永磁同步全功率风力发电变流器及其控制
直驱型永磁同步风力发电系统变流器的控制研究
三、直驱型永磁同步风力发电系 统变流器的控制策略
控制策略是直驱型永磁同步风力发电系统变流器的核心,其目的是在风速变化 和负载变化的情况下,保持系统的稳定性和效率。以下是几种常见的直驱型永 磁同步风力发电系统变流器的控制策略:
1、最大功率点追踪(MPPT):MPPT控制策略的目的是在风速变化的情况下, 使风力发电机始终工作在最大功率点附近。通过实时监测风速和发电机输出功 率,并调整功率变换器的控制参数,使发电机输出功率与风速对应,以实现最 大功率点的追踪。
3、混合控制
混合控制是一种将直接电流控制和间接电流控制相结合的控制方法。该方法结 合了直接电流控制的高效性和间接电流控制的稳定性优点,能够更好地实现变 流器的控制。在混合控制中,可以通过调节PI控制器和发电驱型永磁同步风力发电系统变流器控制方法进行了深入研究,介 绍了直接电流控制、间接电流控制和混合控制三种常见的控制方法。这些控制 方法在实现变流器的高效控制和提高系统稳定性方面都具有重要作用。随着风 电技术的不断发展,我们可以进一步研究更先进的变流器控制策略,以提升直 驱型永磁同步风力发电系统的性能和稳定性。
5、系统集成与优化:研究如何将各个系统部件进行更好的集成和优化,以实 现整个风力发电系统的最优化。
6、网络安全与可靠性:随着风力发电系统变得越来越复杂,如何确保其网络 安全和可靠性将成为一个重要的研究课题。需要研究有效的防护措施和容错策 略来应对潜在的网络攻击和故障。
参考内容
随着人们对可再生能源的需求日益增长,风力发电技术在全球范围内得到了快 速发展和广泛应用。直驱型永磁同步风力发电系统由于其高效率、低噪音等优 点,逐渐成为了风力发电领域的研究热点。在直驱型永磁同步风力发电系统中, 变流器控制策略对于提高系统效率和稳定性具有重要意义。本次演示将对直驱 型永磁同步风力发电系统变流器控制方法进行深入研究。
永磁同步风力发电系统控制技术综述
永磁同步风力发电系统控制技术综述摘要:随着我国的经济在快速的发展,社会在不断的进步,我国的电力企业发展十分迅速,文章首先对永磁同步风力发电系统的变流拓扑进行了介绍,然后在对其拓扑结构分析的基础之上对矢量控制技术和直接转矩控制技术应用于永磁同步风力发电机进行了详细的分析。
最后,指出了永磁同步风力发电系统控制技术未来可能的研究重点和发展趋势。
关键词:风力发电;永磁同步风力发电机;控制技术引言随着科学技术的不断进步,人们开始意识到能源在促进人类社会不断发展中的重要作用,伴随着飞速发展的社会经济,作为人类发展至今的主要能源的煤和石油等已经面临着枯竭的状态。
为了实现人类的可持续发展,人们开始研究新能源和可再生能源的开发和利用。
而风能以其自身独特的优势,在近年来新能源的开发过程中得到广泛的关注。
对风能的开发和利用过程中产生的直驱式永磁同步风力发电系统给人们的生活带来了极大的便利,同时还减少了污染,因此对于直驱式永磁同步风力发电系统的控制研究具有重大意义。
1风力发电机的控制方法根据风力发电过程中发电机的运行特点、控制技术,可以将其分为变速变频系统、恒速恒频系统、变速恒频系统三种。
发电过程中,如果风力发电机与电网并联,风电的频率与电网相同,电网的频率恒定,则风电的频率一也要保持不变,所以变速变频系统的应用范围比较窄。
恒速恒频系统中,发电机通过笼型异频电机进行并网运行,通常运行在电机机械特性曲线的稳定区,如果风速增加,风力机传统发电机的机械功率也会增大,一旦转子速度大于同步转速,则会对异步发电机的稳定性产生影响,从而发生飞车危险。
并且,风力机的输出功率与风速的三次方为正比关系,风速变化范围一定,由于风力机的功率因数在某个确定的风速比下才能达到最大值,因此只有允许风力机变速运行才能更好的利用风能,而恒速恒频系统风力机转速是保持恒定的,风速却不断变化,无法保证最大的功率因数,因此恒速恒频系统的应用也不太广泛,现阶段应用最广泛的即为变速恒频风力发电控制,下文做重点介绍。
全功率变流器风电机组的工作原理及控制策略
全功率变流器风电机组的工作原理及控制策略CATALOGUE 目录•全功率变流器风电机组概述•全功率变流器风电机组的工作原理•全功率变流器风电机组的控制策略•全功率变流器风电机组的性能评估与优化•全功率变流器风电机组的发展趋势与挑战CHAPTER全功率变流器风电机组概述风能发电简介风能是一种清洁、可再生的能源,具有广泛的应用前景。
风力发电技术经过多年的发展,已经逐渐成熟并被广泛应用于电力领域。
风能发电的基本原理是利用风能驱动风力发电机转动,进而驱动发电机产生电能。
全功率变流器是风电机组中重要的组成部分,主要作用是将风力发电机产生的电能进行变换和调节,以满足电网的需求。
全功率变流器具有高效率、高可靠性、高灵活性等特点,能够有效提升风电机组的整体性能。
全功率变流器的作用风电机组与电网的交互风电机组需要与电网进行良好的配合,以保证电能的质量和稳定性。
风电机组需要适应电网的运行要求,如电压、频率、相位等参数,以保证风电场的稳定运行。
风电机组与电网的交互是实现风能发电的重要环节之一。
CHAPTER全功率变流器风电机组的工作原理风轮齿轮箱将风轮的转速提升,并将其传递给发电机。
齿轮箱通常位于风轮和发电机之间。
齿轮箱发电机01020303开关全功率变流器的电力电子器件01整流器02逆变器最大风能追踪电力控制全功率变流器的控制原理CHAPTER全功率变流器风电机组的控制策略最大风能追踪控制变速恒频控制1直交轴电流控制23直交轴电流控制是一种用于抑制风电机组运行过程中产生的谐波电流的控制策略。
该控制策略通过实时监测发电机电流,将其中谐波电流分量消除或减弱,以减小谐波对电网的污染。
直交轴电流控制通常采用PWM整流器来实现,通过控制PWM的占空比和相位,实现谐波电流的抑制和功率因数的优化。
矢量控制策略CHAPTER全功率变流器风电机组的性能评估与优化性能评估方法发电效率评估01电网稳定性评估02抗干扰能力评估03控制策略优化最大风能追踪控制滑模变结构控制电力电子器件的优化与保护电力电子器件的选型与配置全功率变流器风电机组需要选择适当的电力电子器件,如IGBT、IGCT等,并配置相应的保护电路,以确保其在高电压、大电流等极端环境下能够安全、可靠地运行。
直驱式永磁同步风力发电机最大功率跟踪的基本控制方法
直驱式永磁同步风力发电机最大功率跟踪的基本控制方法一、最大风能捕获控制的基本原理风能作用在风轮上,风能只有一部分可以被风轮吸收。
风力机从风能中捕获的功率Pw可表示为式中Pw——风力机从风能中捕获的风功率;ρ——空气密度;A——风力机扫风面积;v——风速;C p ——风力机的风能利用系数。
在桨距角一定的情况下,Cp是叶尖速比λ的函数,λ为式中ωw——风力机机械角速度;Rtur——风轮半径;v——风速。
在实际应用中常用风能利用系数Cp对叶尖速比λ的变化曲线表示该风轮的空气动力特性,如图7-4和图7-5所示。
图7-4 风轮气动特性(Cp-λ)曲线图7-5 永磁同步发电机不同转速从短路状态到开路状态的全特性曲线时就可以获得最大风能利当桨距角一定时,风力机运行于最佳叶尖速比λopt,此时风力机的转换效率最高,即用系数Cpmax式中ω——风力机的最优机械角速度;optλ——最佳叶尖速比。
opt成比例调节,以保持λ总在最优。
上式要求风轮机组的转速ω可以随风速v1在直驱式永磁同步风力发电系统中,风力发电机与风力机直接相连,风力发电机组的动态特性可以用一个简单的数学模型描述为——风力发电机组的转动惯量;式中Jtur——风力机的气动转矩;TturT——风力发电机电磁转矩。
em为风力机气动转矩Ttur其中式中ρ——空气密度;β——桨距角;CT——风力机转矩系数;Cp——风能利用系数。
稳态时,当风力机运行在一个最佳叶尖速比λopt 时,有一个最佳功率系数Cpopt与之对应,且转矩系数CT =Cpopt/λopt=CTopt也为常数,此时捕获的风能为最大,为式中S——风轮扫风面积。
稳态时,当忽略摩擦阻力转矩,发电机的电磁转矩应该与风力机气动转矩相等,即式(7-7)是在稳态条件下推导出来的发电机电磁转矩与转速之间的关系,它可以作为用于控制电机转矩的给定值,是发电机转速的函数。
即当风速在额定风速以下时,发电机的电磁转矩按照式(7-12)的关系控制,整个系统就能够实现最大风能的捕获,这就是额定风速以下最大风能捕获的基本原理。
直驱式永磁同步风力发电系统的控制研究
直驱式永磁同步风力发电系统的控制研究一、本文概述随着全球能源需求的持续增长和环境保护压力的加大,风力发电作为一种清洁、可再生的能源形式,越来越受到世界各国的关注和重视。
直驱式永磁同步风力发电系统(Direct-Drive Permanent Magnet Synchronous Wind Power Generation System,简称D-PMSG)作为一种新型的风力发电技术,具有高效率、高可靠性、低维护成本等优点,因此在风力发电领域具有广阔的应用前景。
本文旨在深入研究直驱式永磁同步风力发电系统的控制技术,探讨其在实际应用中的性能优化和稳定性提升。
文章首先介绍了直驱式永磁同步风力发电系统的基本原理和组成结构,包括风力机、永磁同步发电机、功率变换器等关键部分。
随后,文章重点分析了直驱式永磁同步风力发电系统的控制策略,包括最大功率点跟踪控制、电网同步控制、有功和无功功率解耦控制等,并讨论了这些控制策略在实际应用中的优缺点。
本文还探讨了直驱式永磁同步风力发电系统在并网和孤岛运行模式下的控制问题,以及系统故障时的保护策略。
通过理论分析和实验研究,文章提出了一些改进的控制方法和策略,旨在提高直驱式永磁同步风力发电系统的运行效率和稳定性,为风力发电技术的发展提供理论支持和实践指导。
本文总结了直驱式永磁同步风力发电系统控制研究的现状和发展趋势,展望了未来可能的研究方向和应用前景。
希望通过本文的研究,能够为直驱式永磁同步风力发电系统的进一步推广和应用提供有益的参考和借鉴。
二、直驱式永磁同步风力发电系统概述直驱式永磁同步风力发电系统(Direct-Drive Permanent Magnet Synchronous Wind Turbine Generator System,简称DD-PMSG)是一种新型的风力发电技术,其最大特点在于风力机直接与发电机相连,省去了传统的齿轮增速箱,从而实现了发电机的直接驱动。
永磁同步风力发电系统的组成、工作原理及控制机理
永磁同步风力发电系统的系统基本组成、工作原理、控制模式论述1.系统的基本组成:直驱式同步风力发电系统主要采用如下结构组成:风力机(这里概括为:叶片、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。
其中全功率变流器又可分为发电机侧整流器、直流环节和电网侧逆变器。
就空间位置而言,变流器和风机总控系统一般放在塔筒底部,其余主要部件均位于塔顶。
2.工作原理:系统中能量传递和转换路径为:风力机把捕获的流动空气的动能转换为机械能,直驱系统中的永磁同步发电机把风力机传递的机械能转换为频率和电压随风速变化而变化的不控电能,变流器把不控的电能转换为频率和电压与电网同步的可控电能并馈入电网,从而最终实现直驱系统的发电并网控制。
3.控制模式:风力发电机组的控制系统是综合性控制系统。
它不仅要监视电网、风况和机组运行参数,对机组运行进行控制。
而且还要根据风速与风向的变化,对机组进行优化控制,以提高机组的运行效率和发电量。
风力发电控制系统的基本目标分为三个层次:分别为保证风力发电机组安全可靠运行,获取最大能量,提供良好的电力质量。
控制系统主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。
具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最大功率点跟踪控制、功率因数控制、偏航控制、自动解缆、并网和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。
一、系统运行时控制:1、偏航系统控制:偏航系统的控制包括三个方面:自动对风、自动解缆和风轮保护。
1)自动对风正常运行时偏航控制系统自动对风,即当机舱偏离风向一定角度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,自动对风停止。
2)自动解缆当机舱向同一方向累计偏转2~3圈后,若此时风速小于风电机组启动风速且无功率输出,则停机,控制系统使机舱反方向旋转2~3圈解绕;若此时机组有功率输出,则暂不自动解绕;若机舱继续向同一方向偏转累计达3圈时,则控制停机,解绕;若因故障自动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,自动停机,等待人工解缆操作。
永磁直驱风力发电机侧变流器控制的研究
永磁直驱风力发电机侧变流器控制的研究作者:徐清彬徐斯锐周芝峰来源:《科技与创新》2015年第18期摘要:由于直接转矩控制省去了复杂的坐标转换及解耦运算,可直接控制转矩,所以,其动态响应速度比矢量控制快。
因此,将其应用在永磁直驱风力发电系统中,对风机快速跟踪、捕获风能具有重要意义——可增强风力发电机快速响应的能力。
基于MATLAB/Simulink 平台进行了直接转矩控制方案仿真研究,结果表明,机侧变流器采用直接转矩控制的响应速度比较理想。
关键词:永磁同步电机;直接转矩控制;机侧变流器;风力发电机中图分类号:TM315 文献标识码:A DOI:10.15913/ki.kjycx.2015.18.005在能源紧缺和环保呼声日益强烈的今天,新能源发电受到了世界各国的重视,而风能作为清洁的可再生资源,自然引起了人们的关注,进入21世纪后,风力发电更是得到了长足的发展。
随着电力电子技术的快速发展,基于效率、可靠性、经济性等因素的考虑,风力发电技术由传统的恒速恒频演进到了现在的变速恒频。
目前,变速恒频风力发电技术主要有双馈异步风力发电和永磁直驱风力发电两种典型方案。
其中,双馈异步风力发电技术较为成熟,但永磁直驱型省去了齿轮箱环节,其可靠性和效率比双馈异步型高,且易实现对有功/无功的控制和满足输出谐波低的要求。
此外,随着电力电子技术的发展和高性能永磁材料的出现,永磁同步电机的价格越来越低、体积越来越小、性能越来越高,因此,永磁直驱风力发电技术成为当前风力发电的发展趋势之一。
在永磁直驱风力发电系统中,机侧变流器的主要作用是整流,其常用结构有不控制整流、不控整流+Boost升压、相控整流和四象限整流。
由于机侧变流器采用四象限整流时的功率可双向流动且控制比较灵活,所以,本文对双PWM型变流器的永磁直驱风力发电系统进行了研究,重点分析了机侧变流器的控制。
为了提高风机的快速响应能力,引进了直接转矩控制技术控制永磁同步发电机,与传统的矢量控制进行了比较,并用MATLAB/Simulink进行了仿真验证和对比。
全功率变流器风电机组的工作原理及控制策略
全功率变流器风电机组的发展趋势
要点一
控制策略的不断优化
要点二
集群控制和智能运维
随着电力电子技术和计算机控制技术 的发展,全功率变流器风电机组的控 制策略将不断优化,以实现更高的运 行效率和更强的抗干扰能力。
未来全功率变流器风电机组将实现集 群控制和智能运维,通过集中控制和 智能化管理,提高风电场的效率和可 靠性。
要点三
与储能系统结合
全功率变流器风电机组将与储能系统 结合,以实现能量的就地消纳和存储 ,提高风电场的稳定性和经济性。
THANKS
感谢观看
风轮
捕获风能并转换为机械能。
发电机
将机械能转换为电能。
变速器/齿轮箱
将风轮的慢速旋转转化为发电机所 需的高速旋转。
塔筒
支撑风轮和发电机等设备。
风力发电系统的运行原理
当风吹过风轮时, 风能转化为机械能 。
发电机产生的电能 通过电缆传输到电 网。
风轮带动发电机旋 转,产生电能。
风力发电系统的优缺点
优点
矢量控制优点
矢量控制能够实现精确的磁场控制,同时可以优化转矩控制,从而提高风电机组 的效率和稳定性。
直接功率控制策略
直接功率控制原理
直接功率控制是一种基于功率滞环比较器的控制方法,将实 际功率与参考功率进行比较,通过调节变流器开关管的占空 比来控制输出功率。
直接功率控制优点
直接功率控制具有简单易行、响应速度快、抗干扰能力强等 优点,适用于高速运行的风电机组。
全功率变流器在风电机组中的作用
提高风电机组的效率和可靠性 ,降低维护成本。
控制风电机组的运行状态,使 其在各种风速条件下都能保持
最佳性能。
实现最大风能追踪功能,提高 风电机组的发电量。
永磁直驱风力发电系统及变流器控制措施
永磁直驱风力发电系统及变流器控制措施摘要:随着我国经济水平以及工业化、机械化水平的不断提高,社会公众的日常生活与工厂生产对于能源的需求越来越大。
但我国的能源消费与能源储备却逐渐呈现不匹配的趋势,传统能源不仅存在着环境污染等问题,也在消耗中逐渐面临紧缺的危机。
因此,我国社会对于新能源的开发十分重视,在众多新能源之中,风力发电作为高效方便且有一定操作性的能源得到了广泛关注,本文也将结合金风科技生产的发电系统对于永磁直驱风力发电系统以及相关的变流器进行深入研究。
关键词:风力发电;永磁直驱风力发电系统;变流器引言:在众多新能源开发中,风能作为清洁有效且又具有操作性的能源在我国的部分地区得到了深入的研发,而在风力发电系统中,永磁直驱风力发电系统是我国目前研发的风力的最新科研成果之一,它具有稳定且安全的发电系统、对于风能资源的利用率和发电效率也十分高,除此之外,永磁直驱风力发电系统还具有简单方便的操作方式等特点,因此成为了我国风力发电系统的首选,甚至出口海外。
一、永磁直驱风力发电系统在我国的能源分布中,传统能源分布十分不均,且资源日益稀缺。
因此,各式的新能源作为传统能源的替代品,在我国的能源消费中逐步占据有利地位。
而在我国的新能源种类中,研究人员对于风能的开发取得了一定的进展,本文也将进行主要探讨。
在风力发电中,主要包含风力机和发电机两大部分,而我国的风力发电系统正是在这两部分的基础上进行的相关研究。
在传统的风力发电系统中,大多采用异步式发电机,这种发电机在进行风力发电时耗费的风能大,资源转换利用率低,在使用方面并不方便[1]。
而永磁直驱风力发电系统相较于传统的风能发电系统,减去了累赘繁重的部件,扩大了系统容量,不仅提高了资源的转换率,更有助于减少在整个转换过程中的能耗,也因此成为了我国目前风力发电的首选。
二、永磁直驱风力发电系统的优点在我国工业现代化转型的过程中,我国的风力发电系统也经历着转型,和传统的风力发电系统相比,永磁直驱风力发电系统在许多方面都有着独特的优势。
直驱式永磁同步风力发电机控制与运行概述
直驱式永磁同步风力发电机控制与运行概述一、直驱式永磁同步风力发电机运行区间根据风力机的功率特性把风速划分为5个区间:①风速低于切入风速;②风速在切入风速和额定转速之间;③风速超过风轮额定转速,发电机组运行在恒转速区;④风速继续增大到切出风速以下,发电机运行在恒功率区;⑤风速大于切出风速。
风力发电机组运行区域如图7-1所示。
图7-1 风力发电机组运行区域(1)停机模式。
风力机在风速小于切入风速或大于切出风速时,风能转化效率为零,称为停机模式。
当风速低于风力机的切入风速时,其产生的功率很小甚至低于内部消耗的功率,因此处于停机模式,此时叶片处于完全顺风状态,风力机的机械制动器处于开启状态;当风速超过风力机的切出风速时,为了保护风力机的安全,叶片被调至完全顺桨状态,风力机转速也下降为零,风力机将被锁定进入停机模式。
其他3个风速区间是风力发电机的正常运行状态,为了捕获到更多的风能,同时保证发电机组的安全运行,在不同的风速阶段对桨距角采用了不同的控制策略。
(2)最佳叶尖速比运行区。
即第②区间,即图7-1的AB区间。
当风速超过切入风速时,风力发电机组开始作为发电机运行。
此时要调节桨距角到最佳值使风能利用系数C恒定为最大值,以保证风力发电机组运行在最大功率点跟踪状p态。
(3)恒转速运行区间。
即第③区间,即图7-1的BC区间。
为了保证风力发电机组的安全稳定运行,一般都会根据风力发电机组的特性设定一个额定风速点对应图7-1中B点的速度,这个额定风速点应小于发电机的额定转速。
当风力机转速超过额定风速点时,随着风速的继续增大,要调节桨距角使Cp值减小,以保证风力发电机组进入恒转速区间。
但此时发电机的功率随风速的增加而增加,但仍然在额定功率以下。
(4)恒功率运行区间。
即第④区间,即图7-1中的CD段。
当风速继续增大,不仅发电机转速到达其额定值,同时发电机的输出功率也到达额定功率。
此时如果仍然按照最大风能捕获的控制策略将会使发电机的输入功率大于输出功率,发电机组将会导致“飞车”而使整个机组脱网。
永磁同步直驱型全功率风机变流器及其控制
永磁同步直驱型全功率风机变流器及其控制近年来,风力发电技术取得了显著的进步,并逐渐成为新能源应用技术中的一个重要分支。
本文以安徽省“十五”科技攻关项目和国家“十一五”科技支撑项目为依托,对风力发电应用技术中的永磁同步直驱型全功率风机变流器及其控制技术进行研究。
在永磁同步风力发电机的数学模型、永磁同步风力发电机模拟器、永磁同步风力发电机的控制策略及其控制性能、永磁同步风力发电机无速度传感器控制、永磁同步风力发电机参数辨识、永磁同步直驱系统实验室模拟、直驱系统用全功率风机变流器的控制时序及全功率风机变流器的网侧、机侧变流器的协调控制等方面进行了深入研究,并获得了一些具有创新意义的科研成果。
本文主要研究内容及创新点可概括如下:1、针对直驱系统采用的永磁同步风力发电机的电气结构和论文研究关注的重点,建立了三相和六相永磁同步风力发电机的数学模型,并重点分析了各自的特点。
根据理论分析的模型方程,利用Matlab/Simulink建立了永磁同步风力发电机的通用仿真模型,并采用具体电机参数,给出了相关的仿真结果,三种模型的建立为后续针对永磁同步风力发电机控制策略和无速度传感器控制方法的研究建立了理论和仿真平台。
2、提出了一种兆瓦级永磁同步风力发电机模拟器:根据兆瓦级永磁同步风力发电机的数学模型,可获取不同转速状态下的发电机定子电压和定子电流方程,通过控制三相电压型PWM变流器来近似模拟发电机的这种定子输出电压和电流特性,可达到验证全功率风机变流器带载特性和带载能力的目的,文中详细给出了发电机模拟器的控制系统设计并仿真验证了所提方案的可行性。
3、对永磁同步风力发电机的常规矢量控制策略进行了详细的研究:分析了在实际工程应用的永磁同步直驱系统中,单纯采用常规的永磁同步发电机矢量控制方法的不足,结合实际的兆瓦级永磁同步风力发电机参数,文中提出了一种永磁同步风力发电机的复合矢量控制策略。
此策略的提出使得当直驱系统中的永磁同步发电机运行在不同的工况时,对其控制可实现不同矢量控制策略的切换运行,从而提高整个系统的运行稳定性和提高发电机的发电效率。
全功率变流器风电机组的工作原理及控制策略
第五章全功率变流器风电机组的工作原理及控制策略5.1 全功率变流器风电机组的工作原理......................................................................5.1.1全功率变流器风电机组传动链形式 ............................................................5.1.2同步发电机 ....................................................................................................5.1.3永磁同步风力发电机结构及特点 ................................................................5.1.4电励磁同步风力发电机结构及特点 ............................................................5.2 全功率变流器风电机组变流器..............................................................................5.2.1 电机侧变流器控制策略 ...............................................................................5.2.1 电网侧变流器控制策略 ...............................................................................5.1 全功率变流器风电机组的工作原理5.1.1全功率变流器风电机组传动链形式随着现代风电机组的额定功率呈现上升趋势,风轮桨叶长度逐渐增加而转速降低。
直驱式永磁同步风力发电变流器
1.3风力发电变流器技术电力电子变流器(系统)是风力发电机组与电网的核心中间环节,堪称风力发电系统的重中之重。
在风机控制器的统筹管理下,变流器要实现发电机组的最大风能捕获(MPPT );同时还必须使机组具备低电压穿越等故障保护功能,向电网输送高品质电能。
并且受限于风电机组的空间尺寸与本钱,变流器必须做到较高的功率密度与可靠性。
这对变流器系统的电磁性能、构造及平安易用性等设计研究均提出了较高要求。
1.3.1变流器拓扑与控制以永磁直驱式风力发电系统为例,整个风机系统的控制框图如图1.4所示。
其中,变流器的控制主要包括PMSG的(电机侧)PWM整流控制技术与电网侧PWM 逆变器控制技术。
电机侧PWM变流器通过对发电机定子励磁与转矩电流的解耦控制,实现电机转速调节,使其具备最大风能捕获功能,已有如最大转矩/电流比控制、效率最优控制、定子磁通矢量控制、直接转矩控制等;电网侧PWM变流器均通过调节网侧的交直轴电流,保持直流侧电压稳定,实现有功和无功的解辅控制,保持机组运行在变速恒频发电状态;同时,配合输出滤波器来保证电能质量,并对电网故障进展实时检测,以实现LVRT功能气图1.4风机系统的控制框图对于直驱式风电变流器系统,变流器拓扑常见的有如下几种[3 ]。
图1.5 二极管不控整流+逆变如果将可控器件GTO或者IGBT应用至机侧和网侧变流器,如图1.8。
利用PWM(脉宽调制)技术不但使电流波形得到很好的控制,而且PWM变流器可以四象限运行。
采用PWM调制的发电机侧变流器自然为BOOST电路,发电机可以在很宽的风速X围内运行,使系统的风能捕获效率得到显著改善。
特别是双PWM 构造的变流器中,能量可以双向流动,使发电机控制的灵活性得到极大提高,通过釆用更多的先进控制策略,极大的提高了系统整体性能。
随着可控半导体功率器件技术的不断开展,双PWM背靠背变流器构造得到越来越广泛的应用。
1.3.2变流器构造设计正如前文所述,由于风电机组可能面临的各种恶劣环境条件(如风沙、严寒、沿海及海上等),同时受限于变流器有限的安装维护空间,对于风力发电应用场合变流器的功率密度、防护等级、维修性与可靠性要求较为严苛,这就对变流器的构造设计与生产提出了更高要求。