2019-2020年高中数学 第三章不等式3.4基本不等式第二课时教案 新人教A版必修5

合集下载

四川省成都市石室中学高中数学 3.4 基本不等式2教案

四川省成都市石室中学高中数学 3.4 基本不等式2教案

四川省成都市石室中学高中数学 3.4 基本不等式2教案 新人教A版必修5以培养学生探究精神为出发点,着眼于知识的生成和发展,着眼于学生的学习体验,设置问题,由浅入深、循序渐进,给不同层次的学生提供思考、创造和成功的机会。

特进行如下教学设计:(一)设问激疑,创设情景展示北京召开的第24届国际数学家大会的会标,让学生思考, 图案由哪些几何图形拼凑而成,由此你能否找到一些相等或不等关系?接着通过三个问题问题1:设CG=a,DG=b,正方形ABCD 的面积为S= ;问题2:四个全等直角三角形的面积之和为'S = ;问题3:S 与'S 有什么样的大小关系?引导学生通过面积关系得到重要不等式222a b ab +≥,进一步启发学生什么时候这两部分面积相等。

设计意图: 充分体现学生的主体地位,给学生创造联想的空间。

三个问题的设置引导学生逐步探索,最终通过自己的发现而得到重要不等式,并且明确等号成立时的情形。

分步设问有效排除了障碍,又显得水到渠成。

接着提出问题:当,a b 为任意实数时,222a b ab +≥成立吗?若成立,请给出证明. 设计意图:让学生利用前面学过的比较法结合初中学习的完全平方公式给出代数证明。

让学生由直观感觉上升到理性证明,既体现数学的严谨性,又巩固了比较法的应用。

(二)乘胜追击,得出结论提出新的问题:若0,0a b >>用b a ,分别代替222a b ab +≥中的,a b 又能得到什么结果?设计意图:让学生亲自完成代换过程,亲身体验知识的生成过程,既在无形中渗透了代换的思想,又拓展了学生的思维。

通过代换得到2a b ab +≥后,强调常写成2a b ab +≤种形式,为后面两个概念埋下伏笔,继而引导学生挖掘该式适用的范围及等号成立的条件。

(三)多法证明,趣味无穷(1)继续让学生思考该式的证明方法,再次巩固前面学过的比较法和初中学习的完全平方公式,让学生体会证明前后两个不等式方法上的类比思想。

高中数学 第三章不等式 基本不等式教案学生版2 新人教A版必修5

高中数学 第三章不等式 基本不等式教案学生版2 新人教A版必修5

基本不等式:2b a ab +≤第 3 课时 总 3 课时 日期:4月6日目标:1.进一步掌握基本不等式2.培养学生运用基本不等式解决问题能力重点:运用基本不等式解决问题难点:用基本不等式求最大值与最小值教 学 过 程 设 计活动1:填空:(1)0,0>>b a ,≥+a b b a ________(2)0,0≥≥b a ,ab ____2b a + (3)0,0≥≥b a ,222b a +____ab (4)证明下列不等式:①2222b a b a +≥+ ②ba ab 112+≥(5)利用基本不等式求最值的限制条件是什么?____________________________________ 活动2:如图,树顶A 离地面m a ,树上另一点B 离地面m b ,在离地面m c 的C 处看此树,离此树多远时看A 、B 的视角最大?活动3:甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,速度不得超过c km/h.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v (单位:km/h)的平方成正比,且比例系数为b;固定部分为a 元(2bc a ).为了使全程运输成本最小,汽车应以多大速度行驶?活动4:两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定,哪种购物方式比较经济?能把所得结论作一些推广吗?课后活动:1、设y x ,满足2lg lg =+y x ,则y x 4+的最小值是( )A 、100B 、40C 、4D 、22、下列函数最小值为4的是( ) A.x x y 4+= B.)0(sin 4sin π<<+=x xx y C.x x y -⋅+=343 D.10log 4lg x x y += 3、下列命题中正确的是( )A 、函数x x y 1+=的最小值为2B 、函数2322++=x x y 的最小值为2 C 、函数)0(432>--=x xx y 的最大值为342- D 、函数)0(432>--=x x x y 的最小值为342- 4、已知25≥x ,则4254)(2-+-=x x x x f 有( ) A 、最大值45 B 、最小值45 C 、最大值1 D 、最小值1 5、若实数b a ,满足2=+b a ,则b a 33+的最小值是( )A 、18B 、6C 、32D 、4326、若c b a ,,均为正数,则ac c b b a 1,1,1+++这三个数一定( ) A 、都大于2 B 、都小于2 C 、至少有一个不大于2 D 、至少有一个不小于27、甲、乙两人同时从M 地出发到N 地,甲一半路程步行,一半路程跑步;乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则谁先到达N 地___________(填甲或乙)8、在面积为定值S 的扇形中,当半径是____________时扇形的周长最小,最小是___________9、在周长为定值P 的扇形中,半径是_____________时扇形的面积最大,最大是____________m,房屋正面每平方米的造价为1200元,10、某单位建造一间背面靠墙的小房,地面面积为122房屋侧面每平方米的造价为800元,屋顶的造价为5800元,如果墙高为3m,且不计房屋背面和地面的费用,问怎样设计房屋能使总造价最低?最低总造价是多少?11、如图,铁路线上AB段长100千米,工厂C到铁路的距离CA为20千米,现要在AB上某一点D处向C修一条公路,已知铁路每千米的运费与公路每千米的运费之比为3:5,为了使原料从供应站B运到工厂C的运费最少,D点应选在何处?。

高中数学 3.4 基本不等式教案3 新人教版必修5

高中数学 3.4 基本不等式教案3 新人教版必修5

3.4 基本不等式 ab ≤2b a + [教学目标]1. 探索并了解基本不等式的证明过程。

2. 从基本不等式的证明过程了解不等式证明的常用思路:由条件到结论,或由结论到条件。

3. 能利用基本不等式进行简单的应用。

4. 通过对问题的探究思考、广泛参与,培养学生严谨的思维习惯和数形结合的思想。

5. 通过对问题的引入培养学生的爱国主义情操。

[重 点]: 应用数形结合的思想理解基本不等式,并从不同角度探究基本不等式2b a ab +≤。

[难 点]:从不同角度探索基本不等式的证明过程。

[教学方法]:启发、引导、讲解。

[教学准备]:Z+Z 课件[教学过程]:一、 导入新课(多媒体展示24届国际数学家大会会标)问:你能在这个图中找出一些相等关系或不等关系吗?如何寻找?(引导学生作出其几何图形,多媒体展示该几何图形。

)问:四个全等的直角三角形的面积之和与大正方形的面积有什么关系呢? 答:四个全等的直角三角形的面积之和不大于大正方形的面积。

(多媒体动态演示变化过程,引导学生注意何时相等。

)问:同学们已学过从具体情境中抽象出不等关系并把其表示出来的相关练习,请同学们用不等式表示上述不等关系。

为了表示方便,我们可设直角三角形的两直角边的长分别为b a ,。

答:四个全等的直角三角形的面积之和为ab 2,大正方形的面积为22b a +,则 ab b a 222≥+当直角三角形变为等腰直角三角形,即b a =时,正方形EFGH 缩为一个点时有ab b a 222=+。

问:如何证明 ab b a 222≥+,当且仅当b a =时取等号。

答:由()02222≥-=-+b a ab b a ,所以ab b a 222≥+ 当且仅当()02=-b a ,即b a =时取等号。

[板书]:一般的,对于任意实数b a ,,都有ab b a 222≥+,当且仅当b a =时取等号。

问:当0,0>>b a 时,以a ,b 代替此式中b a ,的可得到一个什么样的关系式? 答:ab b a 2≥+二、.新课探究[板书]:若0,0>>b a ,则2b a ab +≤,当且仅当b a =时取等号。

(新课程)高中数学《 3.4 基本不等式 》教案2 新人教A版必修5

(新课程)高中数学《 3.4 基本不等式 》教案2 新人教A版必修5

课题:3.4基本不等式2
b
a a
b +≤
(2)
【学习目标】
1.知识与技能:2
a b
+≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题
2.过程与方法:通过两个例题的研究,2
a b
+≤
,并会用此定理求某些函数的最大、最小值。

3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。

【学习重点2
a b
+≤的应用 【学习难点】2
a b
+求最大值、最小值。

【授课类型】 新授课 【学习过程】 1.课题导入
1.重要不等式:
如果)""(2R,,2
2
号时取当且仅当那么==≥+∈b a ab b a b a 2.基本不等式:如果
a,b
是正数,那么
).""(2
号时取当且仅当==≥+b a ab b
a 我们称
b a b
a ,2
为+的算术平均数,称b a ab ,为的几何平均数
ab b a ab b a ≥+≥+2
222和
成立的条件是不同的:前者只要求a,b
都是实数,而后者要求a,b 都是正数。

2.讲授新课
例1(1)用篱笆围成一个面积为100m 2
的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。

最短的篱笆是多少?
(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
解:(1)设矩形菜园的长为x m ,宽为y m ,则xy=100,篱笆的长为
课后反思:。

人教A版高中数学必修五《基本不等式》精品教案

人教A版高中数学必修五《基本不等式》精品教案

《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。

②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。

③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。

让学生享受学习数学带来的情感体验和成功喜悦。

二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。

教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。

三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。

以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。

以多媒体作为教学辅助手段,加深学生对基本不等式的理解。

四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。

2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。

教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。

2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。

)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。

五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。

3.4基本不等式教案

3.4基本不等式教案
潞河中学教案
学科:数学第2课时
任课教师
杨娟
授课班级
高一(10)
授课日期
2018.3.21
教学课题:3.4基本不等式(二)----“1”的代换变形
教学目标:
一、知识与技能:
1、应用基本不等式解决最值的问题;
2、掌握“1”的代换求最值
3、关注并理解常见错解原因
二、过程与方法:
1、通过学生对问题的探究和归纳总结出一般性的解题方法和规律:“1”的代换求最值,进一步使学生掌握所学知识点的结构特征和取最值的条件.
2、通过对错解的分析,深入认识最值条件“正定等”.
3、通过变式练习形成该知识点的知识结构,提高分析和解题能力。
三、情感、态度与价值观:
通过一题多解,提高学生的发散思维能力,形成思维的灵活性;通过多题一解化归到熟悉的结构,增强学生的转化化归能力,进而提高数学的解题能力和数学审美能力。
教学方法:讲授法、提问法。
教学重点:
1、“1”的代换求最值
2、理解常见错解原因
3、化归思想
教学难点:
1、配凑定值
2、错解辨析
教学用具:教学白板,多媒体课件
教学过程
教学内容
学生活动
设计意图
已知正数m,n,求下列各式最值:
(一)多种方法解最值
(二)练习及错解分析
练习一:
正解:
错解一:错解Biblioteka :(三)练习二五、小结
1、“1”的代换求最值
2、常见错解原因
3、其他
六、课后反思

高中数学 第三章 不等式 3.4 基本不等式 第2课时 基本

高中数学 第三章 不等式 3.4 基本不等式 第2课时 基本
第三章 不等式
a+b 3.4 基本不等式: ab≤ 2 第 2 课时 基本不等式的应用
a+b [学习目标] 1.进一步掌握基本不等式 ab≤ 2 . 2.会用基本不等式求某些函数的最大值、最小值,能够解 决一些简单的实际问题. 3.会用基本不等式的变式如 a2+2 b2≥a+2 b2(a,b∈R)证明不等式.
f(x)=x2+1+x2+2 1-1≥2 (x2+1)·x2+2 1-1= 2 2-1,当且仅当 x2+1=x2+2 1,即 x2= 2-1 时等号成 立.
答案:(1)√ (2)× (3)√
2.若 x>0,则 x+4x的最小值为( ) A.2 B.3 C.2 2 D.4
解析:因为 x>0,所以 x+4x≥2 x·4x=4,当且仅 当 x=4x,即 x=2 时等号成立.
2.常用构造定值条件的技巧变换:①加项变换;② 拆项变换;③统一变元;④平方后利用基本不等式.
[变式训练] 已知 x>0,y>0,且 2x+8y-xy=0, 求:(1)xy 的最小值;(2)x+y 的最小值. 解:因为 x>0,y>0,2x+8y-xy=0, (1)xy=2x+8y≥2 16xy, 所以 xy≥8,所以 xy≥64. 故 xy 的最小值为 64.
解析:因为 x>1,所以 x-1>0.
又 y=x+ 2 =(x-1)+ 2 +1≥2 2+1.
x-1
x-1
等号成立的条件是 x-1= 2 x-1
即 x=1+ 2. 故当 x=1+ 2时,y 取最小值 1+2 2. 答案: 2+1 1+2 2
5.若 0<x<1,则函数 f(x)=2+log2 x+log52 x的最 大值是________.
证明:因为 n>2,所以 n-1>1. 所以 logn(n-1)>0,logn(n+1)>0, 所以 logn(n-1)logn(n+1)≤

人教版高中数学必修5第三章不等式-《3.4基本不等式》教案

人教版高中数学必修5第三章不等式-《3.4基本不等式》教案

课题: §3.42a b + 授课类型:新授课【教学目标】1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.过程与方法:通过实例探究抽象基本不等式;3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣【教学重点】2a b +≤的证明过程; 【教学难点】2a b +≤等号成立条件 【教学过程】1.课题导入2a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系。

2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。

设直角三角形的两条直角边长为a,b 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。

当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a3.思考证明:你能给出它的证明吗?证明:因为 222)(2b a ab b a -=-+当22,()0,,()0,a b a b a b a b ≠->=-=时当时所以,0)(2≥-b a ,即.2)(22ab b a ≥+4.1)2a b +≤特别的,如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥,(a>0,b>0)2a b +2)2a b +≤ 用分析法证明:要证 2a b +≥只要证 a+b ≥ (2) 要证(2),只要证 a+b- ≥0 (3) 要证(3),只要证 ( - )2 (4) 显然,(4)是成立的。

高中数学 3.4基本不等式教案3 新人教A版必修5

高中数学 3.4基本不等式教案3 新人教A版必修5

3.4.2基本不等式(2)(1)教学目标(a )知识与技能:能够运用基本不等式解决生活中的应用问题(b )过程与方法:本节课是基本不等式应用举例的延伸。

整堂课要围绕如何引导学生分析题意、设未知量、找出数量关系进行求解这个中心。

3道例题的安排从易到难、从简单到复杂,适应学生的认知水平。

教师要根据课堂情况及时提出针对性问题,同时通过学生的解题过程进一步发现学生的思维漏洞,纠正数学表达中的错误(c )情感与价值:进一步培养学生学习数学、应用数学的意识以及思维的创新性和深刻性(2)教学重点、教学难点教学重点:正确运用基本不等式教学难点:注意运用不等式求最大(小)值的条件(3)学法与教学用具列出函数关系式是解应用题的关键,也是本节要体现的技能之一。

对例题的处理可让学生思考,然后师生共同对解题思路进行概括总结,使学生更深刻地领会和掌握解应用题的方法和步骤。

直尺和投影仪(4)教学设想1、 设置情境 提问:前一节课我们已经学习了基本不等式,我们常把2a b +叫做正数a b 、的算术平均数,a b 、的几何平均数。

今天我们就生活中的实际例子研究它的重用作用。

2、 新课讲授例1、(1)用篱笆围一个面积为1002m 的矩形菜园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?(2)一段长为36m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。

最大面积是多少?分析:(1)当长和宽的乘积确定时,问周长最短就是求长和宽和的最小值(2)当长和宽的和确定时,求长与宽取何值时两者乘积最大解:(1)设矩形菜园的长为x m,宽为y m,则100,xy= 篱笆的长为2(x y +)m由 2x y +≥可得 x y +≥2(x y +)40≥等号当且仅当10x y x y ===时成立,此时,因此,这个矩形的长、宽为10 m 时,所用篱笆最短,最短篱笆为40m(2)设矩形菜园长为x m,宽为y m,则2(xy +)=36,x y +=18,矩形菜园面积为xy 2m ,由189,22x y +==可得 81≤xy , 可得等号当且仅当9x y x y ===时成立,此时因此,这个矩形的长、宽都为9 m 时,菜园的面积最大,最大面积为812m例2、某工厂要建造一个长方形无盖贮水池,其容积为48003,m 深为3 m 。

高中数学 第三章 不等式 3.4 基本不等式(第2课时)教案

高中数学 第三章 不等式 3.4 基本不等式(第2课时)教案

3.4.2 基本不等式(第2课时)一、教学目标知识与技能1.构建基本不等式解决函数的值域、最值问题;2.让学生探究用基本不等式解决实际问题;3.通过富有现实意义的实际问题的解决,去培养学生对数学这门学科的热爱过程与方法1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣情感态度与价值观1.通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;2.学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘,数学的简洁美,数学推理的严谨美,从而激发学生的学习兴趣二、教学重点与难点:重点:1.构建基本不等式解决函数的值域、最值问题2.让学生探究用基本不等式解决实际问题;3.通过富有现实意义的实际问题的解决,去培养学生对数学这门学科的热爱难点:1.让学生探究用基本不等式解决实际问题;2.基本不等式应用时等号成立条件的考查;3.通过富有现实意义的实际问题的解决,去培养学生对数学这门学科的热爱三、教学模式与教法教学模式:根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助教具准备 投影仪、胶片、三角板、刻度尺四、教学过程 些简单的应程中,我们对基本不等式2ab ≤实际应用二、分析问题,解决问题 师 已知ab ba ≥+2,若ab 为常数k ,那么a +b 的值如何变化?师 若a +b 为常数s ,那么ab 的值如何变化?师 同学们回答得非常好,对变量与定量理解的很清楚.由上面的研究可知,解决有关最值问题的关键就是如何构造这些“定和”或“定积(此时,老师用投影仪给出本节课的第一组问题1.最值练习:解答下列各题: (1)求函数y =2x 2+x3(x >0)的最小值就有最小值为最大值+41x(值<23)最大值的最大值+2=21b a +的最大值一端的一个最值,x3>0.∴x329323233∙≥+xx=x2,343=时等号343=3293∙引导学生共同分析解决问题,熟悉并强化理解。

高中数学《基本不等式》(2课时)教学设计

高中数学《基本不等式》(2课时)教学设计

基本不等式(2课时)教学设计一、内容和内容解析1•内容:基本不等式的定义、几何解释、证明方法与应用.2.内容解析:相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础•基本不等式是一种重要而基本的不等式类型,在中学数学知识体系中也是一个非常重要的、基础的内容基本不等式与很多重要的数学概念和性质相关.从数与运算的角度,•”是两个正数a,b的"算术平均数”,忘是两个正数a,b,的"几何平均数”•因此,不等式中涉及的是代数中的“基本量”和最基本的运算.从几何图形的角度,“周长相等的矩形中,正方形的面积最大”,“等圆中,弦长不大于直径”,等等,都是基本不等式的直观理解.其次,基本不等式的证明或推导方法很多,上面的分析也是基本不等式证明方法的来源•利用分析法,从数量关系的角度,利用不等式的性质来推导基本不等式;从平面几何图形的角度,借助几何直观,通过数形结合来探究不等式的几何解释;从函数的角度,通过构造函数,利用函数性质来证明基本不等式;等等.这些方法也是代数证明和推导的典型方法此外,基本不等式是几何平均数不大于算术平均数的最基本和最简单的情形,可以推广至n个正数的几何平均值不大于算术平均值基本不等式的代数结构也是数学模型思想的一个范例,借助这个模型可以求最大值和最小值.同时,在理解和应用基本不等式的过程中涉及变与不变、变量与常量,以及数形结合、数学模型等思想方法.因此,基本不等式的内容可以培养学生的逻辑推理、数学运算和数学建模素养.基于以上分析,确定本节课的教学重点:基本不等式的定义、几何解释和证明方法,用基本不等式解决简单的最值问题.本单元教学建议课时数:2课时.二、目标和目标解析1•目标:(1)理解基本不等式:f以‘丿,发展逻辑推理素养.(2)结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算和数学建模素养.2.目标解析:达成上述目标的标志是:(1)知道基本不等式的内容,明确基本不等式就是“两个正数的算术平均数不小于它们的几何平均数”;会利用不等式的性质证明基本不等式,能说明基本不等式的几何意义.(2)能结合具体实例,明确基本不等式的使用条件和注意事项,即“一正、二定、三相等”;能用基本不等式模型识别和理解实际问题,能用基本不等式求最大值或最小值;在解决具体问题的过程中,体会基本不等式的作用,提升数学运算、数学建模等核心素养.三、教学问题诊断分析由于学生缺少代数式证明的经验,所以基本不等式的证明是本节课的一个难点•基本不等式的几何解释也是学生不容易想到的,需要数形结合地去理解,所以这也是本节课的一个难点.此外,在利用基本不等式研究最值问题时,学生容易出现忽视使用条件,不验证等号是否成立,甚至出现没有确认和或积为定值就求“最值”等问题,这也是学生思维不够严谨的表现,因此基本不等式的证明和利用基本不等式求最值也是本节课的难点.四、教学支持条件分析在进行基本不等式的几何解释的教学时,为了帮助学生直观地观察图形中几何元素之间的动态关系,并将其转化为代数表示,可以利用信息技术制作一个动态图形,以帮助学生直观理解.五、教学过程设计第一课时(一)课时教学内容本节课的主要教学内容有:基本不等式的定义;基本不等式的证明;基本不等式的几何解释;运用基本不等式求最值;基本不等式求最值的两种模型.(二)课时教学目标Jab<"+"仏“>研1•理解基本不等式-,发展逻辑推理素养;2.了解基本不等式的几何解释;3.结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算和数学建模素养.(三)教学重点与难点教学重点:基本不等式的定义及运用基本不等式解决简单的最值问题.教学难点为:基本不等式的证明和运用基本不等式求最值.(四)教学过程设计1•基本不等式的定义导入语:我们知道,乘法公式在代数式的运算中有重要作用•那么,是否也有一些不等式,它们在解决不等式问题时有着与乘法公式类似的作用呢?下面就来研究这个问题.问题1:提到两个数的乘法,在上一节我们利用完全平方差公式得出了一类重要不等式中含有ab乘法,是什么不等式?师虫活动一学生回忆*表述,对于任意实数M乩有冷如乳当且■仅当尸&时,等号成立一^追画不等式中戸』的取值范围是什么?特别地,如果口>IX b〉a我们用拓,血分别代替上式中的G孙可以得到怎样的式子丁师生活动’学生独立计算后回答•教师总结;对于任意实数QO,Q0,得到H b>2屈,:变形为应畔©当且仅当4时,等号成立」环等式中渉圧的是代数中的“基本•量"和最基本的运算,诵常我们称不等式①为基本不等式.其中空叫做正数G b的算术.2•平均数,極叫做①p的几何平均数一基本不等式表明两个正数的算术平均数不小于它们的几何平均数.设计意图’通过取上一节课得到的不等式^+^>2ab的特殊形式,得到基本不等式.屁冬字的定义「同日捲两个不等式之间建立联系.诵过分析基本不等式的代数结构特征;得到基本环等式的代数解释,初步加洙对基林等式的认识.2•基本不等式的证明问题2:上节课我们看到,证明不等关系,还可以运用不等式性质,你能否利用不等式的性质推导出基本不等式呢?预设方案一:学生根据两个实数大小关系的基本事实,用作差比较证明•教师给予肯定,是否还有其它证法?预设方案二:由于没有已知条件,学生不知从何入手追问1=你能否寻找一下此不等式成立的充分条件?也就是要证屈空爭,只需要证明件么,从而形成证明思路-师生活动’学生思考分析,要证極乞字①,只需证逅3旦②,从而霊要证2屈-疽-比0③,只要证—(需-靠)它00只要证祐-屈2乏0⑤即可.教师指出@—品心显然咸立,如果我们从此式出发,把上述过程倒过来,就直接推岀基本不等式了一追问2:上述证明中,每一步推理的依据是什么?师生活动:学生分别回答由⑤f④,由④f③,由③f②,由②f①的依据.追问3上述证明叫做“分析法"•你能归纳一下用分析法证明命题的思路吗?师生活动:学生讨论后回答•教师总结:分析法是一种"执果索因”的证明方法,即从要证明的纟吉论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.追问4:你能说说分析法的证明格式是怎样的吗?师生活动:学生思考后回答•教师总结:由于分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,所以分析法在书写过程中必须有相应的文字说明:一般每一步的推理都用"要证……只要证……”的格式,当推导到一个明显成立的条件之后,指出"显然xxx成立”.追问5:基本不等式成立的条件是什么?如果a<0或bvO基本不等式是否成立?师生活动:学生通过证明发现,a,b均为非负数,如果a,b存在负数时,该不等式不成立•教师指出基本不等式的定义要求a,b均为正数.设计意图:根据不等式的性质,用分析法证明基本不等式,同时引导学生认识分析法的证明过程和证明格式,为学生高中阶段的推理和证明提供了更丰富的策略.3•基本不等式的几何解释问题土在图1中,酸是圆的直径,点匸是血上一点迟0=乩过点U作垂直于抠的弦DE,连接血加•你能利用这个图形,得出基本不等式的几何解释吗1师生活动:学生思考后回答,教师引导学生点结:从条件和基林等式出发,发现圆的半径长等于学,仞=姮•教师操作课件,点D在圆周上运动,学生观察QD杲弦DE的一半,CZ)的长一定小于等于半径,即CD—皿也就是基本不等式可以利用^圆中直径不小于任意一条弦"得到解释.当且仅2当弦门宜过圆心时,二者相等.设计意图’让学生自己寻找基本不等式的几何解释是非常困难的,因此这里给出了几何图形,弓|导学生将应和学与图中的几何元素建立起联系,再观察这些几何元素在变J H化中表现的知b 关系的规律,从而获得基本不等式的几何:F)@1追间缶在上述解答过程中,杲否必须说明血当且仅当*,即亍7—1时,等号成立疳?师生活动=学生讨论石回答.教师总結:这是为了说明V是代数式J.=X+1(A->O)X的一个取值,代数式的最小值必须是代数式能取到的值.请同学们想一想,当%V2时.,卄二土%成立吗?迦犠说卄是偲J{式Q0)的最才信3?X JC追问4:通过本例的解答,你能说说满足什么条件的代数式能够利用基本不等式求最值吗?师生活动:学生讨论后回答•教师总结:代数式能转化为两个正数的和或积的形式,它们的和或者积是一个定值,不等式中的等号能取到,通俗的说,就是“一正、二定、三相等”.设计意图:引导学生根据所求代数式的形式,判断是否能利用基本不等式解决问题,同时强调代数式的最值必须是代数式能取到的值,为学生求解代数式的最值问题提供示范•同时,在本题之后,引导学生总结能应用基本不等式求最值的代数式满足的条件.例2已知x,y都是正数,求证:(1)如果积xy等于定值P,那么当x=y时,和x+y有最小值;-S2(2)如果和x+y等于定值S,那么当x=y时,积xy有最大值'•师生活动:师生一起分析后,由学生思考并书写证明过程后展示,师生共同补充元善.追问:通过本题,你能说说用基本不等式能够解决什么样的问题吗?师生活动:学生思考后回答,教师总结:满足“两个正数的积为定值,当这两个数取什么值时,求它们的和的最小值”,或者“两个正数的和为定值,当这两个数取什么值时,求它们的积的最大值”的问题,能够用基本不等式解决•设计意图:在例1的基础上,再利用一道例题示范如何直接利用基本不等式解决问题,同时借此题的题干指出用基本不等式能够解决的两类问题,为用基本不等式解决实际问题创造了条件.(五)目标检测设计1. 仃);已知无>0,耒心十丄的最丿]谑及相应的工值;x⑵已知O GX I,^,<1-X)的最大值及相应的.T值.设计塾=考查学生利用基本不等式解决简单的最值I鱷的能力.2. 已知兀」都是正数,且工U中求证:⑴3—v耳设计意图:考查学生对基本不等式的理解,及运用“分析法”证明问题的能力.第二课时(一)课时教学内容利用基本不等式解决实际问题中最值问题.(二)课时教学目标1•运用基本不等式解决生活中的最值问题,发展数学建模素养;2.理解基本不等式的数学模型,提高学生模型思想解决问题的能力.(三)教学重点与难点教学重点:运用基本不等式的模型思想解决生活中的最值问题.教学难点:应用基本不等式解决实际问题.(四)教学过程设计1•复习引入问题1:基本不等式的内容是什么?它有何作用?如何利用基本不等式求最值?需要注意什么?师生活动:学生根据教师提出的问题梳理上节课的知识,教师对学生遇到的困难给予帮助•特别是强调利用基本不等式求最值的方法,即两个变量均为正数是前提,发现“定值”是关键,验证等号成立是求最值的必要条件,即运用“一正、二定、三相等”的方法可以解决最值问题.2•利用基本不等式解决生活问题导入语:运用数学知识解决生活中的最值问题,也就是最优化的问题,特别能体现数学应用价值•基本不等式是求最值的工具,特别是对求代数式的最值问题有重要的意义.问题2:(1)用篱笆围一个面积为100m2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36m的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?追问1:前面我们总结了能用基本不等式解决的两类最值问题本例的两个问题分别属于哪类问题吗?师生活动:学生思考后回答:属于。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高中数学 第三章不等式3.4基本不等式第二课时教案 新人教
A 版必修5
授课类型:新授课
【教学目标】
1.知识与技能:进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题
2.过程与方法:通过两个例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值。

3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。

【教学重点】
基本不等式的应用
【教学难点】
利用基本不等式求最大值、最小值。

【教学过程】
1.课题导入
1.重要不等式:
如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a
2.基本不等式:如果a,b 是正数,那么).""(2
号时取当且仅当==≥+b a ab b a 3.我们称的算术平均数,称的几何平均数.
ab b a ab b a ≥+≥+2222和
成立的条件是不同的:前者只要求a,b 都是实数,而后者要
求a,b 都是正数。

2.讲授新课
例1(1)用篱笆围成一个面积为100m 的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。

最短的篱笆是多少?
(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
解:(1)设矩形菜园的长为x m ,宽为y m ,则xy=100,篱笆的长为2(x+y ) m 。

由, 可得 , 。

等号当且仅当x=y 时成立,此时x=y=10.
因此,这个矩形的长、宽都为10m 时,所用的篱笆最短,最短的篱笆是40m.
(2)解法一:设矩形菜园的宽为x m ,则长为(36-2x )m ,其中0<x <,其面积S =x (36-2x )=·2x (36-2x )≤
当且仅当2x =36-2x ,即x =9时菜园面积最大,即菜园长9m ,宽为9 m 时菜园面积最大为81 m 2
解法二:设矩形菜园的长为x m.,宽为y m ,则2(x+y)=36, x+y=18,矩形菜园的面积为xy m 。


,可得
当且仅当x=y,即x=y=9时,等号成立。

因此,这个矩形的长、宽都为9m 时,菜园的面积最大,最大面积是81m
归纳:1.两个正数的和为定值时,它们的积有最大值,即若a ,b ∈R +
,且a +b =M ,M 为定值,则ab ≤,等号当且仅当a =b 时成立.
2.两个正数的积为定值时,它们的和有最小值,即若a ,b ∈R +,且ab =P ,P 为定
值,则a +b ≥2,等号当且仅当a =b 时成立.
例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理。

解:设水池底面一边的长度为x m ,水池的总造价为l 元,根据题意,得 )1600(720240000x
x l ++= 297600
4027202400001600
2720240000=⨯⨯+=⋅⨯+≥x
x 当.2976000,40,1600有最小值时即l x x
x == 因此,当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600元
评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件。

归纳:用均值不等式解决此类问题时,应按如下步骤进行:
(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;
(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;
(3)在定义域内,求出函数的最大值或最小值;
(4)正确写出答案.
3.随堂练习
1.已知x ≠0,当x 取什么值时,x 2+的值最小?最小值是多少?
2.课本第113页的练习1、2、3、4
4.课时小结
本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题。

在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等。

5.评价设计
课本第113页习题[A]组的第2、4题【板书设计】。

相关文档
最新文档