高中文科数学(统计与概率)综合练习
高中数学概率统计题库及答案解析
高中数学概率统计题库及答案解析随着高中数学概率统计的教学深入,学生们需要更多的练习来巩固所学知识。
因此,一个全面且有针对性的概率统计题库及答案解析就显得尤为重要。
本文将介绍一个高中数学概率统计题库,并提供详细的答案解析,帮助学生更好地掌握该领域的知识。
一、选择题1. 已知事件A和事件B是互不相容的,且P(A)= 0.3,P(AUB) = 0.7,求P(B)的值。
解析:由题意可知 P(AUB) = P(A) + P(B) - P(AB),代入已知条件可得 0.7 = 0.3 + P(B) - 0,从而得到 P(B) = 0.4。
2. 设事件A和事件B相互独立,且P(A) = 1/4,P(B) = 1/3,求P(AB)的值。
解析:由于事件A和事件B相互独立,所以 P(AB) = P(A)P(B),代入已知条件可得 P(AB) = (1/4)(1/3) = 1/12。
二、计算题1. 从1到20中随机选取一个数,求选取的数被3整除的概率。
解析:在1到20中可以被3整除的数有3, 6, 9, 12, 15, 18共6个。
而总的样本空间为20,所以选取的数被3整除的概率为6/20 = 3/10。
2. 甲、乙、丙共参加了一次考试,甲过的概率为0.7,乙过的概率为0.8,丙过的概率为0.9。
已知甲、乙、丙三人中至少有两人过的概率是0.97,求三人中全部过的概率。
解析:设甲、乙、丙三人全部过的概率为 P(甲)P(乙)P(丙),根据题意可得到以下等式:1 - [P(甲) + P(乙) + P(丙) - P(甲)P(乙) - P(甲)P(丙) - P(乙)P(丙)] = 0.97代入已知概率可解得 P(甲)P(乙)P(丙) = 0.51,即三人全部过的概率为0.51。
三、证明题已知事件A和事件B是相互独立的,证明事件A的补事件与事件B的补事件也是相互独立的。
证明:设事件A的补事件为A',事件B的补事件为B'。
文科数学专题概率与统计(学案)高考二轮复习资料含答案
文科数学专题概率与统计(学案)高考二轮复习资料含答案1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算.4.与统计结合在大题中考查古典概型与几何概型.(1)在频率分布直方图中:频率①各小矩形的面积表示相应各组的频率,各小矩形的高=;②各小矩形面积之和等于1;③中位数组距左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,从总体中逐个抽取少在起始部分抽样时采按事先确定的规则在各用简单随机抽样总体中的个体数较多分层抽样时采用简单总体由差异明显的随机抽样或系统抽样几部分组成即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推).3.样本的数字特征(1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据).(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差-1样本数据的平均数某=(某1+某2++某n).n1-2-2-22方差=[(某1-某)+(某2-某)++(某n-某)].n注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量某和y具有线性相关关系.(2)用最小二乘法求回归直线的方程^^^设线性回归方程为y=b某+a,则^b=-某-某^-^-a=y-b某ni=1nii=1--某i-某yi-y=--某iyi-n某yi=1nn22i-n某某2-i=1.--注意:回归直线一定经过样本的中心点(某,y),据此性质可以解决有关的计算问题.5.回归分析n某i-某yi-yi=1--r=n,叫做相关系数.某i-某2yi-y2i=1i=1-n-相关系数用来衡量变量某与y之间的线性相关程度;|r|≤1,且|r|越接近于1,相关程度越高,|r|越接近于0,相关程度越低.6.独立性检验假设有两个分类变量某和Y,它们的取值分别为{某1,某2}和{y1,y2},其样本频数列联表(称为2某2列联表)为某1某2总计2y1aca+c2y2bdb+d总计a+bc+da+b+c+da+b+c+dad-bc则K=,a+bc+da+cb+d若K>3.841,则有95%的把握说两个事件有关;若K>6.635,则有99%的把握说两个事件有关;若K<2.706,则没有充分理由认为两个事件有关.7.随机事件的概率随机事件的概率范围:0≤P(A)≤1;必然事件的概率为1,不可能事件的概率为0.8.古典概型①计算一次试验中基本事件的总数n;②求事件A包含的基本事件的个数m;③利用公式P(A)=计算.9.一般地,如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率的和,即P(A+B)=P(A)+P(B).-10.对立事件:在每一次试验中,相互对立的事件A和A不会同时发生,但一定有一个发生,因此有222mnP(A)=1-P(A).11.互斥事件与对立事件的关系-对立必互斥,互斥未必对立.12.几何概型一般地,在几何区域D内随机地取一点,记事件“该点落在其内部区域d内”为事件A,则事件A发生的概率P(A)=考点一几何概型例1.【2022课标1,】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是d的测度.D的测度141C.2A.【答案】Bπ8πD.4B.【变式探究】(2022·江苏卷)记函数f(某)=6+某-某的定义域为D.在区间[-4,5]上随机取一个数某,则某∈D的概率是________.5【答案】93--252【解析】由6+某-某≥0,解得-2≤某≤3,则D=[-2,3],则所求概率为=.5--49【变式探究】从区间[0,1]随机抽取2n个数某1,某2,,某n,y1,y2,,yn,构成n个数对(某1,y1),(某2,y2),,(某n,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4n2m2nB.mC.4mn2mD.n【答案】Cmπ4m4m【解析】由题意知,=,故π=,即圆周率π的近似值为.n4nn考点二古典概型例2.(2022·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【答案】D3102511015【2022山东】从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)5475(B)(C)(D)18999【答案】C【解析】标有1,2,,9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡112C5C45,选C.片上的数奇偶性不同的概率是989【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.51011B.C.D.1212121【变式探究】(2022·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【答案】C【解析】从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共424种,所以所求概率P==.105故选C.考点三概率与其他知识的交汇例3、(2022·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数[10,15)2[15,20)16[20,25)36[25,30)25[30,35)7[35,40)44 5352515以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【变式探究】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下表:消费次数收费比例第1次1第2次0.95第3次0.90第4次0.85第5次及以上0.80该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如下表:消费次数频数第1次60第2次20第3次10第4次5第5次及以上5假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.40【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为100=0.4.(2)该会员第1次消费时,公司获得的利润为200-150=50(元).50+40第2次消费时,公司获得的利润为200某0.95-150=40(元),所以,公司获得的平均利润为=245(元)。
概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)
专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。
2022年数学文高考真题分类汇编专题07概率与统计
2022年数学文高考真题分类汇编专题07概率与统计1.【2022高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.1125B.C.D.3236【答案】A【解析】考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.2.【2022高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.7533B.C.D.108810【答案】B【解析】试题分析:因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为故选B.考点:几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3.[2022高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是()40155,408A.各月的平均最低气温都在0C以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.学优高考网4.[2022高考新课标Ⅲ文数]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.8111B.C.D.1581530【答案】C【解析】试题分析:开机密码的可能有(M,1),M(,2)M,(,3)M,(,M,4),(I,5)I,(,1)I,((,,4I2)),,((,I,53)(N,1),(N,2),(N,3),(N,4),(N, 5),共15种可能,所以小敏输入一次密码能够成功开机的概率是选C.考点:古典概型.1,故15【解题反思】对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n必须是有限个;②出现的各个不同的试验结果数m其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)m得出的结果才是正确的.n5.【2022高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【答案】D【解析】考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.6.【2022高考天津文数】甲、乙两人下棋,两人下成和棋的概率是率为()(A)11,甲获胜的概率是,则甲不输的概2356(B)25(C)16(D)13【答案】A【解析】试题分析:甲不输概率为115.选A.236考点:概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法.对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.7.【2022高考北京文数】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.1289B.C.D.552525【答案】B考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m,n,再运用公式P(A)m求出事件A的概率,这是一个形象直观的好方法,nm求概率.学优高考网n8.【2022高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.9.【2022高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29【解析】考点:统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.学优高考网10.【2022高考四川文科】从2、3、8、9任取两个不同的数值,分别记为a、b,则oglab为整数的概率=.【答案】【解析】16考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,4因此所有对数的个数就相当于4个数中任取两个的全排列,个数为A4,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.11.【2022高考上海文科】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】161.6【解析】试题分析:将4种水果每两种分为一组,有C246种方法,则甲、乙两位同学各自所选的两种水果相同的概率为考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.12.【2022高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.13.【2022高考新课标1文数】(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数2420221060161718192022更换的易损零件数记某表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(I)若n=19,求y与某的函数解析式;(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【答案】(I)y【解析】,某19,3800(某N)(II)19(III)19,某19,500某5700(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.学优高考网14.【2022高考新课标2文数】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数保费0123452a0.85aa1.25a1.5a1.75a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数频数060150230330420510(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.【答案】(Ⅰ)由公式求解.【解析】60503030求P(A)的估计值;(Ⅱ)由求P(B)的估计值;(III)根据平均值得计算200200(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3,200故P(B)的估计值为0.3.(Ⅲ)由题所求分布列为:保费频率0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.05调查200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.302a0.101.1925a,因此,续保人本年度平均保费估计值为 1.1925a.考点:样本的频率、平均值的计算.【名师点睛】样本的数字特征常见的命题角度有:(1)样本的数字特征与直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题.15.[2022高考新课标Ⅲ文数]下图是我国2022年至2022年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(II)建立y关于t的回归方程(系数精确到0.01),预测2022年我国生活垃圾无害化处理量.附注:参考数据:yi9.32,tiyi40.17,i1i1772(yy)0.55,7≈2.646.ii17参考公式:相关系数r(tt)(yy)iii1n(tt)(y2ii1i1nn,iy)2b中斜率和截距的最小二乘估计公式分别为:回归方程yab(ti1nit)(yiy)i(ti1nybt.,at)2【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.【解析】考点:线性相关与线性回归方程的求法与应用.【方法点拨】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数r公式求出r,然后根据r的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.学优高考网16.【2022高考北京文数】(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【答案】(Ⅰ)3;(Ⅱ)10.5元.【解析】所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.考点:频率分布直方图求频率,频率分布直方图求平均数的估计值.【名师点睛】1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.2.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.17.【2022高考山东文数】(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为某,y.奖励规则如下:①若某y3,则奖励玩具一个;②若某y8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(I)求小亮获得玩具的概率;(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】()【解析】5.()小亮获得水杯的概率大于获得饮料的概率.16所以,PB63.168则事件C包含的基本事件共有5个,即1,4,2,2,2,3,3,2,4,1,所以,PC因为5.1635,816所以,小亮获得水杯的概率大于获得饮料的概率.考点:古典概型学优高考网【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题较易,能较好的考查考生数学应用意识、基本运算求解能力等.18.【2022高考四川文科】(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【答案】(Ⅰ)a0.30;(Ⅱ)36000;(Ⅲ)2.04.【解析】试题分析:(Ⅰ)由高某组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a的值;(Ⅱ)利用高某组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率某样本总数=频数,计算所求人数;(Ⅲ)将前5组的频率之和与前4组的频率之和进行比较,得出2≤某<2.5,再进行计算.试题解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08某0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5某a+0.5某a,解得a=0.30.考点:频率分布直方图、频率、频数的计算公式【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.。
高中数学:概率统计专题
高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
2012届高三一轮复习名师一号文科数学第九模块概率与统计综合检测
第九模块概率与统计综合检测(时间120分钟,满分150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某班有60名学生,要从中抽取6人参加某项测试,老师选择了学号为6,16,26,36,46,56的6人,这种抽取样本的方法是( )A.抽签法B.系统抽样C.分层抽样D.随机数法解析:被抽取的6人的学号有相同的间隔,符合系统抽样.答案:B2.(2010·烟台模拟)某机构调查了当地1000名居民的月收入,并根据所得数据画了样本的频率分布直方图,为了分析居民的收入与学历等方面的关系,要从这1000人中再用分层抽样方法抽出100人做进一步调查,则在[2500,3000)(元)月收入段应抽取的人数是( )A.50B.5C.10D.25解析:本题为分层抽样与频率分布直方图的应用.由图知收入在[2500,3000)(元)的频率为0.0005×500=0.25,故抽取人数为0.25×100=25.答案:D3.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为( )A.3,2B.2,3C.2,30D.30,2解析:因为92÷30不是整数,因此必须先剔除部分个体,因为92÷30商3余2,故剔除2个即可,而间隔为3.答案:A4.从1,2,3,4这四个数中,不重复地任取两个数,取出的两数一奇一偶的概率是( )A.16B.13C.25D.23解析:从1,2,3,4中任取两个数,有6种取法,它们是:1和2,1和3,1和4,2和3,2和4,3和4.其中一奇一偶的有4种可能,故所求的概率为P=42 63 =.答案:D5.(2010·天津模拟)如图是某体育比赛现场上七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.5;1.6B.85;1.6C.85;0.4D.5;0.4解析:去掉一个最高分和一个最低分后,所得分数为84,84,84,86,87,所以平均数15 x=(84+84+84+86+87)=85,方差为s2=15[(84-85)2×3+(86-85)2+(87-85)2]=1.6.答案:B6.已知变量x,y呈线性相关关系,且回归方程ˆy=-3x+10,则( )A.变量x增加一个单位,变量y平均增加3个单位B.变量x,y是线性正相关关系C.变量x,y是线性负相关关系D.变量x,y是确定的函数关系解析:由回归方程知,y随x的增大而减小,因此变量x与y是负相关关系. 答案:C7.(江苏高考)两个相关变量满足如下关系:x 10 15 20 25 30y 1003 1005 1010 1011 1014两个变量的回归方程为( )A.ˆy =0.56x+997.4B.ˆy =0.63x-231.2C.ˆy =50.2x+501.4D.ˆy =60.4x+400.7解析:解法一:求数据中心点的坐标为(20,1008.6),代入验证知A适合.解法二:计算b=51522150.56.997.45i iiiix y xya y bxx x==-==-=-∑∑.∴回归方程为ˆy=0.56x+997.4.答案:A8.已知变量y与x之间的相关系数r=-0.9362,查表得到相关系数临界值r0.05=0.8013,若要使可靠性不低于95%,则可以认为变量y与x之间( )A.不具有线性相关关系B.具有线性相关关系C.它们的线性关系还需要进一步确定D.不确定解析:因为|r|>r0.05,根据线性回归分析原理,可以认为变量y与x之间具有线性相关关系.答案:B9.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( )A.99%B.95%C.90%D.无充分根据解析:χ2=250(181589)26242723⨯⨯-⨯⨯⨯⨯≈5.0585>3.841,∴有95%的把握认为喜欢玩电脑游戏与认为作业量的多少有关系.答案:B10.某班50名学生在一次百米测试中,成绩全部在[13,18](单位:秒)内,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].如图是按上述分组方法得到的频率分布直方图.且第一组,第二组,第四组的频率成等比数列,则成绩在[13,15)内的学生人数为( )A.12B.14C.16D.10解析:依题意可设第一组,第二组,第四组的频率分别为0.08,0.08q,0.08q2(q>0).由频率分布直方图的面积和为1,得0.08+0.08q+0.08q2+0.38+0.06=1,化简得q2+q-6=0,解得q=2,q=-3(舍去).所以,第二组的频率为0.16.故成绩在[13,15)内的学生人数为(0.08+0.16)×1×50=12.答案:A二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上. 11.(2010·浙江卷)在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.解析:甲组数从小到大排序后,最中间的数是45,即甲组数的中位数是45.同理乙组数的中位数是46.答案:45 4612.(2010·福建卷)将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前3组数据的频数之和等于27,则n 等于________.解析:设第一至第六组的频数分别为2x,3x,4x,6x,4x,x,则2x+3x+4x=27,解得x=3.所以n=20x=60.答案:6013.(2008·湖南卷)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表:则该地区生活不能自理的老人中男性比女性约多________人.解析:由表中数据可知,15000人中生活不能自理的男性有15000×23500=690人,女性有15000×21500=630人,因此男性比女性约多60人. 答案:6014.甲、乙、丙三位棉农,统计连续5年的单位面积产量(千克/亩).如下表:则产量稳定的是棉农________.解析:计算平均数:x 甲=70,x 乙=70,x 丙=70,计算方差:s 2甲=4,s 2乙=45,s 2丙=2. ∵s 2乙<s 2丙<s 2甲,∴产量稳定的是棉农乙. 答案:乙15.某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A 、B 、C 、D 四个单位回收的问卷数依次成等差数列,且共回收1000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽30份,则在D 单位抽取的问卷是________份.解析:由题意依次设在A 、B 、C 、D 四个单位回收的问卷数依次为a 1,a 2,a 3,a 4,则2301501000a =,∴a 2=200,又a 1+a 2+a 3+a 4=1000,即3a 2+a 4=1000,∴a 4=400.设在D 单位抽取的问卷数为n,则1504001000n =,∴n=60. 答案:60三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.分别在集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数. (1)求其和为偶数的概率; (2)求其积为偶数的概率.解:其中基本事件有:{1,5},{1,6},{1,7},{1,8},{2,5},{2,6},{2,7},{2,8},{3,5},{3,6},{3,7},{3,8},{4,5},{4,6},{4,7},{4,8},共16个.(1)设其和为偶数为事件A,则A包含的基本事件有:{1,5},{1,7},{2,6},{2,8},{3,5},{3,7},{4,6},{4,8},共8个.∴P(A)=81 162=.(2)设其积为偶数为事件B,则B包含的基本事件有:{1,6},{1,8},{2,5},{2,6},{2,7},{2,8},{3,6},{3,8},{4,5},{4,6},{4,7},{4,8},共12个.∴P(B)=123 164=.17.某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管15支,若将上述频率作为概率,估计经过1500小时约需换几支灯管.解:(1)(2)由(1)可得,0.048+0.121+0.208+0.223=0.6.∴灯管使用寿命不足1500小时的频率是0.6.(3)由(2)知,灯管使用寿命不足1500小时的概率为0.6,15×0.6=9.故经过1500小时约需换9支灯管.18.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.解:(1)积极参加班级工作的学生有24名,总人数为50名,概率为2412 5025=.不太主动参加班级工作且学习积极性一般的学生有19名,概率为19 50.(2)χ2=250(181967)150 2525242613⨯⨯-⨯=⨯⨯⨯≈11.538,∵χ2>10.828,∴有99.9%的把握认为学生的学习积极性与对待班级工作的态度有关系.19.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.解:(1)画茎叶图如下图,中间数为数据的十位数.从这个茎叶图中可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此,乙发挥比较稳定,总体得分情况比甲好.(2)利用科学计算器算得:x 甲=33,x 乙=33;s 甲≈3.96,s 乙≈3.56;甲的中位数是33,乙的中位数是33.5.综合比较知,选乙参加比赛较为合适.20.某校高三文科分为四个班,高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如下图所示,其中120~130分(包括120分但不包括130)的频率为0.05,此分数段的人数为5人.(1)各班被抽取的学生人数各为多少人?(2)在抽取的所有学生中,任取1名学生,求分数不小于90分的概率.解:(1)由频率分布条形图知,抽取的学生总数为50.05=100人. ∵各班被抽取的学生人数成等差数列,设其公差为d,由4×22+6d=100,得d=2. ∴各班被抽取的学生人数分别是22人,24人,26人,28人.(2)在抽取的所有学生中,任取一名学生,其分数不小于90分的概率为0.35+0.25+0.10+0.05=0.75.21.为了分析某个高三学生的学习状态.对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x,物理成绩y 进行分析,下表是该生7次考试的成绩(单位:分):(1)他的数学成绩与物理成绩,哪个更稳定?请说明理由;(2)已知该生的物理成绩y 与数学成绩x 是呈线性相关关系的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.解:(1)121717880121007x --+-+++=+=100,69844161007y --+-+++=+=100;∴2s 数学=9947,2s 物理=2507, 从而s2数学>s2物理,∴物理成绩更稳定.(2)由于x 与y 之间具有线性相关关系:计算b=497994=0.5,a=100-0.5×100=50, ∴线性回归方程为ˆy=0.5x+50. 当y=115时,x=130.建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.。
人教B版高中数学选择性必修第二册第四章概率与统计综合测试卷
第四章概率与统计综合测试卷时间:120分钟满分:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知4个红球,2个白球,每次随机取1个球,不放回地取两次.在第一次取到红球的条件下,第二次取到白球的概率为()A .35B .25C .23D .3102.两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),下列说法错误的是()A .落在回归直线方程上的样本点越多,回归直线方程拟合效果越好B .相关系数|r|越接近1,变量x ,y 相关性越强C .相关指数R 2越小,残差平方和越大,即模型的拟合效果越差D .若x 表示女大学生的身高,y 表示体重,则R 2≈0.65表示女大学生的身高解释了65%的体重变化3.已知随机变量X 服从二项分布X ~B(6,13),则P(X =2)=()A .1316B .4243C .13243D .802434.甲、乙两人独立完成某一任务的概率分别为14,23,若甲、乙分别去完成这项任务且相互之间不受影响,则甲完成此任务而乙没有完成此任务的概率为()A .112B .16C .14D .235.一名小学生的年龄和身高的数据如下表.由散点图可知,身高y(单位:cm )与年龄x(单位:岁)之间的回归直线方程为y ^=b ^x +65,预测该学生11岁时的身高约为()年龄x 6789身高y118126136144A .163cmB .161.8cmC .152cmD .158cm6.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X ~N(μ,σ2),则P(μ-σ<X ≤μ+σ)=0.6826,P(μ-2σ<X ≤μ+2σ)=0.9544.A .2386B .2718C .3413D .47727.下列说法中,正确命题的序号是()①已知随机变量ξ服从正态分布N(2,δ2),P(ξ<4)=0.84,则P(2<ξ<4)=0.34;②以模型y =c e kx 去拟合一组数据时,为了求出回归方程,设z =ln y ,求得回归直线方程为z ^=0.3x +4,则c ,k 的值分别是e 4和0.3;③若事件A 与事件B 互斥,则事件A 与事件B 独立;④若样本数据x 1,x 2,…,x 10的方差为2,则数据2x 1-1,2x 2-1,…,2x 10-1的方差为16.A .①④B .③④C .②③D .①②8.袋中有6个大小相同的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10,现从中任取4个球,则下列结论中正确的是()①取出的最大号码X 服从超几何分布;②取出的黑球个数Y 服从超几何分布;③取出2个白球的概率为114;④若取出一个黑球记2分,取出一个白球记1分,则总得分最大的概率为114.A .①②B .②④C .③④D .①③④二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.设A ,B 是两个概率大于0的随机事件,则下列说法正确的是()A .若事件A 和B 是对立事件,则P(A)+P(B)=1B .若事件A 和B 是互斥事件,则P(A)+P(B)=1C .若事件A 和B 相互独立,则P(A +B)=P(A)+P(B)D .若事件A 和B 相互独立,则P(AB)=P(A)P(B)10.若随机变量X 服从两点分布,其中P(X =1)=12,E(X)、D(X)分别为随机变量X 的均值与方差,则下列结论正确的是()A .P(X =0)=12B .E(X)=12C .E(3X)=12D .D(2X)=1411.下列四个表述中,正确的是()A .运用最小二乘法求得的回归直线一定经过样本中心(x -,y -)B .在回归直线方程y ^=0.1x +10中,当变量x 每增加1个单位时,变量y ^约增加0.1个单位C .具有相关关系的两个变量x ,y 的相关系数为r ,那么|r|越接近于0,x ,y 之间的线性相关程度越高D .在一个2×2列联表中,根据表中数据计算得到χ2的观测值k ,若k 的值越大,则认为两个变量间有关的把握就越小12.2021年10月16日,搭载神舟十三号载人飞船的火箭发射升空,这是一件让全国人民关注的大事,因此每天有很多民众通过手机、电视、报纸了解有关新闻,某组织随机选取10人调查民众了解这一新闻的方式,其中喜欢用电视、手机、报纸了解这一新闻的分别有3人、6人、1人,现随机选出2人,则()A .有1人喜欢用电视的方式的概率是715B .有2人喜欢用电视的方式的概率是415C .至多有1人喜欢用电视的方式的概率是1415D .至少有1人喜欢用手机的方式的概率是815三、填空题:本题共4小题,每小题5分,共20分.13.一个箱子中有6个大小相同的产品,其中4个正品、2个次品,从中任取3个产品,记其中正品的个数为随机变量X ,则X 的均值E(X)=________.14.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.记事件A 为“抽取到的两张卡片上的数字奇偶性相同”,事件B 为“两张卡片上的数字均为偶数”,则P(B|A)=________.15.如下表是降耗技术改造后生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的回归直线方程y ^=0.7x ^+0.3,那么表中m 的值为________.x 3456y2.9m44.116.如图是一块高尔顿板示意图:在一块木块上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,…,6,用X 表示小球落入格子的号码,假定底部6个格子足够长,投入160粒小球,则落入3号格的小球大约有________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)某校举办了一场主题为“爱诗词、爱祖国”的诗词知识竞赛,从参赛的学生中抽出60人,对这60名学生的成绩(满分100分)进行统计,并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,得到如图所示的频率分布直方图.(1)估计参加这次知识竞赛的学生成绩的中位数;(2)若规定80分以上(含80分)为优秀,用频率估计概率,从参赛学生中随机抽取3人,记其中成绩优秀的人数为ξ,求ξ的分布列.18.(12分)某商家为了促销,规定每位消费者均可免费参加一次抽奖活动.活动规则如下:在一不透明的纸箱中有9张相同的卡片,其中3张卡片上印有“中”字,3张卡片上印有“国”字,另外3张卡片上印有“红”字.消费者从该纸箱中不放回地随机抽取3张卡片,若抽到的3张卡片上都印有同一个字,则获得一张20元代金券;若抽到的3张卡片中每张卡片上的字都不一样,则获得一张10元代金券;若抽到的3张卡片是其他情况,则不获得任何奖励.(1)求某位消费者在一次抽奖活动中抽到的3张卡片上都印有“中”字的概率;(2)记随机变量X为某位消费者在一次抽奖活动中获得代金券的金额数,求X的分布列和数学期望E(X);(3)该商家规定,消费者若想再次参加该项抽奖活动,则每抽奖一次需支付5元.若你是消费者,请从收益方面来考虑是否愿意再次参加该项抽奖活动,并说明理由.19.(12分)中国共产党第二十次全国代表大会于2022年10月16日在北京召开,为弘扬中国共产党百年奋斗的光辉历程,某校团委决定举办“中国共产党党史知识”竞赛活动.竞赛共有A 和B 两类试题,每类试题各10题,其中每答对1道A 类试题得10分;每答对1道B 类试题得20分,答错都不得分,每位参加竞赛的同学从这两类试题中共抽出3道题回答(每道题抽后不放回).已知小明同学A 类试题中有7道题会作答,而他答对各道B 类试题的概率均为25.(1)若小明同学在A 类试题中只抽1道题作答,求他在这次竞赛中仅答对1道题的概率;(2)若小明只作答A 类试题,设X 表示小明答这3道试题的总得分,求X 的分布列和期望;(3)小明应从A 类试题中抽取几道试题作答才能使自己得分的数学期望更大?请从得分的数学期望角度给出理由.20.(12分)某市甲乙两所高中学校高二年级联合举办安全知识竞赛,共两轮,每轮满分为80分.参赛选手为这两所学校高二学生随机抽取的各100名学生.图1和图2分别是甲校和乙校参赛选手第一轮竞赛成绩的频率分布直方图.(1)若规定成绩在66分以上的学生为优秀,试根据第一轮竞赛的成绩分别估计甲乙这两所学校高二学生的优秀率;(2)已知第二轮竞赛成绩不低于60分的学生中,甲校增加了15人,乙校不变.根据第二轮竞赛的成绩完成下面2×2列联表.依据小概率值α=0.001的独立性检验,分析甲乙两个学校高二学生这次竞赛的成绩是否有差异.成绩低于60分人数成绩不低于60分人数合计甲校乙校合计附表及公式:α=P(χ2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d.21.(12分)数据显示,中国在线直播用户规模及在线直播购物规模近几年都保持高速增长态势,下表为2017~2021年中国在线直播用户规模(单位:亿人),其中2017年~2021年对应的代码依次为1~5.年份代码x 12345市场规模y3.984.565.045.866.36参考数据:y -=5.16,v -=1.68,错误!i y i =45.10,其中v i =x i .参考公式:对于一组数据(v 1,y 1),(v 2,y 2),…,(v n ,y n ),其回归直线y ^=b ^v +a ^的斜率和截距的最小二乘估计公式分别为b ^=错误!,a ^=y --b ^v -.(1)由上表数据可知,可用函数模型y ^=b ^x +a ^拟合y 与x 的关系,请建立y 关于x的回归方程(a ^,b ^的值精确到0.01);(2)已知中国在线直播购物用户选择在品牌官方直播间购物的概率为p ,现从中国在线直播购物用户中随机抽取4人,记这4人中选择在品牌官方直播间购物的人数为X ,若P(X =3)=P(X =4),求X 的分布列与期望.22.(12分)2020年1月15日教育部制定出台了《关于在部分高校开展基础学科招生改革试点工作的意见》(也称“强基计划”),《意见》宣布:2020年起不再组织开展高校自主招生工作,改为实行强基计划.强基计划主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.据悉强基计划的校考由试点高校自主命题,校考过程中通过笔试后才能进入面试环节.已知甲、乙两所大学的笔试环节都设有三门考试科目且每门科目是否通过相互独立,若某考生报考甲大学,每门科目通过的概率均为12,该考生报考乙大学,每门科目通过的概率依次为16,23,m ,其中0<m<1.(1)若m =23,分别求出该考生报考甲、乙两所大学在笔试环节恰好通过一门科目的概率;(2)强基计划规定每名考生只能报考一所试点高校,若以笔试过程中通过科目数的数学期望为依据作出决策,当该考生更希望通过乙大学的笔试时,求m 的取值范围.参考答案与解析1.答案:B解析:第一次取到红球后还剩3个红球,2个白球,故第二次取到白球的概率为25.故选B.2.答案:A解析:对于A :回归直线方程拟合效果的强弱是由相关指数R 2或相关系数|r |判定,故不正确;对于B :根据相关系数|r |越接近1,变量相关性越强,故正确;对于C :相关指数R 2越小,残差平方和越大,效果越差,故正确;对于D :根据R 2的实际意义可得,R 2≈0.65表示女大学生的身高解释了65%的体重变化,故正确.故选A.3.答案:D解析:P (X =2)=C 26(13)2(1-13)4=80243.故选D.4.答案:A解析:依题意,甲、乙分别去完成这项任务相互独立,则甲完成此任务而乙没有完成此任务的概率为14×(1-23)=112.故选A.5.答案:B解析:由表中数据可知:x -=6+7+8+94=7.5,y -=118+126+136+1444=131,因为回归方程y ^=b ^x +65过样本中心(x -,y -),所以131=b ^×7.5+65解得b ^=8.8,将x =11代入y ^=8.8x +65得y ^=161.8.故选B.6.答案:C解析:因为曲线C 为正态分布N (0,1)的密度曲线,所以根据正态分布的性质,P (0<x <1)=12P (-1<x <1)=0.3413,所以落入阴影部分的点的个数的估计值为10000×0.3413=3413.故选C.7.答案:D解析:对于①,因为ξ~N (2,δ2),P (ξ<4)=0.84,所以P (2<ξ<4)=0.84-0.5=0.34,故①正确;对于②,y =c e kx 两边同时取对数可得ln y =ln c +kx ,则z =ln c +kx ,又因为z ^=0.3x +4,所以k =0.3,ln c =4,所以k =0.3,c =e 4,故②正确;对于③,若事件A 与事件B 互斥,则事件A 与事件B 不会同时发生,当事件A 与事件B 独立,两事件可以同时发生,故③错误;若样本数据x 1,x 2,…,x 10的方差为2,则数据2x 1-1,2x 2-1,…,2x 10-1的方差为22×2=8,故④错误.所以正确的为①②.故选D.8.答案:B解析:对于①,根据超几何分布的定义,要把总体分为两类,再依次选取,由此可知取出的最大号码X 不符合超几何分布的定义,无法用超几何分布的数学模型计算概率,故①错误;对于②,取出的黑球个数Y 符合超几何分布的定义,将黑球视作第一类,白球视作第二类,可以用超几何分布的数学模型计算概率,故②正确;对于③,取出2个白球的概率为C 26C 24C 410=37,故③错误;对于④,若取出一个黑球记2分,取出一个白球记1分,则取出四个黑球的总得分最大,∴总得分最大的概率为C 46C 410=114,故④正确.故选B.9.答案:AD解析:若A ,B 是对立事件,则事件A ,B 满足P (A )+P (B )=1,所以A 选项正确;若事件A ,B 互斥,如:投掷一枚均匀的骰子,设A ={向上的点数是1},B ={向上的点数是2},则A ,B 互斥,P (A )+P (B )<1,所以B 选项错误;只有当A 和B 互斥时,P (A +B )=P (A )+P (B ),所以C 选项错误;若A 和B 相互独立,则P (AB )=P (A )P (B ),所以D 选项正确.故选AD.10.答案:AB解析:根据随机变量X 服从两点分布,其中P (X =1)=12,∴P (X =0)=12,故A 正确;E (X )=0×12+1×12=12,故B 正确;则E (3X )=3E (X )=3×12=32,故C 错误;D (X )=(0-12)2×12+(1-12)2×12=14,则D (2X )=4D (X )=4×14=1,故D 错误.故选AB.11.答案:AB解析:A :由样本中心一定在回归直线上,正确;B :由y ^=0.1x +10,x 每增加1个单位则y ^约增加0.1个单位,正确;C :两个变量x ,y 的相关系数为r ,那么|r |越接近于1,x ,y 之间的线性相关程度越高,错误;D :观测值k 越大,则认为两个变量间有关的把握就越大,错误.故选AB.12.答案:AC解析:设选出的2人中喜欢用电视的方式的人数为X ,则X 的可能取值为0,1,2,则P (X =0)=C 03C 27C 210=715,P (X =1)=C 13C 17C 210=715,P (X =2)=C 23C 07C 210=115,A 正确,B 错误.这2人中至多有1人喜欢用电视的方式的概率是P (X =0)+P (X =1)=1415,C 正确.这2人中至少有1人喜欢用手机的方式的概率为C 16C 14C 210+C 26C 04C 210=1315,D 错误.故选AC.13.答案:2解析:任取3个产品,记其中正品的个数为随机变量X ,则X 的可能取值为1,2,3则P (X =1)=C 14C 22C 36=420=15,P (X =2)=C 24C 12C 36=1220=35,P (X =3)=C 34C 02C 36=420=15,则E (X )=1×15+2×35+3×15=2.14.答案:38解析:P (B |A )=n (AB )n (A )=C 24C 24+C 25=66+10=38.15.答案:2.8解析:由已知中的数据可得:x -=4.5,y -=(2.9+m +4+4.1)÷4=m +114,∵数据中心点(x -,y -)一定在回归直线上,∴11+m 4=0.7×4.5+0.3,解得m =2.8.16.答案:50解析:设A =“向右下落”,则A -=“向左下落”,且P (A )=P (A -)=12,设Y =X -1,∵小球下落过程中共碰撞5次,∴Y ~B (5,12),∴P (Y =k )=P (X =k +1)=C k 5(12)k (1-12)5-k =C k 5(12)5,(k =0,1,2,3,4,5),∴P (X =3)=C 25(12)5=516,故投入160粒小球,则落入3号格的小球大约有160×516=50粒.17.解析:(1)设样本数据的中位数为a ,由0.05+0.15+0.2<0.5,0.05+0.15+0.2+0.3>0.5,知a ∈(70,80).所以0.05+0.15+0.2+(a -70)×0.03=0.5,解得a =2203,故参加这次知识竞赛的学生成绩的中位数约为2203.(2)由题意,知样本中80分以上(含80分)的频率为310,则从参赛学生中随机抽取1名学生,他的成绩是优秀的概率约为310,所以ξ~B (3,310).所以P (ξ=0)=(710)3=3431000,P (ξ=1)=C 13×310×(710)2=4411000,P (ξ=2)=C 23×(310)2×710=1891000,P (ξ=3)=(310)3=271000.所以ξ的分布列为ξ0123P 34310004411000189100027100018.解析:(1)记“某位消费者在一次抽奖活动中抽到的3张卡片上都印有‘中’字”为事件A ,则P (A )=C 33C 39=184.所以某位消费者在一次抽奖活动中抽到的3张卡片上都印有“中”字的概率是184.(2)随机变量X 的所有可能取值为0,10,20,则P (X =20)=C 33+C 33+C 33C 39=128,P (X =10)=C 13C 13C 13C 39=928,P (X =0)=1-928-128=914.所以X 的分布列为X 01020P 914928128E (X )=0×914+10×928+20×128=5514.(3)记随机变量Y 为消费者在一次抽奖活动中的收益,则Y =X -5,所以E (Y )=E (X )-5=-1514<0,因此我不愿意再次参加该项抽奖活动.19.解析:(1)小明仅答对1题的概率P =710×(35)2+310·C 12·25·35=99250.(2)X 可能的取值为0,10,20,30,P (X =0)=C 33C 310=1120,P (X =10)=C 17C 23C 310=740,P (X =20)=C 27C 13C 310=2140,P (X =30)=C 37C 310=724,所以X 的分布列为X0102030P 11207402140724所以E (X )=0×1120+10×740+20×2140+30×724=21.(3)设小明从两类试题中分别抽取n 1,n 2道试题,回答正确的题数分别为x 1,x 2,两类试题总得分为y ,∵x 1服从超几何分布,x 2服从二项分布,∴E (x 1)=n 1×710=0.7n 1,E (x 2)=n 2×25=0.4n 2,由n 1+n 2=3,∴E (y )=10E (x 1)+20E (x 2)=10×0.7n 1+20×0.4n 2=10×0.7n 1+20×0.4(3-n 1)=24-n 1.∵n 1=0,1,2,3,∴当n 1=0时E (y )max =24.即小明全部回答B 类试题时,得分的期望值最大为24.20.解析:(1)根据频率分布直方图,甲校高二学生的优秀率为0.01×10×70-6670-60+0.01×10=0.14;乙校高二学生的优秀率为0.035×10×70-6670-60+0.025×10=0.39.(2)第一轮竞赛中成绩不低于60分的学生,甲校有100×0.01×20=20人,乙校有:100×(0.035×10+0.025×10)=60人;则第二轮竞赛中成绩不低于60分的学生,甲校有35人,乙校有60人;故2×2列联表如下所示:成绩低于60分人数成绩不低于60分人数合计甲校6535100乙校4060100合计10595200故可得χ2=200(65×60-35×40)2105×95×100×100=5000399≈12.531>10.828,故在小概率值α=0.001的独立性检验下,甲乙两个学校高二学生这次竞赛的成绩有差异.21.解析:(1)设v =x ,则y ^=b ^v +a ^,因为y -=5.16,v -=1.68,错误!2i =错误!i=15,所以b ^=错误!=45.10-5×1.68×5.1615-5×1.682=1.7560.888≈1.98.把(1.68,5.16)代入y ^=b ^v +a ^,得a ^=5.16-1.98×1.68≈1.83.即y 关于x 的回归方程为y ^=1.98x +1.83.(2)由题意知X ~B(4,p),P(X =3)=C 34p 3(1-p)=4p 3(1-p),P(X =4)=C 44p 4=p 4,由4p 3(1-p)=p 4得p =45,所以X 的取值依次为0,1,2,3,4,P(X =0)=C 04(1-45)4=1625,P(X =1)=C 14·45·(1-45)3=16625,P(X =2)=C 24(45)2(1-45)2=96625,P(X =3)=C 34(45)3(1-45)=256625,P(X =4)=C 44(45)4=256625,所以X 的分布列为X01234P 16251662596625256625256625E(X)=4×45=165.22.解析:(1)设“该考生报考甲大学恰好通过一门笔试科目”为事件A ,“该考生报考乙大学恰好通过一门笔试科目”为事件B ,根据题意可得P(A)=C 13(12)1(12)2=38,P(B)=16×(13)2+56×23×13×2=2154=718.(2)设该考生报考甲大学通过的科目数为X ,报考乙大学通过的科目数为Y ,根据题意可知,X ~B(3,12),所以E(X)=3×12=32,P(Y =0)=56×13(1-m)=518(1-m),P(Y =1)=16×13(1-m)+56×23(1-m)+56×13m =1118-13m ,P(Y =2)=16×23(1-m)+16×13m +56×23m =19+12m ,P(Y =3)=16×23m =19m.则随机变量Y 的分布列为Y0123P 518(1-m)1118-13m 19+12m 19m E(Y)=1118-13m +29+m +13m =56+m ,若该考生更希望通过乙大学的笔试时,有E(Y)>E(X),所以56+m>32,又因为0<m<1,所以23<m<1,所以m 的取值范围是(23,1).。
高三数学《概率统计(文科)》练习
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
人教版B版(2019)高中数学必修第二册:第五章 统计与概率 综合测试(附答案与解析)
第五章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲一定会胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指明天降水的可能性是90%2.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()图1图2A.1%B.2%C.3%D.5%3.如图是容量为100的某样本的质量的频率分布直方图,则由图可估计样本质量的中位数为()A.11B.11.5C.12D.12.54.从一批羽毛球中任取一个,如果取到质量小于4.8g的概率是0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)范围内的概率是()A.0.62B.0.38C.0.70D.0.685.空气质量指数AQI是一种反映和评价空气质量的标准,AQI指数与空气质量对应如表所示:下图是某城市2018年11月全月的AQI变化统计图.根据统计图判断,下列结论正确的是()A.从整体上看,这个月的空气质量越来越差B.从整体上看,前半月的空气质量好于后半月的空气质量C.从AQI数据看,前半月的方差大于后半月的方差D.从AQI数据看,前半月的平均值小于后半月的平均值6.AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度.AQI 共分六级:一级优(0~50);二级良(51~100);三级轻度污染(101~150);四级中度污染(151~200);五级重度污染(201~300);六级严重污染(大于300).如图是某市2019年4月份随机抽取10天的AQI指数的茎叶图,利用该样本估计该市2020年4月份空气质量为优的天数为()A .3B .4C .12D .217.黄冈市的天气预报显示,大别山区在今后的三天中,一天有强浓雾的概率为40%,现用随机模拟的方法计这三天中至少有两天有强浓雾的概率:先利用计算器产生0~9之间整数值的随机数,并用0,1,2,3,4,表示没有强浓雾,用6,7,8,9表示有强浓雾,再以每个随机数作为一组,代表三天的天气情况,产生了如20组随机数:779 537 113 730 588 506 027 394 357 231 683 569 479 812 842 273 925 191 978 520则这三天中至少有两天有强浓雾的概率近似为( ) A .14B .25C .310D .158.如果3个正整数可作为一个直角三角形三条边的长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .310B .15C .110D .1209.洛书古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从4个阴数中随机抽取2个数,则能使这2个数与居中阳数之和等于15的概率是( )A .12B .23C .14D .1310.某公司10位员工的月工资(单位:元)为1210,,,x x x L ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A .22,100x s +B .22100,100x s ++C .2,x sD .2100,x s +二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.如图是某电视台主办的歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),则下列结论中不正确的是( )A .甲选手的平均分有可能和乙选手的平均分相等B .甲选手的平均分有可能比乙选手的平均分高C .甲选手得分的中位数比乙选手得分的中位数低D .甲选手得分的众数比乙选手得分的众数高12.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )A .2018年3月至2019年3月全国居民消费价格同比均上涨B .2018年3月至2019年3月全国居民消费价格环比有涨有跌C .2019年3月全国居民消费价格同比涨幅最大D .2019年3月全国居民消费价格环比变化最快三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.某单位200名职工的年龄分布情况如图所示,现要从中抽取50名职工的年龄作为样本,若采用分层抽样方法,则40~50岁年龄段应抽取________人.14.甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是________.15.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈L .若||1a b −≤,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为________.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a = ________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)直接根据茎叶图判断哪个班学生的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.18.(12分)改革开放40年来,体育产业的蓬勃发展反映了“健康中国”理念的普及.如图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(1)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多500亿元以上的概率;(2)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;(3)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(只写结论,不要求证明)19.(12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),月用水量不超过x 的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的情况,通过抽样,获得了100位L分成9组,制成了如图所示的频率居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分布直方图.(1)求频率分布直方图中a的值;(2)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.20.(12分)一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每枝2元,云南空运来的百合花每枝进价1.6元,本地供应商处百合花每枝进价1.8元,微店这10天的订单中百合花的日需求量(单位:枝)依次为251,255,231,243,263,241,265,255,244,252.(1)求今年四月前10天订单中百合花日需求量的平均数和众数,并完成频率分布直方图;(2)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(1)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250枝还是255枝百合花,才能使四月后20天百合花销售总利润更大?21.(12分)2018年8月8日是我国第十个全民健身日,其主题是新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄(单位:岁)分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数和中位数的估计值;(2)①若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;②已知该小区年龄在[10,80]内的总人数为2 000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.,两道题目22.(12分)在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A B中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001—900.(1)若采用随机数表法抽样,并按照以下随机数表,以方框内的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端,写出样本编号的中位数;05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 7407 97 10 88 23 09 98 42 99 64 61 71 62 99 15 58 05 77 09 5151 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 4826 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 9414 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43(2)采用分层抽样的方法按照学生选择A题目或B题目,将成绩分为两层,且样本中A题目的成绩有8个,平均数为7,方差为4;样本中B题目的成绩有2个,平均数为8,方差为1.用样本估计总体,求900名考生选做题得分的平均数与方差。
高中数学概率与统计练习题及参考答案2023
高中数学概率与统计练习题及参考答案2023以下是根据题目要求写出的高中数学概率与统计练习题及参考答案。
一、单项选择题1、设A、B为两事件,且P(A)=0.4,P(B)=0.6,则P(AB)的取值范围是A、[0.2,0.6]B、[0.24,0.6]C、[0.0,0.4]D、[0.16,0.6]答案:B2、已知事件A发生的概率为0.6,事件B发生的概率为0.5,事件A和事件B至少有一个发生的概率为:A、0.6B、0.5C、0.9D、0.1答案:C3、小明乘坐公交车去上学,如果按时到达的概率为0.8,那么他迟到的概率为:A、0.8B、0.2C、0.6D、0.4答案:B二、填空题1、一套大小为1、2、3的衣服,从中随意取出一件的概率为_______。
答案:1/62、在1~50中随机取出一个整数,使其能被6整除的概率是_______。
答案:1/63、事件A和事件B相互独立,且P(A)=0.4,P(B)=0.3,则P(AB)的取值为_______。
答案:0.12三、解答题1、某小区内有200户人家,其中有120户家庭有私家车,60户家庭有小轿车,70户家庭既有私家车又有小轿车。
试求出这些家庭中有汽车的概率是多少?解:设事件A为家庭有私家车,B为家庭有小轿车,P(A)=120/200=0.6,P(B)=60/200=0.3,P(AB)=70/200=0.35,所以这些家庭中有汽车的概率是P(A∪B)=P(A)+P(B)-P(AB)=0.6+0.3-0.35=0.55。
2、某饮料公司一次生产200瓶矿泉水饮料,其中有5瓶不合格品,现从这200瓶中任意抽取20瓶,问抽取的20瓶中恰好有3瓶不合格品的概率是多少?解:设事件A为抽出20瓶中恰好有3瓶不合格品,根据二项分布公式P(A)=C(5,3)*C(195,17)/C(200,20)=56*17409840/6564120420=0.0148(保留四位小数)。
四、计算题1、某班级20名学生参加一次数学考试,已知这次考试的平均成绩是85分,标准差为7分,求这次考试成绩高于90分的学生人数的理论值和实际值。
高三数学练习题:概率与统计
高三数学练习题:概率与统计
问题1:
某班有40名学生,其中有30名学生参加了一个数学竞赛。
现在我们从这些学生中随机抽取一名学生,请计算以下概率:
a) 抽中一位参加了数学竞赛的学生;
b) 抽中一位未参加数学竞赛的学生。
问题2:
某班有50名学生,其中30人喜欢数学,20人喜欢英语,15人同时喜欢数学和英语。
现在我们从这些学生中随机选择一位学生,请计算以下概率:
a) 抽中一位喜欢数学的学生;
b) 抽中一位喜欢英语的学生;
c) 抽中一位同时喜欢数学和英语的学生。
问题3:
某地区的天气预报表明,星期一下雨的概率是0.3,星期二下雨的概率是0.4。
而星期一和星期二都下雨的概率是0.15。
现在,我们从这两个星期中随机选择一个天气预报,请计算以下概率:
a) 抽中星期一下雨;
b) 抽中星期二下雨;
c) 抽中星期一和星期二都下雨。
问题4:
某班有90名学生,其中40人喜欢数学,60人喜欢英语,20人同时喜欢数学和英语。
现在我们从这些学生中选择两个学生,请计算以下概率:
a) 抽中两位喜欢数学的学生;
b) 抽中两位喜欢英语的学生;
c) 抽中一位喜欢数学的学生和一位喜欢英语的学生。
问题5:
某打印店收到100份订单,其中有20份订单有错误。
现在,我们从这些订单中随机抽取一份,请计算以下概率:
a) 抽中一份有错误的订单;
b) 抽中一份没有错误的订单。
2015高三数学单元测试题(文科)概率统计
高三文科数学单元测试题(概率与统计)1.将一骰子抛掷两次,所得向上的点数分别为和,则函数在上为增函数的概率是( )A . B. C. D.2..下面的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.25B.710C.45D.910 3.设-1≤a ≤1,-1≤b ≤1,则关于x 的方程x 2+ax +b 2=0有实根的概率是 ( )A.12B.14C.18D.1164.从2004名学生中选取50名组成参观图,若采用下面的方法选取,先用简单随机抽样法从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率 A .不全相等 B .均不相等C .都相等且为251002D .都相等且为1405.(2012山东省济南市第二次模拟)下列命题:① 函数,的最小值为2;② 线性回归方程对应的直线至少经过其样本数据点(,),(,),…,(,)中的一个点;③ 命题p:x R ,使得,则p:x R ,均有x2+x+1≥0;④ 若x 1,x 2,…,x 10的平均数为a ,方差为b ,则x 1+5,x 2+5,…,x 10+5的平均数为a+5,方差为b+25.其中,错误命题的个数为( ) A. 0 B. 1 C. 2 D. 36.如图,A 是圆上固定的一点,在圆上其他位置任取一点A ',连结AA ',它是一条弦,它的长度大于等于半径长度的概率为A .12B .23C D .147.对于一组数据 (1,2,3,,)i x i n = ,如果将它们改变为(1,2,3,,)i x c i n +=,其中0c ≠,则下面结论中正确的是A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化 8.在发生某公共卫生事件期间, 有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天, 每天新增疑似病例不超过7人”. 根据过去10天甲、乙、丙、丁四地新增疑似病例数据, 一定符合该标志的是( )A. 甲地:总体均值为3, 中位数为4B. 乙地:总体均值为1, 总体方差大于0C. 丙地:中位数为2, 众数为3D. 丁地:总体均值为2, 总体方差为3其中污染指数时,空气质量为优;时,空气质量为良;100150T <≤时空气质量为轻微污染。
高一数学必修三,概率与统计的综合问题知识点及题型
第四节概率与统计的综合问题考点一概率与统计图表的综合问题[典例]学校将高二年级某班级50位同学期中考试的数学成绩(均为整数)分为7组进行统计,得到如图所示的频率分布直方图.观察图中信息,回答下列问题.(1)试估计该班级同学数学成绩的平均分;(2)现准备从该班级数学成绩不低于130分的同学中随机选出两人参加某活动,求选出的两人在同一组的概率.[解](1)由频率分布直方图可知,所求数学成绩的平均分为85×0.06+95×0.1+105×0.24+115×0.28+125×0.2+135×0.08+145×0.04=113.6,故该班级同学数学成绩的平均分约为113.6.(2)由频率分布直方图可知,数学成绩不低于130分的人数为50×0.08+50×0.04=4+2=6,其中,分数在[130,140)的有4人,分别记作a,b,c,d,分数在[140,150]的有2人,分别记作m,n.从该班级数学成绩不低于130分的同学中选出2人共有15个基本事件,列举如下:ab,ac,ad,am,an,bc,bd,bm,bn,cd,cm,cn,dm,dn,mn.其中,选出的两人在同一组的有7个基本事件,分别是:ab,ac,ad,bc,bd,cd,mn.故选出的两人在同一组的概率P=715.[对点训练]如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 解:(1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.考点二 概率与随机抽样的综合问题[典例] 已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩统计,先将800人按001,002,003,…,800进行编号.(1)如果从随机数表的第8行第7列的数开始向右读,请你依次写出最先抽取到的3个人的编号. (2)所抽取的100人的数学与地理的水平测试成绩如下表:成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如表中数学成绩为良好的人数为20+18+4=42.若在该样本中,数学成绩优秀率为30%,求a ,b 的值.(3)若a ≥10,b ≥8,求“在地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的概率.附:(下面摘取了随机数表的第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 [解] (1)依题意,最先抽取到的3个人的编号依次为785,567,199. (2)由题意可得7+9+a100=0.3,解得a =14.因为7+9+a +20+18+4+5+6+b =100,所以b =17. (3)由题意知a +b =31,且a ≥10,b ≥8,则满足条件的(a ,b )有(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8),共14组.其中满足“在地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的(a ,b )有(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),共6组.故所求概率P =614=37.[对点训练]某大型手机连锁店为了解销售价格在区间[5,30](单位:百元)内的手机的利润情况,从2018年度销售的一批手机中随机抽取75部,按其价格分成5组,频数分布表如下:[20,25)内的有几部?(2)从(1)中抽出的6部手机中任意抽取2部,求价格在区间[10,15)内的手机至少有1部的概率.解:(1)因为在区间[5,10),[10,15)和[20,25)内的手机的数量之比为5∶10∶15=1∶2∶3,所以抽取的6部手机中价格在区间[20,25)内的有6×36=3(部).(2)这6部手机中价格在区间[5,10)内的有1部记为a ,在区间[10,15)内的有2部,分别记为b 1,b 2,在区间[20,25)内的有3部,分别记为c 1,c 2,c 3,从中任取2部,可能的情况有(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2)(c 1,c 3),(c 2,c 3),共15种;设“价格在区间[10,15)内的手机至少有1部”为事件A ,则事件A 包含的情况有(a ,b 1),(a ,b 2),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),共9种.故P (A )=915=35.考点三 概率与数字特征的综合问题[典例] (2019·重庆六校联考)2019年高考特别强调了要增加对数学文化的考查,为此某校高三年级特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生的成绩中随机抽取了50名学生的成绩,按照[50,60),[60,70),…,[90,100]分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).(1)求频率分布直方图中x 的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);(2)用样本估计总体,若高三年级共有2 000名学生,试估计高三年级这次测试成绩不低于70分的人数;(3)若利用分层抽样的方法从样本中成绩不低于70分的学生中抽取6人,再从这6人中随机抽取3人参加这次考试的分析会,试求成绩在[80,100]的学生至少有1人被抽到的概率.[解] (1)由频率分布直方图可得第4组的频率为1-(0.01+0.03+0.03+0.01)×10=0.2,则x =0.02. 故可估计所抽取的50名学生成绩的平均数为(55×0.01+65×0.03+75×0.03+85×0.02+95×0.01)×10=74(分).由于前两组的频率之和为0.1+0.3=0.4,前三组的频率之和为0.1+0.3+0.3=0.7,故中位数在第3组中.设中位数为t 分,则有(t -70)×0.03=0.1,得t =2203,即所求的中位数为2203分.(2)由(1)可知,50名学生中成绩不低于70分的频率为0.3+0.2+0.1=0.6,用样本估计总体,可以估计高三年级2 000名学生中成绩不低于70分的人数为2 000×0.6=1 200.(3)由(1)可知,后三组中的人数分别为15,10,5,由分层抽样的知识得这三组中所抽取的人数分别为3,2,1. 记成绩在[70,80)的3名学生分别为a ,b ,c ,成绩在[80,90)的2名学生分别为d ,e ,成绩在[90,100]的1名学生为f ,则从中随机抽取3人的所有可能结果为(a ,b ,c ),(a ,b ,d ),(a ,b ,e ),(a ,b ,f ),(a ,c ,d ),(a ,c ,e ),(a ,c ,f ),(a ,d ,e ),(a ,d ,f ),(a ,e ,f ),(b ,c ,d ),(b ,c ,e ),(b ,c ,f ),(b ,d ,e ),(b ,d ,f ),(b ,e ,f ),(c ,d ,e ),(c ,d ,f ),(c ,e ,f ),(d ,e ,f ),共20种.其中成绩在[80,100]的学生没人被抽到的可能结果为(a ,b ,c ),只有1种, 故成绩在[80,100]的学生至少有1人被抽到的概率P =1-120=1920.[解题技法]本题主要考查概率与数字特征,涉及频率分布直方图,平均数、中位数、分层抽样、古典概型的概率计算等知识.解决此类问题的关键是正确理解图表中各个量的意义,牢记相关定义和公式,在利用频率分布直方图,求平均值时,不要与求中位数,众数混淆.[对点训练](2019·唐山五校联考)某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分的均值和方差;(2)从甲比赛得分在20分以下的6场比赛中随机抽取2场进行失误分析,求抽到2场都不超过均值的概率.解:(1)甲在比赛中得分的均值x =18×(7+8+10+15+17+19+21+23)=15,方差s 2=18×[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.(2)甲得分在20分以下的6场比赛分别为:7,8,10,15,17,19. 从中随机抽取2场,这2场比赛的得分如下:(7,8),(7,10),(7,15),(7,17),(7,19),(8,10),(8,15),(8,17),(8,19),(10,15),(10,17),(10,19),(15,17),(15,19),(17,19),共15种,其中抽到2场都不超过均值的情形是:(7,8),(7,10),(7,15),(8,10),(8,15),(10,15),共6种,所以所求概率P =615=25.考点四 概率与统计案例的综合问题[典例] 里约奥运会中国女排勇夺金牌,某校高一课外小组为了解金牌争夺战现场直播时同学们的观看情况,从本年级500名男生、400名女生中按分层抽样的方式抽取45名学生进行了问卷调查,观看情况分成以下三类:全程观看、部分观看、没有观看,调查结果统计如下:(1)①求出表中x ,y ②从没有观看的同学中随机选取2人进一步了解情况,求恰好男生、女生各1人的 概率; (2)根据表格统计的数据,完成下面的列联表,并判断是否有90%的把握认为全程观看与性别有关.附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .[解] (1)①由分层抽样知抽取的男生人数为500900×45=25,抽取的女生人数为45-25=20,因而x =25-20=5,y =20-16=4.②从表中数据可以得出,没有观看的同学共6人,2名男生分别记为A 1,A 2,4名女生分别记为B 1,B 2,B 3,B 4,则从中随机选取2人,有A 1A 2,A 1B 1,A 1B 2,A 1B 3,A 1B 4,A 2B 1,A 2B 2,A 2B 3,A 2B 4,B 1B 2,B 1B 3,B 1B 4,B 2B 3,B 2B 4,B 3B 4,共15种情况,记“男生、女生各1人”为事件M ,其包含的情况有A 1B 1,A 1B 2,A 1B 3,A 1B 4,A 2B 1,A 2B 2,A 2B 3,A 2B 4,共8种,所求概率P (M )=815.(2)由题意得列联表如下:K 2=45×(180-70)228×20×17×25≈2.288<2.706,因而没有90%的把握认为全程观看与性别有关.[对点训练]某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1月份至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下数据:该兴趣小组确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月份与6月份的两组数据,请根据2月份至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?参考公式:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x .参考数据:11×25+13×29+12×26+8×16=1 092, 112+132+122+82=498.解:(1)设选到相邻两个月的数据为事件A .因为从6组数据中选取2组数据共有15种情况,且每种情况都是等可能的,其中,选到相邻两个月的数据的情况有5种,所以P (A )=515=13.(2)由表中2月份至5月份的数据可得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498,所以b ^=∑i =14x i y i -4 x y∑i =14x 2i -4 x2=187, 则a ^=y -b ^x =-307,所以y 关于x 的线性回归方程为y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22<2; 当x =6时,y ^=787,⎪⎪⎪⎪787-12<2. 所以该小组所得线性回归方程是理想的.[课时跟踪检测]1.(2019·太原八校联考)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制图如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据图中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(2)为了解乙公司员工B 每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X >182的概率;(3)根据图中数据估算两公司的每位员工在该月所得的劳务费.解:(1)甲公司员工A 在这10天投递的快递件数的平均数为110(32+33+33+38+35+36+39+33+41+40)=36,众数为33.(2)设a 为乙公司员工B 每天的投递件数,则 当a =35时,X =140,当a >35时,X =35×4+(a -35)×7,令X =35×4+(a -35)×7>182,得a >41,则a 的取值为44,42,所以X >182的概率P =410=25.(3)根据题图中数据,可估算甲公司的每位员工该月所得劳务费为4.5×36×30= 4 860(元),易知乙公司员工B 每天所得劳务费X 的可能取值为136,147,154,189,203,所以乙公司的每位员工该月所得劳务费约为110×(136+147×3+154×2+189×3+203)×30=165.5×30=4 965(元).2.(2018·湖北五校联考)通过随机询问100名性别不同的大学生是否爱好某项运动,得到如下2×2列联表:(1)能否有99%的把握认为是否爱好该项运动与性别有关?请说明理由.(2)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建“运动达人社”,现从“运动达人社”中选派2人参加某项校际挑战赛,求选出的2人中恰有1名女大学生的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)∵K 2=100×(40×25-20×15)255×45×60×40≈8.249>6.635,∴有99%的把握认为是否爱好该项运动与性别有关.(2)由题意,抽取的6人中,有男生4名,分别记为a ,b ,c ,d ;女生2名,分别记为m ,n . 则抽取的结果共有15种:(a ,b ),(a ,c ),(a ,d ),(a ,m ),(a ,n ),(b ,c ),(b ,d ),(b ,m ),(b ,n ),(c ,d ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),(m ,n ),设“选出的2人中恰有1名女大学生”为事件A ,事件A 所包含的基本事件有8种:(a ,m ),(a ,n ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),(d ,m ),(d ,n ).则P (A )=815.故选出的2人中恰有1名女大学生的概率为815.3.(2019·西安八校联考)某工厂有25周岁以上(含25周岁)的工人300名,25周岁以下的工人200名.为了研究工人的日平均生产件数是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],分别加以统计,得到如图所示的频率分布直方图.(1)根据“25周岁以上(含25周岁)组”的频率分布直方图,求25周岁以上(含25周岁)组工人日平均生产件数的中位数的估计值(四舍五入保留整数);(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(3)规定日平均生产件数不少于80的工人为生产能手,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:K 2=(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .解:采用分层抽样,“25周岁以上(含25周岁)组”应抽取工人100×300300+200=60(名),“25周岁以下组”应抽取工人100×200300+200=40(名).(1)由“25周岁以上(含25周岁)组”的频率分布直方图可知,其中位数为70+10×0.5-0.05-0.350.35=70207≈73(件). 综上,25周岁以上(含25周岁)组工人日平均生产件数的中位数的估计值为73件.(2)由频率分布直方图可知,样本中日平均生产件数不足60件的工人中,25周岁以上(含25周岁)的工人共有60×0.005×10=3(名),设其分别为m 1,m 2,m 3;25周岁以下的工人共有40×0.005×10=2(名),设其分别为n 1,n 2,则从中抽取2人的所有基本事件为(m 1,m 2),(m 1,m 3),(m 1,n 1),(m 1,n 2),(m 2,m 3),(m 2,n 1),(m 2,n 2),(m 3,n 1),(m 3,n 2),(n 1,n 2),共10个.记“至少抽到一名‘25周岁以下组’的工人”为事件A ,事件A 包含的基本事件共7个. 故P (A )=710.(3)由频率分布直方图可知,25周岁以上(含25周岁)的生产能手共有60×[(0.02+0.005)×10]=15(名),25周岁以下的生产能手共有40×[(0.032 5+0.005)×10]=15(名),则2×2列联表如下:K 2=100×(15×25-15×45)60×40×30×70≈1.786<2.706.综上,没有90%的把握认为“生产能手与工人所在的年龄组有关”.4.某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如下表所示(x (吨)为该商品进货量,y (天)为销售天数):(1)根据上表数据在网格中绘制散点图;(2)根据上表提供的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)在该商品进货量x (吨)不超过6吨的前提下任取2个值,求该商品进货量x (吨)恰有一个值不超过3吨的概率.参考公式和数据:b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x)2,a ^=y -b ^ x .∑i =18x 2i =356,∑i =18x i y i =241.解:(1)散点图如图所示:(2)依题意,得x =18(2+3+4+5+6+8+9+11)=6,y =18(1+2+3+3+4+5+6+8)=4,b ^=∑i =18 (x i -x )(y i -y )∑i =18(x i -x)2=∑i =18x i y i -8x y∑i =18x 2i -8x2=241-8×6×4356-8×62=4968, ∴a ^=4-4968×6=-1134,∴y 关于x 的线性回归方程为y ^=4968x -1134.(3)由题意知,该商品进货量不超过6吨的有2,3,4,5,6共有5个,任取2个有(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共10种情况,故该商品进货量恰有一次不超过3吨的有(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),共6种情况,故该商品进货量恰有一次不超过3吨的概率P =610=35.。
【数学】高中文科数学统计与概率综合练习
【关键字】数学《概率与统计》练习求:(Ⅰ)年降雨量在范围内的概率;(Ⅱ)年降雨量在或范围内的概率;(Ⅲ)年降雨量不在范围内的概率;(Ⅳ)年降雨量在范围内的概率.2.高三某班名学生的会考成绩全部在分至分之间,现将成绩分成6段:、、、、、.据此绘制了如图所示的频率分布直方图。
在这名学生中,(Ⅰ)求成绩在区间内的学生人数;(Ⅱ)从成绩大于等于分的学生中随机选名学生,求至少有名学生成绩在区间内的概率.3.已知集合.(Ⅰ)若,用列举法表示集合;(Ⅱ)在(Ⅰ)中的集合内,随机取出一个元素,求以为坐标的点位于区域:内的概率.4.某生物技术公司研制出一种新流感疫苗,为尝试该疫苗的有效性(若疫苗有效的概率小于,则认为尝试没有通过),公司选定个流感样本分成三组,尝试结果如下表:A组B组C组疫苗有效673x y疫苗无效7790z 已知在全体样本中随机抽取个,抽到组疫苗有效的概率是.(Ⅰ)求的值;(Ⅱ)现用分层抽样的方法在全体样本中抽取个尝试结果,问组应抽取几个?(Ⅲ)已知,,求不能通过尝试的概率.5.随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图.如图7.(Ⅰ)根据茎叶图判断哪个班的平均身高较高;(Ⅱ)计算甲班的样本方差(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于176的同学被抽中的概率.cm173的同学,求身高为cm6.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.7.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的.(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)8.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
高考文科数学二轮复习对点练:专题六统计与概率专题对点练19
专题对点练19统计与统计事例1.我国是世界上重缺水的国家,城市缺水突出,某市政府了鼓舞居民用水,划在本市行居民生活用水定管理,即确立一个合理的居民月用水量准x(位 :吨 ),用水量不超x 的部分按平价收,超 x 的部分按价收.了认识全市居民月用水量的散布状况,通抽 ,得了100 名居民某年的月用水量(位 :吨 ),将数据依据 [0,0 .5),[0 .5,1),⋯,[4,4.5]分红9,制成了如所示的率散布直方.(1)求直方中 a 的 ;(2)已知市有 80 万居民 ,估全市居民中月均用水量不低于 3 吨的人数 ,并明原因 ;(3)若市政府希望使 85%的居民每个月的用水量不超准x( 位 :吨 ),估 x 的 ,并明原因 .2.迎接马上行的集体跳比,高一年甲、乙两个代表各行了6,成 (位 :次/分 )以下表 :次一二三四五六甲736682726376乙837562697568(1)全茎叶 ,并指出乙成的中位数和众数;(2)用学中的均匀数、方差知甲、乙两个代表的成行剖析.3.某企业确立下一年度投入某种品的宣,需认识年宣x(位 :千元 )年售量 y(位 :t)和年利 z(位 :千元 )的影响 .近 8 年的年宣 x i和年售量y i( i= 1,2, ⋯ ,8)数据作了初步理 ,得到下边的散点及一些量的.(x i- )2( w i - )2(x i- )( y i- )(w i- )( y i- )46.6563 6.8289.8 1.6 1 469108.8表中 w i=w i.(1)依据散点判断y=a+bx 与 y=c+d哪一个适合作年售量y 对于年宣x 的回方程型?(出判断即可 ,不用明原因 )(2)依据 (1)的判断果及表中数据,成立 y 对于 x 的回方程 ;(3)已知种品的年利z 与 x,y 的关系 z=0.2y-x.依据 (2)的果回答以下:①年宣 x= 49,年售量及年利的是多少?②年宣 x 何 ,年利的最大 ?附: 于一数据 (u1 1 2,v 2),⋯ ,(u n n,v ),(u,v ),其回直 v= α+βu 的斜率和截距的最小二乘估分.4.某校数学课外兴趣小组为研究数学成绩能否与性别相关,先统计本校高三年级每个学生一学期数学成绩均匀分 (采纳百分制 ),剔除均匀分在30 分以下的学生后,共有男生300 名,女生 200 名.现采纳分层抽样的方法,从中抽取了100 名学生 ,按性别分为两组,并将两组学生成绩分为 6 组 ,获得以下所示频数散布表 .分数段男女[40,50)36[50,60)94[60,70)185[70,80)1510[80,90)613[90,100]92(1)预计男、女生各自的成绩均匀分 (同一组数据用该组区间中点值作代表 ),从计算结果看 ,判断数学成绩与性别能否相关 ;(2) 规定 80 分以上为优分 (含 80 分 ),请你依据已知条件作出2×2 列联表 ,并判断能否在出错误的概率不超出 0.1 的前提下以为“数学成绩与性别相关”.优分非优分合计男生女生共计100附表及公式P(K2≥k0)0.1000.0500.0100.001k0 2.706 3.841 6.63510.828K2=,此中 n=a+b+c+d.专题对点练 19 答案1.解(1)由频次散布直方图,可得 (0.08+ 0.16+a+ 0.40+ 0.52+a+ 0.12+ 0.08+0. 04)×0.5= 1,解得 a= 0.30.(2) 由频次散布直方图可知,100 名居民每人月用水量不低于 3 吨的频次为 (0.12+ 0.08+ 0.04)×0.5= 0.12.由以上样本频次散布,能够预计全市80 万居民中月均用水量不低于 3 吨的人数为800 000 ×0.12= 96 000.(3)∵前 6 组的频次之和为 (0.08+0.16+ 0.30+ 0.40+ 0.52+ 0.30)×0.5= 0.88> 0.85,而前 5 组的频次之和为 (0 .08+ 0.16+ 0.30+0.40+ 0.52)×0.5= 0.73<0.85,∴2.5≤x<3.由 0.3×(x-2.5)= 0.85-0.73,解得 x= 2.9.所以 ,预计月用水量标准为2.解(1)补全茎叶图以下:2.9 吨时 ,85% 的居民每个月的用水量不超出标准.乙队测试成绩的中位数为72,众数为 75.(2)= 72,222222[(63 -72) + (66-72) +(72-72) + (73- 72) +(76-72) + (82-72) ]= 39;= 72,222222[(62 -72) + (68-72) +(69-72) + (75- 72) +(75-72) + (83-72) ]= 44.由于,所以甲、乙两队水平相当,但甲队发挥较稳固 .3.解(1)由散点图能够判断y=c+d适合作为年销售量y 对于年宣传费x 的回归方程种类 .(2) 令 w= ,先成立 y 对于 w 的线性回归方程 .由于= 68,= 563-68×6.8= 100.6,所以 y 对于 w 的线性回归方程为= 100.6+68w,所以 y 对于 x 的回归方程为 = 100.6+ 68 .(3) ①由 (2)知 ,当 x= 49 时 ,年销售量 y 的预告值= 100.6+ 68= 576.6,年收益 z 的预告值= 576.6×0.2-49= 66.32.②依据 (2)的结果知 ,年收益 z 的预告值= 0.2(100.6+ 68 )-x=-x+ 13.6 +20.12.所以当故年宣传费为= 6. 8,即 x=46.24 时 ,获得最大值46.24 千元时 ,年收益的预告值最大..4.解(1)= 45×0.05+ 55×0.15+ 65×0.3+ 75×0.25+ 85×0.1+ 95×0.15=71.5.=45×0.15+ 55×0.10+ 65×0.125+75×0.25+ 85×0.325+ 95×0.05= 71.5.从男、女生各自的成绩均匀分来看,其实不可以判断数学成绩与性别相关 .(2) 由频数散布表可知 ,在抽取的100 名学生中 , “男生组”中的优分有15 人, “女生组”中的优分有15 人,据此可得 2×2 列联表以下 :优分非优分合计男生154560女生152540共计3070100可得 K2=≈1.79.∵1.79< 2.706,∴不可以在出错误的概率不超出0.1 的前提下以为“数学成绩与性别相关”.。
高考文科数学概率与统计题型归纳与训练
高考文科数学概率与统计题型归纳与训练2020年高考文科数学《概率与统计》题型归纳与训练题型归纳古典概型例1:从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()。
A。
55.B。
25.C。
9.D。
128解析:可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有:甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为4/10=2/5.故选B。
例2:将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________。
解析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数2;数2,数1,语;数2,语,数1;语,数2,数1;语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:p=4/6=2/3.易错点:列举不全面或重复,就是不准确。
思维点拨:直接列举,找出符合要求的事件个数。
几何概型例1:如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是()。
解析:不妨设正方形边长为a,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半。
由几何概型概率的计算公式得,所求概率为1/2πa^2=π/4a^2.故选B。
例2:在区间[0,5]上随机地选择一个数p,则方程x^2+2px-3p^2=0有两个负根的概率为________。
解析:方程x^2+2px-3p^2=0有两个负根的充要条件是Δ=4p^2-4(3p-2)x<0,即3p^2-x^2<2.因为x^2<p,所以3p^2-p^2<2,即p∈(0,1]∪[2,5],又因为p∈[0,5],所以使方程x^2+2px-3p^2=0有两个负根的p的取值范围为(√3,1]∪[2,5],故所求的概率为(5-√3)/5.220度,中位数是235度。
概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)
专题15概率与统计(选择题、填空题)(文科专用)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%+75%2>70%,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C4.【2021年甲卷文科】为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距.5.【2021年甲卷文科】将3个1和2个0随机排成一行,则2个0不相邻的概率为()A .0.3B .0.5C .0.6D .0.8【答案】C 【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.6.【2021年乙卷文科】在区间10,2⎛⎤⎥⎝⎦随机取1个数,则取到的数小于13的概率为()A .34B .23C .13D .16【答案】B【分析】根据几何概型的概率公式即可求出.【详解】设Ω=“区间10,2⎛⎫ ⎪⎝⎭随机取1个数”,对应集合为:102x x ⎧⎫<<⎨⎬⎩⎭,区间长度为12,A =“取到的数小于13”,对应集合为:103x x ⎧⎫<<⎨⎬⎩⎭,区间长度为13,所以()()()10231302l A P A l -===Ω-.故选:B .【点睛】本题解题关键是明确事件“取到的数小于13”对应的范围,再根据几何概型的概率公式即可准确求出.7.【2020年新课标1卷文科】设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为()A .15B .25C .12D .45【答案】A 【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.8.【2020年新课标3卷文科】设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为()A .0.01B .0.1C .1D .10【答案】C 【解析】【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍,所以所求数据方差为2100.01=1⨯故选:C 【点睛】本题考查方差,考查基本分析求解能力,属基础题.9.【2019年新课标1卷文科】某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C 【解析】【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .【点睛】本题主要考查系统抽样.10.【2019年新课标2卷文科】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15【答案】B 【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B .【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.11.【2019年新课标3卷文科】两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12【答案】D 【解析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.12.【2018年新课标2卷文科】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.3【答案】D 【解析】【详解】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为12,A A ,3名女同学为123,,B B B ,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10种可能,选中的2人都是女同学的情况共有121323,,B B B B B B 共三种可能则选中的2人都是女同学的概率为30.310P ==,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;第三步,利用公式()mP A n=求出事件A 的概率.13.【2018年新课标3卷文科】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C .0.6D .0.7【答案】B 【解析】【详解】分析:由公式()()()()P A B P A P B P AB ⋃=++计算可得详解:设事件A 为只用现金支付,事件B 为只用非现金支付,则()()()()P A B P A P B P AB 1⋃=++=因为()()P A 0.45,P AB 0.15==所以()P B 0.4=,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.14.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C 53=10甲、乙都入选的方法数为C 31=3,所以甲、乙都入选的概率=310故答案为:31015.【2018年新课标3卷文科】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样.【解析】【详解】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.。
概率与统计测试题文科
概率与统计测试题(文科)一、选择题(共10题,每小题均只有一个正确答案,每小题5分,共50分)1. 某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( ).A.7 B.15C.25 D.353.在一次教师联欢会上,到会的女教师比男教师多12人,从到会教师中随机挑选一人表演节目.如果每位教师被选中的概率相等,而且选中男教师的概率为920,那么参加这次联欢会的教师共有( ).A.360人B.240人C.144人D.120人4.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C. 60D.455.设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。
黄金矩形常应用于工艺品设计中。
下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A. 甲批次的总体平均数与标准值更接近B. 乙批次的总体平均数与标准值更接近C. 两个批次总体平均数与标准值接近程度相同D. 两个批次总体平均数与标准值接近程度不能确定6.甲、乙两人各抛掷一次正方体骰子(六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足复数i x y +的实部大于虚部的概率是( )A .16 B .512 C .712 D .137.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率与统计》练习
求:(Ⅰ)年降雨量在)200,100[ 范围内的概率;
(Ⅱ)年降雨量在)150,100[或)300,250[范围内的概率; (Ⅲ)年降雨量不在)300,150[范围内的概率; (Ⅳ)年降雨量在)300,100[范围内的概率.
2.高三某班40名学生的会考成绩全部在40分至100分
之间,现将成绩分成6段:)50,40[、)60,50[、)70,60
[、
)80,70[、)90,80[、]100,90[.据此绘制了如图所示的
频率分布直方图。
在这40名学生中, (Ⅰ)求成绩在区间)90,80[内的学生人数;
(Ⅱ)从成绩大于等于80分的学生中随机选2名学生,
求至少有1名学生成绩在区间]100,90[ 内的概率.
3.已知集合}1,1(},2,0,2{-=-=B A .
(Ⅰ)若},|),{(B y A x y x M ∈∈=,用列举法表示集合M ;
(Ⅱ)在(Ⅰ)中的集合M 内,随机取出一个元素),(y x ,求以),(y x 为坐标的点位于区
域D :⎪⎩
⎪
⎨⎧-≥≤-+≥+-10202y y x y x 内的概率.
4.某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于%90,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如 A 组 B 组
C 组
疫苗有效 673
x
y
疫苗无效
77 90
z
已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是33.0.
(Ⅰ)求x 的值;
(Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问C 组应抽取几个? (Ⅲ)已知465≥y ,30≥z ,求不能通过测试的概率.
5.随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎
叶图.如图7.
(Ⅰ)根据茎叶图判断哪个班的平均身高较高;
(Ⅱ)计算甲班的样本方差
(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于
176的同学被抽中的概率.
173的同学,求身高为cm
cm
6.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
7.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的.
(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bx
a =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线
性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)
8.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
22
()()()()()
n ad bc K a b c d a c b d -=++++
参考答案
解答题
1.解:(Ⅰ)年降雨量在)200,100[ 范围内的概率为37.025.01
2.0=+;
(Ⅱ)年降雨量在)150,100[或)300,250[范围内的概率为26.014.012.0=+; (Ⅲ)年降雨量不在)300,150[范围内的概率为45.014.016.025.01=---; (Ⅳ)年降雨量在)300,100[范围内的概率为67.014.016.025.012.0=+++. 2.解:(Ⅰ)因为各组的频率之和为1,所以成绩在区间)90,80[的频率为
1.010)045.0020.015..02005.0(1=⨯+++⨯-,
所以,40名学生中成绩在区间)90,80[的学生人数为41.040=⨯(人).
(Ⅱ)设A 表示事件“在成绩大于等于80分的学生中随机选2名学生,至少有1名学生成绩在区间]100,90[内”,
由(Ⅰ)的结果可知成绩在区间)90,80[内的学生有4人,记这4个人分别为d c b a ,,,, 成绩在区间]100,90[内的学生有210005.040=⨯⨯人, 记这2个人分别为f e ,, 则选取学生的所有可能结果为:
(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a c a d a e a f b c b d b e b f (,),(,),(,)c d c e c f , (,),(,),(,)d e d f e f 基本事件数为15,
事件“至少一人成绩在区间[90,100]之间”的可能结果为:
(,),(,),(,),(,),a e a f b e b f (,),(,),(,),(,),(,)c e c f d e d f e f ,
基本事件数为9, 所以52159)(==
A P 93
()155
P A ==. 3. 解:(Ⅰ))1,2(),1,2(),1,0(),1,0(),1,2(),1,2{(-----=M . ( Ⅱ)记“以),(y x 为坐标的点位于区域D 内”为事件A . 集合M 中共有6个元素,即基本事件总数为6.
把集合M 中的6个元素分别代入表示区域D 的不等式组检验, 知点)1,2(),1,0(),1,0(),1,2(----在区域D 内 所以区域D 含有集合M 中的元素4个,所以3
2
64)(==A P . 故以),(y x 为坐标的点位于区域D 内的概率为
3
2. 4.解:(Ⅰ)Q 在全体样本中随机抽取1个,抽到B 组疫苗有效的概率为3
3.0,
即
0.332000
x
= ∴ 660x =. (Ⅱ)C 组样本个数为:500)9066077673(2000=+++-=+z y ,
用分层抽样的方法在全体样本中抽取360个测试结果,应在C 组抽取个数为
902000
500
360=⨯
(个)
. (Ⅲ)设测试不能通过事件为M ,
C 组疫苗有效与无效的可能的情况记为),(z y .
由(Ⅱ)知 500y z += ,且 ,y z N ∈,基本事件空间包含的基本事件有:
)35,465(、)34,466(、)33,467(、)32,468(、)31,469(、)30,470(共6个 .
若测试不能通过,则2009077>++z ,即33>z .
事件M 包含的基本事件有:)35,465(、)34,466(共2个,
∴ 3
1
62)(==
M P . ∴故不能通过测试的概率为3
1
.
5. 解:(Ⅰ)由茎叶图可知:甲班身高集中于160~179
之间,而乙班身高集中于170~180 之间.因此乙班平 均身高高于甲班; (Ⅱ)17010
182
179179171170168168163162158=+++++++++=
x
甲班的样本方差为
22222)170168()170168()170163()170162()170158[(10
1
-+-+-+-+- 57])170182()170179()170179()170171()170170(22222=-+-+-+-+-+
(Ⅲ)设身高为cm 176的同学被抽中的事件为A ;
从乙班10名同学中抽中两名身高不低于cm 173的同学有:
)179,178(),181,176(),179,176(),178,176(),181,173(),179,173(),178,173(),176,173( )181,179(),181,178(共10个基本事件, 而事件A 含有4个基本事件;所以5
2104)(==
A P . 6.解:(Ⅰ)甲校两男教师分别用
B A ,表示,女教师用
C 表示;
乙校男教师用D 表示,两女教师分别用F E ,表示
从甲校和乙校报名的教师中各任选1名的所有可能的结果为:
),(),,(),,(),(),,(),,(),(),,(),,(F C E C D C BF E B D B AF E A D A 共9种
从中选出两名教师性别相同的结果有:),(),,(),,(),,(F C E C D B D A 共4种, 选出的两名教师性别相同的概率为9
4=
P (Ⅱ)从甲校和乙校报名的教师中任选2名的所有可能的结果为:
),(),,(),,(),(),,(),,)(,(),(),,(),,)(,(),,(F C E C D C BF E B D B C B AF E A D A C A B A
),(),(),,(F E DF E D 共15种,
从中选出两名教师来自同一学校的结果有:
),)(,(),,(C B C A B A ,),(),(),,(F E DF E D 共6种,
选出的两名教师来自同一学校的概率为5
2156==P。