统计学第四版贾俊平答案
统计学第四版答案(贾俊平)知识分享
![统计学第四版答案(贾俊平)知识分享](https://img.taocdn.com/s3/m/a16a98d1b9d528ea81c77973.png)
统计学第四版答案(贾俊平)请举出统计应用的几个例子:1、用统计识别作者:对于存在争议的论文,通过统计量推出作者2、用统计量得到一个重要发现:在不同海域鳗鱼脊椎骨数量变化不大,推断所有各个不同海域内的鳗鱼是由海洋中某公共场所繁殖的3、挑战者航天飞机失事预测请举出应用统计的几个领域:1、在企业发展战略中的应用2、在产品质量管理中的应用3、在市场研究中的应用④在财务分析中的应用⑤在经济预测中的应用你怎么理解统计的研究内容:1、统计学研究的基本内容包括统计对象、统计方法和统计规律。
2、统计对象就是统计研究的课题,称谓统计总体。
3、统计研究方法主要有大量观察法、数量分析法、抽样推断法、实验法等。
④统计规律就是通过大量观察和综合分析所揭示的用数量指标反映的客观现象的本质特征和发展规律。
举例说明分类变量、顺序变量和数值变量:分类变量:表现为不同类别的变量称为分类变量,如“性别”表现为“男”或“女”,“企业所属的行业”表现为“制造业”、“零售业”、“旅游业”等,“学生所在的学院”可能是“商学院”、“法学院”等顺序变量:如果类别有一定的顺序,这样的分类变量称为顺序变量,如考试成绩按等级分为优、良、中、及格、不及格,一个人对事物的态度分为赞成、中立、反对。
这里的“考试成绩等级”、“态度”等就是顺序变量。
数值变量:可以用数字记录其观察结果,这样的变量称为数值变量,如“企业销售额”、“生活费支出”、“掷一枚骰子出现的点数”。
定性数据和定量数据的图示方法各有哪些:1、定性数据的图示:条形图、帕累托图、饼图、环形图2、定量数据的图示:a、分组数据看分布:直方图b、未分组数据看分布:茎叶图、箱线图、垂线图、误差图c、两个变量间的关系:散点图d、比较多个样本的相似性:雷达图和轮廓图直方图与条形图有何区别:1、条形图中的每一个矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。
2、由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
统计学贾俊平第四版课后习题答案
![统计学贾俊平第四版课后习题答案](https://img.taocdn.com/s3/m/d347fd4cf524ccbff021844f.png)
3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42363737493942323635要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
1、确定组数: ()lg 40lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取54.8 一项关于大学生体重状况的研究发现.男生的平均体重为60kg ,标准差为5kg ;女生的平均体重为50kg ,标准差为5kg 。
请回答下面的问题: (1)是男生的体重差异大还是女生的体重差异大?为什么?女生,因为标准差一样,而均值男生大,所以,离散系数是男生的小,离散程度是男生的小。
(2)以磅为单位(1ks=2.2lb),求体重的平均数和标准差。
都是各乘以2.21,男生的平均体重为60kg×2.21=132.6磅,标准差为5kg ×2.21=11.05磅;女生的平均体重为50kg×2.21=110.5磅,标准差为5kg×2.21=11.05磅。
(3)粗略地估计一下,男生中有百分之几的人体重在55kg一65kg之间?计算标准分数:Z1=x xs-=55605-=-1;Z2=x xs-=65605-=1,根据经验规则,男生大约有68%的人体重在55kg一65kg之间。
(4)粗略地估计一下,女生中有百分之几的人体重在40kg~60kg之间?计算标准分数:Z1=x xs-=40505-=-2;Z2=x xs-=60505-=2,根据经验规则,女生大约有95%的人体重在40kg一60kg之间。
最新统计学第四版答案(贾俊平)
![最新统计学第四版答案(贾俊平)](https://img.taocdn.com/s3/m/75a9b3e1195f312b3169a5e9.png)
请举出统计应用的几个例子:1、用统计识别作者:对于存在争议的论文,通过统计量推出作者2、用统计量得到一个重要发现:在不同海域鳗鱼脊椎骨数量变化不大,推断所有各个不同海域内的鳗鱼是由海洋中某公共场所繁殖的3、挑战者航天飞机失事预测请举出应用统计的几个领域:1、在企业发展战略中的应用2、在产品质量管理中的应用3、在市场研究中的应用④在财务分析中的应用⑤在经济预测中的应用你怎么理解统计的研究内容:1、统计学研究的基本内容包括统计对象、统计方法和统计规律。
2、统计对象就是统计研究的课题,称谓统计总体。
3、统计研究方法主要有大量观察法、数量分析法、抽样推断法、实验法等。
④统计规律就是通过大量观察和综合分析所揭示的用数量指标反映的客观现象的本质特征和发展规律。
举例说明分类变量、顺序变量和数值变量:分类变量:表现为不同类别的变量称为分类变量,如“性别”表现为“男”或“女”,“企业所属的行业”表现为“制造业”、“零售业”、“旅游业”等,“学生所在的学院”可能是“商学院”、“法学院”等顺序变量:如果类别有一定的顺序,这样的分类变量称为顺序变量,如考试成绩按等级分为优、良、中、及格、不及格,一个人对事物的态度分为赞成、中立、反对。
这里的“考试成绩等级”、“态度”等就是顺序变量。
数值变量:可以用数字记录其观察结果,这样的变量称为数值变量,如“企业销售额”、“生活费支出”、“掷一枚骰子出现的点数”。
定性数据和定量数据的图示方法各有哪些:1、定性数据的图示:条形图、帕累托图、饼图、环形图2、定量数据的图示:a、分组数据看分布:直方图b、未分组数据看分布:茎叶图、箱线图、垂线图、误差图c、两个变量间的关系:散点图d、比较多个样本的相似性:雷达图和轮廓图直方图与条形图有何区别:1、条形图中的每一个矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。
2、由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
统计学课后习题答案(第四版)贾俊平(第4、5、7、10章)
![统计学课后习题答案(第四版)贾俊平(第4、5、7、10章)](https://img.taocdn.com/s3/m/76f698bbaf1ffc4fff47ac9a.png)
《统计学》第四版 第四章练习题答案众数:M o =1O;中位数:中位数位置=n+1/2=5.5 , M e =10 ;平均数:(2) Q L 位置=n/4=2.5, Q L =4+7/2=5.5 ; Q u 位置=3n/4=7.5 , Q u =12(4) 4.2 和 M O =23。
将原始数据排序后,计算中位数的位置为:中位数位置=n+1/2=13,第13个位置上的数值为23,所以中位数为 M e =23(2)Q L 位置=n/4=6.25, Q L ==19 ; Q u 位置=3n/4=18.75,Q u =26.5茎 叶 频数 5 5 1 6 6 7 8 3 71 3 4 8 85(3)第一种排队方式: 离散程度大于第二种排队方式。
(4 )选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方 式。
_ Z X i4.4 ( 1)X8223/30=274.14.1 ( 1 ) 二X i X =n96.9,6 102' (X i-X ) _156.4 42n -1, 9由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
(1)从表中数据可以看出,年龄出现频数最多的是 19和23,故有个众数,即 M O =19(3)⑶平均数-A =600/25=24,标准差—(XLX)\ n —1210626.6525-1n(4) 偏态系数SK=1.08,峰态系数K=0.77(5) 分析:从众数、中位数和平均数来看,网民年龄在 23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数 1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
(1)茎叶图如下: 大于 4.3 —2'(X 一 X ) 4.080.714nn -1■ 8由于两种排队方式的平均数不同,所以用离散系数进行比较。
(2) X 二一^ =63/9=7, S = ■■n中位数位置=n+1/2=15.5 , M e=272+273/2=272.5(2) Q L位置=n/4=7.5, Q L==(258+261)/2=259.5 ; Q u 位置=3n/4=22.5 , Q u=(284+291)/2=287.5' (^-X ^ /3002-7 = 21.17 I n —1 \ 30—12100 +3000 +15004.5 (1)甲企业的平均成本=总成本/总产量=-2100 3000---- + ----- 15 20乙企业的平均成本=总成本/总产量=3255150015006255=18.293255 1500 1500 342____ + _____ + _____152030原因:尽管两个企业的单位成本相同, 但单位成本较低的产品在乙企业的产量中所占比重较 大,因此拉低了总平均成本。
统计学课后习题答案_(第四版)_贾俊平
![统计学课后习题答案_(第四版)_贾俊平](https://img.taocdn.com/s3/m/390a7bf789eb172ded63b754.png)
《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑nxx i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12 (3)2.494.1561)(2==-=∑-n i s x x (4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77(5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1(2)==∑nxx i63/9=7,714.0808.41)(2==-=∑-n i s x x (3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 2=0.714/7=0.102.由于v 1>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑nx x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5(2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5(3) 17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
统计学第四版答案(贾俊平)
![统计学第四版答案(贾俊平)](https://img.taocdn.com/s3/m/3e026ead0242a8956bece481.png)
请举出统计应用的几个例子:1、用统计识别作者:对于存在争议的论文,通过统计量推出作者2、用统计量得到一个重要发现:在不同海域鳗鱼脊椎骨数量变化不大,推断所有各个不同海域内的鳗鱼是由海洋中某公共场所繁殖的3、挑战者航天飞机失事预测请举出应用统计的几个领域:1、在企业发展战略中的应用2、在产品质量管理中的应用3、在市场研究中的应用④在财务分析中的应用⑤在经济预测中的应用你怎么理解统计的研究内容:1、统计学研究的基本内容包括统计对象、统计方法和统计规律。
2、统计对象就是统计研究的课题,称谓统计总体。
3、统计研究方法主要有大量观察法、数量分析法、抽样推断法、实验法等。
④统计规律就是通过大量观察和综合分析所揭示的用数量指标反映的客观现象的本质特征和发展规律。
举例说明分类变量、顺序变量和数值变量:分类变量:表现为不同类别的变量称为分类变量,如“性别”表现为“男”或“女”,“企业所属的行业”表现为“制造业”、“零售业”、“旅游业”等,“学生所在的学院”可能是“商学院”、“法学院”等顺序变量:如果类别有一定的顺序,这样的分类变量称为顺序变量,如考试成绩按等级分为优、良、中、及格、不及格,一个人对事物的态度分为赞成、中立、反对。
这里的“考试成绩等级”、“态度”等就是顺序变量。
数值变量:可以用数字记录其观察结果,这样的变量称为数值变量,如“企业销售额”、“生活费支出”、“掷一枚骰子出现的点数”。
定性数据和定量数据的图示方法各有哪些:1、定性数据的图示:条形图、帕累托图、饼图、环形图2、定量数据的图示:a、分组数据看分布:直方图b、未分组数据看分布:茎叶图、箱线图、垂线图、误差图c、两个变量间的关系:散点图d、比较多个样本的相似性:雷达图和轮廓图直方图与条形图有何区别:1、条形图中的每一个矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。
2、由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
统计学(第四版)袁卫 庞皓 贾俊平 杨灿 统计学 第七章练习题参考解答
![统计学(第四版)袁卫 庞皓 贾俊平 杨灿 统计学 第七章练习题参考解答](https://img.taocdn.com/s3/m/8ef74443227916888486d78c.png)
STATISTICS
单击练此习处题编第部辑七分母章版参标考题解样答式
练习题7.1
1. 设销售收入 为自变量,销售成本 为因变量。现已根据某百货
公司某年12个月的有关资料计算出以下数据:(单位:万元)
(xt x)2 425053.73 x 647.88
(yt y)2 262855.25
F (k 1, n k) F0.05 (1, 26) 2.91
F=17.70503 F0.05 (1, 26) 2.91
所以y和 联合起来对最终消费有显著影响,即回归方 程整体上是显著的。
练习题7.7
下表给出y对x2和x3回归的结果:
离差来源
平方和(SS) 自由度(df)
由F=58.20479,大于临界值 F0.05 (4 1, 22 4) 3.16 ,
说明模型在整体上是显著的。
练习题7.5
为进一步研究前期的消费对本期消费的影响,准备拟合以下
形式的消费函数: ct 1 yt 2ct1 ut
式中:ct 为t 期的消费;ct1 为 t-1期的消费;yt 为国民总收入。
t 2 (n 2) t0.025 (10) 2.2281 t 245.71875 t0.025 (8) 2.2281
H0 : 0 ,检验说明x对y有显著影响.
(4) 假定下年1月销售收入为800万元,利用拟合的回归方 程预测其销售成本,并给出置信度为95%的预测区间
y 549.8
(xt x)(yt y) 334229.09
(1)拟合简单线性回归方程,并对方程中回归系数的经济意义作 出解释。
统计学(第四版) 贾俊平 课后习题答案
![统计学(第四版) 贾俊平 课后习题答案](https://img.taocdn.com/s3/m/6304e047852458fb770b56dc.png)
第 2 章 统计数据的描述——练习题
●1. 为评价家电行业售后服务的质量,随机抽取了由 100 家庭构成的一个样本。服务质量的 等级分别表示为:A. 好;B.较好;C. 一般;D. 差;E. 较差。调查结果如下: B E C C A D C B A E D A C B C D E C E E A D B C C A E D C B B A C D E A B D D C C B C E D B C C B C D A C B C D E C E B B E C C A D C B A E B A C D E A B D D C A D B C C A E D C B C B C E D B C C B C (1) 指出上面的数据属于什么类型; (2) 用 Excel 制作一张频数分布表;
(3)条形图的制作:将上表 (包含总标题,去掉合计栏)复制到 Excel 表中,点击:图 表向导→条形图→选择子图表类型→完成(见 Excel 练习题 2.1)。即得到如下的条形图:
E D C B A 0 20 40
服务质量等 级评价的频 数分布 频 率% 服务质量等 级评价的频 数分布 家庭 数(频数)
25
30
35
40
●4. 为了确定灯泡的使用寿命(小时) ,在一批灯泡中随机抽取 100 只进行测试,所得结果 如下: 700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 668 706 694 688 701 693 729 710 692 690 689 671 697 694 693 691 736 683 718 664 681 697 747 689 685 707 681 695 674 699 696 702 683 721 685 658 682 651 741 717 720 706 698 698 673 698 733 677 661 666 700 749 713 712 679 735 696 710 708 676 683 695 665 698 722 727 702 692 691
统计学贾俊平第四版课后习题测验答案
![统计学贾俊平第四版课后习题测验答案](https://img.taocdn.com/s3/m/cf164fc0c77da26924c5b055.png)
3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42363737493942323635要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
1、确定组数:()lg 40lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取5(1) 对这个年龄分布作直方图;(2) 从直方图分析成人自学考试人员年龄分布的特点。
解:(1)制作直方图:将上表复制到Excel 表中,点击:图表向导→柱形图→选择子图表类型→完成。
即得到如下的直方图:(见Excel 练习题2.6)(2)年龄分布的特点:自学考试人员年龄的分布为右偏。
解:(1)根据上面的数据,画出两个班考试成绩的对比条形图和环形图。
3.14 已知1995—2004年我国的国内生产总值数据如下(按当年价格计算):要求:(2)绘制第一、二、三产业国内生产总值的线图。
4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics汽车销售数量N Valid 10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075 12.50种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
统计学第四版答案(贾俊平)
![统计学第四版答案(贾俊平)](https://img.taocdn.com/s3/m/b49a2925c8d376eeafaa318d.png)
第1章统计和统计数据1.1 指出下面的变量类型。
(1)年龄。
(2)性别。
(3)汽车产量。
(4)员工对企业某项改革措施的态度(赞成、中立、反对)。
(5)购买商品时的支付方式(现金、信用卡、支票)。
详细答案:(1)数值变量。
(2)分类变量。
(3)数值变量。
(4)顺序变量。
(5)分类变量。
1.2 一家研究机构从IT从业者中随机抽取1000人作为样本进行调查,其中60%回答他们的月收入在5000元以上,50%的人回答他们的消费支付方式是用信用卡。
(1)这一研究的总体是什么?样本是什么?样本量是多少?(2)“月收入”是分类变量、顺序变量还是数值变量?(3)“消费支付方式”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有IT从业者”,样本是“所抽取的1000名IT从业者”,样本量是1000。
(2)数值变量。
(3)分类变量。
1.3 一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。
(1)这一研究的总体是什么?(2)“消费者在网上购物的原因”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有的网上购物者”。
(2)分类变量。
1.4 某大学的商学院为了解毕业生的就业倾向,分别在会计专业抽取50人、市场营销专业抽取30、企业管理20人进行调查。
(1)这种抽样方式是分层抽样、系统抽样还是整群抽样?(2)样本量是多少?详细答案:(1)分层抽样。
(2)100。
第3章用统计量描述数据为7.2分钟,标准差为1.97分钟,第二种排队方式的等待时间(单位:分钟)如下:5.56.6 6.7 6.87.1 7.3 7.4 7.8 7.8(1)计算第二种排队时间的平均数和标准差。
(2)比两种排队方式等待时间的离散程度。
(3)如果让你选择一种排队方式,你会选择哪一种?试说明理由。
详细答案:(1)(岁);(岁)。
(2);。
第一中排队方式的离散程度大。
(3)选方法二,因为平均等待时间短,且离散程度小。
统计学第四版答案(贾俊平)
![统计学第四版答案(贾俊平)](https://img.taocdn.com/s3/m/b2caac22a5e9856a561260fe.png)
40 30 20 10 0
25
30
35
40
●4. 为了确定灯泡的使用寿命(小时) ,在一批灯泡中随机抽取 100 只进行测试,所得结果 如下: 700 706 708 668 706 694 688 701 716 715 729 710 692 690 689 671 728 712 694 693 691 736 683 718 719 722 681 697 747 689 685 707 685 691 695 674 699 696 702 683 709 708 685 658 682 651 741 717 691 690 706 698 698 673 698 733 684 692 661 666 700 749 713 712 705 707 735 696 710 708 676 683 718 701 665 698 722 727 702 692
● 2. 某行业管理局所属 40 个企业 2002 年的产品销售收入数据如下(单位:万元) : 152 124 129 116 100 103 92 95 127 104
105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 97 88 123 115 119 138 112 146 113 126 (1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率; (2)如果按规定:销售收入在 125 万元以上为先进企业,115 万~125 万元为良好企业, 105 万~115 万元为一般企业,105 万元以下为落后企业,按先进企业、良好企业、一般 企业、落后企业进行分组。 解 :(1)要求对销售收入的数据进行分组, 全部数据中,最大的为 152,最小的为 87,知数据全距为 152-87=65; 为便于计算和分析,确定将数据分为 6 组,各组组距为 10,组限以整 10 划分; 为使数据的分布满足穷尽和互斥的要求,注意到,按上面的分组方式,最小值 87 可能落在最小组之下,最大值 152 可能落在最大组之上,将最小组和最大组设计成开口形
统计学第四版(贾俊平)课后所有题答案很全期末考试必备
![统计学第四版(贾俊平)课后所有题答案很全期末考试必备](https://img.taocdn.com/s3/m/32a89b50a417866fb84a8eae.png)
统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别姆鞘中褪荩嵌允挛锝蟹掷嗟慕峁荼硐治啾穑梦淖掷幢硎觯唬ǘㄐ允荩┧承蚴荩褐荒芄橛谀骋挥行蚶啾鸬姆鞘中褪荨K彩怯欣啾鸬模庑├啾鹗怯行虻摹#渴荩┦敌褪荩喊词殖叨炔饬康墓鄄熘担浣峁硐治咛宓氖怠?统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同 1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
1.8 统计应用实例人口普查,商场的名意调查等。
统计学(人大第四版)课后习题答案___贾俊平、何晓
![统计学(人大第四版)课后习题答案___贾俊平、何晓](https://img.taocdn.com/s3/m/54c4927f58fafab069dc02ee.png)
统计学(人大第四版)3~13章答案3.1 为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C一般;D.较差;E.差。
调查结果如下:B EC C AD C B AE D A C B C D E C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E B B E C C A D C B A E B A C E E A B D D C A D B C C A E D C B C B C E D B C C B C要求:(1)指出上面的数据属于什么类型。
顺序数据(2)用Excel制作一张频数分布表。
用数据分析——直方图制作:接收频率E16D17C32B21A14(3)绘制一张条形图,反映评价等级的分布。
用数据分析——直方图制作:(4)绘制评价等级的帕累托图。
逆序排序后,制作累计频数分布表:接收频数频率(%)累计频率(%)C 32 32 32B 21 21 53D 17 17 70E 16 16 86A14 14 1005101520253035CDBAE204060801001203.2 某行业管理局所属40个企业2002年的产品销售收入数据如下: 152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 97 88 123 115 119 138 112 146 113 126 要求:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。
1、确定组数:()l g 40l g () 1.60206111 6.32l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(152-87)÷6=10.83,取10 3(2)按规定,销售收入在125万元以上为先进企业,115~125万元为良好企业,105~115 万元为一般企业,105万元以下为落后企业,按先进企业、良好3.3 单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42 36 37 37 49 39 42 32 36 35 要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
统计学(贾俊平 第四版)课后习题答案
![统计学(贾俊平 第四版)课后习题答案](https://img.taocdn.com/s3/m/85a14618cc7931b765ce15e4.png)
频数
2 3 9 12 7 4 2 1 40
频率%
5.0 7.5 22.5 30.0 17.5 10.0 5.0 2.5 100.0
要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
K 1
l g 4 0 l gn ( ) 1.60206 ,取 1 1 6.3 2 k=6 lg(2) lg 2 0.30103
2、确定组距: 组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取 5 3、分组频数表
要求: (1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。 1、确定组数:
K 1
l g 4 0 l gn ( ) 1.60206 ,取 1 1 6.3 2 k=6 lg(2) lg 2 0.30103
2、确定组距: 组距=( 最大值 - 最小值)÷ 组数=(152-87)÷6=10.83,取 10 3、分组频数表 销售收入
直方图:
组距4,小于等于
40
30
Frequency
20
10
Mean =4.06 Std. Dev. =1.221 N =100 0 0 2 4 6 8
组距4,小于等于
组距 5,上限为小于等于 频数 有效 <= 45.00 46.00 - 50.00 51.00 - 55.00 56.00 - 60.00 61.00+ 合计 12 37 34 16 1 100 百分比 12.0 37.0 34.0 16.0 1.0 100.0 累计频数 12.0 49.0 83.0 99.0 100.0 累积百分比 12.0 49.0 83.0 99.0 100.0
统计学第四版问题详解(贾俊平)
![统计学第四版问题详解(贾俊平)](https://img.taocdn.com/s3/m/11542c56011ca300a6c390a1.png)
第1章统计和统计数据1.1 指出下面的变量类型。
(1)年龄。
(2)性别。
(3)汽车产量。
(4)员工对企业某项改革措施的态度(赞成、中立、反对)。
(5)购买商品时的支付方式(现金、信用卡、支票)。
详细答案:(1)数值变量。
(2)分类变量。
(3)数值变量。
(4)顺序变量。
(5)分类变量。
1.2 一家研究机构从IT从业者中随机抽取1000人作为样本进行调查,其中60%回答他们的月收入在5000元以上,50%的人回答他们的消费支付方式是用信用卡。
(1)这一研究的总体是什么?样本是什么?样本量是多少?(2)“月收入”是分类变量、顺序变量还是数值变量?(3)“消费支付方式”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有IT从业者”,样本是“所抽取的1000名IT从业者”,样本量是1000。
(2)数值变量。
(3)分类变量。
1.3 一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。
(1)这一研究的总体是什么?(2)“消费者在网上购物的原因”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有的网上购物者”。
(2)分类变量。
1.4 某大学的商学院为了解毕业生的就业倾向,分别在会计专业抽取50人、市场营销专业抽取30、企业管理20人进行调查。
(1)这种抽样方式是分层抽样、系统抽样还是整群抽样?(2)样本量是多少?详细答案:(1)分层抽样。
(2)100。
第3章用统计量描述数据););=426.67;,,第五章1.23.4.5.6.7.5.8 (1)(3.02%,16.98%)。
(2)(1.68%,18.32%)。
5.9 详细答案:(4.06,24.35)。
5.10详细答案: 139。
5.11 详细答案: 57。
5.12 769。
第6章假设检验平看电,绝平,,绝,,绝在,,=100 =50=14.8 =10.4=0.8 =0.6对,,绝。
对设,。
统计学贾俊平_第四版课后习题答案
![统计学贾俊平_第四版课后习题答案](https://img.taocdn.com/s3/m/c3e032945f0e7cd185253671.png)
统计学贾俊平_第四版课后习题答案3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42 36 37 37 49 39 42 32 36 35 要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
1、确定组数:()lg 40lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取54.8 一项关于大学生体重状况的研究发现.男生的平均体重为60kg,标准差为5kg;女生的平均体重为50kg,标准差为5kg。
请回答下面的问题:(1)是男生的体重差异大还是女生的体重差异大?为什么?女生,因为标准差一样,而均值男生大,所以,离散系数是男生的小,离散程度是男生的小。
(2)以磅为单位(1ks=2.2lb),求体重的平均数和标准差。
都是各乘以2.21,男生的平均体重为60kg×2.21=132.6磅,标准差为5kg ×2.21=11.05磅;女生的平均体重为50kg×2.21=110.5磅,标准差为5kg×2.21=11.05磅。
(3)粗略地估计一下,男生中有百分之几的人体重在55kg一65kg之间?计算标准分数:Z1=x xs-=55605-=-1;Z2=x xs-=65605-=1,根据经验规则,男生大约有68%的人体重在55kg一65kg之间。
(4)粗略地估计一下,女生中有百分之几的人体重在40kg~60kg之间?计算标准分数:Z1=x xs-=40505-=-2;Z2=x xs-=60505-=2,根据经验规则,女生大约有95%的人体重在40kg一60kg之间。
贾俊平统计学第四版课后答案
![贾俊平统计学第四版课后答案](https://img.taocdn.com/s3/m/b239f00beff9aef8941e061e.png)
第三章节:数据的图表展示…………………………………………………1 第四章节:数据的概括性度量……………………………………………….15 第六章节:统计量及其抽样分布……………………………………………26 第七章节:参数估计………………………………………………. …………28 第八章节:假设检验……………………………………………….. …………38 第九章节:列联分析……………………………………………….. …………41 第十章节:方差分析……………………………………………….. …………43 3. 要求:(1)指出上面的数据属于什么类型。
顺序数据 3.31、确定组数: ()l g 40l g () 1.60206111 6.32l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取53、分组频数表销售收入(万元)频数频率%累计频数累计频率%<= 25 1 2.5 1 2.5 26 - 30 5 12.5 6 15.0 31 - 35 6 15.0 12 30.0 36 - 40 14 35.0 26 65.0 41 - 45 10 25.0 36 90.0 46+ 4 10.0 40100.0总和40100.0频数246810121416<= 2526 - 3031 - 3536 - 4041 - 4546+销售收入频数频数3.4data605040302010data Stem-and-Leaf PlotFrequency Stem & Leaf3.00 1 . 889 5.00 2 . 01133 7.00 2 . 6888999 2.00 3 . 13 3.00 3 . 569 3.00 4 . 123 3.00 4 . 667 3.00 5 . 012 1.00 5 . 7Stem width: 10 Each leaf: 1 case(s)3.6解:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 参数估计●1. 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1) 样本均值的抽样标准差x σ等于多少?(2) 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差x σσ5=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E =α/2σZ =1.96×0.7906=1.5496。
●2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(3) 假定总体标准差为15元,求样本均值的抽样标准误差; (4) 在95%的置信水平下,求允许误差;(5) 如果样本均值为120元,求总体均值95%的置信区间。
解:(1)已假定总体标准差为σ=15元, 则样本均值的抽样标准误差为x σ15=2.1429(2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E =α/2Z =1.96×2.1429=4.2000。
(3)已知样本均值为x =120元,置信水平1-α=95%,得 α/2Z =1.96, 这时总体均值的置信区间为α/2x Z 0±4.2=124.2115.8可知,如果样本均值为120元,总体均值95%的置信区间为(115.8,124.2)元。
●7.某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.3 3.1 6.2 5.8 2.34.15.4 4.5 3.2 4.4 2.0 5.4 2.66.4 1.8 3.5 5.7 2.3 2.1 1.9 1.2 5.1 4.3 4.2 3.6 0.8 1.5 4.7 1.4 1.2 2.9 3.5 2.4 0.5 3.6 2.5求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。
解:⑴计算样本均值x :将上表数据复制到Excel 表中,并整理成一列,点击最后数据下面空格,选择自动求平均值,回车,得到x =3.316667,⑵计算样本方差s :删除Excel 表中的平均值,点击自动求值→其它函数→STDEV →选定计算数据列→确定→确定,得到s=1.6093也可以利用Excel 进行列表计算:选定整理成一列的第一行数据的邻列的单元格,输入“=(a7-3.316667)^2”,回车,即得到各数据的离差平方,在最下行求总和,得到:∑2i (x -x )=90.65 再对总和除以n-1=35后,求平方根,即为样本方差的值。
⑶计算样本均值的抽样标准误差:已知样本容量 n =36,为大样本, 得样本均值的抽样标准误差为 x σs1.6093=0.2682⑷分别按三个置信水平计算总体均值的置信区间:① 置信水平为90%时:由双侧正态分布的置信水平1-α=90%,通过2β-1=0.9换算为单侧正态分布的置信水平β=0.95,查单侧正态分布表得 α/2Z =1.64,计算得此时总体均值的置信区间为±α/2sx Z 7±1.64×0.2682=3.75652.8769可知,当置信水平为90%时,该校大学生平均上网时间的置信区间为(2.87,3.76)小时;② 置信水平为95%时:由双侧正态分布的置信水平1-α=95%,得 α/2Z =1.96,计算得此时总体均值的置信区间为±α/2sx Z 7±1.96×0.2682=3.84232.7910可知,当置信水平为95%时,该校大学生平均上网时间的置信区间为(2.79,3.84)小时;③ 置信水平为99%时:若双侧正态分布的置信水平1-α=99%,通过2β-1=0.99换算为单侧正态分布的置信水平β=0.995,查单侧正态分布表得 α/2Z =2.58,计算得此时总体均值的置信区间为±α/2sx Z 7±2.58×0.2682=4.00872.6247可知,当置信水平为99%时,该校大学生平均上网时间的置信区间为(2.62,4.01)小时。
8. 从一个正态总体中随机抽取容量为8 的样本,各样本值分别为:10,8,12,15,6,13,5,11。
求总体均值95%的置信区间。
解:(7.1,12.9)。
9.某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(公里)分别是:10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2 求职工上班从家里到单位平均距离95%的置信区间。
解:(7.18,11.57)。
●15. 在一项家电市场调查中,随机抽取了200个居民户,调查他们是否拥有某一品牌的电视机。
其中拥有该品牌电视机的家庭占23%。
求总体比率的置信区间,置信水平分别为90%和95%。
解:已知样本容量n =200,为大样本,拥有该品牌电视机的家庭比率p =23%,拥有该品牌电视机的家庭比率的抽样标准误差为p σ⑴双侧置信水平为90%时,通过2β-1=0.90换算为单侧正态分布的置信水平β=0.95,查单侧正态分布表得 α/2Z =1.64,此时的置信区间为 p ±α/2Z %±1.64×2.98%=27.89%18.11%可知,当置信水平为90%时,拥有该品牌电视机的家庭总体比率的置信区间为(18.11%,27.89%)。
⑵双侧置信水平为95%时,得 α/2Z =1.96,此时的置信区间为 p ±α/2Z %±1.96×2.98%=28.8408%17.1592%可知,当置信水平为95%时,拥有该品牌电视机的家庭总体比率的置信区间为 ;(17.16%,28.84%)。
●18.某居民小区共有居民500户,小区管理者准备采取一项新的供水设施,想了解居民是否赞成。
采取重复抽样方法随机抽取了50户,其中有32户赞成,18户反对。
(1)求总体中赞成该项改革的户数比率的置信区间,置信水平为95%;(2)如果小区管理者预计赞成的比率能达到80%,应抽取多少户进行调查? 解: 已知总体单位数N =500,重复抽样,样本容量n =50,为大样本,样本中,赞成的人数为n 1=32,得到赞成的比率为 p = n1n =3250=64%(1)赞成比率的抽样标准误差为=6.788%由双侧正态分布的置信水平1-α=95%,得 α/2Z =1.96,计算得此时总体户数中赞成该项改革的户数比率的置信区间为p ±α/2Z 64%±1.96×6.788%=77.304%50.696%可知,置信水平为95%时,总体中赞成该项改革的户数比率的置信区间为(50.70%,77.30%)。
(2)如预计赞成的比率能达到80%,即 p =80%,由得样本容量为 n =20.80.2(6.788%)⨯= 34.72 取整为35,即可得,如果小区管理者预计赞成的比率能达到80%,应抽取35户进行调查。
21.从两个正态总体中分别抽取两个独立的随机样本,它们的均值和标准差如下表:来自总体1的样本 来自总体2的样本141=n 72=n 2.531=x4.432=x8.9621=s0.10222=s(1) 求21μμ-90%的置信区间;(2) 求21μμ-95%的置信区间。
解:(1.86,17.74);(0.19,19.41)。
22.从两个正态总体中分别抽取两个独立的随机样本,它们的均值和标准差如下表:来自总体1的样本 来自总体2的样本251=x232=x1621=s2022=s(1)设10021==n n ,求21μμ-95%的置信区间;(2)设1021==n n ,2221σσ=,求21μμ-95%的置信区间; (3)设1021==n n ,2221σσ≠,求21μμ-95%的置信区间; (4)设20,1021==n n ,2221σσ=,求21μμ-95%的置信区间;(5)设20,1021==n n ,2221σσ≠,求21μμ-95%的置信区间。
解:(1)2±1.176;(2)2±3.986;(3)2±3.986;(4)2±3.587;(5)2±3.364。
23.下表是由4对观察值组成的随机样本:配对号 来自总体A 的样本 来自总体B 的样本 1 2 0 2 5 7 3 10 6 4 8 5(1)计算A 与B 各对观察值之差,再利用得出的差值计算d 和d s ; (2)设1μ和2μ分别为总体A 和总体B 的均值,构造)(21μμμ-d 95%的置信区间。
解:(1)75.1=d ,63.2=d s ;(2)1.75±4.27。
25.从两个总体中各抽取一个25021==n n 的独立随机样本,来自总体1的样本比率为%401=p ,来自总体2的样本比率为%302=p 。
(1)构造21ππ-90%的置信区间;(2)构造21ππ-95%的置信区间。
解:(1)10%±6.98%;(2)10%±8.32%。
26.生产工序的方差是共需质量的一个重要度量。
当方差较大时,需要对共需进构造两个总体方差比2221σσ95%的置信区间。
解:(4.06,14.35)。
●27.根据以往的生产数据,某种产品的废品率为2%。
如果要求95%的置信区间,若要求允许误差不超过4%,应抽取多大的样本?解:已知总体比率π=2%=0.02,由置信水平1-α=95%,得置信度α/2Z =1.96,允许误差E ≤ 4%即由允许误差公式E=/2Z ασ整理得到样本容量n 的计算公式:n=2()Eα/2PZ σ=2E=2E2α/2Zπ(1-π)≥20.020.980.04⨯⨯21.96=47.0596由于计算结果大于47,故为保证使“≥”成立,至少应取48个单位的样本。
●28.某超市想要估计每个顾客平均每次购物花费的金额。
根据过去的经验,标准差大约为120元,现要求以95%的置信水平估计每个购物金额的置信区间,并要求允许误差不超过20元,应抽取多少个顾客作为样本?解:已知总体标准差x σ=120,由置信水平1-α=95%,得置信度α/2Z =1.96,允许误差E ≤ 20即由允许误差公式E=/2Z ασ整理得到样本容量n 的计算公式:n=2()Eα/2xZ σ≥2()20⨯1.96120=138.2976由于计算结果大于47,故为保证使“≥”成立,至少应取139个顾客作为样本。
第8章 答案缺 第9章 答案缺第10章1. 0215.86574.401.0=<=F F (或01.00409.0=>=-αvalue P ),不能拒绝原假设。