高中数学必修一函数练习题
高中数学必修第一册5.2三角函数的概念练习题
,cos sin
.
18. 已知角 的终边在直线
上,则 th
的值为________.
1 . 已知 t 4 ,且 sin 1,则 的值为________.
. h sin
, cos
, tan
是________.
三、解答题(本大题共 2 小题,共 24.0 分)
,则 a,b,c 按从小到大的顺序排列
1. 已知角 的终边经过点 h
sin 4.6 。
因为 sin 4.6 t cos 4.6 ,因而 sin 114.6 t cos 114.6 ,
因此,h t t
21.【答案】解: 1 由三角函数定义可知 sin
,
h8
解得 h 1,
为第一象限角,
则 h 1;
由 1 知 tan
,
第 1 页,共 14页
sin cos
cos
cos
sin
【解析】
【分析】
本题考查三角函数的的基本概念和诱导公式,只需要确定 所对应的角度所在的范围,
然后运用诱导公式确定具体函数值的范围即可求解。
【解答】
解:
114.6 ,即 为第三象限角,所以 h t , t , 。
又因为 sin 114.6 sin
4.6
cos 4.6 ,
且 cos 114.6 sin
4.6
A. sin1 tan1 cos1
C. tan1 sin1 cos1
1 . th1 的值等于
A. 1
B. 1
B. sin1 tan1 cos1 D. tan1 cos1 sin1
C.
D.
14. 如果 sin t 且 tan t ,那么角 的终边位于
高中数学必修一 《3 1 函数的概念及其表示》课时练习09
课时分层作业(十五)函数的表示法(建议用时:60分钟)[合格基础练]一、选择题1.购买某种饮料x听,所需钱数为y元.若每听2元,用解析法将y表示成x(x∈{1,2,3,4})的函数为()A.y=2x B.y=2x(x∈R)C.y=2x(x∈{1,2,3,…}) D.y=2x(x∈{1,2,3,4})D[题中已给出自变量的取值范围,x∈{1,2,3,4},故选D.]2.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))的值为()x 12 3f(x)230A.3 B.2C.1 D.0B[由函数g(x)的图象知,g(2)=1,则f(g(2))=f(1)=2.]3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()C [距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.]4.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x ,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x -1B [令1x =t ,则x =1t ,代入f ⎝ ⎛⎭⎪⎫1x =x 1-x,则有f (t )=1t1-1t=1t -1,故选B.] 5.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3 B [设f (x )=ax +b ,由题设有 ⎩⎪⎨⎪⎧2(2a +b )-3(a +b )=5,2(0·a +b )-(-a +b )=1. 解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.]二、填空题6.已知f (2x +1)=x 2-2x ,则f (3)=________. -1 [由2x +1=3得x =1,∴f (3)=1-2=-1.] 7.f (x )的图象如图所示,则f (x )的值域为________.[-4,3] [由函数的图象可知,f (x )的值域为[-2,3]∪[-4,2.7],即[-4,3].]8.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm)之间的表达式是________.y =80x (x +10),x ∈(0,+∞) [由题意可知,长方体的长为(x +10)cm ,从而长方体的体积y =80x (x +10),x >0.]三、解答题9.画出二次函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0),f (1),f (3)的大小; (2)求函数f (x )的值域.[解] f (x )=-(x -1)2+4的图象如图所示:(1)f (0)=3,f (1)=4,f (3)=0, 所以f (1)>f (0)>f (3).(2)由图象可知二次函数f (x )的最大值为f (1)=4, 则函数f (x )的值域为(-∞,4].10.(1)已知f (x )是一次函数,且满足2f (x +3)-f (x -2)=2x +21,求f (x )的解析式;(2)已知f (x )为二次函数,且满足f (0)=1,f (x -1)-f (x )=4x ,求f (x )的解析式; (3)已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2+1,求f (x )的解析式.[解] (1)设f (x )=ax +b (a ≠0),则2f (x +3)-f (x -2)=2[a (x +3)+b ]-[a (x -2)+b ]=2ax +6a +2b -ax +2a -b =ax +8a +b =2x +21,所以a =2,b =5,所以f (x )=2x +5. (2)因为f (x )为二次函数,设f (x )=ax 2+bx +c (a ≠0). 由f (0)=1,得c =1. 又因为f (x -1)-f (x )=4x ,所以a (x -1)2+b (x -1)+c -(ax 2+bx +c )=4x ,整理,得-2ax +a -b =4x ,求得a =-2,b =-2,所以f (x )=-2x 2-2x +1.(3)∵f ⎝ ⎛⎭⎪⎫x -1x =⎝ ⎛⎭⎪⎫x -1x 2+2+1=⎝ ⎛⎭⎪⎫x -1x 2+3.∴f (x )=x 2+3.[等级过关练]1.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值为( ) A .-1 B .5 C .1D .8C [由3x +2=2得x =0, 所以a =2×0+1=1. 故选C.]2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( )A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10) D [由题意得y +2x =20, 所以y =20-2x ,又2x >y ,即2x >20-2x ,即x >5, 由y >0即20-2x >0得x <10, 所以5<x <10.故选D.]3.已知f (x )+2f (-x )=x 2+2x ,则f (x )的解析式为________.f(x)=13x2-2x[以-x代替x得:f(-x)+2f(x)=x2-2x.与f(x)+2f(-x)=x2+2x联立得:f(x)=13x2-2x.]4.设f(x)=2x+a,g(x)=14(x2+3),且g(f(x))=x2-x+1,则a的值为________.-1[因为g(x)=14(x2+3),所以g(f(x))=14[(2x+a)2+3]=14(4x2+4ax+a2+3)=x2-x+1,求得a=-1.]5.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域.[解](1)由已知,横断面为等腰梯形,下底为2 m,上底为(2+2h)m,高为h m,∴水的面积A=[2+(2+2h)]h2=h2+2h(m2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.。
高一数学必修一函数练习题
高一数学必修一函数练习题函数是高中数学中非常重要的概念,它描述了两个集合之间的一种对应关系。
下面为高一学生准备了一系列函数练习题,以帮助学生更好地理解和掌握函数的基本概念和性质。
练习题一:函数的定义域与值域1. 给定函数 \( f(x) = \frac{1}{x - 2} \),求其定义域。
2. 对于函数 \( g(x) = x^2 - 4x + 3 \),找出其值域。
练习题二:函数的单调性1. 判断函数 \( h(x) = x^3 - 3x \) 在 \( x \in (-\infty,\infty) \) 上的单调性。
2. 若函数 \( k(x) = 2x - 1 \) 在 \( x \in [0, 2] \) 上单调递增,求 \( k(x) \) 在 \( x \in [2, 4] \) 上的单调性。
练习题三:函数的奇偶性1. 判断函数 \( f(x) = |x| \) 是否为奇函数或偶函数。
2. 若函数 \( g(x) = x^2 + 1 \) 是偶函数,求证。
练习题四:复合函数1. 已知 \( f(x) = x^2 \) 和 \( g(x) = x + 3 \),求复合函数\( (f \circ g)(x) \)。
2. 若 \( h(x) = \sqrt{x} \) 和 \( k(x) = x - 1 \),求 \( (h \circ k)(x) \)。
练习题五:反函数1. 若 \( f(x) = 2x + 1 \),求其反函数 \( f^{-1}(x) \)。
2. 对于函数 \( g(x) = x^2 \),讨论其反函数的存在性。
练习题六:函数的图像与性质1. 画出函数 \( y = |x - 1| \) 的图像,并标出其顶点坐标。
2. 对于函数 \( y = x^3 \),描述其在 \( x = 0 \) 附近的图像变化趋势。
练习题七:函数的实际应用1. 某工厂生产的产品数量与时间的关系为 \( P(t) = 100t - 5t^2 \),求出生产量达到最大时的时间。
【新】高中必修一数学 指数与指数函数 (例题+练习题)
指数与指数函数【典型例题】: 例1求值①33)8(- ; ②2)10(- ; ③44)3(π- ; ④)()(2b a b a >- .63125.132)5(⨯⨯例2.计算(1)2125325.05.032)101(02.0)32(81)027.0(⎥⎦⎤⎢⎣⎡⨯---+⎥⎦⎤⎢⎣⎡--(2)313373329a a a a ⋅÷--;)3()6)(2)(3(2656131212132b a b a b a -÷-经典练习1,2: 求值:(1)4332132)8116()41(01.08---⨯-+. 435)12525)(2(÷-2.化简下列各式:);0()1(322>⋅a aa a (2)321132132----⎥⎥⎦⎤⎢⎢⎣⎡÷a b b a b aba例3. 已知1122a a3-+=,求下列各式的值:(参考公式:))((2233b ab a b a b a +±=±μ)(1)1-+a a , .)2(21212323----aa a a经典练习3: 已知1122a a 3-+=,求32232322-+-+--aa a a 的值例4. 比较下列两个数的大小 (1)2.37.0, 3.27.0 (2)4.14, 9.08(3)9.01.2-,1.29.0-经典练习4:比较下列两个数的大小 (1)1.1)91(-,6.3)33(- (2)3.23.0,3.0)25(例5.已知()()110212xf x x x ⎛⎫=+≠⎪-⎝⎭,⑴判断()f x 的奇偶性; ⑵证明()0f x >经典练习5:已知函数)(x f 是偶函数,)10(11)()(≠>+-=a a a a x f x F xx 且,判断)(x F 的奇偶性例6.求函数xx y 2221-⎪⎭⎫ ⎝⎛=的单调区间。
(复合函数)【巩固练习】: 一、基础训练题: 1. 把213-化为根式是 ( )A33 B 3 C 33- D 3-2. 已知xx 2121-+=5,则xx 12+的值是 ( )A 5B 23C 25D 273. 下列各式中成立的是 ( ) A322n m +=)(32n m + B b a ab 5515)(=C 2)2(2-=- D31324=4. a>0,下列各式中不成立的是 ( ) A a nm nma= B aanm nm 1=-C a a a a nn nn nn ===)()(1 D 2)(2)(nm n m aa=-5. 化简342141223)(3ab b a ab b a (a ,b>0)的结果是 ( )Aa b B ab C ba D a 2b6. 比较下列各题中两个值的大小:①5.27.1,37.1; ②1.08.0-,2.08.0-; ③3.07.1,1.39.07.下列函数中,值域为(0,+∞)的是 ( )A y=3211x + B y=1)21(-xC y=x 21-D y=x-1)31(8. 求下列函数的定义域、值域:⑴12+=xy ⑵153-=x y⑶ 114.0-=x y (4)y=x 31-9.求函数y=1822)31(+--x x ,x ∈[-3,1]的值域。
高中数学人教(A)版高一必修第一册 第五章《5.4 三角函数的图形与性质》 练习题
5.4 三角函数的图形与性质5.4.1 正弦函数、余弦函数的图象基础过关练习题组一 正弦函数、余弦函数的图象1、用“五点法”作1cos 2-=x y 在[]π2,0上的图象时,应取的五点为( )A 、()()()120231-021,0,,,,,,,,ππππ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛B 、()()()121-233-1-21,0,,,,,,,,ππππ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛ C 、()()()()()143-3123-1,0,,,,,,,,ππππ D 、()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2-321-2031-361,0,,,,,,,,ππππ 2、函数y=−sinx ,x ∈[23,2-ππ]的简图( ) A 、 B. C. D.3、已知函数()x cos 23+-=x f 的图象经过点⎪⎭⎫⎝⎛b ,3π,则b= 。
4、用“五点法”作函数x y cos 311-=图象的简图。
题组二 正弦、余弦曲线的运用5、使不等式0sin 22≥-x 成立的x 的取值集合是( )A 、⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,43242|ππππ B 、⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,47242|ππππ C 、⎬⎫⎨⎧∈+≤≤Z k k x k x ,25-2|ππππ D 、⎬⎫⎨⎧∈+≤≤+Z k k x k x ,7252|ππππ6、已知集合A=⎭⎬⎫⎩⎨⎧>21cos |αα,B={}παα<<0|,且C B A = ,则C=( ) A 、⎭⎬⎫⎩⎨⎧<<60|παα B 、⎭⎬⎫⎩⎨⎧<<23|παπα C 、⎭⎬⎫⎩⎨⎧<<30|παα D 、⎭⎬⎫⎩⎨⎧<<παπα3|7、函数()x x f 4log =的图象与函数()x x g πsin =的图象的交点个数是( ) A 、2 B 、3 C 、4 D 、5 8、(多选)下列x 的取值范围能使x x sin cos >成立的是( )A 、⎪⎭⎫ ⎝⎛40π,B 、⎪⎭⎫ ⎝⎛454ππ,C 、⎪⎭⎫ ⎝⎛ππ245,D 、⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛4524ππππ,, 9、函数x y cos =,[]π2,0∈x 的图象与直线21-=y 的交点有 个。
高中数学必修一《函数的概念》经典练习(含详细解析)
高中数学必修一《函数的概念》经典练习(含详细解析)一、选择题1.函数f(x)=(x∈R)的值域是( )A.[0,1]B.[0,1)C.(0,1]D.(0,1)2.下列各组函数中,表示同一个函数的是( )A.y=与y=x+1B.y=与y=C.y=-1与y=x-1D.y=x与y=3.已知函数f(x)的定义域为[0,1),则函数f(1-x)的定义域为( )A.[0,1)B.(0,1]C.[-1,1]D.[-1,0)∪(0,1]4.函数y=的定义域是(-∞,1)∪[2,5),则其值域是( )A.(-∞,0)∪B.(-∞,2]C.∪[2,+∞)D.(0,+∞)5.函数f(x)的定义域为[-6,2],则函数y=f()的定义域为( )A.[-4,4]B.[-2,2]C.[0,]D.[0,4]二、填空题6.函数y=x2-2x的定义域为{0,1,2,3},那么其值域为.7.若函数y=的定义域是A,函数y=的值域是B,则A∩B= .8.函数y=f(x)的图象如图所示,那么f(x)的定义域是;其中只与x的一个值对应的y值的范围是.9.给出定义:若m-<x≤m+(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个结论.①f=;②f(3.4)=-0.4;③f=f;④y=f(x)的定义域为R,值域是.则其中正确的序号是.三、解答题10.(10分)已知函数y=(1<x≤2),求函数值域.11.(10分)记函数f(x)=的定义域为集合A,函数g(x)=图象在二、四象限时,k的取值集合为B,函数h(x)=x2+2x+4的值域为集合C.(1)求集合A,B,C.B),A∩(B∪C).(2)求集合A∪(R参考答案与解析1【解析】选C.因为x2≥0,所以x2+1≥1,所以0<≤1,所以值域为(0,1]. 2【解析】选D.对于选项A:函数y=的定义域不包含1,而y=x+1的定义域是R,显然不是同一个函数.对于选项B:函数y=的定义域为x≥0,而函数y=的定义域是{x|x≠0},显然不是同一个函数.对于选项C:函数y=-1的值域是大于等于-1的,而直线y=x-1的值域是R,显然不是同一个函数.对于选项D:因为y=x与y=的最简解析式相等,且定义域都为R,所以为同一个函数.3【解题指南】原函数的定义域,即为1-x的范围,解不等式组即可得解.【解析】选B.因为原函数的定义域为[0,1),所以0≤1-x<1,即所以0<x≤1,所以函数f(1-x)的定义域为(0,1].4【解题指南】根据定义域求值域.【解析】选A.因为x∈(-∞,1)∪[2,5),所以x-1∈(-∞,0)∪[1,4),当x-1∈(-∞,0)时,∈(-∞,0);当x-1∈[1,4)时,∈.5【解析】选D.因为函数f(x)的定义域为[-6,2],所以-6≤≤2,又因为≥0,所以0≤≤2,所以0≤x≤4.6【解析】当x=0时,y=0;当x=1时,y=-1;当x=2时,y=0;当x=3时,y=3.故函数的值域为{-1,0,3}.答案:{-1,0,3}【补偿训练】已知函数f(x)=2x-3,x∈A的值域为{-1,1,3},则定义域A 为.【解析】值域为{-1,1,3},即令f(x)分别等于-1,1,3,求出对应的x,则由x组成的集合即为定义域A,为{1,2,3}.答案:{1,2,3}7【解析】由题意知A={x|x≠2},B={y|y≥0},则A∩B=[0,2)∪(2,+∞).答案:[0,2)∪(2,+∞)8【解析】观察函数图象可知,f(x)的定义域是[-3,0]∪[2,3];只与x的一个值对应的y值的范围是[1,2)∪(4,5].答案:[-3,0]∪[2,3] [1,2)∪(4,5]9【解析】①因为-1-<-≤-1+,所以=-1,所以f===,所以①正确;②因为3-<3.4≤3+,所以{3.4}=3,所以f(3.4)=|3.4-{3.4}|=|3.4-3|=0.4,所以②错误;③因为0-<-≤0+,所以=0,所以f==,因为0-<≤0+,所以=0,所以f==,所以f=f,所以③正确;④y=f(x)的定义域为R,值域是,所以④错误.答案:①③10【解析】设x1,x2∈(1,2]且x1<x2,则f(x1)-f(x2)=-=,因为x1<x2,所以x2-x1>0,因为x1,x2∈(1,2],所以(2x1-1)(2x2-1)>0,所以f(x1)-f(x2)>0,所以f(x)在(1,2]上单调递减,所以当1<x≤2时,f(2)≤f(x)<f(1),即≤f(x)<1,所以函数的值域为.【补偿训练】已知函数f(x)=(a∈R且x≠a),当f(x)的定义域为时,求f(x)的值域.【解析】f(x)==-1+.当a+≤x≤a+时,-a-≤-x≤-a-,-≤a-x≤-,-3≤≤-2,于是-4≤-1+≤-3,即f(x)的值域为[-4,-3].11【解析】(1)由2x-3>0,得x>,所以A=, 又由k-1<0,得k<1,所以B=,而h(x)=x2+2x+4=+3≥3,所以C=.(2)A∪(B)=,A∩(B∪C)=.R。
高中数学必修一函数练习题
一、选择题:1、245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 2、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 3、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、4个B 、3个C 、2个D 、1个 4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是递减的,那么实数a 的取值范围是( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 5. 与函数y = x 有相同图象的一个函数是( ).A .y =x 2 B. y =x 2xC. y =a log a x(a >0,a ≠1) D. y = log a a x (a>0, a≠1) 7. 下列函数中,在区间(0,+∞)上是增函数的是( ). A.y =-x 2 B.y = x 2-x +2 C.y =(21)x D.y =x1log 3.0 8. 函数y =)(log 2x -是( ).A. 在区间(-∞,0)上的增函数B. 在区间(-∞,0)上的减函数C. 在区间(0,+∞)上的增函数D. 在区间(0,+∞)上的减函数 9. 下列函数中为奇函数的是( ).A. f (x )=x 2+x -1 B. f (x )=|x | C. f (x )=23x x + D. f (x )=522xx --10.若函数f(x)是定义在R 上的偶函数,在]0,(-∞上是减函数,且,0)2(f =则使得0)x (f <的x 的取值范围是( ) A. )2,(-∞ B. ),2(+∞C. ),2()2,(+∞--∞D. (-2,2) 11. 函数y =||log 3x (x ∈R 且x ≠0)( ) . A. 为奇函数且在(-∞,0)上是减函数 B. 为奇函数且在(-∞,0)上是增函数 C. 是偶函数且在(0,+∞)上是减函数 D. 是偶函数且在(0,+∞)上是增函数12. 若f (x )是以4为周期的奇函数,且f (-1)=a (a ≠0),则f (5)的值等于( ).A. 5aB. -aC. aD. 1-a 13. 若1log 21>x ,则x 的取值范围是( ).A. 21<xB.210<<xC.21>x D.0<x二、填空题:1. 设函数f (x )=(m -1)x 2+(m +1)x +3是偶函数,则m=________.2. 函数291)(x x f -=的定义域为________.3. 若函数_____)1(,)(2=+=x f x x f 则.4. 已知1)(-=x x f ,则______)2(=f .5. 已知⎩⎨⎧≥<=0,20,)(2x x x x f ,则_____)0(=f _____)]1([=-f f .6. 函数xy 2-=的值域为________. 7. 函数R x x y ∈+=,12的值域为________. 8. 下列函数在),0(+∞上是减函数的有__________.(1)12+=x y (2)xy 2= (3)x x y 22+-= (4)12+--=x x y 9. 若映射B A f →:把集合A 中的元素(x,y )映射到B 中为),(y x y x +-,则(2, 6)的象是______,则(2, 6)的原象是________. 10. 设函数f (x )=(m -1)x 2+(m +1)x +3是偶函数,则m=________.11. 已知⎩⎨⎧≥<=0,20,)(2x x x x f ,则_____)0(=f _____)]1([=-f f .。
高中数学必修一练习题(4)函数(含详细答案)
• 高中数学必修一复习练习(四)函数班 号 姓名 指数函数及其性质1.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.1.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值.1.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.参考答案指数函数及其性质1.选A 由指数函数的定义可判定,只有③正确. 2.B3.选A x ∈R ,y =2x >0,y =x 2≥0,即M ={y |y >0},N ={y |y ≥0},所以M N. 4.选C 由0<m <n <1可知①②应为两条递减曲线,故只可能是选项C 或D , 进而再判断①②与n 和m 的对应关系,判断方法很多,不妨选择特殊点,令x =1, 则①②对应的函数值分别为m 和n ,由m <n 知选C.5.解析:函数y =(2a -1)x 为指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1. 答案:a >12且a ≠16.∵指数函数y =a x 恒过定点(0,1).∴y =a x +1的图象必过点(0,2).答案:(0,2) 7.解:(1)函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1,于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2]. 8.解:由指数函数的概念知a >0,a ≠1.当a >1时,函数f (x )=a x 在区间[1,2]上是增函数,所以当x =2时,f (x )取最大值a 2,当x =1时,f (x )取最小值a , 由题意得a 2=a +a 2,即a 2=32a ,因为a >1,所以a =32;当0<a <1时,函数f (x )=a x 在区间[1,2]上是减函数,同理可以求得a =12.综上可知,a 的值为32或12✠✠指数函数及其性质的应用1.选D 不等式2x +1<1=20,∵y =2x 是增函数,∴x +1<0,即x <-1.2.选A 定义域为R.设u =1-x ,y =⎝⎛⎭⎫12u,∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x在(-∞,+∞)上是增函数.3.选D ∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1.4.选B ∵y =2x 在R 上递增,而|x |在(-∞,0]上递减,在[0,+∞)是递增,∴f (x )=2|x |在(-∞,0]上递减,在[0,+∞)上递增.5.解析:∵3x -1=19,∴3x -1=3-2,∴x -1=-2,∴x =-1. 答案:-16.解析:函数y =(13)x 在定义域内单调递减,∴m =(13)-1=3,n =(13)-2=9, ∴m +n =12. 答案:127.解:∵2x ≤(14)x -3,即2x ≤26-2x ,∴x ≤6-2x ,∴x ≤2,∴y = (12)x ≥ (12)2=14,∴函数值域是[14,+∞).8.解:(1)当2-3x =0,即x =23时,a 2-3x =a 0=1. 所以,该函数的图象恒过定点(23,1)(2)∵u =2-3x 是减函数,∴当0<a <1时,f (x )在R 上是增函数;当a >1时,f (x )在R 上是减函数.❑❑对数与对数运算1.选B 由⎩⎪⎨⎪⎧x -1>0,x 2-1>0,x -1≠1,解得x >1且x ≠2.2.选C 由已知得log 3x =-2 ,∴ x =3-2=19.3.选C 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2. 4.选A 由2x =3得:x =log 23.∴x +2y =log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3.5.解析:log a x =1log x a =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c =1. 答案:16.解析:lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg1=0. 答案:0 7.解:(1)原式=lg(252×85×12)=lg10=1.(2)原式=lg[2512×2×1012×(10-2)-1]=lg(5×2×1012×102)=lg1072=72.(3)原式=log 2(log 226)=log 26=1+log 23.8.解:因为lg2x +(lg2+lg3)lg x +lg2lg3=(lg x +lg2)(lg x +lg3),所以lg x =-lg2=lg2-1或lg x =-lg3=lg3-1,即x 1=12,x 2=13,所以x 1x 2=16.对数函数及其性质1.C2.选C 当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2.3.选D 由函数的解析式得log 12(3x -2)≥0=log 121.∴0<3x -2≤1,解得:23<x ≤1.4.选C 当x =0时y =0,而且函数为增函数,可见只有C 符合.5.解析:由对数函数的意义可得⎩⎪⎨⎪⎧2-x >0x >0x ≠1⇒⎩⎪⎨⎪⎧x <2x >0且x ≠1⇒0<x <2且x≠1. 答案:(0,1)∪(1,2)6.解析:当x =2时y =1. 答案:(2,1)7.解:(1)要使函数有意义,须满足:log 2(4x -3)≥0=log 21,⇒1≤ 4x -3⇒x ≥1,∴函数的定义域为[1,+∞).(2)要使函数有意义,须满足⎩⎪⎨⎪⎧2x -2>05-x >05-x ≠1⇒1<x <5且x ≠4. ∴函数的定义域为(1,4)∪(4,5).8.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.。
高中数学必修一函数练习题及答案
高中数学必修一函数试题一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 8、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 9、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )(1)(2)(3)(4)A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 10、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高中数学必修一练习题函数含详细答案
✍✍✍高中数学必修一练习题(三)函数班号姓名✍✍奇偶性1.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是() A.f(x)=x B.f(x)=|x| C.f(x)=-x2D.f(x)=1 x2.函数f(x)=x2+x的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为() A.5 B.10 C.8 D.不确定4.(2011·潍坊高一检测)已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-3)<f(-1),则下列不等式一定成立的是() A.f(-1)<f(3) B.f(2)<f(3) C.f(-3)<f(5)D.f(0)>f(1)5.函数y=ax2+bx+c为偶函数的条件是________.6.函数f(x)=x3+ax,若f(1)=3,则f(-1)的值为________.7.已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.8.设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.✍✍函数的最大(小)值1.函数y=1x2在区间[12,2]上的最大值是()A. 14B.-1 C.4 D.-42.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9B .9(1-a )C .9-aD .9-a 23.函数f (x )=⎩⎨⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1),则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对4.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元 B .60万元 C .120万元D .120.25万元5.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为_____.6.(2011·合肥高一检测)函数y =-x 2-4x +1在区间[a ,b ](b >a >-2)上的最大值为4,最小值为-4,则a =__________,b =________.7.画出函数f (x )=⎩⎨⎧-2x ,x ∈(-∞,0)x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数最小值.8.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.✍✍指数与指数幂的运算1.下列等式一定成立的是( ) A .a 13·a 32=a B .a12-·a 12=0 C .(a 3)2=a 9D .a 12÷a 13=a 162.4a -2+(a -4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠43.(112)0-(1-0.5-2)÷(278)23 的值为( )A .-13B. 13C. 43D. 734.设a 12-a12-=m ,则a 2+1a=( )A .m 2-2B .2-m 2C .m 2+2D .m 25.计算:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=________.6.若102x =25,则10-x 等于________.7.根据条件进行计算:已知x =12,y =13,求x +y x -y -x -y x +y 的值.8.计算或化简下列各式: (1)[(0.02723)-1.5]13+[810.25-(-32)0.6-0.02×(110)-2]12;(2)(a 23·b -1)12-·a12-·b136a ·b 5.幂函数1.幂函数y =x n 的图象一定经过(0,0),(1,1),(-1,1),(-1,-1)中的( ) A .一点B .两点C .三点D .四点2.下列幂函数中过点(0,0),(1,1)的偶函数是( ) A .y =x 12B .y =x4C .y =x -2D .y =x 133.如图,函数y =x 23的图象是( ) 4.幂函数f (x )=x α满足x >1时f (x )>1,则α满足的条件是( )A .α>1B .0<α<1C .α>0D .α>0且α≠15.函数y=(2m-1)x2m是一个幂函数,则m的值是________.6.下列六个函数①y=x 53,②y=x34,③y=x-13,④y=x23,⑤y=x-2,⑥y=x2中,定义域为R的函数有________(填序号).7.比较下列各组数的大小:(1)352-和3.152-;(2)-878-和-(19)78;(3)(-23)23-和(-π6)23-.8.已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x的增大而减小,求该函数的解析式.参考答案函数的奇偶性1.选C f(x)=|x|及f(x)=-x2为偶函数,而f(x)=|x|在(0,+∞)上单调递增,故选C.2.选D函数的定义域为[0,+∞),不关于原点对称,∴f(x)为非奇非偶函数.3.选B f(4)+f(-4)=2f(4)=10.4.选D函数f(x)在[-5,5]上是偶函数,因此f(x)=f(-x),于是f(-3)=f(3),f(-1)=f(1),则f(3)<f(1).又f(x)在[0,5]上是单调函数,从而函数f(x)在[0,5]上是减函数,观察四个选项,并注意到f(x)=f(-x),易得只有D正确.5.解析:根据偶函数的性质,得ax2+bx+c=a·(-x)2+b(-x)+c,∴b =0.答案:b=06.解析:∵f(-x)=-f(x),∴f(x)为奇函数,∴f(-1)=-f(1)=-3. 答案:-37.解:∵f(x)是定义在(-1,1)上的奇函数,∴f(0)=0,即b1+02=0,∴b =0, 又f (12)=12a 1+14=25,∴a =1,∴f (x )=x 1+x 2. 8.解:由f(x)在R 上是偶函数,在区间(-∞,0)上递增,可知f(x)在(0,+∞)上递减.∵2a 2+a +1=2(a +14)2+78>0,2a 2-2a +3=2(a -12)2+52>0,且f (2a 2+a +1)<f (2a 2-2a +3),∴2a 2+a +1>2a 2-2a +3,即3a -2>0,解得a >23.函数的最大(小)值1.C2.选A f(x)=-ax2+9开口向下,在[0,3]上单调递减,所以在[0,3]上最大值为9.3.选A f(x)在[-1,2]上单调递增,∴最大值为f(2)=10,最小值为f(-1)=6.4.选C 设公司在甲地销售x 辆,则在乙地销售15-x 辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-(x -192)2+30+1924,∴当x =9或10时,L 最大为120万元.5.解析:设f(x)=ax +b ,易知a≠0. 当a>0时,f(x)单调递增,则有⎩⎨⎧f (2)=3f (-1)=1,∴⎩⎨⎧2a +b =3-a +b =1,即⎩⎪⎨⎪⎧a =23b =53,∴f (x )=23x +53;当a <0时,f (x )单调递减,则有⎩⎨⎧f (2)=1,f (-1)=3,∴⎩⎨⎧2a +b =1-a +b =3,即⎩⎪⎨⎪⎧a =-23b =73, ∴f (x )=-23x +73. 综上,y =f (x )的解析式为f (x )=23x +53或f (x )=-23x+73. 答案:f (x )=23x +53或f (x )=-23x +736.解析:∵y =-(x +2)2+5,∴函数图象对称轴是x =-2. 故在[-2,+∞)上是减函数.又∵b >a >-2,∴y =-x 2-4x +1在[a ,b ]上单调递减.∴f (a )=4,f (b )=-4.由f (a )=4,得-a 2-4a +1=4,∴a 2+4a +3=0,即(a +1)(a +3)=0.∴a =-1或a =-3(舍去),∴a =-1. 由f (b )=-4,得-b 2-4b +1=-4,b =1或b =-5(舍去),∴b =1. 答案:-1 1 7.解:f(x)的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.8.解:(1)当a =-1时,f(x)=x2-2x +2=(x -1)2+1,x ∈[-5,5],当x =1时,有f (x )min =1,当x =-5时,有f (x )max =37.(2)∵函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a ,f (x )在区间[-5,5]上是单调函数,∴-a ≤-5或-a ≥5,即a ≥5或a ≤-5.✍✍指数与指数幂的运算1.选D a 13·a 32=a 1332+=a 116;a 12-·a 12=a0=1;(a3)2=a6;a 12÷a 13=a1123-=a 16,故D 正确.2.选B 要使原式有意义,应满足⎩⎨⎧a -2≥0a -4≠0,得a≥2且a≠4.3.选D 原式=1-(1-4)÷3(278)2=1+3×49=73. 4.选C 将a 12-a 12-=m 平方得(a 12-a 12-)2=m2,即a -2+a -1=m 2,所以a +a -1=m 2+2,即a +1a =m 2+2?a 2+1a=m 2+2.5.解析:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=1+122×⎝ ⎛⎭⎪⎫9412=1+14×32=118. 答案:1186.解析:由102x =25得:(10x)2=25,∴10x 是25的平方根.由于10x>0,∴10x=5,∴10-x=110x =15. 答案:157.解:∵x +y x -y -x -y x +y=(x +y )2x -y -(x -y )2x -y =4xyx -y ,把x =12,y =13代入得,原式=412×1312-13=4 6.8.解:(1)原式=(310)3×23×(-32)×13+(8114+3235-2100×100)12=103+912=193. (2)原式=a 13-·b 12·a12-·b13a 16·b56=a111326---·b115236+-=1a. 幂函数1.选A 当n≥0时,一定过(1,1)点,当n<0时,也一定过(1,1)点. 2.选B y =x 12不是偶函数;y =x -2不过(0,0);y =x 13是奇函数. 3.选D 幂函数y =x 23是偶函数,图象关于y 轴对称.4.选C 因为x>1时x α>1=1α,所以y =x α单调递增,故α>0. 5.解析:令2m -1=1得m =1,该函数为y =x. 答案:16.解析:函数①④⑥的定义域为R ,函数②定义域为[0,+∞),③⑤的定义域为{x|x≠0}. 答案:①④⑥ 7.解:(1)函数y =x52-在(0,+∞)上为减函数,因为3<3.1,所以352->3.152-.(2)-878-=-(18)78,函数y =x 78在(0,+∞)上为增函数,因为18>19,则(18)78>(19)78, 从而-8-78<-(19)78.(3)(-23)23-=(23)23-,(-π6)23-=(π6)23-,函数y =x 23-在(0,+∞)上为减函数,因为23>π6,所以(23)23-<(π6)23-,即(-23)23-<(-π6)23-.8.解:∵函数在(0,+∞)上递减,∴3m -9<0,解得m<3.又m ∈N *,∴m =1,2. 又函数图象关于y 轴对称,∴3m -9为偶数,故m =1. 即幂函数y =x 3m -9的解析式为y =x -6.。
高中数学函数练习题(完整版)
高中数学函数练习题(完整版).doc1、在A、B、C、D四个函数中,只有函数y=1/(x+1)的值域是(0,+∞),因此答案为A。
2、由题意可得:f(-2)=f(2)=3,即2a+12a+a=3,解得a=-1/2.在闭区间[-2,2]上,f(x)的最小值是f(0)=-a=1/2,因此答案为A。
3、对于函数y=x-2x^2+3,在[0,m]上有最大值3,最小值2,因此其开口向下,且顶点在[0,m]上。
由于开口向下,顶点为最大值,因此m=1,即答案为A。
4、设函数f(x)=log_a(x),则f(a)=1,f(2a)=log_a(2a)=1+log_a2,由题意可得:f(2a)=3f(a),即1+log_a2=3,解得a=1/4,因此答案为B。
5、在区间[0,1]上,f(x)的最大值为a+log_a2,最小值为a+log_a1=a,因此有:a+log_a2+a=2a,解得a=2,因此答案为D。
6、由题意可得:y-2xy/(x-1)^3的最小值为-1/3,1/(x-1)的最大值为正无穷,因此答案为正无穷和-1/3.7、由于XXX(ax+2x+1)的值域为R,因此ax+2x+1>0,解得a>-1/2.又因为XXX(ax+2x+1)=lg(a)+lg(x+2x+1/a)>0,解得a>0.因此a的取值范围为(0,1/2)。
8、将x=y=1代入f(x+y)=f(x)+f(y)+2xy,得f(2)=f(1)+f(1)+2=4.又因为f(1)=2,因此f(0)=f(1)+f(-1)+2(1)(-1)=0.9、将x=0代入f(x+1)=(1/3)(1/(x^2-1)),得f(1)=(1/3)(1/2)=1/6.因此f(x)=f(x+1-1)=f(x+1)-2(x+1-1)=f(x+1)-2x-2,代入f(x+1)=(1/3)(1/(x^2-1)),得f(x)=(1/3)(1/[(x-1)(x+1)])-2x-2,因此函数f(x)的值域为R。
高中数学必修一《函数的奇偶性练习题》
函数的奇偶性练习题1.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y =-x 3,x ∈R B .y =sin2x ,x ∈RC .y =2x ,x ∈RD .y =-⎝⎛⎭⎫13x ,x ∈R2.函数f (x )=a 2x -1ax (a >0,a ≠1)的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1 D .34. 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=x ,则f ⎝⎛⎭⎫-134=( ) A.32 B .-32 C.12 D .-126. 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27. 若函数f (x )=|x -2|+a 4-x 2的图象关于原点对称,则f a2=( )A.33 B .-33C .1D .-1 8.已知定义在R 上的奇函数f (x )是一个减函数,若x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,则f (x 1)+f (x 2)+f (x 3)的值( )A .大于0B .小于0C .等于0D .以上都有可能9. 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10. 函数f (x )是定义在R 上的奇函数,下列结论中,正确结论的序号是________.①f (-x )+f (x )=0;②f (-x )-f (x )=-2f (x );③f (x )f (-x )≤0;④f (x )f (-x )=-1.11. 若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则满足f (x )>a 的x 的取值范围是________.12.(13分)[2012·衡水中学一调] 已知函数f (x )=x m -2x 且f (4)=72.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.1. 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( ) A .y =|x | B .y =sin xC .y =e x +e -x D .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.已知f (x )=⎩⎪⎨⎪⎧x 2-x +1(x >0),-x 2-x -1(x <0),则f (x )为( )A .奇函数B .偶函数C .非奇非偶函数D .不能确定奇偶性4. 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.能力提升5. 设函数f (x )=⎩⎪⎨⎪⎧2x,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.] 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.命题p :∀x ∈R ,3x >x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图象关于点(1,0)成中心对称.以下说法正确的是( ) A .p ∨q 真 B .p ∧q 真 C .綈p 真 D .綈q 假 9.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________. 10. 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.11.设定义在[-2,2]上的奇函数f (x )在[0,2]上单调递减,若f (3-m )≤f (2m 2),则实数m 的取值范围是________.12.(13分)已知函数f (x )=lg 1+x1-x.(1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ;(2)判断f (x )的奇偶性,并予以证明.难点突破13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.1.A [解析] y =sin2x 在R 上不单调,y =-13x 不是奇函数,y =2x 为增函数,所以B ,C ,D 均错.故选A.2.A [解析] 因为f (-x )=a -x -1a-x =-(a x -a -x )=-f (x ),所以f (x )是奇函数,其图象关于原点对称.故选A.3.A [解析] 依题意当x >0时,f (x )=-f (-x )=-(2x 2+x ),所以f (1)=-3.故选A. 4.3 [解析] 考查函数的奇偶性和转化思想,解此题的关键是利用y =f (x )为奇函数. 已知函数y =f (x )为奇函数,由已知得g (1)=f (1)+2=1, ∴f (1)=-1,则f (-1)=-f (1)=1,所以g (-1)=f (-1)+2=1+2=3. 【能力提升】5.A [解析] 依题意f -134=f -54=f 34=32.故选A.6.A [解析] 由f (x +2)=-f (x )得f (x +4)=-f (x +2)=f (x ),根据f (x )为R 上的奇函数,得f (0)=0,所以f (3)=f (-1)=-f (1)=-1,f (4)=f (0)=0,所以f (3)-f (4)=-1.故选A.7.A [解析] 函数f (x )定义域为{x |-2<x <2},依题意函数f (x )为奇函数,所以f (0)=0,得a =-2,所以f a 2=f (-1)=|-1-2|-24-1=33.故选A.8.A [解析] 由x 1+x 2<0,得x 1<-x 2. 又f (x )为减函数,所以f (x 1)>f (-x 2),又f (x )为R 上的奇函数,所以f (x 1)>-f (x 2). 所以f (x 1)+f (x 2)>0.同理f (x 2)+f (x 3)>0,f (x 1)+f (x 3)>0, 所以f (x 1)+f (x 2)+f (x 3)>0.故选A.9.1.5 [解析] 由f (x +1)+f (x )=3得f (x )+f (x -1)=3,两式相减得f (x +1)=f (x -1),所以f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数,所以f (-2 005.5)=f (-1.5)=f (-2+0.5)=f (0.5)=1.5.10.①②③ [解析] 因为函数f (x )是定义在R 上的奇函数,所以①正确,由f (-x )+f (x )=0,可推得选项②,③正确,④中,要求f (-x )≠0,故④错误.11.(-1-3,+∞) [解析] 由函数f (x )是奇函数,所以当x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x =-f (x )=x 2-ax ,所以a =-2.当x <0时,f (x )>a 即-x 2-2x >-2⇒x 2+2x -2<0,解得-1-3<x <0;当x ≥0时,f (x )>-2恒成立.综上,满足f (x )>a 的x 的取值范围是(-1-3,+∞).12.解:(1)因为f (4)=72,所以4m -24=72,所以m =1.(2)因为f (x )的定义域为{x |x ≠0},又f (-x )=-x -2-x=-x -2x =-f (x ),所以f (x )是奇函数.(3)设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-x 2-2x 2=(x 1-x 2)1+2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上为单调递增函数.(或用求导数的方法) 【难点突破】13.解:(1)因为f (x )是定义域为R 的奇函数,所以f (0)=0, 即-1+b 2+a =0,所以b =1.所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,所以a =2.(2)方法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1.易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<f (-2t 2+k ). 因f (x )是减函数,所以t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0.从而判别式Δ=4+12k <0,解得k <-13.方法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0,即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0. 整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0.上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.课时作业(六)B【基础热身】1.B [解析] 由题中选项可知,y =|x |,y =e x +e -x 为偶函数,排除A ,C ;而y =-x 3在R 上递减,故选B.2.B [解析] 因为函数f (x )=ax 2+bx 在[a -1,2a ]上为偶函数,所以b =0,且a -1+2a =0,即b =0,a =13.所以a +b =13.3.A [解析] 若x <0,则-x >0,所以f (-x )=(-x )2-(-x )+1=x 2+x +1=-f (x ).若x >0,则-x <0,所以f (-x )=-(-x )2-(-x )-1=-x 2+x -1=-f (x ).所以f (x )为奇函数.4.32[解析] 函数f (x )是定义在R 上的周期为2的偶函数,且当x ∈[0,1]时,f (x )=x +1,那么f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12=32.【能力提升】5.D [解析] 因为f (x )为奇函数,所以x >0时,f (x )=-f (-x )=-2-x ,即g (x )=-2-x ,所以g (3)=-2-3=-18.故选D.6.D [解析] 因为x 1<0,x 2>0,|x 1|<|x 2|,所以0<-x 1<x 2.又f (x )是(0,+∞)上的增函数,所以f (-x 1)<f (x 2).又f (x )为定义在R 上的偶函数,所以f (x 1)<f (x 2),所以f (x 1)-f (x 2)<0.选D.7.A [解析] 由已知f (x )是偶函数且是周期为2的周期函数,则f (-2 012)=f (2 012)=f (0)=log 21=0,f (2 011)=f (1)=log 22=1,所以f (-2 012)+f (2 011)=0+1=1,故选择A.8.A [解析] 命题p 是真命题.对于命题q ,函数y =f (x -1)为奇函数,将其图象向左平移1个单位,得到函数y =f (x )的图象,该图象的对称中心为(-1,0),而得不到对称中心为(1,0),所以命题q 为假命题,所以p ∨q 是真命题.故选A.9.-15[解析] 因为f (x +2)f (x )=1,所以f (x +4)f (x +2)=1,于是有f (x +4)=f (x ),所以f (x )是以4为周期的周期函数,f (-5)=f (-1)=1f (-1+2)=1f (1)=-15.10.-9 [解析] 由f (a )=a 3cos a +1=11得a 3cos a =10, 所以f (-a )=(-a )3cos(-a )+1=-a 3cos a +1=-10+1=-9.11.{1} [解析] 因为f (x )是定义在[-2,2]上的奇函数,且在[0,2]上单调递减,所以f (x )在[-2,2]上单调递减,所以f (3-m )≤f (2m 2)等价于⎩⎪⎨⎪⎧-2≤3-m ≤2,-2≤2m 2≤2,3-m ≥2m 2⇔⎩⎪⎨⎪⎧1≤m ≤5,-1≤m ≤1,-32≤m ≤1,即m =1,所以m 的取值范围是{1}.12.解:函数的定义域为{x |-1<x <1}=(-1,1).(1)证明:∀a ,b ∈(-1,1),f (a )+f (b )=lg 1+a 1-a +lg 1+b 1-b =lg (1+a )(1+b )(1-a )(1-b ),f a +b 1+ab =lg 1+a +b 1+ab 1-a +b 1+ab=lg 1+ab +a +b 1+ab -a -b =lg (1+a )(1+b )(1-a )(1-b ), 所以f (a )+f (b )=f a +b1+ab.(2)∀x ∈(-1,1),f (-x )+f (x )=lg 1-x 1+x +lg 1+x 1-x =lg (1-x )(1+x )(1+x )(1-x )=lg1=0,即f (-x )=-f (x ),所以f (x )是奇函数. 【难点突破】13.解:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), 所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0. (2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), 所以f (-x )=f (x ),所以f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3, 又f (3x +1)+f (2x -6)≤3, 即f ((3x +1)(2x -6))≤f (64).(*) 方法一:因为f (x )为偶函数, 所以f (|(3x +1)(2x -6)|)≤f (64). 又f (x )在(0,+∞)上是增函数, 所以0<|(3x +1)(2x -6)|≤64.解上式,得3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为x ⎪⎪-73≤x <-13或-13<x <3或3<x ≤5. 方法二:因为f (x )在(0,+∞)上是增函数, 所以(*)等价于不等式组⎩⎪⎨⎪⎧(3x +1)(2x -6)>0,(3x +1)(2x -6)≤64或⎩⎪⎨⎪⎧(3x +1)(2x -6)<0,-(3x +1)(2x -6)≤64, ⎩⎨⎧x >3或x <-13,-73≤x ≤5或⎩⎪⎨⎪⎧-13<x <3,x ∈R .所以3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为 x⎪⎪⎪ )-73≤x <-13或-13<x <3或3<x ≤5.。
人教A版高中数学必修一《函数的基本性质》试题
人教A版高中数学必修一《函数的基本性质》试题【夯实基础】一、单选题1.(2022·全国·高一课时练习)函数的单调递增区间是()A. B.C. D.【答案】B【分析】直接由二次函数的单调性求解即可.【详解】由知,函数为开口向上,对称轴为的二次函数,则单调递增区间是.故选:B.2.(2022·全国·高一课时练习)定义在区间上的函数的图象如图所示,则的单调递减区间为()A. B. C. D.【答案】B【分析】根据函数图象直接确定单调递减区间即可.【详解】由题图知:在上的单调递减,在上的单调递增,所以的单调递减区间为.故选:B3.(2022·全国·高一课时练习)已知函数在上是增函数,则实数的取值范围为()A. B. C. D.【答案】D【分析】利用二次函数单调性,列式求解作答.【详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D4.(2022·全国·高一)已知在为单调函数,则a的取值范围为()A. B. C. D.【答案】D【分析】求出的单调性,从而得到.【详解】在上单调递减,在上单调递增,故要想在为单调函数,需满足,故选:D5.(2022·湖北武汉·高一期末)已知二次函数在区间内是单调函数,则实数a的取值范围是()A. B.C. D.【答案】A【分析】结合图像讨论对称轴位置可得.【详解】由题知,当或,即或时,满足题意.故选:A6.(2022·甘肃庆阳·高一期末)若函数在上单调递增,且,则实数的取值范围是()A. B. C. D.【答案】C【分析】由单调性可直接得到,解不等式即可求得结果.【详解】在上单调递增,,,解得:,实数的取值范围为.故选:C.7.(2022·全国·高一课时练习)下列四个函数在是增函数的为()A. B.C. D.【答案】D【分析】根据各个函数的性质逐个判断即可【详解】对A,二次函数开口向上,对称轴为轴,在是减函数,故A不对.对B,为一次函数,,在是减函数,故B不对.对C,,二次函数,开口向下,对称轴为,在是增函数,故C不对.对D,为反比例类型,,在是增函数,故D对.故选:D8.(2021·河南南阳·高一阶段练习)已知函数,对于任意的恒成立,则实数的最小值是()A.0B.1C.2D.3【答案】D【分析】利用换元法将函数的最值转化为二次函数的最值,即可求得实数的最小值.【详解】对于任意的使恒成立,令(),则,即,设,则,故,即实数m的最小值是.故选:.二、多选题9.(2022·全国·高一课时练习)下列函数中,在上单调递增的是()A. B. C. D.【答案】AD【分析】画出各选项的函数图像,利用函数的图象来研究函数的单调性判断即可.【详解】画出函数图象如图所示,由图可得A,D中的函数在上单调递增,B,C中的函数在上不单调.故选:AD.10.(2021·江西·高一期中)如图是函数的图象,则函数在下列区间单调递增的是( )A. B. C. D.【答案】BC【分析】根据单调性的定义即可由图知道f(x)的增区间﹒【详解】图像从左往右上升的区间有:(-6,-4),(-1,2),(5,8),∴f(x)在(-6,-4),(-1,2),(5,8)上单调递增﹒故选:BC﹒三、填空题11.(2022·全国·高一课时练习)写出一个同时具有性质①对任意,都有;②的函数___________.【答案】(答案不唯一)【分析】根据题意可得函数在为减函数,且再写出即可.【详解】因为对任意,都有,所以函数在上减函数.又,故函数可以为.(注:满足题目条件的函数表达式均可.)故答案为:(答案不唯一)12.(2022·浙江丽水·高一开学考试)设函数,其中,.若在上不单调,则实数的一个可能的值为______.【答案】内的任意一个数.【分析】由对勾函数的性质判断出函数的单调区间,假设在上单调,即可求出的取值范围,其补集即为在上不单调时实数的取值范围.【详解】函数的定义域为,由对勾函数的性质可得函数在和上是单调递增,在和上是单调递减,若在上单调,则或,解得或,则在上不单调,实数的范围是,故答案为:内的任意一个数.13.(2022·全国·高一课时练习)函数的单调减区间为__________.【答案】##【分析】优先考虑定义域,在研究复合函数的单调性时,要弄清楚它由什么函数复合而成的,再根据“同增异减”可求解.【详解】函数是由函数和组成的复合函数,,解得或,函数的定义域是或,因为函数在单调递减,在单调递增,而在上单调递增,由复合函数单调性的“同增异减”,可得函数的单调减区间.故答案为:.四、解答题14.(2022·全国·高一)已知,函数.(1)指出在上的单调性(不需说明理由);(2)若在上的值域是,求的值.【答案】(1)在上是增函数(2)2【分析】(1)由于,利用反比例函数的性质,即可得到结果;(2)根据(1)的函数单调性,可知,,解方程即可求出结果.(1)解:因为,所以在上是增函数.(2)解:易知,由(1)可知在上为增函数.,解得,由得,解得.15.(2022·湖南·高一课时练习)设函数的定义域为,如果在上是减函数,在上也是减函数,能不能断定它在上是减函数?如果在上是增函数,在上也是增函数,能不能断定它在上是增函数?【分析】根据反例可判断两个结论的正误.【详解】取,则在上是减函数,在上也是减函数,但,,因此不能断定在上是减函数.若取,则在上是增函数,在上也是增函数,但,,因此不能断定在上是增函数.16.(2022·全国·高一专题练习)已知函数的定义域为.(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围.【答案】(1)(2)【分析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.(1)∵的定义域为,∴.∴,则.(2)令,,使得成立,即大于在上的最小值.∵,∴在上的最小值为,∴实数的取值范围是.【能力提升】一、单选题1.(2022·全国·高一课时练习)已知函数的定义域为R,满足,且当时,恒成立,设,,(其中),则a,b,c的大小关系为()A. B.C. D.【答案】B【分析】根据函数单调性的定义判断出在上单调递减,再利用把转化为,最后利用的单调性判断即可.【详解】因为,所以,因此,即,所以在上单调递减,又因为,所以,又因为,所以,所以.故选:B.2.(2021·江苏·盐城市大丰区新丰中学高一期中)函数的大致图象是()A. B.C. D.【答案】A【分析】探讨函数的定义域、单调性,再逐一分析各选项判断作答.【详解】函数的定义域为,选项C,D不满足,因,则函数在,上都单调递增,B不满足,则A满足.故选:A【点睛】方法点睛:函数图象的识别途径:(1)由函数的定义域,判断图象的左右位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性.3.(2022·全国·高一课时练习)设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B. C. D.【答案】B【分析】根据函数关系式可知,由此可确定在上的解析式,并确定每段区间上的最小值;由时,可确定在此区间内的两根,结合函数图象可确定的范围.【详解】由知:,;当时,,则;当时,,,则;当时,,,则;令,解得:或;作出函数的大致图象如图所示.对任意恒成立,,则,即实数的取值范围为.故选:B.二、多选题4.(2021·安徽·高一期中)下列命题正确的是()A.的定义城为,则的定义域为B.函数的值域为C.函数的值域为D.函数的单调增区间为【答案】AB【分析】根据抽象函数的定义域求法,可判断A;利用换元法求得函数值域,可判断B;利用基本不等式可判断C;单调区间之间不能用并集符号,可判断D.【详解】对于A选项,由于函数的定义域为,对于函数,,解得,所以函数的定义域为,A选项正确;对于B选项,令,则,,且时,取得等号,所以函数的值域为,B选项正确;对于C选项,,当且仅当时,即等号取得,但等号取不到,所以C选项错误;对于D选项,,所以函数的单调增区间为和,单调区间之间不能用并集符号,D选项错误,故选:AB.5.(2021·辽宁实验中学高一期中)下列命题,其中正确的命题是()A.函数在上是增函数B.函数在上是减函数C.函数的单调区间是D.已知在上是增函数,若,则有【答案】AD【分析】根据函数单调性的定义和复合函数单调性法则依次讨论各选项即可得答案.【详解】对于A选项,函数的对称轴为,开口向上,所以函数在上单调递增,故A正确;对于B选项,因为当时,,当时,,所以函数在上不是减函数,故B错误;对于C选项,解不等式得,函数的定义域为,故C错误;对于D选项,由得,由于在上是增函数,故,所以,故D正确.故选:AD6.(2022·全国·高一课时练习)已知函数的定义域是,且,当时,,,则下列说法正确的是()A.B.函数在上是减函数C.D.不等式的解集为【答案】ABD【分析】利用赋值法求得,判断A;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用,可求得C中式子的值,判断C;求出,将转化为,即可解不等式组求出其解集,判断D.【详解】对于A,令,得,所以,故A正确;对于B,令,得,所以,任取,且,则,因为,所以,所以,所以在上是减函数,故B正确;对于C,,故C错误;对于D,因为,且,所以,所以,所以等价于,又在上是减函数,且,所以,解得,故D正确,故选:ABD.7.(2022·广东深圳·高一期末)(多选)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数,表示不超过x的最大整数,例如.已知,,则函数的值可能为()A.0B.1C.2D.3【答案】BCD【分析】利用常数分离法知,根据x的取值范围结合不等式的性质求出的取值范围,进而得到函数的值.【详解】,当时,,,,此时的取值为1;当时,,,,此时的取值为2,3.综上,函数的值可能为.故选:BCD.三、填空题8.(2022·全国·高一专题练习)点、均在抛物线(,a、b为常数)上,若,则t的取值范围为________.【答案】【分析】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,当P、Q 两点关于抛物线对称轴对称时,可求出,根据根据,,即可求出t的取值范围.【详解】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,则有时,y随x的增大而增大;当P、Q两点关于抛物线对称轴对称时,则有,解得,∵,,又∵时,y随x的增大而增大;∴可知当P、Q在对称轴的左侧是肯定满足要求,P、Q均在对称轴的右侧时肯定不满足要求,当P、Q分别在对称轴x=1的两侧时,随着P、Q向x轴正向移动,P的纵坐标在逐渐增大,Q的纵坐标逐渐减小,当P、Q两点关于抛物线对称轴对称时有,继续正方向移动,则有,∴满足的t的取值范围:,故答案为:.四、解答题9.(2022·全国·高一课时练习)已知函数,判断并证明在区间上的单调性.【答案】单调递增,证明见解析【分析】利用单调性的定义证明,先任取,,且,然后作差,变形,判断符号,即可得结论. 【详解】在区间上单调递增,理由如下:任取,,且,.因为,所以,,,所以所以,所以,即,所以函数在区间上单调递增.10.(2022·全国·高一课时练习)已知函数的定义域为,对任意正实数、都有,且当时,.求证:函数是上的增函数.【分析】任取、,且,可得出,结合已知条件可出、的大小关系,即可证得结论成立.【详解】证明:任取、,且,则.因为,所以,所以,即,所以函数是上的增函数.11.(2022·全国·高一课时练习)画出下列函数的图象,并写出单调区间:(1);(2).【答案】(1)图象见解析;单调递增区间为和,无单调递减区间(2)图象见解析;单调递增区间为,单调递减区间为和【分析】(1)根据函数的解析式可作出其图象,即可得单调区间;(2)化简函数的解析式为,结合二次函数性质可作出其图象,即可得单调区间.(1)画出的图象如图所示,可得其单调递增区间为和,无单调递减区间.(2),作出该函数的图象如图所示,观察图象,知该函数的单调递增区间为,单调递减区间为和.12.(2020·陕西·榆林市第十中学高一阶段练习)已知函数.(1)求证:在上是增函数;(2)当时,求不等式的解集.【答案】(1)证明见解析;(2)【分析】(1)利用函数单调性的定义与作差法即可证明;(2)将代入,然后求解不等式即可(1)任取,且,则,所以,所以,所以在区间上单调递增;(2)当时,,由可得,解得,故不等式的解集为13.(2021·广东广雅中学花都校区高一期中)设函数.(1)当时,求函数的单调递减区间;(2)若函数在R上单调递增,求a的取值范围;(3)若对,不等式恒成立,求a的取值范围.【答案】(1);(2);(3).【解析】(1)去掉绝对值符号后根据一次函数、二次函数的单调性可得所求的单调减区间. (2)去掉绝对值符号可得,根据函数在R上单调递增可得关于的不等式组,从而可得其取值范围.(3)等价于且恒成立,前者可分类讨论,后者可结合一次函数的图象和性质,两者结合可得a的取值范围.【详解】(1)时,,故在上为增函数,在上为减函数,在为增函数,故函数的单调递减区间为.(2)因为函数在R上单调递增,故,解得.(3)等价于且恒成立,先考虑恒成立,则,故.再考虑恒成立,又,故,故,解得,综上,的取值范围为.【点睛】方法点睛:对于含绝对值符号的函数,可先去掉绝对值符号,从而把问题题转化为常见的一次函数、二次函数在给定范围上的恒成立问题,注意先讨论简单的一次函数的性质,从而参数的初步范围后再讨论二次函数的性质.14.(2021·重庆市清华中学校高一阶段练习)对于定义域为的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调的;②当定义域是时,的值域也是.则称是函数的一个“黄金区间”.(1)请证明:函数不存在“黄金区间”.(2)已知函数在上存在“黄金区间”,请求出它的“黄金区间”.(3)如果是函数的一个“黄金区间”,请求出的最大值.【答案】(1)证明见解析;(2);(3).【分析】(1)由为上的增函数和方程的解的情况可得证;(2)由可得出,再由二次函数的对称轴和方程,可求出函数的“黄金区间”;(3)化简得函数的单调性,由已知是方程的两个同号的实数根,再由根的判别式和根与系数的关系可表示,由或,可得的最大值.【详解】解:(1)证明:由为上的增函数,则有,∴,无解,∴不存在“黄金区间”;(2)记是函数的一个“黄金区间”,由及此时函数值域为,可知而其对称轴为,∴在上必为增函数,令,∴,∴故该函数有唯一一个“黄金区间”;(3)由在和上均为增函数,已知在“黄金区间”上单调,所以或,且在上为单调递增,则同理可得,,即是方程的两个同号的实数根,等价于方程有两个同号的实数根,又,则只要,∴或,而由韦达定理知,,所以,其中或,所以当时,取得最大值.【点睛】关键点点睛:本题考查函数的新定义,对于解决此类问题的关键在于紧扣函数的新定义,注意将值域问题转化为方程的根的情况得以解决.15.(2022·广东·普宁市第二中学高一期中)已知函数,,. 若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论.(3)已知且,若.试证:.【答案】(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【分析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大(1),即,因为不等式解集为,所以,解得:,所以(2)函数在区间上的单调递增,证明如下:假设,则因为,所以,所以,即当时,,所以函数在区间上的单调递增(3)由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明,代入解析式得:,即,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证:【点睛】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点:(1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程(2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数16.(2021·江苏·高一单元测试)已知函数,(1)对任意的,函数在区间上的最大值为,试求实数的取值范围;(2)对任意的,若不等式任意()恒成立,求实数的取值范围.【答案】(1)(2)【分析】(1)由已知可得,结合对勾函数的单调性与最值情况求参数范围;(2)由题意不等式可转化为函数在上单调递增,结合分段函数的单调性,分情况讨论. (1)由,由对勾函数的性质得函数在上单调递减,在上单调递增,所以,又,所以,又函数在区间上的最大值为,所以,即,解得,所以;(2)不等式任意()恒成立,即,设,在上单调递增,即在上单调递增,当时,,①当时,单调递增,成立;②当时,单调递增,成立,③当时,只需,即,当时,,①当时,在上递减,所以不成立;②当时,在上递减,所以不成立;③当时,只需,即,综上所述,.17.(2021·全国·高一专题练习)已知函数对一切实数都有成立,且(1)求的解析式;(2),若存在,使得,有成立,求的取值范围.【答案】(1)(2)【分析】(1)赋值法,令y=1,求出,进而求出;(2)根据题干中的条件,只需,先求出函数的最大值,然后利用二次函数的性质求最值,进而求出a的取值范围.(1)∵函数对一切实数都有成立,且,令y=1,则,(2)由题意,有,则,对于g(x),当x=0时,g(0)=0,当时,,设,则在(0,1)单调递减,在单调递增,在x=1处取到最小值,所以,所以,综上,,当且仅当x=1时取到,所以;设,则h(x)为开口向上的二次函数,其对称轴为x=a,下面通过对称轴的位置对h(x)的最值情况进行分类讨论:当时,对称轴距离区间右侧x=2更远,故,∴,即;2)当时,对称轴距离区间左侧x=-1更远,故,∴,即;综上,.。
高中函数练习题及答案
高中函数练习题及答案高中函数练习题及答案在高中数学中,函数是一个重要的概念,它是数学中的一种关系,可以将一个数集映射到另一个数集。
函数的概念在数学的各个领域都有广泛的应用,因此对于高中学生来说,掌握函数的概念和相关的解题方法是非常重要的。
下面我将为大家提供一些高中函数练习题及其答案,希望对大家的学习有所帮助。
1. 题目:已知函数 f(x) = 2x + 3,求 f(4) 的值。
解答:将 x = 4 代入函数 f(x) 中,得到 f(4) = 2(4) + 3 = 11。
所以 f(4) 的值为11。
2. 题目:已知函数 g(x) = x^2 - 4x + 5,求 g(3) 的值。
解答:将 x = 3 代入函数 g(x) 中,得到 g(3) = 3^2 - 4(3) + 5 = 9 - 12 + 5 = 2。
所以 g(3) 的值为 2。
3. 题目:已知函数 h(x) = 3x^2 + 2x - 1,求 h(-1) 的值。
解答:将 x = -1 代入函数 h(x) 中,得到 h(-1) = 3(-1)^2 + 2(-1) - 1 = 3 + (-2) - 1 = 0。
所以 h(-1) 的值为 0。
4. 题目:已知函数 f(x) = x^3 - 2x^2 + x,求 f(0) 的值。
解答:将 x = 0 代入函数 f(x) 中,得到 f(0) = 0^3 - 2(0)^2 + 0 = 0。
所以 f(0)的值为 0。
5. 题目:已知函数 g(x) = 2x^2 + 3x - 2,求 g(-2) 的值。
解答:将 x = -2 代入函数 g(x) 中,得到 g(-2) = 2(-2)^2 + 3(-2) - 2 = 2(4) - 6 - 2 = 8 - 6 - 2 = 0。
所以 g(-2) 的值为 0。
通过以上的练习题,我们可以看到,求函数在某个特定点的值,只需要将该点的横坐标代入函数中即可。
这是因为函数的定义就是通过一个自变量的取值来确定一个因变量的值。
高中必修一数学常数函数练习题
常数函数基础练习一次函数与正比例函数1.一次函数若两个变量x,y间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.当b=0时,称y是x的正比例函数.2.判断训练(打“√”或“×”)(1)一次函数是正比例函数.()(2)正比例函数是一次函数.()(3)x+2y=5是一次函数.()(4)2y-x=0是正比例函数.()训练点一:一次函数的概念1.(2分)下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1B.2C.3D.42.(2分)若2y+1与x-5成正比例,则()A.y是x的一次函数B.y与x没有任何函数关系C.y是x的函数,但不是一次函数D.y是x的正比例函数3.(2分)函数y=(m-2)x2n+1-m+n,当m=________,n=________时为正比例函数.4.(2分)下列函数中:①y=-;②y=6x2+x;③y=1-8x;④y=x;⑤y=-2x;⑥y=2x-1.一次函数有______;正比例函数有______(填序号).训练点二:一次函数的关系式1.(2分)如果每盒圆珠笔有12枝,售价18元,用y(元)表示圆珠笔的总售价,x表示圆珠笔的枝数,那么y与x之间的关系应该是()A.y=12xB.y=18xC.y=xD.y=x2.若函数y=(m-2)x+5-m是一次函数,则m应满足的条件是________,若函数为正比例函数,则m的值为________,此时的函数关系式为________.反比例函数检测题一、选择题(每小题3分,共30分)1.(2013•温州中考)已知点P (1,-3)在反比例函数0ky k x =≠()的图像上,则k 的值是()A.3B.3-C.13D.13-2.函数xk y =的图像经过点,则函数2-=kx y 的图像不经过第()象限.A .一 B.二C.三D.四3.在同一坐标系中,函数x ky =和3+=kx y 的图像大致是()4.当k >0,x <0时,反比例函数的图像在()A.第一象限B.第二象限C.第三象限D.第四象限5.若函数的图像经过点(3,-7),那么它一定还经过点()A.(3,7)B.(-3,-7)C.(-3,7)D.(2,-7)6.若反比例函数1232)12(---=k k x k y 的图像位于第二、四象限,则k 的值是()A.B.C.D.7.(2013•绥化中考)对于反比例函数3y x=,下列说法正确的是()A.图像经过点(1,-3)B.图像在第二、四象限C.当0x >时,y 随x 的增大而增大D.当0x <时,y 随x 的增大而减小8.已知点A (-2,)、B (-1,)、C (3,)都在反比例函数4y x=的图像上,则的大小关系是()A.B.C.D.y xO AOy xBOy xCO xyD已知与成反比例,且当时那么当时________.的图像都经过点.求:二次函数检测题一、选择题(每小题3分,共36分)1.(2013•兰州中考)二次函数2213y x =--+()的图象的顶点坐标是()A.(1,3) B.(-1,3)C.(1,-3) D.(-1,-3)2.(2013•哈尔滨中考)把抛物线21y x =+()向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.222y x =++()B.222y x =+-()C.22y x =+ D.22y x =-3.二次函数522-+=x x y 取最小值时,自变量的值是()A.2B.-2C.1D.-14.抛物线轴的交点纵坐标为()A.-3B.-4C.-5D.-15.函数的图象大致为()ABC D6.函数的部分图象与的交点分别为A (1,0)、B (0,3),对称轴是,在下列结论中,错误的是()A .顶点坐标为(-1,4) B.函数的解析式为C.当D.抛物线与轴的另一个交点是(-3,0)7.将抛物线=32向右平移两个单位,再向下平移4个单位,所得抛物线是()A .y =3(x +2)2+4 B.y =3(x 2)2+4 C.y =3(x 2)24D.y =3(x +2)248.已知二次函数,当取,(≠)时,函数值相等,则当取时,函数值为()A.B .C. D.c9.下列函数不属于二次函数的是()A.B.C. D.二、填空题如果函数是二次函数,那么的值一定是.三、解答题21.(10分)已知二次函数的图象过点(0,5).⑴求的值,并写出二次函数的关系式;⑵求出二次函数图象的顶点坐标、对称轴.22.(8分(2013•安徽中考)已知二次函数图象的顶点坐标为11 (,),且经过原点00(,),求该函数的解析式.。
高一函数练习题及答案
高一函数练习题及答案高一函数练习题及答案函数是高中数学中的重要概念之一,也是数学学习的基础。
在高一的数学学习中,函数的概念和性质是必须要掌握的内容。
为了帮助同学们更好地理解和掌握函数,下面我将为大家提供一些高一函数练习题及答案,希望能对大家的学习有所帮助。
1. 已知函数f(x) = 2x + 3,求f(4)的值。
解答:将x = 4代入函数表达式中,得到f(4) = 2(4) + 3 = 8 + 3 = 11。
所以f(4)的值为11。
2. 已知函数g(x) = x^2 - 4x + 5,求g(-1)的值。
解答:将x = -1代入函数表达式中,得到g(-1) = (-1)^2 - 4(-1) + 5 = 1 + 4 +5 = 10。
所以g(-1)的值为10。
3. 已知函数h(x) = 3x^2 + 2x - 1,求h(2)的值。
解答:将x = 2代入函数表达式中,得到h(2) = 3(2)^2 + 2(2) - 1 = 12 + 4 - 1 = 15。
所以h(2)的值为15。
4. 已知函数k(x) = |x - 3|,求k(5)的值。
解答:将x = 5代入函数表达式中,得到k(5) = |5 - 3| = |2| = 2。
所以k(5)的值为2。
5. 已知函数m(x) = 2x^3 - x^2 + 3x - 2,求m(0)的值。
解答:将x = 0代入函数表达式中,得到m(0) = 2(0)^3 - (0)^2 + 3(0) - 2 = -2。
所以m(0)的值为-2。
通过以上的练习题,我们可以看到,函数的值可以通过将自变量代入函数表达式中来求得。
这是函数的基本性质之一。
除了求函数的值外,我们还可以通过函数的图像来了解函数的性质。
下面我们来看一个例子。
例题:已知函数y = x^2 - 4x + 3,求函数的图像。
解答:为了画出函数的图像,我们可以先找出函数的顶点和对称轴。
首先,我们可以通过求导数的方法来找出函数的顶点。
人教高中数学 必修一 第一章 1.2.2 复合函数问题练习(含答案)
复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.三 复合函数定义域问题 (1)、已知的定义域,求的定义域思路:设函数的定义域为D ,即,所以的作用范围为D ,又f 对作用,作用范围不变,所以D x g ∈)(,解得,E 为的定义域。
例1. 设函数的定义域为(0,1),则函数的定义域为_____________。
解析:函数的定义域为(0,1)即,所以的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以解得,故函数的定义域为(1,e ) 例2. 若函数,则函数的定义域为______________。
解析:先求f 的作用范围,由,知即f 的作用范围为,又f 对f(x)作用所以,即中x 应满足即,解得故函数的定义域为(2)、已知的定义域,求的定义域思路:设的定义域为D ,即,由此得,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以为的定义域。
例3. 已知的定义域为,则函数的定义域为_________。
解析:的定义域为,即,由此得所以f 的作用范围为,又f 对x 作用,作用范围不变,所以即函数的定义域为例4. 已知,则函数的定义域为______________。
解析:先求f 的作用范围,由,知解得,f 的作用范围为,又f 对x 作用,作用范围不变,所以,即的定义域为 (3)、已知的定义域,求的定义域思路:设的定义域为D ,即,由此得,的作用范围为E ,又f 对作用,作用范围不变,所以,解得,F 为的定义域。
例5. 若函数的定义域为,则的定义域为____________。
解析:的定义域为,即,由此得的作用范围为又f 对作用,所以,解得即的定义域为四、复合函数单调性问题(1)引理证明已知函数))((x g f y =.若)(x g u =在区间b a ,( )上是减函数,其值域为(c ,d),又函数)(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,( )上是增函数.证明:在区间b a ,()内任取两个数21,x x ,使b x x a <<<21因为)(x g u =在区间b a ,()上是减函数,所以)()(21x g x g >,记)(11x g u =,)(22x g u =即),(,21,21d c u u u u ∈>且因为函数)(u f y =在区间(c,d)上是减函数,所以)()(21u f u f <,即))(())((21x g f x g f <,故函数))((x g f y =在区间b a ,()上是增函数. (2).复合函数单调性的判断复合函数的单调性是由两个函数共同决定。
人教版高中数学必修一《函数的基本性质》练习题含答案
人教版高中数学必修一《函数的基本性质》练习题含答案一、选择题1.B2.B3.D4.B5.A6.D二、填空题1.x∈(-5,-1)∪(0,1)2.(-∞,∞)3.(-∞,∞)4.(-∞,0)5.2三、解答题1.一次函数y=kx+b的单调性取决于k的正负性。
当k>0时,函数单调递增;当k0时,函数在(0,∞)上单调递减;当k<0时,函数在(-∞,0)上单调递减。
2.因为f(x)是奇函数,所以f(1-a)+f(-(1-a))=0,即f(1-a)=-f(1+a)。
由于f(x)在定义域上单调递减,所以f(1-a)f(1-a)>f(1),即f(0)>-f(1+a)>f(1)。
又因为f(1-a)=-f(1+a),所以f(0)>f(1+a)>f(1)。
由此可得1+a<0,即a<-1.3.函数y=x+1+2x的定义域为(-∞,∞),因为x+1的单调性为单调递增,2x的单调性为单调递增,所以y的单调性为单调递增。
因此,y的值域为(-∞,∞)。
已知函数$f(x)=x+2ax+2,x\in[-5,5]$,二次函数$y=ax^2+bx+c$,其中:①当$a=-1$时,求函数的最大值和最小值;当$a=-1$时,二次函数为$y=-x^2+bx+c$,由于$a<0$,所以开口向下,最大值为顶点,顶点横坐标为$x_0=-\frac{b}{2a}=0$,代入得$y_{\max}=c$,最小值为区间端点处的值,即$f(-5)$和$f(5)$中的较小值。
因此,函数$f(x)$的最大值为$c$,最小值为$\min\{f(-5),f(5)\}$。
②求实数$a$的取值范围,使$y=f(x)$在区间$[-5,5]$上是单调函数。
二次函数$y=ax^2+bx+c$在开口方向上单调递增的充分必要条件是$a>0$,在开口方向上单调递减的充分必要条件是$a0$时,$y=f(x)$在$[-5,5]$上是单调递增函数;当$a<0$时,$y=f(x)$在$[-5,5]$上是单调递减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:
1、下列各组函数是同一函数的是( )
①()f x =
与()g x =;②()f x x =
与2
()g x =;③0()f x x =与0
1
()g x x =
;④2()21f x x x =--与2()21g t t t =--。
A 、①②
B 、①③
C 、③④
D 、①④ 2、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 3
、函数y =的值域为 ( )
A 、[]0,2
B 、[]0,4
C 、(],4-∞
D 、[)0,+∞ 4、若:f A B →能构成映射,下列说法正确的有 ( )
(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、4个 B 、3个 C 、2个 D 、1个
5、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是递减的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5
6、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )
A 、12a >
B 、12a <
C 、12a ≥
D 、12
a ≤ 7、定义在R 上的函数()f x 对任意两个不相等实数,a
b ,总有()()
0f a f b a b ->-成立,则必有( )
A 、函数()f x 是先增加后减少
B 、函数()f x 是先减少后增加
C 、()f x 在R 上是增函数
D 、()f x 在R 上是减函数
8、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
A 、(1)(2)(4)
B 、(4)(2)(3)
C 、(4)(1)(3)
D 、(4)(1)(2)
9. 若f (x )=x + 1
x ,则对任意不为零的实数x 恒成立的是( ).
(1) (2) (3)
(4)
A. f (x )=f (-x )
B. f (x )=f (
x 1) C. f (x )=-f (x 1) D. f (x ) f (x
1)=0 10. 与函数y = x 有相同图象的一个函数是( ).
A .y =x 2
B. y =x 2x
C. y =a log a x (a >0, a ≠1)
D. y = log a a x (a>0, a≠1) 11. 在同一坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ). A.关于原点对称 B.关于x 轴对称
C.关于直线y =1对称.
D.关于y 轴对称
12 下列函数中,在区间(0,+∞)上是增函数的是( ).
A.y =-x 2
B.y = x 2-x +2
C.y =(21
)x D.y =x 1log 3.0
13. 函数y =)(log 2x -是( ).
A. 在区间(-∞,0)上的增函数
B. 在区间(-∞,0)上的减函数
C. 在区间(0,+∞)上的增函数
D. 在区间(0,+∞)上的减函数
14. 函数f (x )=3x -1
3x +1 ( ).
A. 是偶函数,但不是奇函数
B. 是奇函数,但不是偶函数
C. 既是奇函数,又是偶函数
D.不是奇函数,也不是偶函数 15. 下列函数中为奇函数的是( ).
A. f (x )=x 2+x -1
B. f (x )=|x |
C. f (x )=23x x +
D. f (x )=
5
22x x --
16. 设函数f (x )=(m -1)x 2+(m +1)x +3是偶函数,则m=________. 17. 已知函数f (x )=||2x ,那么函数f (x )( ). A. 是奇函数,且在(-∞,0)上是增函数 B. 是偶函数,且在(-∞,0)上是减函数 C. 是奇函数,且在(0,+∞)上是增函数 D. 是偶函数,且在(0,+∞)上是减函数 18. 函数y =||log 3x (x ∈R 且x ≠0)( ) .
A. 为奇函数且在(-∞,0)上是减函数
B. 为奇函数且在(-∞,0)上是增函数
C. 是偶函数且在(0,+∞)上是减函数
D. 是偶函数且在(0,+∞)上是增函数
19. 若f (x )是以4为周期的奇函数,且f (-1)=a (a ≠0),则f (5)的值等于( ). A. 5a B. -a C. a D. 1-a
20. 设a =log 26.7, b =log 0.24.3, c =log 0.25.6,则a, b, c 的大小关系为( )
A. b <c <a
B. a <c <b
C. a <b <c
D. c <b <a 21. 若1log 2
1>x ,则x 的取值范围是( ).
A. 21<
x B.210<<x C.2
1
>x D.0<x 二、填空题:
1. 函数x x x f -+-=32)(的定义域为________.
2. 函数2
91)(x
x f -=
的定义域为________.
3. 若函数_____)1(,)(2=+=x f x x f 则.
4. 已知_______)(,12)1(=-=+x f x x f 则.
5. 已知1)(-=x x f ,则______)2(=f .
6. 已知⎩⎨⎧≥<=0,20
,)(2x x x x f ,则_____)0(=f _____)]1([=-f f .
7. 函数x y 2
-=的值域为________.
8. 函数R x x y ∈+=,12的值域为________. 9. 函数)3,0(,22∈-=x x x y 的值域为________. 10. 下列函数在),0(+∞上是减函数的有__________.
(1)12+=x y (2)x
y 2
=
(3)x x y 22+-= (4)12+--=x x y 11. 下列函数为奇函数的有________.
(1)1+=x y (2)x x y -=2 (3)1=y (4)x
y 1
-=
12. 若映射B A f →:把集合A 中的元素(x,y )映射到B 中为),(y x y x +-, 则(2, 6)的象是______,则(2, 6)的原象是________.
13. 设函数f (x )=(m -1)x 2+(m +1)x +3是偶函数,则m=________.
14、已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是 。
15. 已知⎩⎨⎧≥<=0
,20
,)(2x x x x f ,则_____)0(=f _____)]1([=-f f .
16、设2 2 (1)() (12)2 (2)x x f x x x x x +-⎧⎪
=-<<⎨⎪⎩
≤≥,若()3f x =,则x = 。
17.方程0422=+-ax x 的两根均大于1,则实数a 的取值范围是_____。
18. 如果函数y =x a log 的图象过点(9
1
,2),则a =___________.
19. 实数2732–3log 22·log 21
8 +lg4+2lg5的值为_____________. 三、解答题:
1、设函数)(x f y =是定义在R +上的减函数,并且满足)()()(y f x f xy f +=,131=⎪⎭
⎫
⎝⎛f ,
(1)求)1(f 的值, (2)如果2)2()(<-+x f x f ,求x 的取值范围。