
在实际的应用中,
可以选择不同的加工工艺和方法,以达到不同的性能和特点。
同时,石墨烯振膜制备的成
本也相对较低,使其在商业化应用中更易于推广和普及。
在话筒领域,石墨烯振膜已经被广泛应用。
传统的话筒采用的是薄膜式振膜,而石墨
烯振膜相对传统技术来说,具有更快的响应速度和更广泛的频率响应范围。
同时,石墨烯
振膜还具有良好的耐久性,能够保持长期的稳定性和灵敏度。
在扬声器领域,石墨烯振膜也具备很好的应用潜力。
与传统扬声器相比,石墨烯振膜
具备更好的响应速度和更广泛的频率响应范围。
同时,其具有更低的失真率和更高的效率,从而能够更好的提升音质和音量。
扬声器振膜资料介绍[探析]之欧阳科创编
扬声器振膜资料介绍[探析]扬声器振膜材料介绍纸盆振膜应该算是最古老的材质了。
简单的说,把纸浆悬浮液流入事先设计好的盆型网状模子上,纸浆便沉积其上,将沉积至适当厚度的纸浆抄出,再行干燥等后续加工处理,便成了一个纸盆振膜。
而其中纸浆的成份,如纤维的种类、长短,及填料成份,和抄纸的制程及后段处理方式(如风干或热压等),都会影响最后成品的特性,也直接影响了发声特性,这些当然就是各家不外传的商业机密了(注1)……。
(注1:多年前曾读过一篇洪怀恭先生现身说法所写的一篇有关纸盆制作的文章,除了浩叹纸盆所含的学问博大精深之外,更令我深深佩服洪前辈的研究精神。
我在本文中轻描淡写的几句话,可是无法道尽多少年来先贤先烈们流血流汗所累积的精髓。
)一般来说,纸盆的声音特性为平顺自然,明快清晰而不神经质。
因为内含无数的纤维相互交织,因此在其中传递的能量可以很快被吸收掉,形成很好的阻尼,因此在发声频域的高端造成的盆分裂共振不明显,滚降的截止带也就很平顺。
这可说是一种很好的特性,因为这样就可以用很简单的分音器,不需额外的剪裁,系统的整合也就很健康。
另外,纸盆的刚性颇佳,对于瞬时反应和听感的细节表现有很好的成绩。
别看手边常见的纸张都是软软的,在适当的形状和厚度下,纸的刚性是能够做得很不错。
再者,若设计和制作得当,纸盆可以做得很轻,比最轻的塑料振膜还轻15,以上。
虽比起最新的高科技合成纤维材料,纸质还是稍重了点,但其实相差不大,因此发声效率高。
Audax的6.5吋纸盆中音PR170系列,效率便高达100dB/W。
纸盆可能的弱点是其特性会随环境湿度而变化,因纸吸收了湿气后其密度会变高(变重)、刚性会变差(变软),所以发声的特性也会受影响。
至于这样的改变是好是坏也很难说,英国的Lowther俱乐部成员便宣称在下雨天时,家里的Lowther喇叭特别好听。
较令人担心的应该是干湿循环次数多了之后,可能会造成材料本身的疲劳,进而改变其原本的特性。
内陷型喇叭振膜的结构
内陷型喇叭振膜的结构
内陷型喇叭振膜,通常指的是在喇叭单元设计中,振膜中心部分向后凹陷的结构。
这种类型的振膜在技术上被称为“穹顶式(Dome)”或“半球形”振膜。
内陷型喇叭振膜的基本结构特点如下:
1. 几何形状:振膜整体呈碗状或者半球状,中间部分向后凹陷,边缘与音圈相连。
这样的设计有助于分散音圈驱动产生的应力,使得整个振膜运动更加均匀,从而减少分割振动和失真。
2. 材料选择:振膜材料可以是纸质、金属(如铝镁合金、钛)、高分子聚合物、布质复合材料等,根据不同的应用场合和声音特性需求来选择。
内陷的设计有助于提高刚性和强度,同时减轻重量。
3. 声学特性:内陷型振膜能较好地兼顾高低频响应,其内陷部分在低频时能够提供更大的有效振动面积,有助于提升低频下潜能力;而在高频时,由于质量较轻且集中于边缘部分,可实现较快的瞬态响应和较好的高频延伸。
4. 工艺制作:制造过程中,振膜的厚度、材质分布以及内陷的深度和曲率都需要精确控制,以确保其在大动态范围内的稳定性和耐用性。
5. 悬挂系统:内陷型振膜一般配合合适的悬挂系统(折环或弹波),保证振膜在前后移动时保持线性运动,并防止因超出物理极限而损坏。
总之,内陷型喇叭振膜通过其独特的结构设计,在声学性能上有一定的优势,常被应用于对音质有较高要求的音响设备中。
喇叭振膜材料介绍
喇叭振膜材料介绍现在可以用作手机喇叭振膜上的材料,以下材料已经陆续被应用了:PET, PEN, PAR, PEI, PPS, PEEK, PA, PI, PSU, PPSU, LCP, PMP, PES, COC等等。
聚对苯二甲酸乙二醇酯(PET)Polyethylene terephthalate聚对苯二甲酸乙二醇酯,英文名 polyethylene terephthalate(简称PET)。
PET 是乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。
在较宽的温度范围内具有优良的物理机械性能,长期使用温度可达120℃,电绝缘性优良,甚至在高温高频下,其电性能仍较好,但耐电晕性较差,耐蠕变性,耐疲劳性,耐摩擦性、尺寸稳定性都很好。
PET 有酯键,在强酸、强碱和水蒸汽作用下会发生分解,耐有机溶剂、耐候性好。
缺点是结晶速率小,成型加工困难,模塑温度高,生产周期长,冲击性能差。
一般通过增强、填充、共混等方法改进其加工性和改性,以玻璃纤维增强效果明显,可提高树脂刚性、耐热性、耐药品性、电气性能和耐候性。
但仍需改进结晶速度慢的弊病,可以采取添加型核剂和结晶促进剂等手段。
加阻燃剂和防燃剂可改进 PET阻燃性和自熄性。
为改进PET性能,PET可与PC、弹性体、PBT、PS类、ABS、PA共混形成合金。
PET按用途可分为纤维和非纤维两大类,后者包括薄膜、容器和工程塑料。
PET在开发初期主要用于制造合成纤维(占PET消耗量的70%左右)。
PET还用来制造绝缘材料、磁带带基、电影或照相胶片片基和真空包装等。
PET非纤应用的另一主要领域是制造充装饮料、食品等的中空容器。
其次,PET还作为工程塑料用于电子、电器等领域,如仪表壳、热风口罩等。
其中尤以包装容器的发展最引人注目,现在已有20%以上的PET用于包装材料,且呈逐年上升的趋势。
包装业已成为PET的第二大用户,仅次于合成纤维。
聚碳酸酯(PC)Polycarbonates聚碳酸酯,英文名Polycarbonate,简称PC。
扬声器振膜资料介绍[探析]
扬声器振膜资料介绍[探析]扬声器振膜材料介绍纸盆振膜应该算就是最古老得材质了。
简单得说,把纸浆悬浮液流入事先设计好得盆型网状模子上,纸浆便沉积其上,将沉积至适当厚度得纸浆抄出,再行干燥等后续加工处理,便成了一个纸盆振膜。
而其中纸浆得成份,如纤维得种类、长短,及填料成份,与抄纸得制程及后段处理方式(如风干或热压等),都会影响最后成品得特性,也直接影响了发声特性,这些当然就就是各家不外传得商业机密了(注1)……、(注1:多年前曾读过一篇洪怀恭先生现身说法所写得一篇有关纸盆制作得文章,除了浩叹纸盆所含得学问博大精深之外,更令我深深佩服洪前辈得研究精神。
我在本文中轻描淡写得几句话,可就是无法道尽多少年来先贤先烈们流血流汗所累积得精髓。
)一般来说,纸盆得声音特性为平顺自然,明快清晰而不神经质。
因为内含无数得纤维相互交织,因此在其中传递得能量可以很快被吸收掉,形成很好得阻尼,因此在发声频域得高端造成得盆分裂共振不明显,滚降得截止带也就很平顺。
这可说就是一种很好得特性,因为这样就可以用很简单得分音器,不需额外得剪裁,系统得整合也就很健康。
另外,纸盆得刚性颇佳,对于瞬时反应与听感得细节表现有很好得成绩。
别瞧手边常见得纸张都就是软软得,在适当得形状与厚度下,纸得刚性就是能够做得很不错。
再者,若设计与制作得当,纸盆可以做得很轻,比最轻得塑料振膜还轻15,以上。
虽比起最新得高科技合成纤维材料,纸质还就是稍重了点,但其实相差不大,因此发声效率高、Audax得6。
5吋纸盆中音PR170系列,效率便高达100dB/W。
纸盆可能得弱点就是其特性会随环境湿度而变化,因纸吸收了湿气后其密度会变高(变重)、刚性会变差(变软),所以发声得特性也会受影响、至于这样得改变就是好就是坏也很难说,英国得Lowther俱乐部成员便宣称在下雨天时,家里得Lowther喇叭特别好听。
较令人担心得应该就是干湿循环次数多了之后,可能会造成材料本身得疲劳,进而改变其原本得特性。
详解4种常见喇叭振膜
详解4种常见喇叭振膜扬声器所用的材料和制造工艺的差别会对音质产生影响,相比之下,扬声器单元的质素更是关键,最终驱动发声的是扬声器单元,一切声音源于此,如果扬声器单元发出的声音不够理想,那么音箱再如何修饰和补求都不能发挥大作用。
纸盘振膜这是扬声器最常见的振膜材质,年代久远,目前已拥有非常成熟的技术水准。
将纸浆倒入设计好的模具中,干燥之后再进行一系列的后续加工,就形成了我们常见的喇叭单元振膜。
这只是一个基本的过程描述,至于材料的成分比例、加工方式,每个品牌都有自己的秘笈,这当然也是维持生计的商业机密。
纸盆的声音特性比较平滑自然,符合大多数人的口味,声音中不会有个性鲜明的刺激部分。
由于内部纤维的相互交织,传输过程中的能量可以被很快吸收,因此纸盆的阻尼特性也比较理想。
另外由于纸盆重量较轻,能量转化效率方面也有不错表现,这些都是纸盆的优点。
不过纸盆的缺点也是明显的,首先由于材质的特点,纸盆对温度和湿度变化比较敏感,所处环境变化可能对声音造成影响,经过承受数次在这些极端环境变化后,有可能造成纸盆产生不可复原的形变。
不过,目前的纸盆技术也在不断发展,通过加入其他材料可以使纸盆在防水特性方面有更佳的表现。
塑胶振膜这也是常见的音盆材质之一,在化工产业发达的今天,合成材料已经出现在生活的各方面。
单元振膜中所说的塑胶材质,一般由聚丙烯材料制成,简称PP音盆。
相对于纸盆,PP音盆在防潮防水效果方面优胜许多,不过也会受到轻微影响。
由于是合成材料,PP音盆的改良方案有很多,在现有基础上,可以针对克服某种不足而进行改良,通过添加其他材料实现,这是PP音盆较为理想的方面,因此采用PP音盆的扬声器,同样不乏优秀作品。
PP音盆同样具备出色的阻尼特性,听感上柔顺自然,另外PP音盆一般情况下不需要太高阶的分频器,这也能够整体控制扬声器的生产成本。
而缺点方面,PP音盆的刚性相对一般,表现高频较丰富的音乐并不适合,容易产生失真现象。
金属振膜由于很多贵金属的存在,人们对金属也许会产生一种崇拜,从目前能够接触的产品来看,一般金属材质给予高贵气派、个性喧扬的感觉,而事实上,在扬声器单元制作中,金属振膜也是常见,而且在声音方面的特点鲜明。
(完整版)手机喇叭振膜材料介绍
手机喇叭振膜材料介绍讨论一下现在可以用作手机喇叭振膜上的材料吧,据我所知,以下材料已经陆续被应用了:PET, PEN, PAR, PEI, PPS, PEEK, PA, PI, PSU, PPSU, LCP, PMP, PES, COC等等,大家有补充的吗?聚对苯二甲酸乙二醇酯(PET)Polyethylene terephthalate聚对苯二甲酸乙二醇酯,英文名 polyethylene terephthalate(简称PET)。
PET 是乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。
在较宽的温度范围内具有优良的物理机械性能,长期使用温度可达120℃,电绝缘性优良,甚至在高温高频下,其电性能仍较好,但耐电晕性较差,耐蠕变性,耐疲劳性,耐摩擦性、尺寸稳定性都很好。
PET 有酯键,在强酸、强碱和水蒸汽作用下会发生分解,耐有机溶剂、耐候性好。
缺点是结晶速率小,成型加工困难,模塑温度高,生产周期长,冲击性能差。
一般通过增强、填充、共混等方法改进其加工性和改性,以玻璃纤维增强效果明显,可提高树脂刚性、耐热性、耐药品性、电气性能和耐候性。
但仍需改进结晶速度慢的弊病,可以采取添加型核剂和结晶促进剂等手段。
加阻燃剂和防燃剂可改进 PET阻燃性和自熄性。
为改进PET性能,PET可与PC、弹性体、PBT、PS类、ABS、PA共混形成合金。
PET按用途可分为纤维和非纤维两大类,后者包括薄膜、容器和工程塑料。
PET在开发初期主要用于制造合成纤维(占PET消耗量的70%左右)。
PET还用来制造绝缘材料、磁带带基、电影或照相胶片片基和真空包装等。
PET非纤应用的另一主要领域是制造充装饮料、食品等的中空容器。
其次,PET还作为工程塑料用于电子、电器等领域,如仪表壳、热风口罩等。
其中尤以包装容器的发展最引人注目,现在已有20%以上的PET用于包装材料,且呈逐年上升的趋势。
包装业已成为PET的第二大用户,仅次于合成纤维。
喇叭振膜材料介绍
PEEK树脂是非常稳定的聚合物,1.45mm厚的样品,不加任何阻燃剂就可达到最高阻燃标准。下面是它与几种工程塑料燃烧时发烟量的对比。
易加工性
PEEK树脂虽然是超耐热性树脂,但由于它具有高温流动性好和热分解温度很高等特点,因此可采用如下加工方式:
1、注射成型2、挤出成型3、模压成型4、吹塑成型5、熔融纺丝6、旋转成型7、粉末喷涂
性能
由于萘的结构更容易呈平面状,使得PEN具有良好的气体阻隔性能。PEN对水的阻隔性是PET的3-4倍,对氧气和二氧化碳的阻隔性是PET的4-5倍,且不受潮湿环境的影响。因而,PEN可作为饮料及食品的包装材料,并可大大提高产品的保质期。
PEN具有良好的化学稳定性,对有机溶液和化学药品稳定,耐酸碱的能力也好于PET。由于PEN的气密性好,分子量相对较大,所以在实际使用温度下,其析出低聚物的倾向比PET小,在加工温度高于PET情况下分解放出的低级醛也少于PET。
发展进程
PEN于1948年研制成功,但由于单体价格较高,限制了其工业化生产,在这以后的20多年时间内,基本上没有对PEN的研究报道,直到20世纪70年代才有一些PEN的制造和应用专利申请。进入90年代后,由于PEN合成技术的发展以及删单体的工业化,PEN独特的物理性能引起人们的极大关注,逐渐成为一种重要的新型聚酯材料而备受瞩目,并开始了工业化生产。目前,世界上只有2家公司生产PEN的单体DMN,分别是美国的阿莫科公司和日本的三菱瓦斯化学公司。阿莫科公司是世界上率先将DMN工业化的生产商,该公司现已在阿拉斯加和阿拉巴马州分别建成了4.5万t/a的DMN《生产基地;三菱瓦斯化学公司则是世界第二大DMN生产商,该公司拥有4万t/a的DMN装置。
耐高温
PEEK树脂具有较高的玻璃化转变温度(143℃)和熔点(334℃),这是它可在有耐热性要求的用途中可靠应用的理由之一。其负载热变型温度高达316℃(30%GF或CF增强牌号),连续使用温度为260℃。
丝绢振膜单元
丝绢振膜单元
丝绢振膜单元是一种高音扬声器单元,其振膜材料为丝绢。
丝绢具有轻薄、柔软、细腻等优点,因此能够提供较好的高频响应和声音细节表现。
这种振膜材料通常用于高端扬声器和监听音箱中,以提供清晰、自然的高音表现。
在丝绢振膜单元中,丝绢经过特殊处理和涂层处理,以改善其物理性能和防潮、防腐等性能。
同时,为了获得更好的声音效果,丝绢振膜单元通常会采用一些特殊的设计和技术,例如音圈、磁路等部分的优化设计。
总之,丝绢振膜单元是一种高品质的高音扬声器单元,能够提供清晰、自然的高音表现,常用于高端音箱和监听音箱中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手机喇叭振膜材料介绍讨论一下现在可以用作手机喇叭振膜上的材料吧,据我所知,以下材料已经陆续被应用了:PET, PEN, PAR, PEI, PPS, PEEK, PA, PI, PSU, PPSU, LCP, PMP, PES, COC等等,大家有补充的吗?聚对苯二甲酸乙二醇酯(PET)Polyethylene terephthalate聚对苯二甲酸乙二醇酯,英文名 polyethylene terephthalate(简称PET)。
PET 是乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。
在较宽的温度范围内具有优良的物理机械性能,长期使用温度可达120℃,电绝缘性优良,甚至在高温高频下,其电性能仍较好,但耐电晕性较差,耐蠕变性,耐疲劳性,耐摩擦性、尺寸稳定性都很好。
PET 有酯键,在强酸、强碱和水蒸汽作用下会发生分解,耐有机溶剂、耐候性好。
缺点是结晶速率小,成型加工困难,模塑温度高,生产周期长,冲击性能差。
一般通过增强、填充、共混等方法改进其加工性和改性,以玻璃纤维增强效果明显,可提高树脂刚性、耐热性、耐药品性、电气性能和耐候性。
但仍需改进结晶速度慢的弊病,可以采取添加型核剂和结晶促进剂等手段。
加阻燃剂和防燃剂可改进 PET阻燃性和自熄性。
为改进PET性能,PET可与PC、弹性体、PBT、PS类、ABS、PA共混形成合金。
PET按用途可分为纤维和非纤维两大类,后者包括薄膜、容器和工程塑料。
PET在开发初期主要用于制造合成纤维(占PET消耗量的70%左右)。
PET还用来制造绝缘材料、磁带带基、电影或照相胶片片基和真空包装等。
PET非纤应用的另一主要领域是制造充装饮料、食品等的中空容器。
其次,PET还作为工程塑料用于电子、电器等领域,如仪表壳、热风口罩等。
其中尤以包装容器的发展最引人注目,现在已有20%以上的PET用于包装材料,且呈逐年上升的趋势。
包装业已成为PET的第二大用户,仅次于合成纤维。
聚碳酸酯(PC)Polycarbonates聚碳酸酯,英文名Polycarbonate,简称PC。
PC是一种无定型、无臭、无毒、高度透明的无色或微黄色热塑性工程塑料,具有优良的物理机械性能,尤其是耐冲击性优异,拉伸强度、弯曲强度、压缩强度高;蠕变性小,尺寸稳定。
聚碳酸酯还具有良好的耐热性和耐低温性,在较宽的温度范围内具有稳定的力学性能,尺寸稳定性,电性能和阻燃性,可在 -60~120℃下长期使用;无明显熔点,在 220~230℃呈熔融状态;由于分子链刚性大,树脂熔体粘度大;吸水率小,收缩率小,尺寸精度高,尺寸稳定性好,薄膜透气性小;属自熄性材料;对光稳定,但不耐紫外光,耐候性好;耐油、耐酸、不耐强碱、氧化性酸及胺、酮类,溶于氯化烃类和芳香族溶剂,长期在水中易引起水解和开裂,缺点是因抗疲劳强度差,容易产生应力开裂,抗溶剂性差,耐磨性欠佳。
PC可注塑、挤出、模压、吹塑热成型、印刷、粘接、涂覆和机加工,最重要的加工方法是注塑。
成型之前必须预干燥,水分含量应低于0.02%,微量水份在高温下加工会使制品产生白浊色泽,银丝和气泡,PC在室温下具有相当大的强迫高弹形变能力。
高冲击韧性,因此可进行冷压,冷拉,冷辊压等冷成型加工。
挤出用PC分子量应大于3万,要采用渐变压缩型螺杆,长径比1:18~24,压缩比1:2.5,可采用挤出吹塑,注-吹、注-拉-吹片成型高质量,高透明瓶子。
聚醚醚酮(PEEK)poly(etheretherketone)玻璃化温度: 143o C. 熔点: 334o C聚醚醚酮(PEEK)树脂是一种具有耐高温、自润滑、易加工和高机械强度等优异性能的特种工程塑料。
耐高温PEEK树脂具有较高的玻璃化转变温度(143℃)和熔点(334℃),这是它可在有耐热性要求的用途中可靠应用的理由之一。
其负载热变型温度高达316℃(30%GF或CF增强牌号),连续使用温度为260℃。
机械特性PEEK树脂是韧性和刚性兼备并取得平衡的塑料。
特别是它对交变应力的优良耐疲劳性是所有塑料中最出众的,可与合金材料媲美。
耐化学药品性PEEK树脂在所有塑料中具有出众的滑动特性,适合于严格要求低摩擦系数和耐摩耗用途使用。
特别是碳纤、石墨、聚四氟乙烯各占10%比例混合改性的滑动牌号或30%CF增强牌号等均为具有优异滑动特性的牌号。
自润滑性(耐腐蚀性)PEEK树脂具有优异的耐化学药品性,在通常的化学药品中,能溶解或者破坏它的只有浓硫酸,它的耐腐蚀性与镍钢相近。
阻燃性PEEK树脂是非常稳定的聚合物,1.45mm厚的样品,不加任何阻燃剂就可达到最高阻燃标准。
下面是它与几种工程塑料燃烧时发烟量的对比。
易加工性PEEK树脂虽然是超耐热性树脂,但由于它具有高温流动性好和热分解温度很高等特点,因此可采用如下加工方式:1、注射成型2、挤出成型3、模压成型4、吹塑成型5、熔融纺丝6、旋转成型7、粉末喷涂聚醚砜树脂(PES)Poly(ether sulfones)聚醚砜树脂(PES)是英国ICI公司在1972年开发的一种综合性能优异的热塑性高分子材料,是目前得到应用的为数不多的特种工程塑料之一。
它具有优良的耐热性能、物理机械性能、绝缘性能等,特别是具有可以在高温下连续使用和在温度急剧变化的环境中仍能保持性能稳定等突出优点,在许多领域已经得到广泛应用。
耐热性热变型温度在200~220℃,连续使用温度为180~200℃,UL温度指数为180℃。
耐水解性可耐150~160℃热水或蒸气,在高温下也不受酸、碱的侵蚀。
模量的温度领事性基模量在-100℃到200℃几乎不变,特别在100℃以上比任何一种热塑性树脂都好。
抗蠕变性在180℃以下的温度范围内其抗蠕变性是热塑性树脂当中最优异的一种,特别是玻璃纤维增强PES树脂比某些热固性树脂还好。
尺寸稳定性线膨胀系数小,而且其温度信赖性也小是其特点。
特点是30%玻璃纤维增强PES树脂,其线膨胀系数只有2.3×10 /℃,并且直到200℃仍然可以保持与铝相近似的值。
耐冲击性具有与聚碳酸酯相同的耐冲击性。
不增强的树脂可以铆接,但对尖细的切口较敏感,因此设计上要注意。
无毒性在卫生标准方面,被美国FDA认可,也符合日本厚生省第434号和178号公告的要求。
难燃性具有自熄性,不添加任何阻燃剂即有优异的难燃性,可达UL94V—0级(0.46mm)耐化学药品性PES耐汽油、机油、润滑油等油类和氟里昂等清洗剂,它的耐溶剂开裂性是非晶树脂中最好的。
但它耐丙酮、氯仿等极性溶剂的性能不好,使用时应加以注意。
电器、电子领域利用PES的可耐焊锡性、尺寸稳定性好、耐各种清洗剂、可镶嵌金属件、与环氧树脂粘结性好等优点,作为H级绝缘材料用于电子、电器领域。
已经开发的主要制品有线圈骨架,电位计的外壳和底座,吹发器零件,印刷线路板、按钮式开关、可控硅的绝缘体,电动工具马达的绝缘体、打印机、送风机、继电器等的线圈骨架、DIP开关,各类接插件等。
还可以采用挤出成型法制成不同厚度的薄膜用于各种电子设备和电器产品。
聚砜(PSU)Polysulphone玻璃化温度: 185o C.聚砜(PSU)是一类在分子主链上含有砜基的芳香族非结晶高性能的热塑性工程塑料。
分为透明、不透明和填充品级3种规格。
由于聚砜的主链为苯环,通过醚、砜、异丙基等基“铰链“联接而成,因此兼有聚芳砜的刚性、耐热性及聚芳醚的柔性。
PSU是透明、水解稳定的塑料,尺寸稳定性好,在室温下具有良好的形变稳定性;加热形变温度为175℃,具有突出的热稳定性,长期使用温度为160℃,短期使用温度为190℃,能在-100℃ ~+150℃范围内保持良好的性能。
PSU具有优良的力学性能,拉伸强度为70~75MPa,弯曲模量2680MPa,并具有突出的长期耐蠕变性,在长期时间使用过程中机械性能仍能保持不变。
PSU还具有优异的介电性能,即使放置在水中或190℃下仍能保持很高的介电性能,在150℃下长时间热老化时,其物理性能和电性能变化甚小,且耐蒸汽性能优良,它的寿命在145℃蒸汽下至少为12年,同时在宽的温度和频率范围内保持良好的电性性能,其耐燃性能满足更严格的安全要求,在耐辐射性方面为塑料的最佳品种。
PSU易于加工成型、能达到精密的公差,除浓硝酸、浓硫酸外,对其他酸、碱、醇、脂肪烃等化学物品稳定。
聚萘二甲酸乙二醇酯(PEN)是聚酯家族中重要成员之一,由2,6-萘二甲酸(NDC) 或2,6-萘二酸二甲酯(DMN)与乙二醇(EG)缩聚而成,是1种性能优良的聚合物。
PEN 化学结构与PET相似,不同之处在于分子链中PEN由刚性更大的萘环代替了PET 中的苯环,萘环结构使PEN具有比PET更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。
因此,作为一种热塑性树脂,PEN在纤维、薄膜、包装材料和工程塑料等领域有着十分广阔的应用前景。
由于近年在PEN 单体及前体生产技术与成本上的突破,给PEN的研究开发带来了曙光,开展PEN的研究开发对于聚酯厂商具有重要的战略意义。
预计在不久的将来,我国将成为PEN 应用开发的重要市场。
性能由于萘的结构更容易呈平面状,使得PEN具有良好的气体阻隔性能。
PEN对水的阻隔性是PET的3-4倍,对氧气和二氧化碳的阻隔性是PET的4-5倍,且不受潮湿环境的影响。
因而,PEN可作为饮料及食品的包装材料,并可大大提高产品的保质期。
PEN具有良好的化学稳定性,对有机溶液和化学药品稳定,耐酸碱的能力也好于PET。
由于PEN的气密性好,分子量相对较大,所以在实际使用温度下,其析出低聚物的倾向比PET小,在加工温度高于PET 情况下分解放出的低级醛也少于PET。
由于萘环提高了大分子的芳香度,使PEN比PET具有更优良的耐热性能。
PEN 在130℃的潮湿空气中放置500小时后,伸长率仅下降10%;在180 ℃干燥空气中放置10小时后,伸长率仍能保持50%;而PET 在同等条件下会因变脆而失去使用价值。
PEN的熔点为265℃,与PET相近,其玻璃化温度在120℃以上,比PET高出50℃左右。
另外,萘的双环结构具有很强的紫外光吸收能力,使得PEN可以阻隔小于380nm 的紫外线,其阻隔效应明显优于PC。
同时,PEN的光致力学性能下降少,光稳定性约为PET的5倍,经放射后,断裂伸长率下降少,在真空和氧气中耐放射线的能力分别为PET的10倍和4倍。
PEN还具有优良的力学性能,PEN的杨氏模量和拉伸弹性模量均比PET高出50%。
而且,PEN的力学性能稳定,即使在高温高压情况下,其弹性模量、强度、蠕变和寿命仍能保持相当的稳定性。
PEN还具有优良的电气性能,与PET的电气性能相当,其介电常数、体积电阻率、导电率等也均与PET接近,但其电导率随温度变化较小。