深圳十年中考数学压轴题汇总
深圳市近10年中考数学试题及答案
![深圳市近10年中考数学试题及答案](https://img.taocdn.com/s3/m/a97efea3ad02de80d5d84022.png)
6.一件标价为 元的商品,若该商品按八折销售,则该商品的实际售价是( )
A. 元B. 元C. 元D. 元
7.一组数据 , , , , 的方差是( )
A. B. C. D.
8.若 ,则 的值是( )
A. B. C. D.
9.如图2,直线 ,则 的度数是( )
A. B. C. D.
A.百亿位B.亿位C.百万位D.百分位
4.下列图形中,是轴对称图形的为
ABCD
5.下列不等式组的解集,在数轴上表示为如图2所示的是
A. B.
C. D. 图2
6.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们
在家的学习时间如下表所示.那么这六位学生学习时间的众数与中位数分别是
∴OC=2 (-2 舍去)
∴线段OC的长为2 ……3分
(2)解:∵△OCA∽△OBC
∴
设AC=k,则BC= k
由AC +BC =AB 得
k +( k) =(6-2)
解得k=2(-2舍去)
∴AC=2,BC=2 =OC……1分
过点C作CD⊥AB于点D
∴OD= OB=3
∴CD=
∴C的坐标为(3, )……2分
A.至多6人B.至少6人C.至多5人D.至少5人
9.如图4,王华晚上由路灯A下的B处走到C处时,测得
影子CD的长为1米,继续往前走3米到达E处时,测
得影子EF的长为2米,已知王华的身高是1.5米,那么
路灯A的高度AB等于
A.4.5米B.6米
C.7.2米D.8米
图4
10.如图5,在□ABCD中,AB:AD = 3:2,∠ADB=60系式.
解:
深圳历年中考数学压轴题(选择题)(1)(1)
![深圳历年中考数学压轴题(选择题)(1)(1)](https://img.taocdn.com/s3/m/3e21b8af43323968001c9270.png)
深圳历年中考数学压轴题(选择题20)1.二次函数2(0)y ax bx c a =++≠的图像如图1所示,则下列结论正确的是( )A .0abc >B .20a b +<C .30a c +<D .方程230ax bx c ++-=有两个不相等的实数根2.如图2,A 、B 是反比例函数12y x=图像上的两点,过点A 作x 轴的平行线,过点B 作y 轴的平行线,交于点P ,连接OA 、OB 、AB ,则下列说法正确的是( ) ①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16PAB S ∆= A .①③ B .②③ C .②④ D .③④3.如图3,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是的中点,点D 在OB 上, 点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( )A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣4图3 图44.如图4,CB=CA ,∠ACB=90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB :S 四边形CBFG =1:2;③∠ABC=∠ABF ;④AD 2=FQ •AC , 其中正确的结论的个数是( )A .1B .2C .3D .45.如图5,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()(图5)A.1 B.2 C.3 D.46.二次函数y=ax2+bx+c图象如图6,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.(图6)A.2 B.3 C.4 D.57.如图7,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()(图7)(图8)A.1 B.3﹣C.﹣1 D.4﹣28.如图8,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.9.如图9,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3(图9)(图10)10.如图10,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.6411.如图11,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()(图11)(图12)A.:1 B.:1 C.5:3 D.不确定12.如图12,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.如图13,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为()(图13)(图14)A.cm2B.(π﹣)cm2C.cm2D.cm214.如图14,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于()A.B.C.D.15.如图15,在▱ABCD中,AB:AD=3:2,∠ADB=60°,那么cos∠A的值等于()A.B.C.D.(图15)(图16)16.如图16,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C,若CE=2,则图中阴影部分的面积是()A.π﹣B.πC.π﹣D.π17.如图17,⊙O的两弦AB、CD相交于点M,AB=8cm,M是AB的中点,CM:MD=1:4,则CD=()A.12cm B.10cm C.8cm D.5cm(图17)(图18)18.如图18,圆内接四边形ABCD中,AC平分∠BAD,EF切圆于C,若∠BCD=120°,则∠BCE=()A.30°B.40°C.45°D.60°19.如图19,抛物线过点A(2,0)、B(6,0)、C(1,),平行于x轴的直线CD交抛物线于点C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是()A.2 B.4 C.5 D.6(如图19)(如图20)20.如图20,直线l1∥l2,AF:FB=2:3,BC:CD=2:1,则AE:EC是()A.5:2 B.4:1 C.2:1 D.3:2。
深圳松岗碧头文武学校中考数学期末几何综合压轴题易错汇编
![深圳松岗碧头文武学校中考数学期末几何综合压轴题易错汇编](https://img.taocdn.com/s3/m/f69f6df4844769eae109ed40.png)
深圳松岗碧头文武学校中考数学期末几何综合压轴题易错汇编一、中考数学几何综合压轴题1.在Rt ABC ∆中,90,7,2ACB AB AC ︒∠===,过点B 作直线//m AC ,将ABC ∆绕点C 顺时针旋转得到A B C ''∆(点,A B 的对应点分别是,A B ''),射线,CA CB ''分别交直线m 于点,P Q . (1)问题发现:如图1所示,若P 与A '重合,则ACA '∠的度数为_________________ (2)类比探究:如图2,所示,设A B ''与BC 的交点为M ,当M 为A B ''中点时,求线段PQ 的长;(3)拓展延伸:在旋转过程中,当点,P Q 分别在,CA CB ''的延长线上时,试探究四边形PA B Q ''的面积是否存在最小值,若存在,直接写出四边形PA B Q ''的最小面积;若不存在,请说明理由解析:(1)60°;(2)72;(3)存在,33【分析】 (1)由旋转可得:AC=A'C=2,进而得到3∠A'BC=90°,可得cos ∠A'CB=3BC A C '=,即可得到∠A'CB=30°,∠ACA'=60°; (2)根据M 为A'B'的中点,即可得出∠A=∠A'CM ,进而得到PB=3BC A C '=tan ∠BQC=tan ∠33,进而得出PQ=PB+BQ=72; (3)依据S 四边形PA'B′Q =S △PCQ -S △A'CB '=S △PCQ 3S 四边形PA'B′Q 最小,即S △PCQ 最小,而S △PCQ =123,利用几何法或代数法即可得到S △PCQ 的最小值=3,S 四边形PA'B′Q =3-3 【详解】解(1)由旋转得:2AC A C '==,90,7,2,3ACB AB AC BC ︒∠===∴=90,//ACB m AC ︒∠=, 90A BC ︒'∴∠=,3cos BC A CB A C '∴∠==' 30A CB ︒'∴∠=,60A CA ︒'∴∠=;(2)因为M 是AA '中点,所以A CM MA C ''∠=∠,A MA C '∠=∠,A A CM '∴∠=∠, 3tan tan 2PCB A ∠=∠=∴, 3322PB BC ∴==. ∵∠PCQ=∠PBC=90°,∴∠BQC+∠BPC=∠BCP+∠BPC=90°,∴∠BQC=∠BCP=∠A ,3tan tan 2BQC A ∴∠=∠=, 223BQ BC ∴=⨯=, 72PQ PB BQ ∴=+=; (3) 3PA B Q PCQ A CB PCQ S S S S ''''∆=-=-,PA B Q S ''∴最小,即PCQ S 最小,1322PCQ S PQ BC PQ ∴=⨯=, 取PQ 的中点G ,190,2PCQ CG PQ ︒∠=∴=,即PQ=2CG , 当CG 最小时, PQ 最小,CG PQ ∴⊥, CG 与CB 重合,CG 最小,∵CG 3PA B Q S ''∴33=【点睛】本题属于四边形综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.2.(基础巩固)(1)如图1,在ABC ∆中,90ACB ∠=︒,直线l 过点C ,分别过AB 、两点作,AE l BD l ⊥⊥,垂足分别为E D 、.求证:BDC CEA ∆∆.(尝试应用)(2)如图2,在ABC ∆中,90ACB ∠=︒,D 是BC 上一点,过D 作AD 的垂线交AB 于点E .若4,tan ,205BE DE BAD AC =∠==,求BD 的长. (拓展提高)(3)如图3,在ABCD 中,在BC 上取点E ,使得90AED ∠=︒,若4,,143BE AE AB CD EC ===,求ABCD 的面积.解析:(1)见解析;(2)32BD =;(3)710【分析】(1)由直角三角形的性质证得∠BDC =∠AEC ,由相似三角形的判定定理可得出结论; (2)过点E 作EF ⊥BC 于点F ,由相似三角形的性质得出DE DF DA AC =,由锐角三角函数的定义求出DF =16,则可求出答案;(3)过点A 作AM ⊥BC 于点M ,过点D 作DN ⊥BC ,交BC 的延长线于点N ,证明△ABM ≌△DCN (AAS ),由全等三角形的性质得出BM =CN ,AM =DN ,设BE =4a ,EC =3a ,由(1)得△AEM ∽△EDN ,得出比例线段AM EN ME DN =,求出a =1,b 10,由平行四边形的面积公式可得出答案.【详解】解:(1)∵90ACB ∠=︒,∴90BCD ACE ∠+∠=︒,∵AE CE ⊥,∴90AEC ∠=︒,∴90ACE CAE ∠+∠=︒,∴BCD CAE ∠=∠.∵BD DE ⊥,∴90BDC ∠=︒,∴BDC AEC ∠=∠,∴BDC CEA ∆∆(2)过点E 作EF BC ⊥于点F ,由(1)得EDFDAC ∆∆, ∴DE DF DA AC = ∵AD DE ⊥,4tan ,205BAD AC ∠==, ∴4520DF =, ∴16DF =∵BE DE =,∴BF DF =∴32BD =(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥的延长线于点N ,∴090AMB DNC ∠=∠=∵四边形ABCD 是平行四边形,∴//,AB CD AB CD =,∴B DCN ∠=∠,∴ABM DCN ∆≅∆,∴,BM CN AM DN ==,∵,AB AE AM BC =⊥,∴BM ME =∵43BE EC =,设4,3BE a EC a == ∴2,5BM ME CN a EN a ====∵90AED ∠=︒,由(1)得AEMEDN ∆∆, ∴AM EN ME DN =, ∴25b a a b=∴10b a = ∵14CD =,∴()22214a b += ∴1,10a b == ∴ABCD 的面积177102BC DN a b =⨯⨯=⨯= 【点睛】本题是相似形综合题,考查了相似三角形的判定与性质,全等三角形的判定与性质,平行四边形的性质,锐角三角函数的定义,熟练掌握相似三角形的判定与性质是解题的关键. 3.(了解概念)定义:在平面直角坐标系xOy 中,组成图形的各点中,与点Р所连线段最短的点叫做点Р关于这个图形的短距点,这条最短线段的长度叫做点Р到这个图形的短距.(理解运用)(1)已知点()3,0P -,以原点为圆心,l 为半径作O ,则点Р关于O 的短距点的坐标是 ;(2)如图,点(3P ,等边三角形OAB 的顶点A 的坐标为()6,0,顶点B 在第一象限,判断点Р关于OAB 的短距点的个数,并说明理由;(拓展提升)(3)已知(),6P p p -+,()6,0A ,()0,6B ,点C 在第一象限内,且75CBO ∠=︒,90ACB ∠=︒,若点Р到四边形OACB 的短距大于2,请直接写出p 的取值范围. 解析:(1)(-1,0);(2)点Р关于OAB 的短距点的个数有3个;(3)当p <22p <4或p >2Р到四边形OACB 的短距大于2.【分析】(1)连接PO ,交O 于点M ,点M 即是点Р关于O 的短距点,进而即可求解; (2)根据题意得点P 是三角形OAB 的中心,进而即可求解;(3)由题意得点P ,A ,B 在直线y =-x +6上,以点P 为圆心,半径长为2画圆,分3种情况:①当点P 在AB 的延长线上,圆P 过点B 时,②当点P 在线段AB 上,圆P 与BC 相切于点N ,过点P 作PM ⊥y 轴,③当点P 在BA 的延长线上,圆P 过点A 时,过点P 作PM ⊥y 轴,分别求解,即可得到答案.【详解】解:(1)连接PO ,交O 于点M ,点M 即是点Р关于O 的短距点,∵()3,0P -,、O 的半径为1,∴M (-1,0),故答案是:(-1,0);(2)∵点(3P ,等边三角形OAB 的顶点A 的坐标为()6,0,∴点P 是三角形OAB 的中心,∴点P 到OA ,OB ,OC 3∴点Р关于OAB 的短距点的个数有3个;(3)∵(),6P p p -+,()6,0A ,()0,6B ,∴点P ,A ,B 在直线y =-x +6上,∴∠ABO =∠BAO =45°,∵点C 在第一象限内,且75CBO ∠=︒,90ACB ∠=︒,∴∠ABC =75°-45°=30°,以点P 为圆心,半径长为2画圆,如图所示:当点P 在AB 的延长线上,圆P 过点B 时,过点P 作PM ⊥y 轴,∵PB=2,∠PBM=45°,∴PM=2×22=2,∴p<-2时,点Р到四边形OACB的短距大于2;①当点P在线段AB上,圆P与BC相切于点N,过点P作PM⊥y轴,则BP=2PN=2×2=4,PM=BP×22=22,②当点P在线段AB上,圆P与OA相切于点N,过点P作PM⊥y轴,则AP=2PN=22,BP=AB-AP=62-22=42,PM= BP×22=42×22=4,∴22<p<4时,点Р到四边形OACB的短距大于2;③当点P在BA的延长线上,圆P过点A时,过点P作PM⊥y轴,则PM=(2)22∴p>6+2时,点Р到四边形OACB的短距大于2;综上所述:当p<-2或22<p<4或p>6+2时,点Р到四边形OACB的短距大于2.【点睛】本题主要考查图形与坐标以及圆的综合题,根据题意画出图形,掌握圆与直线相切的性质是解题的关键.4.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.解析:(1)=;(2)成立,证明见解析;(3)135°.【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,再简单计算即可.【详解】(1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC ,∴DB=EC ,故答案为=,(2)成立.证明:由①易知AD=AE ,∴由旋转性质可知∠DAB=∠EAC ,又∵AD=AE ,AB=AC∴△DAB ≌△EAC ,∴DB=CE ,(3)如图,将△CPB 绕点C 旋转90°得△CEA ,连接PE ,∴△CPB ≌△CEA ,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt △PCE 中,由勾股定理可得,PE=22在△PEA 中,PE 2=(222=8,AE 2=12=1,PA 2=32=9,∵PE 2+AE 2=AP 2,∴△PEA 是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB ≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.5.如图,E F ,分别为ABC 中AC AB ,上的动点(点、、A B C 除外),连接EB FC ,交于点P ,6BC =.我们约定:线段BC 所对的CPB ∠,称为线段BC 的张角.情景发现(1)已知三角形ABC 是等边三角形,AE BF =,①求线段BC 的张角CPB ∠的度数;②求点P 到BC 的最大距离;③若点P 的运动路线的长度称为点P 的路径长,求点P 的路径长.拓展探究(2)在(1)中,已知A BC '是圆P 的外切三角形,若点A '的运动路线的长度称为点A '的路径长,试探究点A '的路径长与点P 的路径长之间有何关系?请通过计算说明.解析:(1)①BPC ∠=120°,②点P 到BC 的最大距离3PN =433π;(2)点A '的路径长与点P 的路径长的比值是2:1(或点A '的路径长是点P 的路径长的2倍).【分析】(1)①利用等边三角形的性质证△AEB 与△BCF 全等,得到∠EBA =∠BCF ,利用三角形的内角和定理即可求出∠CPB 的度数;②由题意可知当PO ⊥BC 于点N 时,点P 到BC 的距离最大,根据垂径定理及三角函数即可求出点P 到BC 的最大距离;③由题意知点P 的路径长为弧BC 的长,在②的基础上直接利用公式即可求出结果; (2)由题意可知张角∠CPB 的度数始终为120°,可得∠CBP +∠BCP =60°,因为圆P 是△A'BC 的内切圆,由此可推出A'是等边三角形ABC 外接圆上优弧BAC 上的一动点,其半径为3240°,根据弧长公式可直接求出其长度,并计算出点A'的路径长是点P 的路径长的2倍.【详解】解:(1)①∵ABC 是等边三角形, ∴60CBAA AB BC ∠∠︒===,, ∵AE BF =,∴AEB BCF △≌△,∴EBABCF ∠∠=. ∵60180EBA EBC EBC BCF BPC ∠+∠︒∠+∠+∠︒=,=, ∴180180BPC EBC BCF EBC EBA ∠︒-∠-∠=︒-∠-∠=, 180********ABC ︒-∠=︒-︒︒==. ②(2)如图所示,由于BPC ∠始终为120︒,故过点B C P 、、作圆O,∴120BOC ∠︒=. 当PO BC ⊥于点N 时,点P 到BC 的距离最大.∵OB OC =, ∴11 60,322BOP BOC NB BC ∠∠=︒===, ∴3,3ON OB ==∴点P 到BC 的最大距离2333PN =③由②可知点P 的路径为BC 的长度,即x(2)点A '的路径长与点P 的路径长的比值是2:1(或点A '的路径长是点P 的路径长的2倍),理由:由(1)中题意可知张角CPB ∠的度数始终为120︒,可得60CBP BCP ∠+∠=︒, 又因为圆P 是A BC '△的内切圆, 所以120CBA BCA ''∠+∠=︒, 所以 60CA B ∠'=︒,所以A '是等边三角形ABC 外接圆上优弧BAC 上的一动点,由题意可得等边三角形ABC 外接圆的半径为23,点A '的路径是优弧BAC 的长度,即以240︒的圆心角,半径为23的弧长,如图,所以点A '的路径长=24023831801803n r πππ⋅==, 点A '的路径长与点P 的路径长的比值是:843:32:133ππ=, 所以点A '的路径长与点P 的路径长的比值是2:1(或点A '的路径长是点P 的路径长的2倍).【点睛】本题考查了等边三角形的性质,圆的有关性质,弧长公式等,解题的关键是能够根据题意画出图形.6.(问题情境)如图1,点E 是平行四边形ABCD 的边AD 上一点,连接BE 、CE .求证:BCE1S2=S 平行四边形ABCD .(说明:S 表示面积) 请以“问题情境”为基础,继续下面的探究(探究应用1)如图2,以平行四边形ABCD 的边AD 为直径作⊙O ,⊙O 与BC 边相切于点H ,与BD 相交于点M .若AD =6,BD =y ,AM =x ,试求y 与x 之间的函数关系式. (探究应用2)如图3,在图1的基础上,点F 在CD 上,连接AF 、BF ,AF 与CE 相交于点G ,若AF =CE ,求证:BG 平分∠AGC .(迁移拓展)如图4,平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,E 是AB 的中点,F 在BC 上,且BF :FC =2:1,过D 分别作DG ⊥AF 于G ,DH ⊥CE 于H ,请直接写出DG :DH 的值.解析:【问题情境】见解析;【探究应用1】18y x=;【探究应用2】见解析;【迁移拓1927 【分析】(1)作EF ⊥BC 于F ,则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF ,即可得出结论; (2)连接OH ,由切线的性质得出OH ⊥BC ,OH =12AD =3,求出平行四边形ABCD 的面积=AD×OH =18,由圆周角定理得出AM ⊥BD ,得出△ABD 的面积=12BD×AM =12平行四边形的面积=9,即可得出结果;(3)作BM ⊥AF 于M ,BN ⊥CE 于N ,同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积,得出12AF×BM =12CE×BN ,证出BM =BN ,即可得出BG 平分∠AGC .(4)作AP ⊥BC 于P ,EQ ⊥BC 于Q ,由平行四边形的性质得出∠ABP =60°,得出∠BAP =30°,设AB =4x ,则BC =3x ,由直角三角形的性质得出BP =12AB =2x ,BQ =12BE ,AP =3=3,由已知得出BE =2x ,BF =2x ,得出BQ =x ,EQ 3,PF =4x ,QF =3x ,QC =4x ,由勾股定理求出AF 22AP PF +=7,CE 22EQ QC +19,连接DF 、DE ,由三角形的面积关系得出AF×DG =CE×DH ,即可得出结果. 【详解】(1)证明:作EF ⊥BC 于F ,如图1所示: 则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF ,∴12BCEABCDSS =.(2)解:连接OH ,如图2所示: ∵⊙O 与BC 边相切于点H , ∴OH ⊥BC ,OH =12AD =3,∴平行四边形ABCD 的面积=AD×OH =6×3=18, ∵AD 是⊙O 的直径, ∴∠AMD =90°, ∴AM ⊥BD ,∴△ABD 的面积=12BD×AM =12平行四边形的面积=9, 即12xy =9,∴y 与x 之间的函数关系式y =18x; (3)证明:作BM ⊥AF 于M ,BN ⊥CE 于N ,如图3所示:同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积, ∴12AF×BM =12CE×BN ,∵AF =CE , ∴BM =BN , ∴BG 平分∠AGC .(4)解:作AP ⊥BC 于P ,EQ ⊥BC 于Q ,如图4所示: ∵平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°, ∴∠ABP =60°,∴∠BAP =30°,设AB =4x ,则BC =3x ,∴BP =12AB =2x ,BQ =12BE ,AP =, ∵E 是AB 的中点,F 在BC 上,且BF :FC =2:1, ∴BE =2x ,BF =2x , ∴BQ =x ,∴EQ ,PF =4x ,QF =3x ,QC =4x ,由勾股定理得:AF =,CE , 连接DF 、DE ,则△CDE 的面积=△ADF 的面积=12平行四边形ABCD 的面积, ∴AF×DG =CE×DH ,∴DG :DH =CE :AF :=【点睛】本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键.7.如图1,两个完全相同的三角形纸片ABC 和DEC 重合放置,其中90C ∠=︒,30B E ∠=∠=︒.(1)操作发现:如图2,固定ABC ,使DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置关系是________;②设BDC 的面积为1S ,AEC 的面积为2S ,则1S 与2S 的数量关系是_____.(2)猜想论证:当DEC 绕点C 旋转到如图3所示的位置时,请猜想(1)中1S 与2S 的数量关系是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)拓展探究:已知60ABC ∠=︒,BD 平分ABC ∠,BD CD =,9BC =, DE AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使DCF BDE S S =△△,请求相应的BF 的长.解析:(1)DE ∥AC ;S 1=S 2;(2)成立,证明见解析;(3)BF 的长为3或6. 【分析】(1)①根据旋转的性质可得AC=CD ,然后求出△ACD 是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD ,再根据直角三角形30°角所对的直角边等于斜边的AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等一半求出AC=12于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后勾股定理求出EG的长,即可得解【详解】(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°-∠B=90°-30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;故答案为:DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=1AB,2∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:S1=S2;(2)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM , ∵在△ACN 和△DCM 中,ACN DCM CMD NAC CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△ACN ≌△DCM (AAS ), ∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即S 1=S 2;(3)如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形, 所以BE=DF 1,且BE 、DF 1上的高相等, 此时S △DCF1=S △BDE ; 过点D 作DF 2⊥BD ,∵∠ABC=60°,F 1D ∥BE , ∴∠F 2F 1D=∠ABC=60°,∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 2DB=90°, ∴∠F 1DF 2=∠ABC=60°, ∴△DF 1F 2是等边三角形,∴DF 1=DF 2,过点D 作DG ⊥BC 于G ,∵BD=CD ,∠ABC=60°,点D 是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°,BG=12BC=92,∴3∴∠CDF 1=180°-∠BCD=180°-30°=150°, ∠CDF 2=360°-150°-60°=150°, ∴∠CDF 1=∠CDF 2, ∵在△CDF 1和△CDF 2中,1212DF DF CDF CDF CD CD ⎧⎪∠⎨⎪⎩=== ,∴△CDF 1≌△CDF 2(SAS ), ∴点F 2也是所求的点,∵∠ABC=60°,点D 是角平分线上一点,DE ∥AB , ∴∠DBC=∠BDE=∠ABD=12×60°=30°,∴∠CDE=360°-∠CDF 2-∠F 2DB-DBE=360°-150°-90°-30°=90°, ∴∠CDG=90°-∠DCG=60°, 又∵BD=CD=33, ∴DG=332, 设EG 为x ,则DE=2x,()22233+22x x ⎛⎫= ⎪ ⎪⎝⎭, 解得x=1.5,∴BE=BG-EG=4.5-1.5 =3, ∴BF 1=3,BF 2=BF 1+F 1F 2=3+3=6, 故BF 的长为3或6. 【点睛】此题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F 有两个. 8.如图①,在Rt OAB ∆中,90,,AOB OA OB D ∠=︒=为OB 边上一点,过D 点作DC AB ⊥交AB 于点C ,连接AD ,E 为AD 的中点,连接,OE CE . (观察猜想)(1)①,OE CE 的数量关系是___________ ②,OEC OAB ∠∠的数量关系是______________ (类比探究)(2)将图①中BCD ∆绕点B 逆时针旋转45︒,如图②所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (拓展迁移)(3)将BCD ∆绕点B 旋转任意角度,若2,3BD OB ==,请直接写出点,,O C B 在同一直线上时OE 的长.解析:(1)①OE CE =;②2OEC OAB ∠=∠;(2)成立,证明见解析;(3)OE 的长22【分析】(1)①根据直角三角形斜边上的中线等于斜边的一半,即可得到答案;②由①知OE CE AE ==,利用等边对等角和三角形的外角性质,得到2OED OAE ∠=∠,2DEC EAC ∠=∠,然后即可得到答案;(2)①过点E 作EF AB ⊥交BO 的延长线于点F ,EF 与AO 交于点G ,利用等腰直角三角形的性质,证明EFO EBC ∆≅∆,即可得到结论成立; ②由全等三角形的性质,求出∠OEC=90°,即可得到结论成立;(3)根据旋转的性质,点,,O C B 在同一直线上可分为两种情况:①点C 在线段OB 上;②点C 在OB 的延长线上;利用等腰直角三角形的性质,分别求出OE 的长度,即可得到答案. 【详解】解:(1)如图,在△AOD 和△ACD 中,∵90AOB ∠=︒,E 为AD 中点, 12OE AD ∴=, 90ACD ∠=︒,E 为AD 中点,12CE AD ∴=, OE CE ∴=;②90AOB ∠=︒,E 为AD 中点,,OE AE ∴=OAE AOE ∴∠=∠,∴2OED OAE ∠=∠; 同理可得:2DEC EAC ∠=∠, 2()OED DEC OAE EAC ∴∠+∠=∠+∠,2OEC OAB ∴∠=∠.(2)成立.证明:①如图,过点E 作EF AB ⊥交BO 的延长线于点,F EF 与AO 交于点G ,∵OAB ∆是等腰三角形,∴45ABO ∠=︒ ∵EF BE ⊥, ∴45F ∠=︒, ∴EF BE =,∴,,AEG OFG BCD ∆∆∆均为等腰直角三角形, ∴,,AE DE GE FG BD OF BC ====, 又∵∠=∠F CBD , ∴EFO EBC ∆≅∆, ∴OE CE =; ②EFO EBC ∆≅∆,∴OEF CEB ∠=∠,90OEC OEB CEB OEB OEF ∴∠=∠+∠=∠+∠=︒, 45OAB ∠=︒, 2OEC OAB ∴∠=∠;(3)OE 的长为2或22; ∵在等腰直角BCD ∆中,2BD =,1BC ∴=,由(2)可知,OE CE =,90OEC ∠=︒, ∴OEC ∆是等腰直角三角形, ∴22OE OC =; 当点,,O C B 在同一直线上时,有 ①点C 在线段OB 上;如图:∴2OC OB BC =-=, ∴222OE OC ==; ②点C 在OB 的延长线上;如图:∴314OC OB BC =+=+=, ∴2222OE OC ==; 综上所述,OE 的长为2或22; 【点睛】本题考查了旋转的性质,等腰直角三角形的判定和性质,解直角三角形,全等三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半,以及三角形的外角性质等,综合能力强,知识的运用广泛.解题的关键是熟练掌握所学的性质进行解题,注意运用数形结合的思想和分类讨论的思想进行分析.9.问题背景 如图1,点E 在BC 上,AB ⊥BC ,AE ⊥ED ,DC ⊥DC ,求证:=AE BEDE DC.尝试应用 如图2,在▱ABCD 中,点F 在DC 边上,将△ADF 沿AF 折叠得到△AEF ,且点E 恰好为BC 边的中点,求FCFD的值. 拓展创新 如图3,在菱形ABCD 中,点E ,F 分别在BC ,DC 边上,∠AFE =∠D ,AE ⊥FE ,FC =2.EC =6.请直接写出cos ∠AFE 的值. 解析:(1)见解析;(2)12FC FD =;(3)cos ∠AFE =25.【分析】(1) 根据相似三角形的判定定理证△ABE ∽△ECD 即可;(2) 在AB 边取点G ,使GE =BE ,则∠B =∠BGE ,证△AGE ∽△ECF ,列比例式即可; (3) 作FM =FD ,FN ⊥AD ,同(2)构造△AMF ∽△FCE ,证△AEF ∽△FHD ,求出AM 长即可. 【详解】解:(1)∵ AB ⊥BC ,AE ⊥ED ,DC ⊥DC∴∠B =∠C =90° ,∠BAE +∠AEB =90°,∠CED +∠AEB =90°, ∴∠BAE =∠CED , ∴△ABE ∽△ECD ∴AE BEDE DC=. (2)在AB 边取点G ,使GE =BE ,则∠B =∠BGE又∵∠B +∠C =180° ,∠BGE +∠AGE =180°∴∠AGE =∠C∵∠B =∠D =∠AEF又∵∠B +∠BAE =∠AEF +∠FEC∴∠BAE =∠FEC ,∴△AGE ∽△ECF ∴FC EF EG AE =,即FC EG EF AE =∵EF =FD , ∴FC EG FD AE= ∵GE =BE ,AE =BC =2BE ,∴12FC BE FD BC == (3)cos ∠AFE =25如图:作FM =FD ,FN ⊥AD ,由(2)同理可证△AMF ∽△FCE , ∴3FM EC AM FC== 设AM =x ,FM =FD =3x ,则AD =CD =32x +,MD =22x +,ND =1x +∵∠AEF =∠FND =90°,∠AFE =∠D ,∴△AEF ∽△FND ,∴EF AF ND FD =,即EF ND AF FD =, ∵FC EF AM AF =, FC ND AM FD∴= ∴213x x x +=,解得,5x =,经检验,是原方程的解;∴ cos ∠AFE =25EF FC AF AM ==. 【点睛】本题考查了相似三角形的判定与性质和解直角三角形,解题关键是依据已知条件构造相似三角形,列比例式解决问题.10.问题提出(1)如图①,在△ABC 中,BC =6,D 为BC 上一点,AD =4,则△ABC 面积的最大值是 .问题探究(2)如图②,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值. 问题解决(3)如图③,△ABC 是葛叔叔家的菜地示意图,其中AB =30米,BC =40米,AC =50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD ,且满足∠ADC =60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由. 解析:(1)12;(2)9;(3)能实现;170(米).【分析】(1)当AD ⊥BC 时,△ABC 的面积最大.(2)由题意矩形邻边之和为6,设矩形的一边为m ,另一边为6﹣m ,可得S =m (6﹣m )=﹣(m ﹣3)2+9,利用二次函数的性质解决问题即可.(3)由题意,AC =100,∠ADC =60°,即点D 在优弧ADC 上运动,当点D 运动到优弧ADC 的中点时,四边形鱼塘面积和周长达到最大值,此时△ACD 为等边三角形,计算出△ADC 的面积和AD 的长即可得出这个四边形鱼塘面积和周长的最大值.【详解】(1)如图①中,∵BC =6,AD =4,∴当AD ⊥BC 时,△ABC 的面积最大,最大值=12×6×4=12.故答案为12.(2)∵矩形的周长为12,∴邻边之和为6,设矩形的一边为m ,另一边为6﹣m ,∴S =m (6﹣m )=﹣(m ﹣3)2+9,∵﹣1<0,∴m =3时,S 有最大值,最大值为9.(3)如图③中,∵AC =50米,AB =40米,BC =30米,∴AC 2=AB 2+BC 2∴∠ABC =90°,作△AOC ,使得∠AOC =120°,OA =OC ,以O 为圆心,OA 长为半径画⊙O ,∵∠ADC =60°,∴点D 在优弧ADC 上运动,当点D 是优弧ADC 的中点时,四边形ABCD 面积取得最大值,设D ′是优弧ADC 上任意一点,连接AD ′,CD ′,延长CD ′到F ,使得D ′F =D ′A ,连接AF ,则∠AFC =30°=12∠ADC ,∴点F 在D 为圆心DA 为半径的圆上,∴DF =DA ,∵DF +DC ≥CF ,∴DA +DC ≥D ′A +D ′C ,∴DA +DC +AC ≥D ′A +D ′C +AC ,∴此时四边形ADCB 的周长最大,最大值=40+30+50+50=170(米).答:这个四边形鱼塘周长的最大值为170(米).【点睛】本题主要是最大值的考查,求最大值,常用方法为:(1)利用平方为非负的性质求解;(2)利用三角形两边之和大于第三边求解,在求解过程中,关键在与将要求解的线段集中到一个三角形中11.问题背景:如图1,在矩形ABCD 中,23AB =30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的BEF 绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:①AE DF =_____;②直线AE 与DF 所夹锐角的度数为______. (2)小王同学继续将BEF 绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,则ADE 的面积为______. 解析:(1)32,30°;(2)成立,理由见解析;拓展延伸:133398+或133398- 【分析】(1)通过证明FBD EBA ∆∆∽,可得32AE BE DF BF ==,BDF BAE ∠=∠,即可求解; (2)通过证明ABE DBF ∆∆∽,可得32AE BE DF BF ==,BDF BAE ∠=∠,即可求解; 拓展延伸:分两种情况讨论,先求出AE ,DG 的长,即可求解.【详解】解:(1)如图1,30ABD ∠=︒,90DAB ∠=︒,EF BA ⊥,3cos 2BE AB ABD BF DB ∴∠===, 如图2,设AB 与DF 交于点O ,AE 与DF 交于点H ,BEF ∆绕点B 按逆时针方向旋转90︒,90DBF ABE ∴∠=∠=︒,FBD EBA ∴∆∆∽,∴3AE BE DF BF =,BDF BAE ∠=∠, 又DOB AOF ∠=∠,30DBA AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30, 故答案为:32,30; (2)结论仍然成立,理由如下:如图3,设AE 与BD 交于点O ,AE 与DF 交于点H ,将BEF ∆绕点B 按逆时针方向旋转,ABE DBF ∴∠=∠,又32BE AB BF DB ==, ABE DBF ∴∆∆∽, ∴32AE BE DF BF ==,BDF BAE ∠=∠, 又DOH AOB ∠=∠, 30ABD AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30.拓展延伸:如图4,当点E 在AB 的上方时,过点D 作DG AE ⊥于G ,23AB =30ABD ∠=︒,点E 是边AB 的中点,90DAB ∠=︒,3BE ∴=2AD =,4DB =,30EBF ∠=︒,EF BE ⊥,1EF ∴=,D 、E 、F 三点共线,90DEB BEF ∴∠=∠=︒,2216313DE BD BE ∴-=-30DEA ∠=︒,1132DG DE ∴= 由(2)可得:3AE BE DF BF =∴32131AE =+, 3932AE +∴=, ADE ∴∆的面积11393131333922228AE DG ++=⨯⨯=⨯⨯=; 如图5,当点E 在AB 的下方时,过点D 作DG AE ⊥,交EA 的延长线于G ,同理可求:ADE ∆的面积11393131333922228AE DG --=⨯⨯=⨯⨯=; 故答案为:133398+或133398-. 【点睛】 本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.12.在△ABC 中,AD 为BC 边上的中线,E 为AD 上一动点,设DE =nEA ,连接CE 并延长,交AB 于点F .(1)尝试探究:如图1,当∠BAC =90°,∠B =30°,DE =EA 时,BF ,BA 之间的数量关系是 ;(2)类比延伸:如图2,当△ABC 为锐角三角形,DE =EA 时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移:如图3,当△ABC 为锐角三角形,DE =nEA 时,请直接写出BF ,BA 之间的数量关系.解析:(1)23BF AB =;(2)仍然成立,见解析;(3)221BF n AB n =+ 【分析】 (1)尝试探究:过点D 作DMCF ,交AB 于M ,可证BDM BCF ∽, ,AFE AMD ∽ ,可得11,22BD BM AE AF BC BF AD AM ==== ,可证BM MF AF ==,可得BF ,BA 之间的数量关系;(2)类比延伸:过点D 作DM CF ,交AB 于M ,可证BDM BCF ∽,AFE AMD ∽,可得11,22BD BM AE AF BC BF AD AM ====,可证BM MF AF ==,可得BF BA ,之间的数量关系; (3)拓展迁移:过点D 作DMCF ,交AB 于M ,由平行线分线段成比例可得BM MF FM nAF =,=,可得22AB nAF AF BF nAF +=,=,即可求BF BA ,之间的数量关系.【详解】解:(1)尝试探究如图,过点D 作DM CF ,交AB 于M∵AD 是中线,AE DE =∴1122BD CD BC AE AD ==,= ∵DM CF ,∴BDM BCF ∽,AFE AMD ∽ ∴11,22BD BM AE AF BC BF AD AM ==== ∴22BF BM AM AF =,=∴BM MF AF FM =,=∴BM MF AF ==∴23BF AB = (2)类比延伸:结论仍然成立,理由如下:如图,过点D 作DM CF ,交AB 于M∵AD 是中线,AE DE =∴1122BD CD BC AE AD ==,= ∵DM CF ,∴BDM BCF ∽,AFE AMD ∽ ∴11,22BD BM AE AF BC BF AD AM ==== ∴22BF BM AM AF =,=∴BM MF AF FM =,=∴BM MF AF ==∴23BF AB = (3)拓展迁移 如图,过点D 作DMCF ,交AB 于M∵DM FC ,且BD CD =∴1BD BM DC FM== ∴BM MF =∵DM CF DE nEA ,=∴1AE AF DE FM n== ∴FM nAF =∴BM MF nAF ==∴2AB nAF AF += 2BF nAF =∴221BF n AB n =+ 【点睛】本题主要考查了相似三角形的判定和性质综合,根据题干条件作出辅助线并得到对应的相似三角形是解决本题的关键.13.如图1,边长为4的正方形与边长为()14a a <<的正方形CFEG 的顶点C 重合,点E 在对角线AC 上.问题发现(1)如图1,AE 与BF 的数量关系为______.类比探究(2)如图2,将正方形CFEG 绕点C 旋转m 度(030m ︒<<︒).请问(1)中的结论还成立吗?若不成立,请说明理由.拓展延伸(3)若F 为BC 的中点,在正方形CFEG 的旋转过程中,当点A ,F ,G 在一条直线上时,线段AG 的长度为______.解析:(1)2AE BF ;(2)成立,见解析;(3302302【分析】问题发现:证出AB ∥EF ,由平行线分线段成比例定理得出2AE CE BF CF =论;类比探究:证明△ACE ∽△BCF ,得出2AE AC BF CB== 拓展延伸:分两种情况,连接CE 交GF 于H ,由正方形的性质得出AB=BC=4,242AC ==2GF CE CF =,GH=HF=HE=HC ,得出122CF BC ==,22GF CE ==2HF HE HC ===2230AH AC HC -得出答案.【详解】[问题发现] 解:2AE BF =,理由如下:∵四边形ABCD 和四边形CFEG 是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,2CF ,CE ⊥GF , ∴AB ∥EF , ∴2AE CE BF CF∴== 2AE BF ∴=; 故答案为:2AE BF ∴=;[类比探究]解:上述结论还成立,理由如下:连接CE ,如图2所示:∵∠FCE=∠BCA=45°,∴∠BCF=∠ACE=45°-∠ACF ,在Rt △CEG 和Rt △CBA 中, 2,2CE CF CA CB ==, 2CE CA CF CB∴==, ∴△ACE ∽△BCF , 2AE AC BF CB ∴==, 2AE BF ∴=;[拓展延伸]解:分两种情况:①如图3所示:连接CE 交GF 于H ,∵四边形ABCD 和四边形CFEG 是正方形, ∴AB=BC=4,AC=2AB=42,GF=CE=2CF ,HF=HE=HC , ∵点F 为BC 的中点,∴CF=12BC=2,GF=CE=22,GH=HF=HE=HC=2, ∴2222(42)(2)30AH AC HC =-=-=, ∴302AG AH HG =+=+; ②如图4所示:连接CE 交GF 于H ,同①得:GH=HF=HE=HC=2, ∴2222(42)(2)30AH AC HC =-=-=, ∴302AG AH HG =-=-;故答案为:302+或302-.【点睛】本题是四边形综合题目,考查了正方形的性质、旋转的性质、平行线分线段成比例定理、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.14.如图1,在Rt ABC △中,90B ∠=︒,30C ∠=︒,4BC =,点D ,E 分别是边BC ,AC 的中点,连接DE .将EDC △绕点C 按逆时针方向旋转,记旋转角为α.(1)问题发现①当0α=︒时,BD AE =;②当180α=︒时,BD AE =; (2)拓展探究试判断:当0360α︒≤<︒时,BD AE的大小有无变化?请仅就图2的情形给出证明; (3)问题解决当EDC △旋转至//DE AC 时,请直接写出BD 的长.解析:(1)332)不变,证明见解析;(3)37【分析】(1)①当α=0°时,在Rt △ABC 中,由勾股定理,求出AC 的值是多少;然后根据点D 、E 分别是边BC 、AC 的中点,分别求出AE 、BD 的大小,即可求出BD 、AE 的比值; ②中,图形如下,与①有所变化,但求解方法完全相同;(2)证明△ECA ∽△DCB ,从而根据边长成比例得出比值;(3)存在2种情况,一种是当0180α︒<<︒时,//DE AC ;另一种是当180360α︒<<︒时,//DE AC ,分别利用勾股定理可求得. 【详解】(1)①∵在Rt ABC △中,90B ∠=︒,30C ∠=︒,4BC =,点D ,E 分别是边BC ,AC 的中点∴CD=BD=2,在Rt △ABC 中,4383 ∴43。
深圳深圳市教苑中学中考数学期末几何综合压轴题易错汇编
![深圳深圳市教苑中学中考数学期末几何综合压轴题易错汇编](https://img.taocdn.com/s3/m/3e90f79b0b1c59eef9c7b4b0.png)
深圳深圳市教苑中学中考数学期末几何综合压轴题易错汇编一、中考数学几何综合压轴题1.(探究函数y=x+的图象与性质)(1)函数y=x+的自变量x的取值范围是;(2)下列四个函数图象中函数y=x+的图象大致是;(3)对于函数y=x+,求当x>0时,y的取值范围.请将下列的求解过程补充完整.解:∵x>0∴y=x+=()2+()2=(﹣)2+∵(﹣)2≥0∴y≥.[拓展运用](4)若函数y=,则y的取值范围.解析:(1)x≠0;(2)C(3)4;4;(4)y≥13【解析】试题分析:根据反比例函数的性质,一次函数的性质;二次函数的性质解答即可.试题解析:(1)函数y=x+的自变量x的取值范围是x≠0;(2)函数y=x+的图象大致是C;(3)解:∵x>0∴y=x+=()2+()2=(﹣)2+4∵(﹣)2≥0∴y≥4. (4)y==x+﹣5═()2+()2﹣5=(+)2+13∵(﹣)2≥0,∴y≥13.考点:1.反比例函数的性质;一次函数的性质;二次函数的性质. 2.问题背景 如图1,点E 在BC 上,AB ⊥BC ,AE ⊥ED ,DC ⊥DC ,求证:=AE BEDE DC.尝试应用 如图2,在▱ABCD 中,点F 在DC 边上,将△ADF 沿AF 折叠得到△AEF ,且点E 恰好为BC 边的中点,求FCFD的值. 拓展创新 如图3,在菱形ABCD 中,点E ,F 分别在BC ,DC 边上,∠AFE =∠D ,AE ⊥FE ,FC =2.EC =6.请直接写出cos ∠AFE 的值. 解析:(1)见解析;(2)12FC FD =;(3)cos ∠AFE =25.【分析】(1) 根据相似三角形的判定定理证△ABE ∽△ECD 即可;(2) 在AB 边取点G ,使GE =BE ,则∠B =∠BGE ,证△AGE ∽△ECF ,列比例式即可; (3) 作FM =FD ,FN ⊥AD ,同(2)构造△AMF ∽△FCE ,证△AEF ∽△FHD ,求出AM 长即可. 【详解】解:(1)∵ AB ⊥BC ,AE ⊥ED ,DC ⊥DC∴∠B =∠C =90° ,∠BAE +∠AEB =90°,∠CED +∠AEB =90°, ∴∠BAE =∠CED , ∴△ABE ∽△ECD ∴AE BEDE DC=. (2)在AB 边取点G ,使GE =BE ,则∠B =∠BGE又∵∠B +∠C =180° ,∠BGE +∠AGE =180° ∴∠AGE =∠C ∵∠B =∠D =∠AEF又∵∠B +∠BAE =∠AEF +∠FEC ∴∠BAE =∠FEC , ∴△AGE ∽△ECF ∴FC EF EG AE =,即FC EGEF AE=∵EF =FD , ∴FC EGFD AE= ∵GE =BE ,AE =BC =2BE , ∴12FC BE FD BC == (3)cos ∠AFE =25如图:作FM =FD ,FN ⊥AD ,由(2)同理可证△AMF ∽△FCE , ∴3FM ECAM FC== 设AM =x ,FM =FD =3x ,则AD =CD =32x +,MD =22x +,ND =1x + ∵∠AEF =∠FND =90°,∠AFE =∠D , ∴△AEF ∽△FND , ∴EF AF ND FD =,即EF NDAF FD =, ∵FC EF AM AF=,FC NDAM FD∴= ∴213x x x+=,解得,5x =,经检验,是原方程的解; ∴ cos ∠AFE =25EF FC AF AM ==. 【点睛】本题考查了相似三角形的判定与性质和解直角三角形,解题关键是依据已知条件构造相似三角形,列比例式解决问题.3.定义:有一组对角互补的四边形叫做“对补四边形”,例如,四边形ABCD 中,若180A C ∠+∠=︒或180B D ∠+∠=︒,则四边形ABCD 是“对补四边形”.(概念理解)(1)如图1,四边形ABCD 是“对补四边形”. ①若::3:2:1A B C ∠∠∠=,则D ∠=________;②若90B ∠=︒.且3,2AB AD ==时.则22CD CB -=_______; (拓展提升)(2)如图,四边形ABCD 是“对补四边形”,当AB CB =,且12EBF ABC ∠=∠时,图中,,AB CF EF 之间的数量关系是 ,并证明这种关系;(类比应用)(3)如图3,在四边形ABCD 中,,AB CB BD =平分ADC ∠; ①求证:四边形ABCD 是“对补四边形”; ②如图4,连接AC ,当90ABC ∠=︒,且12ACD ABCS S=时,求tan ACD ∠的值. 解析:(1)①90︒,②5;(2)AE CF EF +=,理由见解析;(3)①见解析,②23 【分析】(1)①根据“对补四边形”的定义,结合::3:2:1A B C ∠∠∠=,即可求得答案; ②根据“对补四边形”的定义,由90B ∠=︒,得D ∠90=︒,再利用勾股定理即可求得答案;(2)延长EA 至点K ,使得AK CF =,连接BK ,根据“对补四边形”的定义,可证明ABK CBF △≌△,继而证明BEK BEF △≌△,从而可得结论;(3)①过点B 作BM AD ⊥于点M ,BN AC ⊥于点N ,则90BMA BNC ∠=∠=︒,可证Rt ABM Rt CBN △≌△,进而可证四边形ABCD 是“对补四边形”;②设,AD a DC b ==,则tan aACD b∠=根据222AC a b =+,再运用12ACD ABCS S=建立方程,解方程即可求得tan ACD ∠. 【详解】 (1)::3:2:1A B C ∠∠∠=,设3,2,A x B x C x ∠=∠=∠=, 根据“对补四边形”的定义, 180A C ∠+∠=︒,即3180x x +=︒, 解得45x =︒,290B x ∴∠==︒,180B D ∠+∠=︒,90D ∴∠=︒.故答案为:90︒. ②如图1,连接AC ,90B ∠=︒,180B D ∠+∠=︒,90D ∴∠=︒,在Rt ABC 中22BC AC AB =-, 在Rt ADC 中222CD AC AD =-,22222222()CD CB AC AD AC AB AB AD ∴-=---=-, 3,2AB AD ==,2222325CD CB ∴-=-=,故答案为:5.(2)AE CF EF +=,理由如下:如图2,延长EA 至点K ,使得AK CF =,连接BK ,四边形ABCD 是“对补四边形”,∴180BAD C ∠+∠=︒,180BAK BAD ∠+∠=︒,∴BAK C ∠=∠,,AK CF AB CB ==,∴()ABK CBF SAS △≌△,∴,ABK CBF BK BF ∠=∠=, ∴ABK ABF CBF ABF ∠+∠=∠+∠,即KBF ABC ∠=∠,12EBF ABC ∠=∠,∴12EBF KBF ∠=∠, ∴EBK EBF ∠=∠,,BK BF BE BE ==,∴()BEK BEF SAS △≌△, ∴EK EF =,∴AE CF AE AK EK EF +=+==,即AE CF EF +=, 故答案为:AE CF EF +=.(3)①证明:如图3,过点B 作BM AD ⊥于点M ,BN AC ⊥于点N ,则90BMA BNC ∠=∠=︒,BD 平分ADC ∠,BM BN ∴=,AB CB =,()Rt ABM Rt CBN HL ∴△≌△,BAM C ∴∠=∠, 180BAM BAD ∠+∠=︒,180C BAD ∴∠+∠=︒,BAD ∴∠与C ∠互补,∴四边形ABCD 是“对补四边形”;②由①可知四边形ABCD 是“对补四边形”, 180ABC ADC ∴∠+∠=︒,90ABC ∠=︒,90ADC ∴∠=︒,设AD a DC b ==,,则22222AC AD CD a b =+=+, AB BC =,2222211()22AB BC AC a b ∴===+, 1122ACD S AD CD ab ∴=⋅=△, 222111()224ABC S AB BC AB a b =⋅==+△,12ACD ABCS S=, 22112=12()4ab a b ∴+,整理得:2()410a ab b-⨯+=,解得:2ab= 在Rt ABC 中,tan a ACD b∠=,∴tan ACD∠=2.【点睛】本题考查了勾股定理,四边形内角和定理,全等三角形的性质与判定,解一元二次方程,三角函数的定义等知识,熟练掌握勾股定理和全等三角形的判定和性质,准确理解新定义是解题的关键.4.(问题情境)如图1,点E 是平行四边形ABCD 的边AD 上一点,连接BE 、CE .求证:BCE1S2=S 平行四边形ABCD .(说明:S 表示面积) 请以“问题情境”为基础,继续下面的探究(探究应用1)如图2,以平行四边形ABCD 的边AD 为直径作⊙O ,⊙O 与BC 边相切于点H ,与BD 相交于点M .若AD =6,BD =y ,AM =x ,试求y 与x 之间的函数关系式. (探究应用2)如图3,在图1的基础上,点F 在CD 上,连接AF 、BF ,AF 与CE 相交于点G ,若AF =CE ,求证:BG 平分∠AGC .(迁移拓展)如图4,平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,E 是AB 的中点,F 在BC 上,且BF :FC =2:1,过D 分别作DG ⊥AF 于G ,DH ⊥CE 于H ,请直接写出DG :DH 的值.解析:【问题情境】见解析;【探究应用1】18y x=;【探究应用2】见解析;【迁移拓1927 【分析】(1)作EF ⊥BC 于F ,则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF ,即可得出结论; (2)连接OH ,由切线的性质得出OH ⊥BC ,OH =12AD =3,求出平行四边形ABCD 的面积=AD×OH =18,由圆周角定理得出AM ⊥BD ,得出△ABD 的面积=12BD×AM =12平行四边形的面积=9,即可得出结果;(3)作BM ⊥AF 于M ,BN ⊥CE 于N ,同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积,得出12AF×BM =12CE×BN ,证出BM =BN ,即可得出BG 平分∠AGC .(4)作AP ⊥BC 于P ,EQ ⊥BC 于Q ,由平行四边形的性质得出∠ABP =60°,得出∠BAP =30°,设AB =4x ,则BC =3x ,由直角三角形的性质得出BP =12AB =2x ,BQ =12BE ,AP =3=3,由已知得出BE =2x ,BF =2x ,得出BQ =x ,EQ 3,PF =4x ,QF =3x ,QC =4x ,由勾股定理求出AF 22AP PF +=7,CE 22EQ QC +19,连接DF 、DE ,由三角形的面积关系得出AF×DG =CE×DH ,即可得出结果. 【详解】(1)证明:作EF ⊥BC 于F ,如图1所示: 则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF ,∴12BCEABCDSS =.(2)解:连接OH ,如图2所示: ∵⊙O 与BC 边相切于点H , ∴OH ⊥BC ,OH =12AD =3,∴平行四边形ABCD 的面积=AD×OH =6×3=18, ∵AD 是⊙O 的直径, ∴∠AMD =90°, ∴AM ⊥BD ,∴△ABD 的面积=12BD×AM =12平行四边形的面积=9, 即12xy =9,∴y 与x 之间的函数关系式y =18x; (3)证明:作BM ⊥AF 于M ,BN ⊥CE 于N ,如图3所示:同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积, ∴12AF×BM =12CE×BN ,∵AF =CE , ∴BM =BN , ∴BG 平分∠AGC .(4)解:作AP ⊥BC 于P ,EQ ⊥BC 于Q ,如图4所示: ∵平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°, ∴∠ABP =60°,∴∠BAP =30°,设AB =4x ,则BC =3x ,∴BP =12AB =2x ,BQ =12BE ,AP =, ∵E 是AB 的中点,F 在BC 上,且BF :FC =2:1, ∴BE =2x ,BF =2x , ∴BQ =x ,∴EQ ,PF =4x ,QF =3x ,QC =4x ,由勾股定理得:AF =,CE , 连接DF 、DE ,则△CDE 的面积=△ADF 的面积=12平行四边形ABCD 的面积, ∴AF×DG =CE×DH ,∴DG :DH =CE :AF :=【点睛】本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键.5.(感知)如图1,在平面直角坐标系中,点C 的坐标为(0,0.5),点A 的坐标为(1,0),将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,过点B 作BM y ⊥轴,垂足为点M ,易知AOC CMB ∆∆≌,得到点B 的坐标为(0.5,1.5).(探究)如图2,在平面直角坐标系中,点A 的坐标为(1,0),点C 的坐标为(0,)(0)m m >,将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB . (1)求点B 的坐标.(用含m 的代数式表示) (2)求出BC 所在直线的函数表达式.(拓展)如图3,在平面直角坐标系中,点A 的坐标为(1,0),点C 在y 轴上,将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,连结BO 、BA ,则BO BA +的最小值为_______.解析:【探究】(1)点B 坐标为(,1)m m +;(2)1y x m m=+5 【分析】探究:(1)证明△AOC ≌△CMB (AAS ),即可求解;(2)根据点B 的坐标为(m ,m+1),点C 坐标()0,m ,即可求解;拓展:BO+BA=2222(1)(1)(1)m m m m +++-++,BO+BA 的值,相当于求点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,即可求解.【详解】解:探究:(1)过点B 作BM y ⊥轴,垂足为点M .BMC 90∠∴=︒,MCB B 90∠∠∴+=︒.线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,BCA 90CB CA ∠∴=︒=,.MCB ACO 90∠∠∴+=︒.B ACO ∠∠∴=.ACO 90∠=︒,ΔAOC ΔCMB ∴≌,MC OA,MB OC ∴==.点C 坐标()0,m ,点A 坐标()1,0,∴点B 坐标为()m,m 1+(2)∵点B 的坐标为(m ,m+1),点C 为(0,m ),设直线BC 为:y=kx+b ,1b m km b m =⎧⎨+=+⎩,解得:1k m b m⎧=⎪⎨⎪=⎩, ∴1y x m m=+; 则BC 所在的直线为:1y x m m =+; 拓展:如图作BH ⊥OH 于H .设点C 的坐标为(0,m ),由(1)知:OC=HB=m ,OA=HC=1,则点B (m ,1+m ),则:BO+BA=2222(1)(1)(1)m m m m +++-++,BO+BA 的值,相当于求点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,相当于在直线y=x 上寻找一点P (m ,m ),使得点P 到M (0,-1),到N (1,-1)的距离和最小,作M 关于直线y=x 的对称点M′(-1,0),易知PM+PN=PM′+PN≥NM′,22(11)(01)5--++故:BO+BA 55【点睛】本题为一次函数综合题,主要考查的是三角形全等的思维拓展,其中拓展,将BO+BA 的值转化点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,是本题的新颖点 6.综合与实践(1)(探索发现)在ABC ∆中. AC BC =,ACB α∠=,点D 为直线BC 上一动点(点D 不与点B ,C 重合),过点D 作//DF AC 交直线AB 于点F ,将AD 绕点D 顺时针旋转α得到ED ,连接BE .如图(1),当点D 在线段BC 上,且90α=︒时,试猜想:①AF 与BE 之间的数量关系:______;②ABE ∠=______.(2)(拓展探究)如图(2),当点D 在线段BC 上,且090α︒<<︒时,判断AF 与BE 之间的数量关系及ABE ∠的度数,请说明理由.(3)(解决问题)如图(3),在ABC ∆中,AC BC =,4AB =,ACB α∠=,点D 在射线BC 上,将AD 绕点D 顺时针旋转α得到ED ,连接BE .当3BD CD =时,直接写出BE 的长.解析:(1)①AF BE =;②90︒;(2)AF BE =,ABE α∠=.理由见解析;(3)BE 的长为1或2.【分析】(1)由“SAS”△ADF ≌△EDB ,可得AF=BE ,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;(2)结论:AF=BF ,∠ABE=a .由“SAS”△ADF ≌△EDB ,即可解决问题;(3)分当点D 在线段BC 上和当点D 在BC 的延长线上两种情形讨论,利用平行线分线段成比例可求解.【详解】解:(1)如图1中,设AB 交DE 于O .∵∠ACB=90°,AC=BC ,∴∠ABC=45°,∵DF ∥AC ,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB ,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB ,且DA=DE ,DF=DB∴△ADF ≌△EDB (SAS ),∴AF=BE ,∠DAF=∠E ,∵∠AOD=∠EOB ,∴∠ABE=∠ADO=90°故答案为AF=BE ,90°.(2)AF BE =,ABE α∠=.理由:∵//DF AC ,∴FDB ACB α∠=∠=,CAB DFB ∠=∠.∵AC BC =,∴ABC CAB ∠=∠.∴ABC DFB ∠=∠.∴DB DF =∵ADE FDB α∠==∠,ADF ADE FDE ∠=∠-∠,EDB FDB FDE ∠=∠-∠,∴ADF EDB ∠=∠.又∵AD DE =,∴ADF EDB ∆≅∆.∴AF BE =,AFD EBD ∠=∠.∴AFD ABC FDB ∠=∠+∠,DBE ABD ABE ∠=∠+∠,∴ABE FDB α∠=∠=.(3)1或2.解:当点D 在线段BC 上时,过点D 作//DF AC 交直线AB 于点F ,如图(1).∵//DF AC ,∴3BF BD AF CD==. ∵4AB BF AF =+=,∴1AF =.∵//DF AC ,∴BDF C ADE α∠=∠=∠=,DFB CAB ∠=∠.∵ADF ADE FDE ∠=∠-∠,EDB FDB FDE ∠=∠-∠,∴ADF EDB ∠=∠.∵AC BC =,∴CAB CBA ∠=∠.∴DFB DBF ∠=∠.∴DF DB =.又AD DE =,∴ADF EDB ∆≅∆,1BE AF ==.当点D 在线段BC 的延长线上时,过点D 作//DF AC '交BA 的延长线于点F ',如图(2). ∵//DF AC ', ∴2AB BC AF CD=='. ∴24AB AF '==.∴2AF '=.同理可得2BE AF '==.综上可得,BE 的长为1或2.【点睛】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.7.(1)探究发现:下面是一道例题及解答过程,请补充完整:如图①在等边△ABC内部,有一点P,若∠APB=150°,求证:AP2+BP2=CP2证明:将△APC绕A点逆时针旋转60°,得到△AP’B,连接PP’,则△APP’为等边三角形∴∠APP’=60° ,PA=PP’ ,PC=∵∠APB=150°,∴∠BPP’=90°∴P’P2+BP2= ,即PA2+PB2=PC2(2)类比延伸:如图②在等腰△ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA,PB,PC之间的数量关系,并证明.(3)联想拓展:如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2(其中k>0),请直接写出k的值.解析:(1)P’B,P’B2;(2)2PA2+PB2=PC2,见解析;(3)3【分析】(1)根据旋转的性质和勾股定理直接写出即可.(2)将△APC绕A点逆时针旋转90°,得到△AP′B,连接PP′,论证PP′=2PA,再根据勾股定理代换即可.(3)将△APC 绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,论证3,再根据勾股定理代换即可.【详解】(1)PC=P’B,P’P2+BP2=P’B2(2)关系式为:2PA2+PB2=PC2证明:将△APC 绕A 点逆时针旋转90°,得到△AP’B ,连接PP’,则△APP’为等腰直角三角形,∴∠APP’=45°,PP’=2PA ,PC=P’B ,∵∠APB=135°,∴∠BPP’=90°,∴P’P 2+BP 2=P’B 2,∴2PA 2+PB 2=PC 2.(3)k=3将△APC 绕点A 顺时针旋转120°得到△AP’B ,连接PP’,过点A 作AH ⊥PP’,可得303,APP PP PA PC P B '︒''∠===60APB ︒∠=90BPP '︒∴∠=222P P BP P B ''∴+=222(3)PA PB PC ∴+=222()kPA PB PC +=3k ∴=【点睛】本题考查了旋转三角形的问题,掌握旋转的性质、勾股定理是解题的关键.8.问题提出(1)如图①,在△ABC 中,BC =6,D 为BC 上一点,AD =4,则△ABC 面积的最大值是 .问题探究(2)如图②,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值. 问题解决(3)如图③,△ABC 是葛叔叔家的菜地示意图,其中AB =30米,BC =40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.解析:(1)12;(2)9;(3)能实现;170(米).【分析】(1)当AD⊥BC时,△ABC的面积最大.(2)由题意矩形邻边之和为6,设矩形的一边为m,另一边为6﹣m,可得S=m(6﹣m)=﹣(m﹣3)2+9,利用二次函数的性质解决问题即可.(3)由题意,AC=100,∠ADC=60°,即点D在优弧ADC上运动,当点D运动到优弧ADC的中点时,四边形鱼塘面积和周长达到最大值,此时△ACD为等边三角形,计算出△ADC的面积和AD的长即可得出这个四边形鱼塘面积和周长的最大值.【详解】(1)如图①中,∵BC=6,AD=4,∴当AD⊥BC时,△ABC的面积最大,最大值=1×6×4=12.2故答案为12.(2)∵矩形的周长为12,∴邻边之和为6,设矩形的一边为m,另一边为6﹣m,∴S=m(6﹣m)=﹣(m﹣3)2+9,∵﹣1<0,∴m=3时,S有最大值,最大值为9.(3)如图③中,∵AC =50米,AB =40米,BC =30米,∴AC 2=AB 2+BC 2∴∠ABC =90°,作△AOC ,使得∠AOC =120°,OA =OC ,以O 为圆心,OA 长为半径画⊙O ,∵∠ADC =60°,∴点D 在优弧ADC 上运动,当点D 是优弧ADC 的中点时,四边形ABCD 面积取得最大值,设D ′是优弧ADC 上任意一点,连接AD ′,CD ′,延长CD ′到F ,使得D ′F =D ′A ,连接AF ,则∠AFC =30°=12∠ADC ,∴点F 在D 为圆心DA 为半径的圆上,∴DF =DA ,∵DF +DC ≥CF ,∴DA +DC ≥D ′A +D ′C ,∴DA +DC +AC ≥D ′A +D ′C +AC ,∴此时四边形ADCB 的周长最大,最大值=40+30+50+50=170(米).答:这个四边形鱼塘周长的最大值为170(米).【点睛】本题主要是最大值的考查,求最大值,常用方法为:(1)利用平方为非负的性质求解;(2)利用三角形两边之和大于第三边求解,在求解过程中,关键在与将要求解的线段集中到一个三角形中9.如图1,在正方形ABCD 中,点,E F 分别在边,AB AD 上,且AE AF =,延长FD 到点G ,使得DG DF =,连接,,EF GE CE .(特例感知)(1)图1中GE 与CE 的数量关系是______________.(结论探索)(2)图2,将图1中的AEF 绕着点A 逆时针旋转()090αα︒<<︒,连接FD 并延长到点G ,使得DC DF =,连接,,GE CE BE ,此时GE 与CE 还存在(1)中的数量关系吗?判断并说明理由.(拓展应用)(3)在(2)的条件下,若5,AB AE ==EFG 是以EF 为直角边的直角三角形时,请直接写出GE 的长.解析:(1) GE ,(2)存在,证明见解析,(3)16或4.【分析】(1)连接GC ,证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(2)类似(1)的方法,先证△AFD ≌△AEB ,再证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(3)根据E 、F 是直角顶点分类讨论,结合(2)中结论,利用勾股定理求解即可.【详解】解:(1)连接GC ,∵AE =AF ,AD =AB ,∴DF =BE ,∵DG DF =,∴DG = BE ,∵∠GDC =∠B =90°,DC =BC ,∴△CDG ≌△CBE ,∴CE =CG ,∠GCD =∠ECB ,∵∠ECB +∠DCE =90°,∴∠GCE =∠GCD +∠DCE =90°,∴GE;故答案为:GE ;(2) 存在,连接GC,∵AE=AF,AD=AB,∠FAE=∠DAB=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB,∴FD=EB=GD,∠FDA=∠EBA,∵∠GDC+∠FDA=90°,∠EBC+∠EBA=90°,∴∠GDC=∠EBC,∵DC=BD,∴△CDG≌△CBE,与(1)同理,GE=2CE;(3)当∠FEG=90°时,如图1,因为∠FEA=∠GEC=45°,所以,A、E、C在一条直线上,∵AB=5,∴AC=52,CE=52-32=22,GE=2EC=4;如图2,E在CA延长线上,同理可得,EC=82,GE=2EC=16;当∠EFG=90°时,如图3,∠AFD=∠EFG+∠AFE=135°,由(2)得,∠AFD=∠AEB=135°,DF=BE,所以,B、E、F在一条直线上,作AM⊥EF,垂足为M,∵5,32==AB AE∴EF=6,AM=ME=MF=3,224=-,BM AB AMBE=DF=1,FG=2,22210GE FG EF =+=;如图4,同图3,BE =DF =7,FG =14,EF =6,22258GE FG EF =+=,综上,GE 的长为2581016或4.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理和等腰直角三角形的性质,解题关键是恰当的连接辅助线,构造全等三角形;会分类讨论,结合题目前后联系,解决问题.10.如图1,边长为4的正方形与边长为()14a a <<的正方形CFEG 的顶点C 重合,点E 在对角线AC 上.问题发现(1)如图1,AE 与BF 的数量关系为______.类比探究(2)如图2,将正方形CFEG 绕点C 旋转m 度(030m ︒<<︒).请问(1)中的结论还成立吗?若不成立,请说明理由.拓展延伸(3)若F 为BC 的中点,在正方形CFEG 的旋转过程中,当点A ,F ,G 在一条直线上时,线段AG 的长度为______.解析:(1)2AE BF =;(2)成立,见解析;(3)302+或302-【分析】问题发现:证出AB ∥EF ,由平行线分线段成比例定理得出2AE CE BF CF ==,即可得出结论;类比探究:证明△ACE ∽△BCF ,得出2AE AC BF CB==,即可的结论; 拓展延伸:分两种情况,连接CE 交GF 于H ,由正方形的性质得出AB=BC=4,242AC AB ==,2GF CE CF ==,GH=HF=HE=HC ,得出122CF BC ==,22GF CE ==,2HF HE HC ===,由勾股定理求出2230AH AC HC =-=,即可得出答案.【详解】[问题发现]解:2AE BF =,理由如下:∵四边形ABCD 和四边形CFEG 是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,CE=2CF ,CE ⊥GF ,∴AB ∥EF ,∴2AE CE BF CF∴==, 2AE BF ∴=;故答案为:2AE BF ∴=;[类比探究]解:上述结论还成立,理由如下:连接CE ,如图2所示:∵∠FCE=∠BCA=45°,∴∠BCF=∠ACE=45°-∠ACF ,在Rt △CEG 和Rt △CBA 中, 2,2CE CF CA CB ==, 2CE CA CF CB∴==, ∴△ACE ∽△BCF , 2AE AC BF CB ∴==, 2AE BF ∴=;[拓展延伸]解:分两种情况:①如图3所示:连接CE 交GF 于H ,∵四边形ABCD 和四边形CFEG 是正方形,∴AB=BC=4,AC=2AB=42,GF=CE=2CF ,HF=HE=HC ,∵点F 为BC 的中点,∴CF=12BC=2,GF=CE=22,GH=HF=HE=HC=2,∴2222(42)(2)30AH AC HC =-=-=,∴302AG AH HG =+=+;②如图4所示:连接CE 交GF 于H ,同①得:2∴2222(42)(2)30AH AC HC --,∴302AG AH HG =-=302302【点睛】本题是四边形综合题目,考查了正方形的性质、旋转的性质、平行线分线段成比例定理、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.11.问题背景:如图1,在矩形ABCD 中,23AB =,30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的BEF 绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:①AE DF=_____;②直线AE 与DF 所夹锐角的度数为______. (2)小王同学继续将BEF 绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,则ADE 的面积为______. 解析:(1)32,30°;(2)成立,理由见解析;拓展延伸:133398+或133398- 【分析】(1)通过证明FBD EBA ∆∆∽,可得32AE BE DF BF ==,BDF BAE ∠=∠,即可求解; (2)通过证明ABE DBF ∆∆∽,可得32AE BE DF BF ==,BDF BAE ∠=∠,即可求解; 拓展延伸:分两种情况讨论,先求出AE ,DG 的长,即可求解.【详解】解:(1)如图1,30ABD ∠=︒,90DAB ∠=︒,EF BA ⊥,3cos 2BE AB ABD BF DB ∴∠===, 如图2,设AB 与DF 交于点O ,AE 与DF 交于点H ,BEF ∆绕点B 按逆时针方向旋转90︒,90DBF ABE ∴∠=∠=︒,FBD EBA ∴∆∆∽, ∴32AE BE DF BF ==,BDF BAE ∠=∠, 又DOB AOF ∠=∠,30DBA AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30,故答案为:32,30; (2)结论仍然成立, 理由如下:如图3,设AE 与BD 交于点O ,AE 与DF 交于点H ,将BEF ∆绕点B 按逆时针方向旋转,ABE DBF ∴∠=∠, 又32BE AB BF DB ==, ABE DBF ∴∆∆∽,∴32AE BE DF BF ==,BDF BAE ∠=∠, 又DOH AOB ∠=∠,30ABD AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30.拓展延伸:如图4,当点E 在AB 的上方时,过点D 作DG AE ⊥于G ,23AB =30ABD ∠=︒,点E 是边AB 的中点,90DAB ∠=︒,3BE ∴=2AD =,4DB =,30EBF ∠=︒,EF BE ⊥,1EF ∴=,D 、E 、F 三点共线,90DEB BEF ∴∠=∠=︒,2216313DE BD BE ∴-=-30DEA ∠=︒, 11322DG DE ∴==, 由(2)可得:32AE BE DF BF ==, ∴32131AE=+, 3932AE +∴=, ADE ∴∆的面积11393131333922228AE DG ++=⨯⨯=⨯⨯=; 如图5,当点E 在AB 的下方时,过点D 作DG AE ⊥,交EA 的延长线于G ,同理可求:ADE ∆的面积11393131333922228AE DG --=⨯⨯=⨯⨯=; 故答案为:133398+或133398-. 【点睛】 本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.12.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC ,使△DEC 绕点C 旋转.当点D 恰好落在BC 边上时,填空:线段DE 与AC 的位置关系是 ;②设△BDC 的面积为S 1,△AEC 的面积为S 2.则S 1与S 2的数量关系是 .(2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想. (3)拓展探究已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=4,OE ∥AB 交BC 于点E (如图4),若在射线BA 上存在点F ,使S △DCF =S △BDC ,请直接写出相应的BF 的长解析:解:(1)①DE ∥AC .②12S S =.(2)12S S =仍然成立,证明见解析;(3)433或833. 【详解】(1)①由旋转可知:AC=DC ,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=60°.∴△ADC 是等边三角形.∴∠DCA=60°.∴∠DCA=∠CDE=60°.∴DE ∥AC .②过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知:△ADC 是等边三角形, DE ∥AC ,∴DN=CF,DN=EM .∴CF=EM .∵∠C=90°,∠B =30°∴AB=2AC .又∵AD=AC∴BD=AC .∵1211S CF BD S AC EM 22=⋅=⋅, ∴12S S =.(2)如图,过点D 作DM ⊥BC 于M ,过点A 作AN ⊥CE 交EC 的延长线于N ,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC=CE ,AC=CD ,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM ,∵在△ACN 和△DCM 中,ACN DCM CMD N AC CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△ACN ≌△DCM (AAS ),∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;(3)如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,所以BE=DF 1,且BE 、DF 1上的高相等,此时S △DCF1=S △BDE ;过点D 作DF 2⊥BD ,∵∠ABC=60°,F 1D ∥BE ,∴∠F 2F 1D=∠ABC=60°,∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 2DB=90°,∴∠F 1DF 2=∠ABC=60°,∴△DF 1F 2是等边三角形,∴DF 1=DF 2,过点D 作DG ⊥BC 于G ,∵BD=CD ,∠ABC=60°,点D 是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°,∴∠CDF 1=180°-∠BCD=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,∵在△CDF 1和△CDF 2中, 1212DF DF CDF CDF CD CD ⎧⎪∠⎨⎪⎩===, ∴△CDF 1≌△CDF 2(SAS ),∴点F 2也是所求的点,∵∠ABC=60°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC=∠BDE=∠ABD=12×60°=30°,又∵BD=4,∴BE=12×4÷cos30°, ∴BF 1BF 2=BF 1+F 1F 2, 故BF.13.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.解析:(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===, ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.14.性质探究如图①,在等腰三角形ABC 中,0120ACB ∠=,则底边AB 与腰AC 的长度之比为________.理解运用⑴若顶角为120°的等腰三角形的周长为83+________;⑵如图②,在四边形EFGH 中,EF EG EH ==.①求证:EFG EHG FGH ∠+∠=∠;②在边,FG GH 上分别取中点,M N ,连接MN .若0120FGH ∠=,10EF =,直接写出线段MN 的长.类比拓展顶角为2σ的等腰三角形的底边与一腰的长度之比为________(用含σ的式子表示). 解析:31)432)①见解析;②532sin α.【分析】性质探究:作CD ⊥AB 于D ,则∠ADC=∠BDC=90°,由等腰三角形的性质得出AD=BD ,∠A=∠B=30°,由直角三角形的性质得出AC=2CD ,3,得出3,即可得出结果;理解运用:(1)同上得出则AC=2CD ,3,由等腰三角形的周长得出33CD=2,得出3(2)①由等腰三角形的性质得出∠EFG=∠EGF ,∠EGH=∠EHG ,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH 即可;②连接FH ,作EP ⊥FH 于P ,由等腰三角形的性质得出PF=PH ,由①得:∠EFG+∠EHG=∠FGH=120°,由四边形内角和定理求出∠FEH=120°,由等腰三角形的性质得出∠EFH=30°,由直角三角形的性质得出PE=12EF=5,PF=3PE=53,得出FH=2PF=103,证明MN 是△FGH 的中位线,由三角形中位线定理即可得出结果; 类比拓展:作AD ⊥BC 于D ,由等腰三角形的性质得出BD=CD ,∠BAD=12∠BAC=α,由三角函数得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出结果.【详解】性质探究 解:作CD ⊥AB 于D ,如图①所示:则∠ADC=∠BDC=90°,∵AC=BC ,∠ACB=120°,∴AD=BD ,∠A=∠B=30°,∴AC=2CD ,3,∴3, ∴23AB CD AC 3 3 理解运用(1)解:如图①所示: 同上得:AC=2CD ,3,∵3∴33解得:CD=2,∴3∴△ABC 的面积=12AB×CD=1233故答案为3(2)①证明:∵EF=EG=EH ,∴∠EFG=∠EGF ,∠EGH=∠EHG ,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH ;②解:连接FH ,作EP ⊥FH 于P ,如图②所示:则PF=PH ,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°-120°-120°=120°,∵EF=EH ,∴∠EFH=30°,∴PE=12EF=5, ∴PF=3PE=53,∴FH=2PF=103,∵点M 、N 分别是FG 、GH 的中点,∴MN 是△FGH 的中位线,∴MN=12FH=53;类比拓展解:如图③所示:作AD ⊥BC 于D ,∵AB=AC ,∴BD=CD ,∠BAD=12∠BAC=α,∵sinα=BD AB , ∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴2sin BC AB AB ABα⋅==2sinα; 故答案为2sinα.【点睛】本题是四边形综合题目,考查了等腰三角形的性质、直角三角形的性质、三角形中位线定理、四边形内角和定理、就直角三角形等知识;本题综合性强,熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.15.(1)证明推断:如图(1),在正方形ABCD 中,点E ,Q 分别在边BC ,AB 上,DQ AE ⊥于点O ,点G ,F 分别在边CD ,AB 上,GF AE ⊥.①求证:DQ AE =;②推断:GF AE 的值为 ; (2)类比探究:如图(2),在矩形ABCD 中,BC k AB =(k 为常数).将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE CP 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,当23k =时,若3tan 4CGP ∠=,210GF =,求CP 的长.解析:(1)①证明见解析;②解:结论:1GF AE=.理由见解析;(2)结论:FG k AE =.理由见解析;(3)955PC =. 【解析】【分析】(1)①由正方形的性质得AB=DA ,∠ABE=90°=∠DAH .所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO ,于是△ABE ≌△DAH ,可得AE=DQ .②证明四边形DQFG 是平行四边形即可解决问题.(2)结论:FG k AE=如图2中,作GM ⊥AB 于M .证明:△ABE ∽△GMF 即可解决问题. (3)如图2-1中,作PM ⊥BC 交BC 的延长线于M .利用相似三角形的性质求出PM ,CM 即可解决问题.【详解】(1)①证明:∵四边形ABCD 是正方形,∴AB DA =,90ABE DAQ ∠==∠.∴90QAO OAD ∠+∠=.∵AE DH ⊥,∴90ADO OAD ∠+∠=.∴QAO ADO ∠=∠.∴ABE ∆≌DAQ ∆()ASA ,∴AE DQ =.②解:结论:1GF AE=. 理由:∵DQ AE ⊥,FG AE ⊥,∴//DQ FG ,∵//FQ DG ,∴四边形DQFG 是平行四边形,∴FG DQ =,∵AE DQ =,∴FG AE =,∴1GF AE=. 故答案为1. (2)解:结论:FG k AE =. 理由:如图2中,作GM AB ⊥于M .∵AE GF ⊥, ∴90AOF GMF ABE ∠=∠=∠=,∴90BAE AFO ∠+∠=,90AFO FGM ∠+∠=,∴BAE FGM ∠=∠,∴ABE ∆∽GMF ∆,∴GF GM AE AB=, ∵90AMG D DAM ∠=∠=∠=,∴四边形AMGD 是矩形,∴GM AD =,∴GF AD BC k AE AB AB===. (3)解:如图2﹣1中,作PM BC ⊥交BC 的延长线于M .∵//FB GC ,//FE GP ,∴CGP BFE ∠=∠, ∴3tan tan 4BE CGP BFE BF∠=∠==, ∴可以假设3BE k =,4BF k =,5EF AF k ==, ∵23FG AE =,210FG = ∴310AE = ∴222(3)(9)(310)k k +=,∴1k =或﹣1(舍弃),∴3BE =,9AB =,∵:2:3BC AB =,∴6BC =,∴3BE CE ==,6AD PE BC ===,∵90BEF FEP PME ∠=∠=∠=,∴90FEB PEM ∠+∠=,90PEM EPM ∠+∠=,∴FEB EPM ∠=∠,∴FBE ∆∽EMP ∆, ∴EF BF BE PE EM PM ==, ∴5436EM PM==, ∴245EM =,185PM =, ∴249355CM EM EC ===-=, ∴22955PC CM PM =+=【点睛】本题属于相似形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.16.如图1,△ABC 和△DCE 都是等边三角形.探究发现(1)△BCD 与△ACE 是否全等?若全等,加以证明;若不全等,请说明理由. 拓展运用(2)若B 、C 、E 三点不在一条直线上,∠ADC =30°,AD =3,CD =2,求BD 的长. (3)若B 、C 、E 三点在一条直线上(如图2),且△ABC 和△DCE 的边长分别为1和2,求△ACD 的面积及AD 的长.解析:(1)全等,理由见解析;(2)BD 133)△ACD 3AD 3 【分析】 (1)依据等式的性质可证明∠BCD =∠ACE ,然后依据SAS 可证明△ACE ≌△BCD ; (2)由(1)知:BD =AE ,利用勾股定理计算AE 的长,可得BD 的长;(3)过点A 作AF ⊥CD 于F ,先根据平角的定义得∠ACD =60°,利用特殊角的三角函数可得AF 的长,由三角形面积公式可得△ACD 的面积,最后根据勾股定理可得AD 的长.【详解】解:(1)全等,理由是:∵△ABC 和△DCE 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =∠DCE =60°,∴∠ACB +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE ,在△BCD 和△ACE 中,CD CE BCD ACE BC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△BCD (SAS );(2)如图3,由(1)得:△BCD ≌△ACE ,∴BD =AE ,∵△DCE 都是等边三角形,∴∠CDE =60°,CD =DE =2,∵∠ADC =30°,∴∠ADE =∠ADC +∠CDE =30°+60°=90°,在Rt △ADE 中,AD =3,DE =2, ∴229413AE AD DE ++=。
深圳龙岗区平冈中学中考数学期末几何综合压轴题模拟汇编
![深圳龙岗区平冈中学中考数学期末几何综合压轴题模拟汇编](https://img.taocdn.com/s3/m/19c01b12998fcc22bdd10ddf.png)
深圳龙岗区平冈中学中考数学期末几何综合压轴题模拟汇编一、中考几何压轴题1.(问题探究)(1)如图1,△ABC 和△DEC 均为等腰直角三角形,∠ACB =∠DCE =90°,点B ,D ,E 在同一直线上,连接AD ,BD .①请探究AD 与BD 之间的位置关系?并加以证明.②若AC =BC =10,DC =CE =2,求线段AD 的长. (拓展延伸)(2)如图2,△ABC 和△DEC 均为直角三角形,∠ACB =∠DCE =90°,AC =21,BC =7,CD =3,CE =1.将△DCE 绕点C 在平面内顺时针旋转,设旋转角∠BCD 为α(0°≤α<360°),作直线BD ,连接AD ,当点B ,D ,E 在同一直线上时,画出图形,并求线段AD 的长.2.已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B 重合,连接AN 、CM ,E 是AN 的中点,连接BE .(观察猜想)(1)CM 与BE 的数量关系是________;CM 与BE 的位置关系是________;(探究证明)(2)如图2所示,把三角板BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM 与BE 的关系是否仍然成立,并说明理由;(拓展延伸)(3)若旋转角45α=,且2NBE ABE ∠=∠,求BC BN的值. 3.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.4.(1)如图1,在正ABC 的外角CAH ∠内引射线AM ,作点C 关于AM 的对称点E (点E 在CAH ∠内),连接BE ,BE 、CE 分别交AM 于点F ,G .则FEG ∠=_______︒. (2)类比探究:如图2,把上题中的“正ABC ”改为“正方形ABDC ”,其余条件不变,请求出FEG ∠的度数;通过以上两例探索,请写出一个关于FEG ∠与BAC ∠的数量关系的正确结论:_________________;(3)拓展延伸:如图3,若以正方形AODC 的顶点O 为原点,顶点A ,D 分别在x 轴,y 轴上,点A 的坐标为(4,0),设正方形AODC 的中心为P ,平面上一点F 到P 的距离为22.①直接写出OFA ∠的度数;②当6=FAO S 时,求点F 的坐标;并探索FAO S 是否有最大值?如果有,请求出;如果没有,请说明理由.5.如图:两个菱形ABCD 与菱形BEFG 的边AB BE ,在同一条直线上,边长分别为a 和b ,点C 在BG 上,点M 为CG 的中点.(1)观察猜想:如图①,线段BM 与线段AE 的数量关系是______________.(2)拓展探究:如图②,120ABC ∠=︒,将图①中的菱形BEFG 绕点B 顺时针旋转至图②位置,其他条件不变,连接BM ,①猜想线段BM 与线段AE 的数量关系,并说明理由.②求出线段BM 与AE 所成的最小夹角.(3)解决问题:如图③,若将题目中的菱形改为矩形,且3BC EF AB BE ==,请直接写出线段BM 与线段AE 的数量关系.6.问题探究:(1)如图①,已知在△ABC 中,BC =4,∠BAC =45°,则AB 的最大值是 .(2)如图②,已知在Rt △ABC 中,∠ABC =90°,AB =BC ,D 为△ABC 内一点,且AD =27,BD =2.,CD =6,请求出∠ADB 的度数.问题解决:(3)如图③,某户外拓展基地计划在一处空地上修建一个新的拓展游戏区△ABC ,且AB =A C .∠BAC =120°,点A 、B 、C 分别是三个任务点,点P 是△ABC 内一个打卡点.按照设计要求,CP =30米,打卡点P 对任务点A 、B 的张角为120°,即∠APB =120°.为保证游戏效果,需要A 、P 的距离与B 、P 的距离和尽可能大,试求出AP +BP 的最大值.7.(1)(操作)如图,请用尺规作图确定圆的圆心P ,保留作图痕迹,不要求写作法;(2)(探究)如图,若(1)中的圆P 的半径为2,放入平面直角坐标系中,使它与x 轴,y 轴分别切于点B 和C ,点A 的坐标为()8,0,过点A 的直线与圆P 有唯一公共点D (与B 不重合)时,求点D 的坐标;(3)(拓展)如图3,点M 从点()8,0A 出发,以每秒1个单位的速度沿x 轴向点O 运动,同时,点N 从原点O 出发,以每秒1个单位的速度沿y 轴向上运动,设运动时间为t (08s t <<),过点M ,N ,O 三点的圆,交第一象限角平分线OG 于点E ,当t 为何值时,MN 有最小值,求出此时OMEN S 四边形,并探索在变化过程中OMEN S 四边形的值有变化吗?为什么?8.如图,已知ABC 和ADE 均为等腰三角形,AC BC =,DE AE =,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠=∠=︒时,点B 、D 、E 在同一直线上,连接CE ,则线段BD 、CE 之间的数量关系是_________,CEB ∠=_________︒;(2)拓展探究:如图②,当ACB AED α∠=∠=时,点B 、D 、E 不在同一直线上,连接CE ,求出线段BD 、CE 之间的数量关系及BD 、CE 所在直线相交所成的锐角的大小(都用含α的式子表示),并说明理由:(3)解决问题:如图③,90ACB AED ∠=∠=︒,10AC =2AE =CE 、BD ,在AED 绕点A 旋转的过程中,当CE 所在的直线垂直于AD 时,请你直接写出BD 的长.9.综合与实践动手操作利用正方形纸片的折叠开展数学活动.探究体会在正方形折叠过程中,图形与线段的变化及其蕴含的数学思想方法.如图1,点E 为正方形ABCD 的AB 边上的一个动点,3AB =,将正方形ABCD 对折,使点A 与点B 重合,点C 与点D 重合,折痕为MN .思考探索(1)将正方形ABCD 展平后沿过点C 的直线CE 折叠,使点B 的对应点B '落在MN 上,折痕为EC ,连接DB ',如图2.①点B '在以点E 为圆心,_________的长为半径的圆上;②B M '=_________;③DB C '为_______三角形,请证明你的结论.拓展延伸(2)当3AB AE =时,正方形ABCD 沿过点E 的直线l (不过点B )折叠后,点B 的对应点B '落在正方形ABCD 内部或边上.①ABB '面积的最大值为____________;②连接AB ',点P 为AE 的中点,点Q 在AB '上,连接,PQ AQP AB E '∠=∠,则2B C PQ '+的最小值为____________.10.(阅读理解)定义:如果四边形的某条对角线平分一组对角,那么把这条对角线叫“协和线”,该四边形叫做“协和四边形”.(深入探究)(1)如图1,在四边形ABCD 中,AB BC =,AD CD =,请说明:四边形ABCD 是“协和四边形”.(尝试应用)(2)如图2,四边形ABCD 是“协和四边形”,BD 为“协和线”,AB AD ⊥,60ADC ∠=︒,若点E 、F 分别为边AD 、DC 的中点,连接BE ,BF ,EF .求:①DEF 与BEF 的面积的比;②EBF ∠的正弦值.(拓展应用)(3)如图3,在菱形ABCD 中,8AB =,120BAD ∠=︒,点E 、F 分别在边AD 和BC 上,点G 、K 分别在边AB 和CD 上,点N 为BE 与GF 的交点,点M 在EF 上,连接MN ,若四边形BGEF ,DHMK 都是“协和四边形”,“协和线”分别是GF 、HK ,求MN 的最小值.11.如图1,已知直角三角形ABC ,90ACB ∠=︒,30BAC ∠=︒,点D 是AC 边上一点,过D 作DE AB ⊥于点E ,连接BD ,点F 是BD 中点,连接EF ,CF .(1)发现问题:线段EF ,CF 之间的数量关系为______;EFC ∠的度数为______;(2)拓展与探究:若将AED 绕点A 按顺时针方向旋转α角()030α︒<<︒,如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若AED 绕点A 旋转的过程中,当点D 落到AB 边上时,AB 边上另有一点G ,AD DG GB ==,3BC =,连接EG ,请直接写出EG 的长度.12.综合与实践.特例感知.两块三角板△ADB 与△EFC 全等,∠ADB =∠EFC =90°,∠B =45°,AB =6.将直角边AD 和EF 重合摆放.点P 、Q 分别为BE 、AF 的中点,连接PQ ,如图1.则△APQ 的形状为 .操作探究(1)若将△EFC 绕点C 顺时针旋转45°,点P 恰好落在AD 上,BE 与AC 交于点G ,连接PF ,如图2.①FG :GA = ;②PF 与DC 的位置关系为 ;③求PQ 的长;开放拓展(2)若△EFC 绕点C 旋转一周,当AC ⊥CF 时,∠AEC 为 .13.综合与实践操作探究(1)如图1,将矩形ABCD 折叠,使点A 与点C 重合,折痕为EF ,AC 与EF 交于点G .请回答下列问题:①与AEG △全等的三角形为______,与AEG △相似的三角形为______.并证明你的结论:(相似比不为1,只填一个即可):②若连接AF 、CE ,请判断四边形AFCE 的形状:______.并证明你的结论; 拓展延伸(2)如图2,矩形ABCD 中,2AB =,4BC =,点M 、N 分別在AB 、DC 边上,且AM NC =,将矩形折叠,使点M 与点N 重合,折痕为EF ,MN 与EF 交于点G ,连接ME .①设22m AM AE =+,22n ED DN =+,则m 与n 的数量关系为______;②设AE a =,AM b =,请用含a 的式子表示b :______;③ME 的最小值为______.14.(1)问题发现如图1,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E 是线段AC 上一动点,连接DE .填空:①则AD EC的值为______;②∠EAD 的度数为_______. (2)类比探究如图2,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E 是线段AC 上一动点,连接DE .请求出AD EC的值及∠EAD 的度数; (3)拓展延伸如图3,在(2)的条件下,取线段DE 的中点M ,连接AM 、BM ,若BC=4,则当△ABM 是直角三角形时,求线段AD 的长.15.我们定义:连结凸四边形一组对边中点的线段叫做四边形的“准中位线”.(1)概念理解:如图1,四边形ABCD 中,F 为CD 的中点,90ADB ∠=︒,E 是AB 边上一点,满足DE AE =,试判断EF 是否为四边形ABCD 的准中位线,并说明理由.(2)问题探究:如图2,ABC ∆中,90ACB ∠=︒,6AC =,8BC =,动点E 以每秒1个单位的速度,从点A 出发向点C 运动,动点F 以每秒6个单位的速度,从点C 出发沿射线CB 运动,当点E 运动至点C 时,两点同时停止运动.D 为线段AB 上任意一点,连接并延长CD ,射线CD 与点,,,A B E F 构成的四边形的两边分别相交于点,M N ,设运动时间为t .问t 为何值时,MN 为点,,,A B E F 构成的四边形的准中位线.(3)应用拓展:如图3,EF 为四边形ABCD 的准中位线,AB CD =,延长FE 分别与BA ,CD 的延长线交于点,M N ,请找出图中与M ∠相等的角并证明.16.如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ 与BO 的数量关系是_____,位置关系是____;(2)问题探究:如图②,AO E ∆'是将图①中的AOB ∆绕点A 按顺时针方向旋转45︒得到的三角形,连接CE ,点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .判断PQB ∆的形状,并证明你的结论;(3)拓展延伸:如图③,AO E ∆'是将图①中的AOB ∆绕点A 按逆时针方向旋转45︒得到的三角形,连接BO ',点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求PQB ∆的面积.17.如图1,在等腰三角形ABC 中,120,,A AB AC ∠==点D E 、分别在边AB AC 、上,,AD AE =连接,BE 点M N P 、、分别为DE BE BC 、、的中点.(1)观察猜想图1中,线段NM NP 、的数量关系是____,MNP ∠的大小为_____;(2)探究证明把ADE 绕点A 顺时针方向旋转到如图2所示的位置,连接,MP BD CE 、、判断MNP △的形状,并说明理由;(3)拓展延伸把ADE 绕点A 在平面内自由旋转,若1,3AD AB ==,请求出MNP △面积的最大值. 18.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.19.综合与实践——探究特殊三角形中的相关问题 问题情境:某校学习小组在探究学习过程中,将两块完全相同的且含60︒角的直角三角板ABC 和AFE 按如图1所示位置放置,且Rt ABC 的较短直角边AB 为2,现将Rt AEF 绕A 点按逆时针方向旋转α(090)α︒<<︒,如图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)初步探究:勤思小组的同学提出:当旋转角α= 时,AMC 是等腰三角形;(2)深入探究:敏学小组的同学提出在旋转过程中,如果连接AP ,CE ,那么AP 所在的直线是线段CE 的垂直平分线.请帮他们证明;(3)再探究:在旋转过程中,当旋转角30α=︒时,求ABC 与AFE △重叠的面积;(4)拓展延伸:在旋转过程中,CPN 是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.20.在矩形ABCD 中,AD k AB=(k 为常数),点P 是对角线BD 上一动点(不与B ,D 重合),将射线PA 绕点P 逆时针旋转90°与射线CB 交于点E ,连接AE .(1)特例发现:如图1,当k =1时,将点P 移动到对角线交点处,可发现点E 与点B 重合,则PA PE = ,∠AEP = ;当点P 移动到其它位置时,∠AEP 的大小 (填“改变”或“不变”);(2)类比探究:如图2,若k ≠1时,当k 的值确定时,请探究∠AEP 的大小是否会随着点P 的移动而发生变化,并说明理由;(3)拓展应用:当k ≠1时,如图2,连接PC ,若PC ⊥BD ,//AE PC ,PC =2,求AP 的长.【参考答案】***试卷处理标记,请不要删除一、中考几何压轴题1.(1)①,证明见解析;②4;(2)画图见解析,或【分析】(1)①由“”可证,可得,可得;②过点作于点,由勾股定理可求,,的长,即可求的长;(2)分点在左侧和右侧两种情况讨论,根据勾股定理和相似解析:(1)①AD BD ⊥,证明见解析;②4;(2)画图见解析,3323【分析】(1)①由“SAS ”可证ACD BCE ≅∆∆,可得45ADC BEC ∠=∠=︒,可得AD BD ⊥;②过点C 作CF AD ⊥于点F ,由勾股定理可求DF ,CF ,AF 的长,即可求AD 的长; (2)分点D 在BC 左侧和BC 右侧两种情况讨论,根据勾股定理和相似三角形的性质可求解.【详解】解:(1)ABC ∆和DEC ∆均为等腰直角三角形,AC BC ∴=,CE CD =,45ABC DEC CDE ∠=∠=︒=∠,90ACB DCE ∠=∠=︒,ACD BCE ∠∠∴=,且AC BC =,CE CD =,()ACD BCE SAS ∴∆≅∆,45ADC BEC ∴∠=∠=︒,90ADE ADC CDE ∴∠=∠+∠=︒,AD BD ∴⊥,故答案为:AD BD ⊥;②如图,过点C 作CF AD ⊥于点F ,45ADC ∠=︒,CF AD ⊥,2CD =,1DF CF ∴==, 223AF AC CF ∴=-=,4AD AF DF ∴=+=,故答案为:4;(2)若点D 在BC 右侧,如图,过点C 作CF AD ⊥于点F ,90ACB DCE ∠=∠=︒,21AC 7BC =3CD =1CE =.ACD BCE ∠∠∴=,3AC CD BC CE=, ACD BCE ∴∆∆∽, ADC BEC ∠∠∴=,3CD =1CE =, 222DE DC CE ∴+, ADC BEC ∠=∠,90DCE CFD ∠=∠=︒,DCE CFD ∴∆∆∽,∴DE DC CE DC CF DF==, 313DF =, 32CF ∴=,3DF =, 2253AF AC CF ∴=- 33AD DF AF ∴=+=若点D 在BC 左侧,90ACB DCE ∠=∠=︒,21AC 7BC =3CD =1CE =.ACD BCE ∠∠∴=,3AC CD BC CE=, ACD BCE ∴∆∆∽, ADC BEC ∠∠∴=,CED CDF ∴∠=∠, 3CD =1CE =,222DE DC CE ∴+,CED CDF ∠=∠,90DCE CFD ∠=∠=︒,DCE CFD ∴∆∆∽, ∴DE DC CE DC CF DF==, 313DF =, 32CF ∴=,3DF =, 2253AF AC CF ∴=- 23AD AF DF ∴=-=【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线.2.(1);;(2)成立,理由见解析;(3)【分析】(1)【观察猜想】根据正方形ABCD ,得到AB=CB ,由等腰三角形BMN ,得到BM=BN ,可证明Rt △BAN ≌Rt △BCM (HL),又根据E 是A解析:(1)2CM BE =;CM BE ⊥;(2)成立,理由见解析;(3)62-【分析】(1)【观察猜想】根据正方形ABCD ,得到AB=CB ,由等腰三角形BMN ,得到BM=BN ,可证明Rt△BAN≌Rt△BCM(HL),又根据E是AN的中点,即可证明CM=2BE,根据等边对等角得到∠ABE=∠BCM,∠ABE+∠BMC=90∘即可证明CM⊥BE.(2)【探究证明】延长BE至F使EF= BE,连接AF,先证明△AEF≌△NEB,再证明△FAB≌MBC,得到CM=BF=2BE,∠BCM=∠ABF,得到∠ABF+∠FBC=90°,进而求得∠BCM+∠EBC=90°,即可证明EB⊥CM;(3)[拓展延伸] 由a=45°得到∠ABE= 15°,由前面可得∠BMC= 30°,过C作CG⊥MB于G,设CG为m,则BC=2m,MG=3m,所以MB= BN=3m-m,最后求得BCBN的值.【详解】解:【观察猜想】(1)CM =2BE ;CM⊥BE;如图1所示图1∵正方形ABCD,∴AB=CB,∵等腰三角形BMN,∴BM=BN,∴Rt△BAN≌Rt△BCM(HL),∴∠BAN=∠BCM,又∵E是AN的中点,∴BE=AE=NE=12AN,∴CM=2BE,∵BE=AE,∴∠BAN=∠ABE,∴∠ABE=∠BCM,∴∠ABE+∠BMC=∠BCM+∠BMC=90∘∴∠BPM=90∘∴CM⊥BE.【探究证明】(2)CM = 2BE,CM ⊥ BE仍然成立.如图2所示,延长BE至F使EF= BE,连接AF,∵AE= EN,∠AEF=∠NEB,EF= BE,∴△AEF≌△NEB∴AF= BN,∠F=∠EBN,∴AF//BN,AF= BM,∴∠FAB+∠ABN = 180°,∵∠MBN= ∠ABC= 90°,∴∠NBC+∠ABN= 90°,∴∠NBA+∠FAD= 90°,∴∠CBN= ∠FAD∴∠FAB=∠MBC,∵AB=BC,∴△FAB≌MBC,∴CM=BF=2BE,∠BCM=∠ABF,∵∠ABF+∠FBC=90°∴∠BCM+∠EBC=90°,∴EB⊥CM;[拓展延伸] (3)由a=45°得∠MBA=∠ABN= 45°,∵∠NBE= 2∠ABE,∴∠ABE= 15°,由前面可得∠MCB=∠ABE= 15°,∠MBC= 135°,∴∠BMC= 180°-15°-135°=30°,如图3所示,过C作CG⊥MB于G,图3设CG为m则,,所以,∴BC BM == 【点睛】本题考查了正方形的性质,全等三角形的性质和判定,等腰直角三角形的性质,直角三角形的性质,解题的关键是灵活运用以上性质解决问题.3.(1);(2),理由见解析;(3)CE 的长为2或4,理由见解析.【分析】(1)证明,得出CE =BD ,,即可得出结论;(2)证明,得出,,即可得出结论;(3)先判断出,再求出:①当点E 在点D解析:(1)60BD CE ,=;(2)45CEB BD ∠︒=,,理由见解析;(3)CE 的长为【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论;(2)证明ACE ABD ∽,得出AEC ADB ∠=∠,BD =,即可得出结论; (3)先判断出BD =,再求出AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论.【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形,同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAEAD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEBCEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;.(2)45CEB BD ∠︒=,,理由如下:在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==, ∴AE AC AD AB =,DAE CAB ∠∠=,EAC DAB ∴∠∠=,ACE ABD ∴∽ ,∴BD AD CE AE =∴AEC ADB BD ∠∠=,,点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒==135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==;(3)由(2)知,ACE ABD ∽,BD ∴,在Rt ABC 中,AC =AB ∴=,①当点E 在点D 上方时,如图③,过点A 作AP BD ⊥交BD 的延长线于P ,DE BD ⊥,PDE AED APD ∴∠∠∠==,∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,6BP ,4BD BP AP ∴-==,CE BD ∴= ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6,∴BD =BP +DP =8,CE ∴=综上CE 的长为.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.4.(1);(2),理由见解析;(3)①;②有,【分析】(1)证明∠1=∠2,∠3=∠4,∠1+∠2+60°+∠3+∠4=180°得∠1+∠3=60°,进一步可得结论;(2)连接,证明,再进一步解析:(1)30;(2)12∠=∠FEG BAC ,理由见解析;(3)①45︒;②有,(2,222)+F【分析】(1)证明∠1=∠2,∠3=∠4,∠1+∠2+60°+∠3+∠4=180°得∠1+∠3=60°,进一步可得结论;(2)连接,CF BC ,证明AEB ABE ∠=∠,再进一步证明290∠=︒AFB 得45GFE GEF ∠=∠=︒,故可得结论;(3)①由题意可知()2,2P ,点F 在以P 为圆心,2结论;②设(),F x y ,根据三角形面积公式求出y 的值,在Rt PBF 中,2,1=-=PB x BF ,根据勾股定理得222+=BP BF PF ,列出方程求出x 的值即可得点F 的坐标,当//PF y 轴时,面积最大,求值即可.【详解】解:(1)如图1中,∵点E 是点C 关于AM 的对称点, ∴∠AGE =90°,AE =AC ,∠1=∠2. ∵正△ABC 中,∠BAC =60°,AB =AC , ∴AE =AB ,得∠3=∠4.在△ABE 中,∠1+∠2+60°+∠3+∠4=180°, ∴∠1+∠2+∠3+∠4=120°,∴∠1+∠3=60°.在△AEG 中,∠FEG +∠3+∠1=90°, ∴∠FEG =30°.故答案为:30;(2)连接,CF BC∵C ,E 关于AM 对称∴,⊥=AM CE GC GE∴,90=∠=︒AC AE AGE∴,∠=∠∠=∠CAG EAG AEB ABE ; 在正方形ABDC 中,,90=∠=︒AC AB BAC ∴AB AE =,∴AEB ABE ∠=∠;在BAF △中,180∠+∠+∠=︒AFB ABF BAF ; 即90180∠+∠+︒+∠=︒AFB AEB EAG ∵∠=∠+∠AFB AEB EAG∴290∠=︒AFB∴45∠=∠=︒GFE AFB∴45FEG ∠=︒ 结论:12∠=∠FEG BAC(3)①由题意可知()2,2P ,点F 在以P 为圆心,22为半径的圆上,如图,连接PO PA , ,则90APO ∠=︒∴1452AFO APO ∠=∠=︒ 故答案为:45︒②设(),F x y 则162=⋅=FAO SOA y 即2||6=y ,由题意得0y >,∴3y = 由题意可知()2,2P ,点F 在以P 为圆心,22为半径的圆上;过点P 作//PB x 轴,过点F 作//FB y 轴,则90PBF ∠=°在Rt PBF 中,2,1=-=PB x BF ,根据勾股定理得222+=BP BF PF即222|2|12)-+=x解得1227,27x x ==故(27,3)F 或(27,3)F1||2=⋅FAO SOA y ,当//PF y 轴时,面积最大,此时(2,22)+F 1||4422=⋅=+FAOS OA y 【点睛】本题属于四边形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.5.(1);(2)①,理由见解析;②线段与所成的最小夹角为60;(3).【分析】(1)根据已知求得AE =a+b ,CG =b-a ,根据线段中点的定义求得CM =,通过计算即可求解;(2)①延长BM解析:(1)12BM AE =;(2)①12BM AE =,理由见解析;②线段BM 与AE 所成的最小夹角为60︒;(3)BM AE =. 【分析】 (1)根据已知求得AE =a +b ,CG =b -a ,根据线段中点的定义求得CM =1122b a -,通过计算即可求解;(2)①延长BM 到H ,使MH =BM ,连接GH ,利用SAS 证明△CMB ≅△GMH 和△ABE ≅△HGB ,即可得到结论;②延长MB 交AE 于N ,证明∠GBE =∠BNE =60︒,即可求解;(3)延长BM 到H ,使MH =BM ,连接GH ,同理证明△CMB ≅△GMH ,再证明△ABE ~△HGB ,即可求解.【详解】(1)12BM AE =,理由如下: ∵菱形ABCD 与菱形 BEFG 的边长分别为a 和b ,∴AE =AB +BE =a +b ,CG =BG -BC =b -a ,∵点M 为CG 的中点,∴CM =12CG =1122b a -, ∴()1111122222BM BC CM a b a a b a b =+=+-=+=+, ∴12BM AE =; (2)①12BM AE =,理由如下: 延长BM 到H ,使MH =BM ,连接GH ,如图:∵点M为CG的中点,∴CM=MG,∵∠CMB=∠GMH,∴△CMB≅△GMH (SAS),∴∠BCM=∠HGM,BC=HG,∴BC∥GH,∴∠BGH+∠CBG=180︒,∵菱形ABCD与菱形BEFG中,∠ABC=120°,∠GBE=60°,∴∠ABE+∠CBG=180︒,∴∠ABE=∠BGH,∵AB=BC=HG,BE=BG,∴△ABE≅△HGB (SAS),∴AE= HB12AE=;②线段BM与AE所成的最小夹角为60︒,理由如下:∵△ABE≅△HGB,∴∠AEB=∠BHG,延长MB交AE于N,则∠MBE=∠BNE+∠AEB,即∠HBG+∠GBE=∠BNE+∠AEB,∴∠GBE=∠BNE=60︒,∴线段BM与AE所成的最小夹角为60︒;(3)3BM AE,理由如下:延长BM到H,使MH=BM,连接GH,如图:同理可得:△CMB ≅△GMH (SAS ),∴∠BCM =∠HGM ,BC =HG ,∴BC ∥GH ,∴∠BGH +∠CBG =180︒,∵矩形ABCD 与矩形 BEFG 中,∠ABC =∠GBE =90°,∴∠ABE +∠CBG =180︒,∴∠ABE =∠BGH , ∵3BC EF AB BE == ∴3HG B AB G BE== ∴△ABE ~△HGB , ∴3BH BG AE BE== ∵12BM BH =, ∴3BM AE =. 【点睛】本题考查四边形综合题、全等三角形的判定和性质、相似三角形的判定和性质、菱形的性质、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.6.(1)4(2)135°(3)PA+PB 的最大值为米【分析】(1)作△ABC 的外接圆,连接OA ,OB ,OC ,求出OA=OB=OC=2,可得结论; (2)将△ABD 绕点B 顺时针旋转90°得到△CBT解析:(1)22)135°(3)PA +PB 的最大值为3【分析】(1)作△ABC的外接圆,连接OA,OB,OC,求出OA=OB=OC=22,可得结论;(2)将△ABD绕点B顺时针旋转90°得到△CBT,连接DT,利用勾股定理的逆定理证明∠CTD=90°,可得结论;(3)将△ABP绕点A逆时针旋转120°得到△ACK,延长CK交PA延长线于J,作△PJC的外接圆O,连接OP,OC,OJ,证明PA+PB =JC,再求出JC的最大值即可求解.【详解】(1)如图①,作△ABC的外接圆O,连接OA,OB,OC,∵∠BOC=2∠BAC=90°,OB=OC∴△OBC是等腰直角三角形∵BC=4∴OB=OC=22=OA∵AB≤OA+OB∴AB≤42∴AB的最大值为42故答案为:42;(2)如图②,将△ABD绕点B顺时针旋转90°得到△CBT,连接DT由题意可得DT22CT=AD7∵CD=6∴222+=DT CT CD∴∠CTD=90°,∵△BDT是等腰直角三角形∴∠DTB=45°∴∠CTB=45°+90°=135°∴∠ADB=∠CTB=135°(3)如图③,将△ABP绕点A逆时针旋转120°得到△ACK,延长CK交PA延长线于J,作△PJC的外接圆O,连接OP,OC,OJ∵∠PAK=120°,∠AKC=∠APB=120°∴∠JAK=∠JKA=60°∴∠AJK=60°∴△JAK是等边三角形∴AK=KJ∴∠COP=2∠AJK=120°∵PC=30∴OP=OC=OJ=12103cos30PC=︒∵CJ≤OJ+OC∴CJ≤203∵PA+PB=AK+CK+KJ+KC=JC∴PA+PB的最大值为203米.【点睛】此题主要考查旋转的综合运用,解题的关键是熟知三角形外接圆的性质、三角函数的应用、旋转的性质、等边三角形的性质、勾股定理的应用及三角形的三边关系的应用.7.(1)见解析;(2);(3)当时,有最小值,此时;的值不变,见解析【分析】(1)在圆上任意取两条弦AC、BC,作AC、BC的垂直平分线,则它们的交点为P点;(2)由题意得与相切于点,根据切线长解析:(1)见解析;(2)1618,55D ⎛⎫ ⎪⎝⎭;(3)当4t =时,MN 有最小值,此时16OMEN S =四边形;OMEN S 四边形的值不变,见解析【分析】(1)在圆上任意取两条弦AC 、BC ,作AC 、BC 的垂直平分线,则它们的交点为P 点; (2)由题意得AE 与P 相切于点D ,根据切线长定理和勾股定理求得10AE =,再证明ADF AEO ∽△△,利用相似三角形的性质即可求解;(3)根据勾股定理得()2228MN t t =-+22216642(4)32t t t =-+=-+,得到当4t =时,2MN 有最小值,即MN 有最小值.四边形OMEN 是正方形,即可求得此时OMEN S 四边形,根据MON MEN OMEN S S S =+四边形△△利用三角形面积公式,即可求解.【详解】(1)如图,点P 即为所作;(2)如图,过点D 作DF x ⊥轴于点F ,连接PC ,PB ,由题意得:P 与坐标轴相切,∴90OBP OCP COB ∠=∠=∠=︒,∴四边形OBPC 是矩形,∵2PC PB ==,∴四边形OBPC 是正方形,∴2OC OB ==,则6AB =,由题意得AE 与P 相切于点D ,∴6AB AD ==,设EC ED x ==,在Rt OAE △中,90AOE ∠=︒,8AO =,2EO x =+,6AE x =+,由勾股定理得:222OE OA AE +=,即:()()222286x x ++=+,解得4x =,∴10AE =, 由题意可得ADF AEO ∽△△, ∴AD DF AF AE EO AO==, 即:61068DF AF ==, ∴185DF =,245AF =, 则2416855OF =-= ∴161855D ⎛⎫ ⎪⎝⎭,; (3)如图,在Rt OMN △中,90MON ∠=︒,8OM t =-,ON t =,则()2228MN t t =-+22216642(4)32t t t =-+=-+,当4t =时,2MN 有最小值,即MN 有最小值.此时,4OM ON ==,∵OG 平分第一象限,∴∠EON =∠EOM =45︒,∴△EON ≅△EOM ,∴∠ENO =∠EMO ,∵四边形OMEN 是圆内接四边形,∴∠ENO +∠EMO =180︒,∴∠ENO =∠EMO =90︒,又OM =ON ,∴四边形OMEN 是正方形,∴4416OMEN S =⨯=四边形;在这个变化过程中,16OMEN S =四边形没有变化,理由如下:∵OG 平分第一象限,∴EMN 是等腰直角三角形, ∴NE ME = 则()()2222221118222NE MN OM ON t t ⎡⎤==+=-+⎣⎦, ∴MON MEN OMEN S S S =+四边形△△21122ON OM NE =⋅+ ()()2211188222t t t t ⎡⎤=-+⨯-+⎣⎦16=.【点睛】本题考查了坐标与图形,圆的切线的性质,相似三角形的判定和性质,二次函数最值的求解,解答本题的关键是明确题意,找出所求问题需要的条件,学会利用参数构建方程解决问题.8.(1),60;(2),;(3)或【分析】(1)证明,得出,,即可得出结论;(2)证明,即可得出结论;(3)先判断出,再求出,①当点在点上方时,先判断出四边形是矩形,求出,再根据勾股定理求出,解析:(1)BD CE =,60;(2)2sin 2BD EC α=⋅⋅,902α︒-;(3)22或42【分析】(1)证明ACE ABD ∆≅∆,得出CE BD =,AEC ADB ∠=∠,即可得出结论;(2)证明ACE ABD ∆∆∽,即可得出结论;(3)先判断出2BD CE =,再求出25AB =,①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出2AP DP AE ===,再根据勾股定理求出,32BP =,得出22BD =;②当点E 在点D 下方时,同①的方法得,2AP DP AE ===,32BP =,进而得出42BD BP DP =+=,即可得出结论.【详解】解:(1)如图①中,在ABC ∆为等腰三角形,AC BC =,60ACB ∠=︒,ABC ∆∴是等边三角形,AC AB ∴=,60CAB ∠=︒,同理:AE AD =,60AED ADE EAD ∠=∠=∠=︒,EAD CAB ∴∠=∠,EAC DAB ∠=∠∴,()ACE ABD SAS ∴∆≅∆,CE BD ∴=,AEC ADB ∠=∠,点B 、D 、E 在同一直线上,180120ADB ADE ∴∠=︒-∠=︒, AEC 120∴∠=︒,60CEB AEC AEB ∴∠=∠-∠=︒,故答案为:BD CE =,60.(2)如图②中,2sin 2BD CE α=⋅,BD 、CE 所在直线相交所成的锐角的大小为902α︒-.理由:延长BD 交CE 的延长线于T ,设AE 交BT 于点O .在等腰三角形ABC 中,AC BC =,ACB α∠=,2sin2AB AC α∴=⋅,同理,2sin 2AD AE α=⋅,∴AE ACAD AB=,DAE CAB ∠=∠,EAC DAB ∠=∠∴,ACE ABD ∴∆∆∽,∴2sin 2BD AB EC AC α==, ECA DBA ∴∠=∠,2sin 2BD EC α=⋅⋅,COT AOB ∠=∠,902CTO CAB α∴∠=∠=︒-.BD ∴、CE 所在直线相交所成的锐角的大小为902α︒-.(3)由(2)知,ACE ABD ∆∆∽,2BD CE ∴,在Rt ABC △中,10AC =225AB AC ∴==①当点E 在点D 上方时,如图③, 过点A 作AP BD ⊥交BD 的延长线于P , 当CE AD ⊥时,可证135AEC ADB ∠=∠=︒,45ADE ∠=︒, 90EDB ∴∠=︒,90PDE AED APD ∴∠=∠=∠=︒,∴四边形APDE 是矩形, AE DE =,∴矩形APDE是正方形,2AP DP AE∴===,在Rt APB中,根据勾股定理得,2222(25)(2)32BP AB AP=-=-=,22BD BP PD∴=-=.②当点E在点D下方时,如图④同①的方法得,2AP DP AE===,32BP=,42BD BP DP∴=+=,综上所述,BD的长为222【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出△ACE∽△ABD是解本题的关键.9.(1)①;②;③等边,证明见解析;(2)①3;②.【分析】(1)①利用圆的基本性质,即可求解;②根据折叠的性质,利用勾股定理,即可求解;③利用勾股定理,求得B′D=,即可求解;(2)①由题解析:(1)①BE;②333;③等边,证明见解析;(2)①3;13【分析】(1)①利用圆的基本性质,即可求解;②根据折叠的性质,利用勾股定理,即可求解;③利用勾股定理,求得B′D=BC CD=,即可求解;(2)①由题意知点B'在以点E为圆心,半径长为2的圆上,△ABB'的面积要最大,只要以AB为底的高最长即可,此时当B'E⊥AB时,△ABB'的面积最大;②当E、B′、C三点共线时,B'C+ EB'取得最小值,即B'C+2PQ取得最小值,且最小值为EC 的长,利用勾股定理即可求解.【详解】解:(1)根据折叠的性质知:BE=B′E ,BC=B′C=3,MA=MB=NC=ND=32,∠B=∠EB′C=90︒,①点B′在以点E 为圆心,BE 的长为半径的圆上; ②B′M=MN - B′N=22MN B C NC '-- =223332⎛⎫-- ⎪⎝⎭=333-; ③B′D=222222B N ND B C NC ND BC BC CD +=-+==='', ∴△DB'C 为等边三角形; 故答案为:①BE ,②333-,③等边; (2)①∵AB=3=3AE , ∴AE=1,BE=2,故点B'在以点E 为圆心,半径长为2的圆上, ∴△ABB'的面积要最大,只要以AB 为底的高最长即可, ∴当B'E ⊥AB 时,△ABB'的面积最大,如图:△ABB'的面积最大值1132322AB E B =⨯=⨯⨯='; ②∵∠AQP=∠AB'E , ∴PQ ∥B'E , ∵P 为AE 的中点, ∴Q 为AB'的中点,∴PQ 为△AEB'的中位线, ∴PQ=12EB',即12EB'=2PQ ,∴B'C+2PQ= B'C+ EB',当E 、B′、C 三点共线时,B'C+ EB'取得最小值,即B'C+2PQ 取得最小值, 且最小值为EC 的长,∴22223213BC BE ++= ∴B'C+2PQ 13 故答案为:①3;13 【点睛】本题考查了圆的性质,矩形的性质、图形的折叠、等腰三角形的性质等,有一定的综合性,难度适中,其中(2)①当B'E ⊥AB 时,△ABB'的面积最大;②当E 、B′、C 三点共线时,B'C+2PQ 取得最小值,是解本题的关键.10.(1)证明见解析;(2)①;②;(3). 【分析】(1)如图(见解析),先根据三角形全等的判定定理与性质可得,再根据“协和四边形”的定义即可得证;(2)①先根据“协和四边形”的定义、三角形全等的解析:(1)证明见解析;(2)①3:5;53;(3)3 【分析】(1)如图(见解析),先根据三角形全等的判定定理与性质可得,ABD CBD ADB CDB ∠=∠∠=∠,再根据“协和四边形”的定义即可得证;(2)①先根据“协和四边形”的定义、三角形全等的判定定理可得ABD CBD ≅,从而可得AD CD =,再根据等边三角形的判定与性质可得,1,2B E D EF F DE D OE EF F ⊥===,然后设2EF DE DF a ===,解直角三角形可得83,3BD OD a ==,从而可得53OB =,最后利用三角形的面积公式即可得; ②如图(见解析),设2EF DE DF a ===,先利用勾股定理可得221BF BE =,再利用三角形的面积公式可得57EH =,然后根据正弦三角函数的定义即可得; (3)如图(见解析),先解直角三角形可得43BP =质可得EBF BEP ∠=∠,从而可得NEM BEP ∠=∠,然后根据垂线段最短可得当MN EF ⊥时,MN 取得最小值,最后根据相似三角形的判定与性质即可得.。
深圳深圳实验学校中考数学期末几何综合压轴题易错汇编
![深圳深圳实验学校中考数学期末几何综合压轴题易错汇编](https://img.taocdn.com/s3/m/2adc0c7084868762cbaed598.png)
深圳深圳实验学校中考数学期末几何综合压轴题易错汇编一、中考数学几何综合压轴题1.(操作)如图①,在矩形ABCD 中,E 为对角线AC 上一点(不与点A 重合),将ADE ∆沿射线AB 方向平移到BCF ∆的位置,E 的对应点为F .已知ADE BCF ∆∆≌(不需要证明).(探究)过图①中的点E 作//EG BC 交FB 延长线于点G ,连接AG ,其它条件不变,如图②.求证:EGA BCF ∆∆≌.(拓展)将图②中的BCF ∆沿BC 翻折得到BCF '∆,连接GF ',其它条件不变,如图③.当GF '最短时,若4AB =,2BC =,直接写出FF '的长和此时四边形BFCF '的周长.解析:探究:见解析;拓展:'4,FF = 四边形'BFCF 的周长为4 5. 【分析】探究:证明四边形EGBC 是平行四边形,推出EG=BC ,利用SAS 证明三角形全等即可. 拓展:如图3中,连接BD 交AC 于点O ,作BK ⊥AC 于K ,F′H ⊥BC 于H .由题意四边形AGFC 是平行四边形,推出GF=AC=25,由BF=BF′,可以假设BF=x ,则BG=25,x -利用相似三角形的性质,求出BH ,HF′,利用勾股定理求出GF′,再利用二次函数的性质,求出GF′的值最小时BF′的值,推出BF′=5 此时点F′与O 重合,由此即可解决问题.【详解】解:探究:由平移AE BF =,//AE BF∴//AC GF ,即//CE BG又∵//EG BC ,∴四边形BCEG 为平行四边形∴EG BC =∵//AC FG ,∴∠CBF=∠ACB ,∵//EG BC∴∠AEG=∠ACB ,∴∠AEG=∠CBF∴EGA BCF ∆∆≌.拓展:如图3中,连接BD 交AC 于点O ,作BK ⊥AC 于K ,F′H ⊥BC 于H .∵四边形ABCD 是矩形, ∴∠ABC=90°,AB=4,BC=2, ∴22224225,AC AB BC +=+∵11,22AB CB AC BK •=• ∴45BK = ∴22224535(5)()5OK OB BK -=- 由题意四边形AGFC 是平行四边形, ∴GF=AC=5∵BF=BF′,可以假设BF=x ,则BG=25,x∵AC ∥GF , ∴∠BOK=∠HBF′,∵∠BKO=∠F′HB=90°,∴△F′HB ∽△BKO ,∴ '',F H BH BF BK OK OB== ∴'45355== ∴'4338,,2525,5555F H x BH x GH BG BH x x x ===-=-= ∴''222224816325()(25)20,5555GF F H GH x x x x =++--+ ∵ 165>0, ∴当32555,1625x -=-=⨯ 时,GF′的值最小, 此时点F′与O 重合,由对折得:'',,CF CF BF BF ==由矩形的性质得:'',BF CF ='',BF CF BF CF ∴===∴ 四边形BFCF′是菱形,∴ 四边形BFCF′的周长为45, ',FF BC ∴⊥ 且'FF 与BC 互相平分, 由勾股定理得:'222(5)1 4.FF =-=【点睛】本题属于四边形综合题,考查了矩形的性质,翻折变换,平行四边形的判定和性质,相似三角形的判定和性质,二次函数的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会构建二次函数解决最值问题,属于中考压轴题.2.如图,在菱形ABCD 中,120BAD ∠=,将边AB 绕点A 逆时针旋转至'AB ,记旋转角为α.过点D 作DF BC ⊥于点F ,过点B 作BE ⊥直线'B D 于点E ,连接EF . (探索发现)(1)填空:当60α=时,'EBB ∠ = .'EF DB 的值是 (验证猜想)(2)当0360α<<时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(拓展应用)(3)在(2)的条件下,若22AB =,当BDE ∆是等腰直角三角形时,请直接写出线段EF 的长.解析:(1)3032)当0360α<<时,(1)中的结论仍然成立,理由见解析;(3)线段EF 的长为33【分析】(1)当60α=时,点B ′与点C 重合,BE ⊥ CD ,由四边形ABCD 为菱形,可求∠ABE =90°,由120BAD ∠=,可求∠ABC =60°,'EBB ∠=30°,由DF ⊥BC ,DC ∥AB ,∠FDC =∠EBC =30°,由sin ∠FDC =sin ∠EBC =CF CE DC BC=,可得CF =CE ,可求∠CEF =∠FDC =30°即可; (2)当0360α<<时, (1)中的结论仍然成立.先求'60EB B ∠=︒,再证'EBB CBD ∠=∠.最后证'DBB FBE ∆∆∽即可;(3) 连接AC ,BD 交于点O .先求OB =DE ='2EB =.分两种情况:①如图先求'2B D =,再证△B′BD ∽△EBF ,可得EF B D ′②如图先求'2B D =.再证△B′BD ∽△EBF ,EF B D ′ 【详解】(1)当60α=时,点B ′与点C 重合,∵BE ⊥ CD ,四边形ABCD 为菱形,CD ∥AB ,∴BE ⊥AB ,∴∠ABE =90°,∵120BAD ∠=,AD ∥BC ,∴∠ABC =180°-∠BAD =180°-120°=60°,∴'EBB ∠=∠ABE -∠ABC =90°-60°=30°,∵DF ⊥BC ,DC ∥AB ,∴DF ⊥AD ,∠CDA =180°-∠BAD =60°,∴∠FDC =90°-∠CDA =30°,∠FCD =90°-∠FDC =60°,∴∠FDC =∠EBC =30°,∴sin ∠FDC =sin ∠EBC =CF CE DC BC =, ∵DC =BC ,∴CF =CE ,∴∠CFE =∠CEF =12∠FCD =30°,∴∠CEF =∠FDC =30°,∴DF =FE ,∵cos ∠FDC =DF DC =,∴'EF DB =DF DC =故答案为30(2)当0360α<<时, (1)中的结论仍然成立.证明:如图1,连接BD .'AB AD AB ==, 1'(180)9022AB B αα∴∠=︒-=︒-,1'[180(120)]3022AB D αα∠=︒-︒-=︒+. '180''180(90)(30)6022EB B AB D AB B αα∴∠=︒-∠-∠=︒-︒--︒+=︒, '30EBB ∴∠=︒. 11(180)3022CBD ABC BAD ∠=∠=︒-∠=︒. 'EBB CBD ∴∠=∠.'''EBB FBB CBD FBB ∴∠+∠=∠+∠,即'DBB EBF ∠=∠.3cos 2BF DBF BD ∠==,3cos ''2BE EBB BB ∠==, 'BF BE BD BB ∴=. 'DBB FBE ∆∆∽.3''2EF BE DB BB ∴==,(3)线段EF 的长为3333连接AC ,BD 交于点O .AC DB ⊥,1602BAO BAD ∠=∠=︒,sin 6OB AB BAO ∴=⋅∠=226BD OB ∴== ∵DE =BE ,∠DEB =90°,∴∠EDB =∠EBD =45°,2sin 26232DE BE BD DBE ∴==⋅∠=⨯=. 'AB AD AB ==,∠B′EB =90°,1'(180)9022AB B αα∴∠=︒-=︒-,1'[180(120)]3022AB D αα∠=︒-︒-=︒+. '180''180(90)(30)6022EB B AB D AB B αα∴∠=︒-∠-∠=︒-︒--︒+=︒, '30EBB ∴∠=︒. 3'tan '2322EB BE EBB ∴=⋅∠=⨯=. 分两种情况:①如图,''232B D DE B E =+=+,∵∠B′BE =∠DBF =30°,∴cos ∠B ′BE =cos ∠DBF =3=2EB FB B B DB =', 又∵∠B′BE +∠EBD =∠EBD +∠DBF ,∴∠B′BD =∠EBF ,∴△B′BD ∽△EBF ,∴3==2EB FB EF B B DB B D ='', 33(232)3322EF B D '∴==⨯+=+ .②如图,''232B D DE B E =-=.∵∠B′BE =∠DBF =30°,∴cos ∠B′BE =cos ∠DBF =3EB FB B B DB =' 又∵∠B′BE -∠FBB′=∠DBF-∠FBB ′,∴∠B′BD =∠EBF ,∴△B′BD ∽△EBF , ∴3==2EB FB EF B B DB B D ='', 33(232)3322EF B D '∴=⨯=⨯-=-.综上所述,线段EF 的长为33+或33-.【点睛】本题考查图形旋转变换,菱形性质,锐角三角函数值,等腰直角三角形性质,三角形相似判定与性质,掌握图形旋转变换,菱形性质,锐角三角函数值,等腰直角三角形性质,三角形相似判定与性质是解题关键.3.(问题原型)如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以AC 为直径作O .求证:点B 、D 在O 上.请完成上面问题的证明,写出完整的证明过程.(发现结论)矩形的四个顶点都在以该矩形对角线的交点为圆心,对角线的长为直径的圆上.(结论应用)如图,已知线段2AB =,以线段AB 为对角线构造矩形ACBD .求矩形ACBD 面积的最大值.(拓展延伸)如图,在正方形ABCD 中,2AB =,点E 、F 分别为边AB 、CD 的中点,以线段EF 为对角线构造矩形EGFH ,矩形EGFH 的边与正方形ABCD 的对角线AC 交于M 、N 两点,当MN 的长最大时,矩形EGFH 的面积为_____________________解析:问题原型:见解析;结论应用:见解析;发现结论:2;拓展延伸:2【分析】问题原型:运用矩形对角线互相平分且相等,即可求证四点共圆;结论应用:根据结论矩形面积最大时为正方形,利用对角线的长求得正方形的面积; 拓展延伸:由上一问的结论,可知四边形EGFH 为正方形, 证明四边形AEOH 是正方形,继而求得面积【详解】解:【问题原型】∵AC 为O 直径,∴OA 为O 半径.令OA r =.∵四边形ABCE 为矩形,∴AC BD =,12OA OC AC ==,.12OB OD BD == ∴OB OD OA r ===.∴点B 、D 在O 上.【结论应用】连续CD 交AB 于点O ,过点D 作DE AB ⊥于点E .∴DE OD ≤.由【发现结论】可知,点D 在以AB 为直径的圆上,即112OD OA AB ===, ∴当1DE OD ==即AB CD ⊥时,矩形ACBD 的面积最大.2AB CD ==∴矩形ACBD 的面积最大值为22112222AB =⨯=. 【拓展延伸】 如图,连接GH ,设AC 与EF 的交点为O四边形ABCD 是正方形2AB ∴=,90BAD ADC ∠=∠=︒,//AE DF点E 、F 分别为边AB 、CD 的中点1AE EB CF FD ∴====,2EF =∴四边形AEFD 是矩形//EF AD ∴EF AB ⊥,由【结论应用】可知,2EF =时,矩形EGFH 的面积最大为2122EF = 此时四边形EGFH 为正方形,此时MN 最大,EF GH ∴⊥,112EO OF OH OG EF ===== ∴四边形AEOH 是正方形∴112AE AH AB === ∴2222112EH AE AH =+=+=∴正方形EGFH 的面积为:22(2)2EH ==【点睛】本题考查了矩形的性质,正方形的性质与判定,灵活运用矩形,正方形的性质和判定是解题的关键.4.在ABC 中,点D ,E 分别是AB AC ,边上的点,//DE BC .基础理解:(1)如图1,若43AD BD ==,,求AE AC 的值; 证明与拓展:(2)如图2,将ADE 绕点A 逆时针旋转a 度,得到11AD E △,连接11,BD CE ; ①求证:11BD AD CE AE=; ②如图3,若90,6,BAC AB AC AD ADE ∠=︒<=,在旋转的过程中,点1D 恰好落在DE 上时,连接1113,4BD EE CE =,则11E D E 的面积为________. 解析:(1)47;(2)①见详解;②13.44 【分析】(1)利用平行线分线段定理,直接求解即可;、 (2)①先推出11AD AB AE AC=,从而得11ABD ACE ∽,进而即可得到结论;②先推出AE =AE 1 =8,DE =D 1E 1=10,过点A 作AM ⊥DE 于点M ,则DM = 3.6,D 1E =2.8,再证明∠D 1EE 1=90°,进而即可求解.【详解】解:(1)∵//DE BC ,43AD BD ==,, ∴AE AC =44437AD AB ==+; (2)①∵将ADE 绕点A 逆时针旋转a 度,得到11AD E △, ∴1AD =AD ,1AE =AE ,∠BAD 1=∠CAE 1,∵//DE BC , ∴AD AE AB AC =,即AD AB AE AC=, ∴11AD AB AE AC=, ∴11ABD ACE ∽, ∴1111BD AD AD CE AE AE ==;②由①可知11ABD ACE ∽, ∴111134BD AD CE AE ==, ∵将ADE 绕点A 逆时针旋转,得到11AD E △,点1D 恰好落在DE 上, ∴AD 1=AD =6,∠D 1AE 1=∠DAE =90°,∴AE =AE 1=43AD 1=8,DE =D 1E 1=226810+=,过点A 作AM ⊥DE 于点M ,则DM =D 1M =AD ×cos ∠ADE = AD ×ADDE =6×610=3.6,∴D 1E =10-3.6 ×2=2.8, ∵∠D 1AE 1=∠DAE =90°, ∴∠DAD 1=∠EAE 1, 又∵AD 1=AD ,AE =AE 1, ∴∠ADE =11118018022DAD EAE AEE ︒-∠︒-∠==∠,∴∠AED +1AEE ∠=∠AED +∠ADE =90°,即:∠D 1EE 1=90°, ∴22110 2.89.6EE -, ∴11E D E 的面积=12D 1E ∙EE 1=12×2.8×9.6=13.44. 故答案是:13.44. 【点睛】本题主要考查相似三角形的判定和性质,解直角三角形,勾股定理,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定和性质,是解题的关键. 5.[探究函数4y x x=+的图象与性质] (1)函数4y x x=+的自变量x 的取值范围是 ; (2)下列四个函数图象中函数4y x x=+的图象大致是 ;(3)对于函数4y x x=+,求当x 0>时,y 的取值范围. 请将下列的求解过程补充完整. 解:∵x 0> ∴()2224y x x x xx x =+=+=+∵20x x ≥∴ y ≥ .[拓展运用](4)若函数259x x y x -+=,则y 的取值范围 .解析:(1)0x ≠;(2)C ;(3)4,4;(4)1y ≥ 【详解】试题分析:本题的⑴问抓住函数是由分式给定的,所以抓住是分母不为0,即可确定自变量的取值范围.本题的⑵问结合第⑴问中的0x ≠,即0x >或0x <进行分类讨论函数值y 的大致取值范围,即可得到函数的大致图象.本题的第⑶问根据函数的配方逆向展开即推出“( )”应填写“常数”部分,再根据配方情况可以得到当当0x >时,y 的取值范围.本题的⑷问现将函数改写为95y x x=+-的形式,再按⑶的形式进行配方变形即可求y 的取值范围. 试题解析:(1)由于函数4y x x=+是分式给定的,所要满足分母不为0,所以0x ≠. 故填:0x ≠.(2)0x ≠即0x >或0x <;当0x >时,y 的值是正数,此时画出的图象只能在第一象限;当0x <时,y 的值是负数,此时画出的图象只能在第三象限;所以函数4y x x=+的图象只在直角坐标系的一、三象限.故其大致图象应选C.(3)∵244x x x x =-+,∴(()22244y x x x xx x =+=+=+.故分别填:44,; (4) ∵0x >(这里隐含有y 首先是正数)∴()222259933551x x y x x x x xx x -+⎛⎫⎛⎫==-+=+-=-+ ⎪ ⎪⎝⎭⎝⎭∵230x x ⎛⎫-≥ ⎪⎝⎭∴ 1y ≥.6.(问题情境)如图1,点E 是平行四边形ABCD 的边AD 上一点,连接BE 、CE .求证:BCE1S2=S 平行四边形ABCD .(说明:S 表示面积) 请以“问题情境”为基础,继续下面的探究(探究应用1)如图2,以平行四边形ABCD 的边AD 为直径作⊙O ,⊙O 与BC 边相切于点H ,与BD 相交于点M .若AD =6,BD =y ,AM =x ,试求y 与x 之间的函数关系式. (探究应用2)如图3,在图1的基础上,点F 在CD 上,连接AF 、BF ,AF 与CE 相交于点G ,若AF =CE ,求证:BG 平分∠AGC .(迁移拓展)如图4,平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,E 是AB 的中点,F 在BC 上,且BF :FC =2:1,过D 分别作DG ⊥AF 于G ,DH ⊥CE 于H ,请直接写出DG :DH 的值.解析:【问题情境】见解析;【探究应用1】18y x=;【探究应用2】见解析;【迁移拓1927 【分析】(1)作EF ⊥BC 于F ,则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF ,即可得出结论; (2)连接OH ,由切线的性质得出OH ⊥BC ,OH =12AD =3,求出平行四边形ABCD 的面积=AD×OH =18,由圆周角定理得出AM ⊥BD ,得出△ABD 的面积=12BD×AM =12平行四边形的面积=9,即可得出结果;(3)作BM ⊥AF 于M ,BN ⊥CE 于N ,同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积,得出12AF×BM =12CE×BN ,证出BM =BN ,即可得出BG 平分∠AGC .(4)作AP ⊥BC 于P ,EQ ⊥BC 于Q ,由平行四边形的性质得出∠ABP =60°,得出∠BAP =30°,设AB =4x ,则BC =3x ,由直角三角形的性质得出BP =12AB =2x ,BQ =12BE ,AP ==,由已知得出BE =2x ,BF =2x ,得出BQ =x ,EQ ,PF =4x ,QF =3x ,QC =4x ,由勾股定理求出AF =,CE ,连接DF 、DE ,由三角形的面积关系得出AF×DG =CE×DH ,即可得出结果. 【详解】(1)证明:作EF ⊥BC 于F ,如图1所示: 则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF , ∴12BCEABCDSS =.(2)解:连接OH ,如图2所示: ∵⊙O 与BC 边相切于点H , ∴OH ⊥BC ,OH =12AD =3,∴平行四边形ABCD 的面积=AD×OH =6×3=18, ∵AD 是⊙O 的直径, ∴∠AMD =90°, ∴AM ⊥BD ,∴△ABD 的面积=12BD×AM =12平行四边形的面积=9, 即12xy =9,∴y 与x 之间的函数关系式y =18x; (3)证明:作BM ⊥AF 于M ,BN ⊥CE 于N ,如图3所示:同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积, ∴12AF×BM =12CE×BN ,∵AF =CE , ∴BM =BN , ∴BG 平分∠AGC .(4)解:作AP ⊥BC 于P ,EQ ⊥BC 于Q ,如图4所示: ∵平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°, ∴∠ABP =60°,∴∠BAP =30°,设AB =4x ,则BC =3x ,∴BP =12AB =2x ,BQ =12BE ,AP =, ∵E 是AB 的中点,F 在BC 上,且BF :FC =2:1, ∴BE =2x ,BF =2x , ∴BQ =x ,∴EQ =3x ,PF =4x ,QF =3x ,QC =4x ,由勾股定理得:AF =22AP PF +=27x ,CE =22EQ QC +=19x , 连接DF 、DE ,则△CDE 的面积=△ADF 的面积=12平行四边形ABCD 的面积, ∴AF×DG =CE×DH ,∴DG :DH =CE :AF =19x :27x 19:27=.【点睛】本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键. 7.()1问题发现如图①,正方形,ABCD DEFG 、将正方形DEFG 绕点D 旋转,直线AE CG 、交于点,P 请直接写出线段AE 与CG 的数量关系是 ,位置关系是 _;()2拓展探究如图②,矩形,2,2,ABCD DEFG AD DE AB DG ==、将矩形DEFG 绕点D 旋转,直线,AE CG 交于点,P ()1中线段关系还成立吗/若成立,请写出理由;若不成立,请写出线段AE CG 、的数量关系和位置关系,并说明理由;()3解决问题在()2的条件下,24,28,AD DE AB DG ====矩形DEFG 绕D 点旋转过程中,请直接写出当点P 与点G 重合时,线段AE 的长,解析:()1,AE CG AE CG =⊥;()()21中数量关系不成立,位置关系成立.1,2AE AE CG CG =⊥,理由见解析;()32565【分析】(1)证明△ADE ≌△CDG (SAS ),可得AE =CG ,∠DAG =∠DCG ,再由直角三角形两个锐角互余即可证得AE ⊥CG ;(2)先证明△ADE ∽△CDG ,利用相似三角形的性质证明即可.(3)先通过作图找到符合题意的两种情况,第一种情况利用勾股定理求解即可;第二种情况借助相似三角形及勾股定理计算即可. 【详解】(1),AE CG AE CG =⊥;理由如下:由题意知在正方形ABCD DEFG 、中,90EDG ADC ∠=∠=︒,,AD DC DE DG ==,EDG GDA ADC GDA ∴∠+∠=∠+∠ EDA GDC ∴∠=∠在△ADE 与△CDG 中,AD DC ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CDG (SAS ) ∴AE CG =,DEA DGC ∠=∠ ∵对顶角相等,∴,DEA EDG DGC GPE ∠+∠=∠+∠ 90.GPE ∴∠=AE CG ∴⊥.(2)(1)中数量关系不成立,位置关系成立.即:1,2AE AE CG CG =⊥ 理由如下:由题意知在矩形ABCD DEFG 、中,90EDG ADC ∠=∠=︒,EDG GDA ADC GDA ∴∠+∠=∠+∠EDA GDC ∴∠=∠2,2AD DE AB DG ==,12ED DG AD DC ∴== .EDAGDC ∴12AE CG ∴=,DEA DGC ∠=∠ ∵对顶角相等∴,DEA EDG DGC GPE ∠+∠=∠+∠ 90.GPE ∴∠=AE CG ∴⊥.综上所述:1,2AE AE CG CG =⊥ (3)如图1,当点G 、P 在点A 处重合时,连接AE , 则此时∠ADE =∠GDE =90°∴在Rt △ADE 中,AE 22224225AD DE +=+,如图1,当点G 、P 重合时, 则点A 、E 、G 在同一直线上, ∵AD =DG =4, ∴∠DAG =∠DGA ,∵∠ADC =∠AGP =90°,∠AOD =∠COG , ∴∠DAG =∠COG , ∴∠DGA =∠COG , 又∵∠GDO =∠CDG , ∴△GDO ∽△CDG , ∴DO DG OGDG DC CG == ∴448DO OGCG== ∴DO =2,CG =2OG , ∴OC =DC -DO =8-2=6, ∵在Rt △COG 中,OG 2+GC 2=OC 2, ∴OG 2+(2OG )2=62, ∴OG 655∴CG 1255由(2)得:12AE CG =∴AE 655综上所述,AE 的长为25655【点睛】本题综合考查了全等三角形及相似三角形的判定及性质,以及勾股定理的应用,根据题意画出符合题意的图形是解决本题的关键. 8.问题探究(1)如图1,△ABC 和△DEC 均为等腰直角三角形,∠ACB =∠DCE =90°,点B ,D ,E 在同一直线上,连接AD ,BD .①请探究AD与BD之间的位置关系:________;②若AC=BC=10,DC=CE=2,则线段AD的长为________;拓展延伸(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=21,BC=7,CD=3,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD 的长.解析:(1)①垂直,②4;(2)作图见解析,33或23【分析】(1)①由“SAS”可证△ACD≌△BCE,可得∠ADC=∠BEC=45°,可得AD⊥BD;②过点C作CF⊥AD于点F,由勾股定理可求DF,CF,AF的长,即可求AD的长;(2)分点D在BC左侧和BC右侧两种情况讨论,根据勾股定理和相似三角形的性质可求解.【详解】解:(1)∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:垂直②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF ⊥AD ,CD=2 ∴DF=CF=1∴22AF AC CF 3=-= ∴AD=AF+DF=4 故答案为:4. (2)①如图:∵∠ACB =∠DCE =90°,AC =21,BC =7,CD =3,CE =1, ∴AB=27,DE=2,∠ACD =∠BCE, 7AC BCDC CE==. ∴△ACD ∽△BCE . ∴∠ADC =∠E ,3AD ACBE BC==. 又∵∠CDE+∠E=90°,∴∠ADC+∠CDE =90°,即∠ADE=90°. ∴AD ⊥BE .设BE=x ,则AD=3x .在Rt △ABD 中,222AD BD AB +=,即2223)(2)(27)x x +-=(. 解得123,2x x ==-(负值舍去). ∴AD=33. ②如图,同①设BE=x ,则3.在Rt △ABD 中,222AD BD AB +=,即2223)(+2)(27)x x +=(. 解得122,3x x ==-(负值舍去). ∴AD=3综上可得,线段AD 的长为332 3.或 【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线. 9.(基础巩固)(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△. (尝试应用)(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AEAF的值. (拓展提高)(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.解析:(1)见解析;(2)54;(3)113AB = 【分析】(1)由,ABC ACD ACE A ABC α∠=∠=∠=∠+∠证明A DCE ∠=∠,再根据相似三角形的判定方法解题即可;(2)由菱形的性质,得到AB AD =,60A ∠=︒,继而证明ABD △是等边三角形,结合(1)中相似三角形对应边成比例的性质,设,2,,BP a DP a AE PE x AF PF y ======,则3,3DE a x BF a y =-=-可整理得到54x y =,据此解题; (3)在AD 边上取点E ,F ,使得30ABE DCF ∠=∠=︒,由矩形的性质,得到120BEP BPC PFC ∠=∠=∠=︒,结合(1)中相似三角形对应边成比例的性质解题即可.【详解】解:(1)证明:∵,ABC ACD ACE A ABC α∠=∠=∠=∠+∠, ∴DCE A αα∠+=∠+,即A DCE ∠=∠, ∵ABC CED α∠=∠=, ∴ABC CED ∽△△; (2)∵四边形ABCD 是菱形, ∴AB AD =, ∴60A ∠=︒,∴ABD △是等边三角形,∴60EPF A ADB ABD ∠=∠=∠=∠=︒,由(1)得,EPD PFB ∽, ∴DE PD PEPB BF PF==, 设,2,,BP a DP a AE PE x AF PF y ======,则3,3DE a x BF a y =-=- ∴323a x a xa a y y-==-, 可得3ay xy ax -=①,32ax xy ay -=②, ①-②,得332ay ax ax ay -=-, ∴54x y =, ∴AE AF 的值为54; (3)如图,在AD 边上取点E ,F ,使得30ABE DCF ∠=∠=︒,设AB =CD =m ,∵四边形ABCD 是矩形, ∴90A D ∠=∠=︒,∴120BEP BPC PFC ∠=∠=∠=︒, 60BPE DFC ︒∠=∠=1,sin 60233AB BE CF AE BE ∴====︒= DF , 223PE AE ∴=-= 443PF DF ∴=-= 由(1)可得,BEP PFC ∽, ∴BE EPPF FC=, ∴2332433m m -=-22380m m +-=, 解得113m =311m = ∴113AB =. 【点睛】本题考查相似三角形的综合题、等边三角形的性质、菱形的性质、矩形的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.10.在Rt ABC ∆中,90,7,2ACB AB AC ︒∠===,过点B 作直线//m AC ,将ABC ∆绕点C 顺时针旋转得到A B C ''∆(点,A B 的对应点分别是,A B ''),射线,CA CB ''分别交直线m 于点,P Q .(1)问题发现:如图1所示,若P 与A '重合,则ACA '∠的度数为_________________ (2)类比探究:如图2,所示,设A B ''与BC 的交点为M ,当M 为A B ''中点时,求线段PQ 的长;(3)拓展延伸:在旋转过程中,当点,P Q 分别在,CA CB ''的延长线上时,试探究四边形PA B Q ''的面积是否存在最小值,若存在,直接写出四边形PA B Q ''的最小面积;若不存在,请说明理由解析:(1)60°;(2)72;(3)存在,33【分析】(1)由旋转可得:AC=A'C=2,进而得到3∠A'BC=90°,可得cos ∠A'CB=3BC A C '=,即可得到∠A'CB=30°,∠ACA'=60°; (2)根据M 为A'B'的中点,即可得出∠A=∠A'CM ,进而得到PB= 3BC A C '=tan ∠BQC=tan ∠33,进而得出PQ=PB+BQ=72; (3)依据S 四边形PA'B′Q =S △PCQ -S △A'CB '=S △PCQ 3S 四边形PA'B′Q 最小,即S △PCQ 最小,而S △PCQ =123,利用几何法或代数法即可得到S △PCQ 的最小值=3,S 四边形PA'B′Q =3-3【详解】解(1)由旋转得:2AC A C '==, 90,7,2,3ACB AB AC BC ︒∠===∴=90,//ACB m AC ︒∠=, 90A BC ︒'∴∠=,3cos BC A CB A C '∴∠==' 30A CB ︒'∴∠=, 60A CA ︒'∴∠=;(2)因为M 是AA '中点,所以A CM MA C ''∠=∠,A MA C '∠=∠,A A CM '∴∠=∠,3tan tan 2PCB A ∠=∠=∴, 3322PB BC ∴==. ∵∠PCQ=∠PBC=90°,∴∠BQC+∠BPC=∠BCP+∠BPC=90°, ∴∠BQC=∠BCP=∠A , 3tan tan 2BQC A ∴∠=∠=, 223BQ BC ∴=⨯=, 72PQ PB BQ ∴=+=; (3) 3PA B Q PCQ A CB PCQ S S S S ''''∆=-=-, PA B Q S ''∴最小,即PCQ S 最小,1322PCQ S PQ BC PQ ∴=⨯=, 取PQ 的中点G ,190,2PCQ CG PQ ︒∠=∴=,即PQ=2CG , 当CG 最小时, PQ 最小,CG PQ ∴⊥, CG 与CB 重合,CG 最小,∵CG 3PA B Q S ''∴33= 【点睛】本题属于四边形综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题. 猜想发现:由5525510+=⨯;11112233333+=⨯=;0.40.420.40.40.8+=⨯=;1155255+>⨯=;0.2 3.220.2 3.2 1.6+>⨯;1111128282+>⨯ 猜想:如果0a >,0b >,那么存在2a b ab +≥(当且仅当a b =时等号成立).猜想证明:∵()20a b-≥∴①当且仅当0a b -=,即a b =时,20a ab b -+=,∴2a b ab +=; ②当0a b -≠,即ab 时,20a ab b -+>,∴2a b ab +>.综合上述可得:若0a >,0b >,则2a b ab +≥成立(当日仅当a b =时等号成立). 猜想运用:(1)对于函数()10y x x x=+>,当x 取何值时,函数y 的值最小?最小值是多少?变式探究:(2)对于函数()133y x x x =+>-,当x 取何值时,函数y 的值最小?最小值是多少?拓展应用:(3)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为S (米2).问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积S 最大?最大面积是多少?解析:(1)1x =,函数y 的最小值为2;(2)4x =,函数y 的最小值为5;(3)每间隔离房长为72米,宽为218米时,S 的最大值为214716米 【分析】猜想运用:根据材料以及所学完全平方公式证明求解即可;变式探究:将原式转换为1333y x x =+-+-,再根据材料中方法计算即可; 拓展应用:设每间隔离房与墙平行的边为x 米,与墙垂直的边为y 米,依题意列出方程,然后根据两个正数之和与这两个正数之积的算术平方根的两倍之间的关系探究最大值即可. 【详解】 猜想运用: ∵0x >, ∴10x>, ∴1122y x x x x=+≥⋅,∴当1x x=时,min 2y =, 此时21x =, 只取1x =,即1x =时,函数y 的最小值为2. 变式探究: ∵3x >, ∴30x ->,103x ,∴133353y x x =+-+≥=-, ∴当133x x =--时,min 5y =, 此时()231x -=, ∴14x =,22x =(舍去),即4x =时,函数y 的最小值为5.拓展应用:设每间隔离房与墙平行的边为x 米,与墙垂直的边为y 米,依题意得:91263x y +=,即3421x y +=, ∵30x >,40y >, ∴34x y +≥,即21≥ 整理得:14716xy ≤, 即14716S ≤, ∴当34x y =时max 14716S =, 此时72x =,218y =, 即每间隔离房长为72米,宽为218米时,S 的最大值为214716米. 【点睛】本题主要考查根据完全平方公式探究两个正数之和与这两个正数之积的算术平方根的两倍之间的关系,熟练运用完全平方公式并参照材料中步骤进行计算是解题关键,属于创新探究题.12.如图1,在Rt ABC △中,90B ∠=︒,30C ∠=︒,4BC =,点D ,E 分别是边BC ,AC 的中点,连接DE .将EDC △绕点C 按逆时针方向旋转,记旋转角为α.(1)问题发现 ①当0α=︒时,BD AE =;②当180α=︒时,BDAE=; (2)拓展探究试判断:当0360α︒≤<︒时,BDAE的大小有无变化?请仅就图2的情形给出证明; (3)问题解决当EDC △旋转至//DE AC 时,请直接写出BD 的长. 解析:(1)332)不变,证明见解析;(3)37【分析】(1)①当α=0°时,在Rt △ABC 中,由勾股定理,求出AC 的值是多少;然后根据点D 、E 分别是边BC 、AC 的中点,分别求出AE 、BD 的大小,即可求出BD 、AE 的比值; ②中,图形如下,与①有所变化,但求解方法完全相同; (2)证明△ECA ∽△DCB ,从而根据边长成比例得出比值;(3)存在2种情况,一种是当0180α︒<<︒时,//DE AC ;另一种是当180360α︒<<︒时,//DE AC ,分别利用勾股定理可求得.【详解】(1)①∵在Rt ABC △中,90B ∠=︒,30C ∠=︒,4BC =,点D ,E 分别是边BC ,AC 的中点∴CD=BD=2,在Rt △ABC 中,4383∴43∴343BD AE =;②图形如下:同理可知:BC=4,AC=833,DC=2,DE=233,CE=433∴BD=DC+CB=2+4=6,AE=EC+AC=438333+=1233∴6321233BD AE ==;(2)不变,理由如下 ∵∠ECD=∠ACB , ∴∠ECA=∠DCB , 又∵32DC CB EC CA ==, ∴△ECA ∽△DCB , ∴32BD DC AE EC ==; (3)情况一:当0180α︒<<︒时,//DE AC ,图形如下,过点D 作BC 的垂线,交BC 延长线于点F∵ED ∥AC ,∴∠ACD=∠EDC=90° ∵∠ACB=∠ECD=30° ∴∠ECF=30°,∴∠FCD=60° ∵CD=2∴在Rt △DCF 中,CF=1,3∴FB=FC=CB=1+4=5∴在Rt △FDB 中,DB=22DF FB +=27;情况二:当180360α︒<<︒时,//DE AC ,图形如下,过点D 作BC 的垂线,交BC 于点F∵DE ∥AC ,∴∠ACD=90° ∵∠ACB=30°,∴∠DCF=60°∵CD=2,∴在Rt △CDF 中,CF=1,DF=3 ∴FB=CB -CF=4-1=3∴在Rt △FDB 中,DB=22DF FB +=23 综上得:DB 的长为23或27. 【点睛】此题属于旋转的综合题.考查了旋转的性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握分类讨论思想的应用是解此题的关键. 13.问题背景:已知的顶点在的边所在直线上(不与,重合).交所在直线于点,交所在直线于点.记的面积为,的面积为.(1)初步尝试:如图①,当是等边三角形,,,且,时,则;(2)类比探究:在(1)的条件下,先将点沿平移,使,再将绕点旋转至如图②所示位置,求的值;(3)延伸拓展:当是等腰三角形时,设.(I )如图③,当点在线段上运动时,设,,求的表达式(结果用,和的三角函数表示). (II )如图④,当点在的延长线上运动时,设,,直接写出的表达式,不必写出解答过程.解析:(1)12;(2)12;(3)(ab)2sin2α.(ab)2sin2α.【解析】试题分析:(1)首先证明△ADM,△BDN都是等边三角形,可得S1=•22=,S2=•(4)2=4,由此即可解决问题;(2)如图2中,设AM=x,BN=y.首先证明△AMD∽△BDN,可得,推出,推出xy=8,由S1=•AD•AM•sin60°=x,S2=DB•sin60°=y,可得S1•S2=x•y=xy=12;(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,由S1=•AD•AM•sinα=axsinα,S2=DB•BN•sinα=bysinα,可得S1•S2=(ab)2sin2α.(Ⅱ)结论不变,证明方法类似;试题解析:(1)如图1中,∵△ABC是等边三角形,∴AB=CB=AC=6,∠A=∠B=60°,∵DE∥BC,∠EDF=60°,∴∠BND=∠EDF=60°,∴∠BDN=∠ADM=60°,∴△ADM,△BDN都是等边三角形,∴S1=•22=,S2=•(4)2=4,∴S1•S2=12,(2)如图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB,∵∠A=∠B,∴△AMD∽△BDN,∴,∴,∴xy=8,∵S1=•AD•AM•sin60°=x,S2=DB•sin60°=y,∴S1•S2=x•y=xy=12.(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=•AD•AM•sinα=axsinα,S2=DB•BN•sinα=bysinα,∴S1•S2=(ab)2sin2α.Ⅱ如图4中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=•AD•AM•sinα=axsinα,S2=DB•BN•sinα=bysinα,∴S1•S2=(ab)2sin2α.考点:几何变换综合题.14.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现① 当0α︒=时,AEBD=;② 当时,AEBD=(2)拓展探究试判断:当0°≤α<360°时,AEDB的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.解析:(1)55.(2)无变化;理由参见解析.(3)5125.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出AEBD的值是多少.②α=180°时,可得AB∥DE,然后根据AC BCAE BD=,求出AEBD的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据5EC ACDC BC==△ECA∽△DCB,即可求出AE BD 的值是多少,进而判断出AEBD的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【详解】(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴2222(82)845AB BC+÷+=∵点D、E分别是边BC、AC的中点,∴45252AE ==,BD=8÷2=4, ∴25542AE BD ==. ②如图1,,当α=180°时, 可得AB ∥DE ,∵AC BC AE BD =, ∴45582AE AC BD BC === (2)如图2,,当0°≤α<360°时,AE BD 的大小没有变化, ∵∠ECD=∠ACB ,∴∠ECA=∠DCB ,又∵52EC AC DC BC ==, ∴△ECA ∽△DCB ,∴52AE EC BD DC ==. (3)①如图3,,∵5CD=4,CD ⊥AD ,∴2222(45)480168AC CD ---∵AD=BC ,AB=DC ,∠B=90°,∴四边形ABCD 是矩形,∴BD=AC=45. ②如图4,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P ,,∵AC=45,CD=4,CD ⊥AD ,∴AD=2222(45)480168AC CD -=-=-=,∵点D 、E 分别是边BC 、AC 的中点,∴DE=111(82)4222AB =⨯÷=⨯=2, ∴AE=AD-DE=8-2=6,由(2),可得52AE BD =, ∴BD=6125552=.综上所述,BD 的长为45或1255. 15.(问题)如图1,在Rt ABC 中,90,ACB AC BC ∠=︒=,过点C 作直线l 平行于AB .90EDF ∠=︒,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC 交于点P ,研究DP 和DB 的数量关系.(探究发现)(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,通过推理就可以得到DP DB =,请写出证明过程;(数学思考)(2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,这个小组过点D 作DG CD ⊥交BC 于点G ,就可以证明DP DB =,请完成证明过程;(拓展引申)(3)如图4,在(1)的条件下,M 是AB 边上任意一点(不含端点AB 、),N 是射线BD 上一点,且AM BN =,连接MN 与BC 交于点Q ,这个数学兴趣小组经过多次取M 点反复进行实验,发现点M 在某一位置时BQ 的值最大.若4AC BC ==,请你直接写出BQ 的最大值.解析:【探究发现】(1)见解析;【数学思考】(2)见解析;【拓展引申】(3)22AM =BQ 有最大值为2.【分析】根据等腰三角形的性质及平行的定义即可解得根据证明()CDP GDB ASA ≌即可推出DP DB =过点M 作MH MN ⊥交AC 于点H ,连接,CM HQ ,可证明()AMH BNQ ASA ≌,再推出ACM BMQ ∽即可得AC AM BM BQ =42AM BQAM =-,则22AM = 【详解】证明:【探究发现】 (1)∵90,ACB AC BC ∠=︒=∵CD AB∴45CBA DCB ∠=∠=︒,且BD CD ⊥∴45DCB DBC ∠=∠=︒∴DB DC =即DB DP =【数学思考】(2)∵,45DG CD DCB ⊥∠=︒∴45DCG DGC ∠=∠=︒∴,135DC DG DCP DGB =∠=∠=︒,∵90BDP CDG ∠=∠=︒∴CDP BDG ∠=∠,且,135DC DG DCP DGB =∠=∠=︒,∴()CDP GDB ASA ≌∴BD DP =【拓展引申】(3)如图4,过点M 作MH MN ⊥交AC 于点H ,连接,CM HQ ,∵MH MN ⊥,∴90AMH NMB ∠+∠=︒∵,90CD AB CDB ∠=︒∥∴90DBM ∠=︒∴90NMB MNB ∠+∠=︒∴HMA MNB ∠=∠,且,45AM BN CAB CBN =∠=∠=︒∴()AMH BNQ ASA ≌∴AH BQ =∵90,4ACB AC BC ∠=︒==, ∴42,AB AC AH BC BQ =-=-∴CH CQ =∴45CHQ CQH CAB ∠=∠=︒=∠∴HQ AB ∥∴HQM QMB ∠=∠∵90ACB HMQ ∠=∠=︒∴点H ,点M ,点Q ,点C 四点共圆,∴HCM QMB ∠=∠,且45A CBA ∠=∠=︒∴ACM BMQ ∽ ∴AC AM BM BQ = ∴442AM BQ AM=- ∴2(22)24AM BQ --=+ ∴22AM =时,BQ 有最大值为2.【点睛】本题考查等腰三角形,解题关键在于熟练掌握等腰三角形的性质.16.如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ 与BO 的数量关系是_____,位置关系是____;(2)问题探究:如图②,AO E ∆'是将图①中的AOB ∆绕点A 按顺时针方向旋转45︒得到的三角形,连接CE ,点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .判断PQB ∆的形状,并证明你的结论;(3)拓展延伸:如图③,AO E ∆'是将图①中的AOB ∆绕点A 按逆时针方向旋转45︒得到的三角形,连接BO ',点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求PQB ∆的面积.解析:(1)12PQ BO =,PQ BO ⊥;(2)PQB ∆的形状是等腰直角三角形,理由见解析;(3)316【分析】(1)根据题意可得PQ 为△BOC 的中位线,再根据中位线的性质即可求解;(2)连接O P '并延长交BC 于点F ,根据题意证出 O PE FPC ∆'∆≌,'O BF ∆为等腰直角三角形,BPO ∆'也为等腰直角三角形,由'PQ O B ⊥且PQ BQ =可得PQB ∆是等腰直角三。
深圳深圳市福田区新洲中学中考数学期末几何综合压轴题易错汇编
![深圳深圳市福田区新洲中学中考数学期末几何综合压轴题易错汇编](https://img.taocdn.com/s3/m/c1621ce0964bcf84b8d57b2d.png)
深圳深圳市福田区新洲中学中考数学期末几何综合压轴题易错汇编一、中考数学几何综合压轴题 1.问题背景(1)如图1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点E 作EF ∥AB 交BC 于点F .请按图示数据填空:四边形DBFE 的面积S = ,△EFC 的面积1S = ,△ADE 的面积1S = . 探究发现(2)在(1)中,若BF a =,BF a =,DE 与BC 间的距离为h .请证明2124S S S =.拓展迁移(3)如图2,□DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,试利用(2)中的结论求△ABC 的面积.解析:(1)6S =,19S =,21S =;(2)见解析;(3)18 【分析】(1)根据平行四边形面积公式、三角形面积公式,相似三角形的性质即可解决问题. (2)根据平行四边形面积公式、三角形面积公式,相似三角形的性质,分别求出S 1、S 2即可解决问题.(3)过点G 作GH ∥AB 交BC 于H ,则四边形DBHG 为平行四边形,利用(2)的结论求出□DBHG 的面积,△GHC 的面积即可. 【详解】(1)∵DE ∥BC ,EF ∥AB , ∴四边形DBFE 是平行四边形,∴S=2×3=6,116392S =⨯⨯=∴∠AED=∠C ,∠A=∠CEF ∴△ADE ∽△EFC 2211(),9s DE s CF ∴== ∴S 2=1,故答案为6,9,1. (2)证明: ∵DE ∥BC ,EF ∥AB , ∴四边形DBFE 为平行四边形,AED C ∠=∠,A CEF ∠=∠.∴△ADE ∽△EFC .∴22212()DE FC S a S b==. ∵112S bh =,∴222122a a hS S b b=⨯=.∴2212144()22a hS S bh ah b =⨯⨯=.而S ah =,∴2124S S S =(3)解:过点G 作GH ∥AB 交BC 于H ,则四边形DBHG 为平行四边形.∴∠GHC=∠B ,BD=HG ,DG=BH , ∵四边形DEFG 为平行四边形, ∴DG=EF . ∴BH=EF . ∴BE=HF , ∴△DBE ≌△GHF . ∴△GHC 的面积为5+3=8.由(2)得,□DBHG 的面积为2288⨯=.∴△ABC 的面积为28818++=. 【点睛】本题考查四边形综合题、相似三角形的性质等知识,解题的关键是学会转化的思想,把问题转化为我们熟悉的题型,属于中考压轴题,2.ABC 和DCE 都是等边三角形,DCE 绕点C 旋转,连接,AE BD .猜测发现 :(1)如图1,AE 与BD 是否相等?若相等,加以证明;若不相等,请说明理由.问题解决 :(2)若B C E 、、三点不在一条直线上,且30,4,3ADC AD CD ∠=︒==,求BD 的长.拓展运用 :(3)若B C E 、、三点在一条直线上(如图2),且ABC 和DCE 的边长分别为1和2,ACD △的面积及tan ADC ∠的值.解析:(1)AE =BD ,理由见解析;(2)5;(33tan ADC ∠3【分析】(1)根据等边三角形的性质,容易证明△BCD ≌△ACE ,从而问题即可解决;(2)根据∠ADC=30゜及△DCE 是等边三角形,可得∠ADE=∠ADC+∠CDE=90゜,从而可计算出AE ,再由(1)即可得BD 的长;(3)过A 点作AF ⊥CD 于F ,根据ABC 和DCE 都是等边三角形,可得∠ACD=60゜,于是在直角△ACF 中利用三角函数知识可求得AF 的长,从而可求得△ACD 的面积;在△ACF 中还可求得CF 的长 ,从而可得DF 的长,这样在直角△ADF 中即可求得结论. 【详解】 (1)AE =BD . 理由如下: ∵ABC 和DCE 都是等边三角形,∴,,60AC BC DC EC ACB DCE ==∠=∠=︒, ∴ACB ACD DCE ACD ∠+∠=∠+∠, 即BCD ACE ∠=∠, 在BCD △和ACE 中,CD CEBCD ACE BC AC =⎧⎪∠=∠⎨⎪=⎩, ∴() ACE BCD SAS ≅△△,∴AE BD =;(2)如图3,由(1)得:BD AE =, ∵DCE 是等边三角形,∴60,3CDE CD DE ∠=︒==, ∵30ADC ∠=︒,∴306090ADE ADC CDE ∠=∠+∠=︒+︒=︒, 在Rt ADE △中,4,3AD DE ==, ∴2222435AE AD DE =+=+=, ∴5BD =;(3)如图2,过A 作AF CD ⊥于F , ∵B C E 、、三点在一条直线上, ∴180BCA ACD DCE ∠+∠+∠=︒, ∵ABC 和DCE 都是等边三角形,∴60BCA DCE ∠=∠=︒, ∴60ACD ∠=︒,在Rt ACF 中,sin AFACF AC∠=, ∴33sin 1AF AC ACF =⨯∠==11cos 122CF AC ACF =⨯∠=⨯=, ∴1133222ACDSCD AF =⨯⨯=⨯=13222FD CD CF =-=-=, 在Rt AFD 中,3tan AF ADC DF ∠==【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、三角函数等知识,带有一定的综合性. 3.综合与实践 数学问题:(1)如图1,ABC 是等腰直角三角形,过斜边的中点D 作正方形DECF ,分别交BC ,AC 于点E ,F ,则AB ,BE ,AF 之间的数量关系为______.问题解决:(2)如图2,在任意Rt ABC 内,找一点D ,过点D 作正方形DECF ,分别交BC ,AC 于点E ,F ,若AB BE AF =+,求ADB ∠的度数;图2 拓展提升:(3)如图3,在(2)的条件下,分别延长ED ,FD ,交AB 于点M ,N ,则MN ,AM ,BN 的数量关系为______.图3(4)在(3)的条件下,若3AC =,4BC =,则MN =______.解析:(1))2AB AF BE +;(2)135°;(3)222MN AM BN =+;(4)2512【分析】(1)根据等腰直角三角形的斜边与直角边的关系及正方形的性质即可得出数量关系;(2) 延长AC 至点P ,使FP BE =,连接DP ,根据正方形的性质易证DFP DEB △△≌,从而可得DP =DB ,进而可证ADP ADB △△≌,从而可得12DAC DAB CAB ∠=∠=∠,12ABD CBD ABC ∠=∠=∠,由三角形内角和定理即可求得∠ADB 的度数; (3)由正方形的对边平行的性质易得AM =DM ,BN =DN ,从而在Rt △MDN 中,由勾股定理即可得MN 、AM 、BN 的数量关系;(4)由(2)知FP =BE ,即可求得DE =DF =1,根据相似三角形的性质可分别求得EM 、FN 的长,从而可得DM 、DN 的长,在Rt △MDN 中,由勾股定理即可求得MN 的长. 【详解】 (1)∵ABC 是等腰直角三角形,且AB =AC ,∴2AB AC =,∠A =∠B =45°,∵四边形DECF 是正方形,且D 是AB 的中点,∴DF =FC =CE =DE ,∠DFA =∠DEB =90°,DF ∥BC ,DE ∥AC , ∴∠ADF =∠B =45°,∠BDE =∠A =45°, ∴AF =DF ,BE =DE ,∴F 、E 分别是AC 、BC 的中点, ∴CF =BE ,∴AC =AF +CF =AF +BE , ∴()2AB AF BE =+;(2)延长AC 至点P ,使FP BE =,连接DP .∵四边形DECF 是正方形, ∴DF DE =,90DFC DEC ∠=∠=︒.∵FP BE =,90DFC DEB ∠=∠=︒,DF DE =, ∴()SAS DFP DEB ≌△△. ∴DP DB =.∵AB AF BE =+,AP AF FP =+,FP BE =, ∴AP AB =.又∵DP DB =,AD AD =, ∴()SSS ADP ADB ≌△△.∴12DAC DAB CAB ∠=∠=∠.同理可得:12ABD CBD ABC ∠=∠=∠. ∵90ACB ∠=︒, ∴90CAB CBA ∠+∠=︒. ∴()1452DAB ABD CAB CBA ∠+∠=∠+∠=︒. ∴()180135ADB DAB ABD ∠=︒-∠+∠=︒. (3)∵DF ∥BC ,DE ∥AC , ∴∠CBD =∠NDB , ∠DAC =∠ADM , ∵ABD CBD ∠=∠,DAC DAB ∠=∠, ∴∠ABD =∠NDB ,∠ADM =∠DAB , ∴BN =DN ,AM =DM .在Rt △MDN 中,由勾股定理得:22222MD DN MN AM BN ==++ 故答案为:222MN AM BN =+,(4)∵△ABC 是直角三角形,AC =3,BC =4, ∴由勾股定理得:AB =5, 设正方形DECF 的边长为x ,由(2)知,AP =AB =5,BE =FP ,CP =AP -AC =2, ∵FP =CP +CF ,BE =BC -CE , 即4-x =2+x ,解得x =1, ∴BE =BC -CE =3,AF =AC -CF =2, ∵EM ∥AC ,FN ∥BC ,∴△BME ∽△BAC ,△AFN ∽△ACB ∴34ME BE AC BC ==,23FN AF BC AC ==, ∴94ME =,83FN =.∵DM =ME -DE =54,DN =FN -DF =53,2512MN ==. 故答案为:2512MN =. 【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,截长补短法作辅助线是本题的关键.4.定义:有一组对角互补的四边形叫做“对补四边形”,例如,四边形ABCD 中,若180A C ∠+∠=︒或180B D ∠+∠=︒,则四边形ABCD 是“对补四边形”.(概念理解)(1)如图1,四边形ABCD 是“对补四边形”. ①若::3:2:1A B C ∠∠∠=,则D ∠=________;②若90B ∠=︒.且3,2AB AD ==时.则22CD CB -=_______; (拓展提升)(2)如图,四边形ABCD 是“对补四边形”,当AB CB =,且12EBF ABC ∠=∠时,图中,,AB CF EF 之间的数量关系是 ,并证明这种关系;(类比应用)(3)如图3,在四边形ABCD 中,,AB CB BD =平分ADC ∠; ①求证:四边形ABCD 是“对补四边形”; ②如图4,连接AC ,当90ABC ∠=︒,且12ACD ABCS S=时,求tan ACD ∠的值. 解析:(1)①90︒,②5;(2)AE CF EF +=,理由见解析;(3)①见解析,②23 【分析】(1)①根据“对补四边形”的定义,结合::3:2:1A B C ∠∠∠=,即可求得答案; ②根据“对补四边形”的定义,由90B ∠=︒,得D ∠90=︒,再利用勾股定理即可求得答案;(2)延长EA 至点K ,使得AK CF =,连接BK ,根据“对补四边形”的定义,可证明ABK CBF △≌△,继而证明BEK BEF △≌△,从而可得结论;(3)①过点B 作BM AD ⊥于点M ,BN AC ⊥于点N ,则90BMA BNC ∠=∠=︒,可证Rt ABM Rt CBN △≌△,进而可证四边形ABCD 是“对补四边形”;②设,AD a DC b ==,则tan aACD b∠=根据222AC a b =+,再运用12ACD ABCS S=建立方程,解方程即可求得tan ACD ∠. 【详解】 (1)::3:2:1A B C ∠∠∠=,设3,2,A x B x C x ∠=∠=∠=, 根据“对补四边形”的定义, 180A C ∠+∠=︒,即3180x x +=︒,x=︒,解得45∴∠==︒,290B xB D∠+∠=︒,180D∴∠=︒.90故答案为:90︒.②如图1,连接AC,∠+∠=︒,B D90∠=︒,180B∴∠=︒,90D在Rt ABC中22=-,BC AC AB在Rt ADC中222=-,CD AC AD22222222∴-=---=-,CD CB AC AD AC AB AB AD()AB AD==,3,22222∴-=-=,325CD CB故答案为:5.+=,理由如下:(2)AE CF EF=,连接BK,如图2,延长EA至点K,使得AK CF四边形ABCD是“对补四边形”,∴180∠+∠=︒,BAD CBAK BAD∠+∠=︒,180∴BAK C∠=∠,,AK CF AB CB ==,∴()ABK CBF SAS △≌△, ∴,ABK CBF BK BF ∠=∠=, ∴ABK ABF CBF ABF ∠+∠=∠+∠,即KBF ABC ∠=∠,12EBF ABC ∠=∠,∴12EBF KBF ∠=∠, ∴EBK EBF ∠=∠,,BK BF BE BE ==,∴()BEK BEF SAS △≌△,∴EK EF =,∴AE CF AE AK EK EF +=+==,即AE CF EF +=, 故答案为:AE CF EF +=.(3)①证明:如图3,过点B 作BM AD ⊥于点M ,BN AC ⊥于点N ,则90BMA BNC ∠=∠=︒,BD 平分ADC ∠,BM BN ∴=,AB CB =,()Rt ABM Rt CBN HL ∴△≌△,BAM C ∴∠=∠, 180BAM BAD ∠+∠=︒,180C BAD ∴∠+∠=︒,BAD ∴∠与C ∠互补,∴四边形ABCD 是“对补四边形”;②由①可知四边形ABCD 是“对补四边形”, 180ABC ADC ∴∠+∠=︒,90ABC ∠=︒,90ADC ∴∠=︒,设AD a DC b ==,,则22222AC AD CD a b =+=+,AB BC =,2222211()22AB BC AC a b ∴===+, 1122ACD S AD CD ab ∴=⋅=△, 222111()224ABC S AB BC AB a b =⋅==+△,12ACD ABC SS =, 22112=12()4ab a b ∴+, 整理得:2()410a a b b-⨯+=,解得:2a b= 在Rt ABC 中,tan aACD b ∠=,∴tan ACD ∠=2.【点睛】本题考查了勾股定理,四边形内角和定理,全等三角形的性质与判定,解一元二次方程,三角函数的定义等知识,熟练掌握勾股定理和全等三角形的判定和性质,准确理解新定义是解题的关键.5.(了解概念)在凸四边形中,若一边与它的两条邻边组成的两个内角相等,则称该四边形为邻等四边形,这条边叫做这个四边形的邻等边.(理解运用)(1)在邻等四边形ABCD 中,40A ∠=︒,60B ∠=︒,若CD 是这个邻等四边形的邻等边,则C ∠的度数为__________;(2)如图,凸四边形ABCD 中,P 为AB 边的中点,ADP PDC ∽,判断四边形ABCD 是否为邻等四边形,并证明你的结论;(拓展提升)(3)在平面直角坐标系中,AB 为邻等四边形ABCD 的邻等边,且AB 边与x 轴重合,已知(2,0)A -,(,3)C m ,(2,4)D ,若在边AB 上使DPC BAD ∠=∠的点P 有且仅有1个,则m 的值是__________.解析:(1)130°;(2)四边形ABCD 是邻等四边形,理由见解析;(3)﹣6【分析】(1)根据邻等四边形的定义即可求解;(2)由△ADP ∽△PDC ,可得AP AD PC PD =,∠DAP =∠DPC ,∠APD =∠PCD ,由P 为AB 的中点,可得AP =BP ,则PB AD PC PD=,可证△BPC ∽△ADP ,由相似三角形的性质得出∠A =∠B 即可;(3)①若点B 在点A 右侧,如图,由AB 为邻等边,则有∠DAB =∠ABC =∠DPC ,可证△ADP ∽△BPC ,可得AP BC =AD BP ,设点P (n ,0),由等腰直角三角形可求∠BAD =45°,可求B 、C 横坐标之差为3,B (m +3,0),将AP ,BP ,AD ,BC ,代入得:4232n 2+(m +1)n +2m ﹣18=0,由题意可知n 只有一个解,可求得m =﹣6;②若点B 在点A 左侧,可求得∠BAD =135°,可证△ADP ∽△BPC ,可得AP BC =AD BP ,可求得B 、C 横坐标之差为34232=m =﹣5﹣6. 【详解】解:(1)∵CD 为邻等边,∴∠C =∠D ,又∵40A ∠=︒,60B ∠=︒,∴∠C =∠D =(360°﹣∠A ﹣∠B )÷2=130°,∴∠C =130°.故答案为:130°;(2)四边形ABCD 是邻等四边形,理由如下:∵△ADP ∽△PDC , ∴AP AD PC PD=,∠DAP =∠DPC ,∠APD =∠PCD ,∠ADP =∠PDC , 又∵P 为AB 的中点,∴AP =BP , ∴PB AD PC PD=,∴PB PCAD PD,∵∠APD+∠BPC=180°﹣∠DPC,∠PCD+∠PDC=180°﹣∠DPC,且∠APD=∠PCD,∴∠BPC=∠PDC,∵∠ADP=∠PDC,∴∠ADP=∠BPC,∴△BPC∽△ADP,∴∠B=∠A,∴四边形ABCD为邻等四边形;(3)若点B在点A右侧,如图,∵AB为邻等边,则有∠DAB=∠ABC=∠DPC,又∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴∠DAB=∠DPC,∠ADP=∠BPC,∴△ADP∽△BPC,∴APBC =ADBP,设点P(n,0),∵A(﹣2,0),D(2,4),∴∠BAD=45°,∴∠ABC=45°,过点C作CE⊥x轴于点E,则∠CEB=90°,∠BCE=∠ABC=45°,∴CE=BE,∵点C(m,3),∴CE=3,∴BE=3,∴B(m+3,0),∴AP=n+2,BP=m+3﹣n,∴AD=22(22)4++=42,BC=2233+=32,代入APBC=ADBP得:242332nm n+=+-,整理可得:﹣n2+(m+1)n+2m﹣18=0,由题意可知n只有一个解,∴△=(m+1)2+4(2m﹣18)=0,解得:m=﹣5±46,又∵点C在点D右侧,∴m=﹣5+46;②若点B在点A左侧,如图,此时,∵A(﹣2,0),D(2,4),∴∠OAD=45°,∴∠BAD=∠ABC=∠DPC=135°,∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴ADP=∠BPC,∴△ADP∽△BPC,∴APBC =ADBP,由①得:B(m+3,0),C(m,3),P(n,0),AP=﹣2﹣n,BP=n﹣m﹣3,AD=42BC=32∴4232=,解得:m=﹣6又∵点C在点D左侧,∴m=﹣5﹣6;综上所述:m=﹣6.【点睛】本题是相似综合题,考查新定义图形,仔细阅读题目,抓住定义中的性质,会验证新定义图形,相似三角形的判定与性质,一元二次方程根的判别式,利用相似三角形的性质构造关于n的一元二次方程是解题关键.6.平面上,矩形ABCD与直径为QP的半圆K如图摆放,分别延长DA和QP交于点O,且∠BOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).发现(1)当α=0°,即初始位置时,点P____直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B?(2)在OQ旋转过程中.简要说明α是多少时,点P,A间的距离最小?并指出这个最小值:(3)如图,当点P恰好落在BC边上时.求α及S阴影.拓展如图.当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究当半圆K与矩形ABCD的边相切时,求si n α的值.解析:发现:(1)在,15°;(2)当α=60°时,最小距离为1;(3)30°,3=+1624S π阴影.拓展:x 的范围是0221x <≤-; 探究:sinα的值为43310-或62110-或32. 【详解】解:发现(1)在;当OQ 过点B 时,在Rt △OAB 中,AO =AB ,得∠DOQ =∠ABO =45°,∴α=60°-45°=15°.(2)如图3.连AP ,有OA +AP≥OP ,当OP 过点A ,即α=60°时等号成立.∴AP≥OP -OA =2-1=1.∴当α=60°时.P ,A 间的距离最小.∴PA 的最小值为1.(3)如图3,设半圆K 与PC 交点为R ,连接RK ,过点P 作PH ⊥AD 于点H ,过点R 作RE ⊥KQ 于点E . 在Rt △OPH 中,PH =AB =1,OP =2,∴∠POH =30°,∴α=60°-30°=30°.由AD//BC 知,∠RPQ =∠POH =30°.∴∠RKQ =2×30°=60°.2160236024KRQ S ππ⎛⎫⋅ ⎪⎝⎭∴==扇形, 在Rt △RKE 中,3sin 604RE RK =⋅︒=, 13·216PRK S PK RE ∆∴==, 32416S π∴=+阴影; 拓展如图5,∠OAN =∠MBN =90°,∠ANO =∠BNM ,所以△AON ∽△BMN .∴AN AO BN BM =,即11BN BN x-=, ∴1x BN x =+. 如图4,当点Q 落在BC 上时,x 取最大值,作QF ⊥AD 于点F .2222311221BQ AF OQ QF AO ==--=--=-.∴x 的范围是0221x <≤-.【注:如果考生答“221x ≤-或221x <-”均不扣分】探究半圆与矩形相切,分三种情况:①如图5,半圆K 与BC 切于点T ,设直线KT 与AD 和OQ 的初始位置所在直线分别交于S ,O′,则∠KSO =∠KTB =90°,作KG ⊥OO′于点G .Rt △OSK 中,222253222OS OK SK ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭. Rt △OSO′中,tan 6023SO OO ︒''==,3232KO '=-. Rt △KGO′中,∠O′=30°,KG=13=3-.24KO ' Rt △OGK 中,334334sin 5102KG OK α--===②半圆K 与AD 切于点T ,如图6,同理可得11()22sin 5522O K O T KT KG OKα''-=== 225113222621510⎛⎫⎛⎫-⨯- ⎪ ⎪-⎝⎭⎝⎭==.③当半圆K 与CD 相切时,成Q 与点D 重合,且为切点.∴α=60°,∴3sin sin 60α=︒=综上述,sinα433-621-3 考点:圆,直线与圆的位置关系,锐角三角函数,相似,三角形法则求最值7.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.解析:(1)=;(2)成立,证明见解析;(3)135°.【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,再简单计算即可.【详解】(1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB ≌△CEA ,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt △PCE 中,由勾股定理可得,PE=22,在△PEA 中,PE 2=(22)2=8,AE 2=12=1,PA 2=32=9,∵PE 2+AE 2=AP 2,∴△PEA 是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB ≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.8.如图1,在ABC 中,2AB AC ==,120BAC ∠=︒,点,D E 分别是,AC BC 的中点,连接DE .(1)探索发现:图1 图2图3图1中,AB BC的值为_____________;AD BE 的值为_________; (2)拓展探究 若将CDE △绕点C 逆时针方向旋转一周,在旋转过程中AD BE 的大小有无变化,请仅就图2的情形给出证明;(3)问题解决当CDE △旋转至,,A D E 三点在同一直线时,直接写出线段BE 的长.解析:33见解析393+393-【分析】(1)先判断出∠AEB=90°,再判断出∠B=30°,进而的粗AE ,再用勾股定理求出BE ,即可得出结论;(2)先判断出,进而得出△ACD ∽△BCE ,即可得出结论;(3)分点D 在线段AE 上和AE 的延长线上,利用含30度角的直角三角形的性质和勾股定理,最后用线段的和差求出AD ,即可得出结论.【详解】解:解: (1)如图1,连接AE,∵AB=AC=2,点E 分别是BC 的中点,∴AE ⊥ BC,∴∠AEC=90° ,∵AB=AC=2,∠BAC=120° ,∴∠B=∠C=30°,在Rt △ABE 中,AE=12AB=1,根据勾股定理得,BE =3∵点E 是BC 的中点,∴BC=2BE =23 ∴23323AB BC == ∵点D 是AC 的中点, ∴AD=CD=12AC=1,∴AD 13BE 33== 故答案为:33,33; (2)无变化,理由:由(1)知,CD=1,3CE BE ==∴3CD CE =3AC BC =∴3CD AC CE BC ==由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD ∽△BCE, ∴33AD AC BE BC ==, (3)线段BE 的长为3932+或3932-,理由如下: 当点D 在线段AE 上时,如图2,过点C 作CF ⊥AE 于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°, ∴1122DF CD ==, ∴332CF DF ==, 在Rt △AFC 中,AC=2,根据勾股定理得,22132AF AC CF =-=, ∴AD=AF+DF=1312+, 由(2)知,33AD BE =, ∴39332BE AD +==当点D 在线段AE 的延长线上时,如图3,过点C 作CG ⊥AD 交AD 的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴1122DG CD ==, ∴33CG DG ==, 在Rt △ACG 中,根据勾股定理得,13AG =, ∴131AD AG DG -=-=,由(2)知,33AD BE =, ∴39332BE AD -== 即:线段BE 的长为3932+或3932-.【点睛】此题是相似形综合题,主要考查了等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,相似三角形的判定和性质,构造出直角三角形是解本题的关键.9.问题呈现: 如图1,在边长为1的正方形网格中,分别连接格点A ,B 和C ,D ,AB 和CD 相交于点P ,求tan ∠BPD 的值.方法归纳: 利用网格将线段CD 平移到线段BE ,连接AE ,得到格点△ABE ,且AE ⊥BE ,则∠BPD 就变换成Rt △ABE 中的∠ABE .问题解决:(1)图1中tan ∠BPD 的值为________;(2)如图2,在边长为1的正方形网格中,分别连接格点A ,B 和 C ,D ,AB 与CD 交于点P ,求cos ∠BPD 的值;思维拓展:(3)如图3,AB ⊥CD ,垂足为B ,且AB =4BC ,BD =2BC ,点E 在AB 上,且AE =BC ,连接AD 交CE 的延长线于点P ,利用网格求sin ∠CPD .解析:(1)2;(22;(32【分析】 (1)由题意可得BE ∥DC ,则∠ABE =∠DPB ,那么∠BPD 就变换到Rt △ABE 中,由锐角三角函数的定义可得出答案;(2)过点A 作AE //CD ,连接BE ,那么∠BPD 就变换到等腰Rt △ABE 中,由锐角三角函数的定义可得出答案;(3)以BC 为边长构造网格,然后把PC 平移到AN ,则∠CPD 就变换成Rt △ADN 中的∠NAD ,再由锐角三角函数的定义可得出答案.【详解】(1) 由勾股定理可得:22222222112AE BE =+==+=,, ∵CD//BE ,∴tan ∠BPD =tan ∠ABE =2222AE BE ==; (2)过点A 作AE //CD ,连接BE ,由图可知E 点在格点上,且∠AEB =90°,由勾股定理可得:22221251310AE AB =+==+=,,∴cos ∠BPD =cos ∠BAE =5510522102101010AE AB ⨯====⨯(3)如图3构造网格,过点A 作AN //PC ,连接DN ,由图可知N 点在格点上,且∠AND =90°,由勾股定理可得:22221310,2425,DN AD =+==+=∴sin ∠CPD =sin ∠NAD =1010552210225255DN AD ⨯====⨯,【点睛】本题考查三角形综合题、平行线的性质、勾股定理、直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题,属于中考压轴题.10.(1)问题发现如图1,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M .填空:①AC BD 的值为 ; ②∠AMB 的度数为 .(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.解析:(1)①1;②40°;(2)3,90°;(3)AC 的长为33或23.【分析】(1)①证明△COA ≌△DOB (SAS ),得AC=BD ,比值为1;②由△COA ≌△DOB ,得∠CAO=∠DBO ,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD )=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC ∽△BOD ,则3AC OC BD OD=,由全等三角形的性质得∠AMB 的度数;(3)正确画图形,当点C 与点M 重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD ,则∠AMB=90°,3AC BD =,可得AC 的长. 【详解】(1)问题发现:①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB ,∵OC=OD ,OA=OB ,∴△COA ≌△DOB (SAS ),∴AC=BD , ∴1AC BD ,= ②∵△COA ≌△DOB ,∴∠CAO=∠DBO ,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°-(∠CAO+∠OAB+∠ABD )=180°-(∠DBO+∠OAB+∠ABD )=180°-140°=40°,(2)类比探究:如图2,3AC BD =,∠AMB=90°,理由是:Rt △COD 中,∠DCO=30°,∠DOC=90°,∴3033OD tan OC ︒==, 同理得:3033OB tan OA ︒==, ∴OD OB OC OA=, ∵∠AOB=∠COD=90°,∴∠AOC=∠BOD ,∴△AOC ∽△BOD ,∴3AC OC BD OD== ,∠CAO=∠DBO , 在△AMB 中,∠AMB=180°-(∠MAB+∠ABM )=180°-(∠OAB+∠ABM+∠DBO )=90°; (3)拓展延伸:①点C 与点M 重合时,如图3,同理得:△AOC ∽△BOD ,∴∠AMB=90°,3AC BD= 设BD=x ,则3,Rt △COD 中,∠OCD=30°,OD=1,∴CD=2,BC=x-2,Rt △AOB 中,∠OAB=30°,OB=7, ∴AB=2OB=27,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2, (3x )2+(x −2)2=(27)2,x 2-x-6=0,(x-3)(x+2)=0,x 1=3,x 2=-2,∴AC=33;②点C 与点M 重合时,如图4,同理得:∠AMB=90°,3AC BD = 设BD=x ,则3,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2,3)2+(x+2)27)2.x 2+x-6=0,(x+3)(x-2)=0,x 1=-3,x 2=2,∴3.综上所述,AC 的长为33【点睛】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC ∽△BOD ,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.11.问题背景:如图1,在矩形ABCD 中,23AB =30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的BEF 绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:①AE DF =_____;②直线AE 与DF 所夹锐角的度数为______. (2)小王同学继续将BEF 绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,则ADE 的面积为______. 解析:(1)32,30°;(2)成立,理由见解析;拓展延伸:133398+或133398- 【分析】(1)通过证明FBD EBA ∆∆∽,可得32AE BE DF BF ==,BDF BAE ∠=∠,即可求解; (2)通过证明ABE DBF ∆∆∽,可得32AE BE DF BF ==,BDF BAE ∠=∠,即可求解; 拓展延伸:分两种情况讨论,先求出AE ,DG 的长,即可求解.【详解】解:(1)如图1,30ABD ∠=︒,90DAB ∠=︒,EF BA ⊥,3cos 2BE AB ABD BF DB ∴∠===, 如图2,设AB 与DF 交于点O ,AE 与DF 交于点H ,BEF ∆绕点B 按逆时针方向旋转90︒,90DBF ABE ∴∠=∠=︒,FBD EBA ∴∆∆∽,∴3AE BE DF BF =,BDF BAE ∠=∠, 又DOB AOF ∠=∠,30DBA AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30, 故答案为:32,30; (2)结论仍然成立,理由如下:如图3,设AE 与BD 交于点O ,AE 与DF 交于点H ,将BEF ∆绕点B 按逆时针方向旋转,ABE DBF ∴∠=∠,又32BE AB BF DB ==, ABE DBF ∴∆∆∽, ∴32AE BE DF BF ==,BDF BAE ∠=∠, 又DOH AOB ∠=∠, 30ABD AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30.拓展延伸:如图4,当点E 在AB 的上方时,过点D 作DG AE ⊥于G ,23AB =30ABD ∠=︒,点E 是边AB 的中点,90DAB ∠=︒,3BE ∴=2AD =,4DB =,30EBF ∠=︒,EF BE ⊥,1EF ∴=,D 、E 、F 三点共线,90DEB BEF ∴∠=∠=︒,2216313DE BD BE ∴-=-30DEA ∠=︒,1132DG DE ∴= 由(2)可得:3AE BE DF BF =∴32131AE =+, 3932AE +∴=, ADE ∴∆的面积11393131333922228AE DG ++=⨯⨯=⨯⨯=; 如图5,当点E 在AB 的下方时,过点D 作DG AE ⊥,交EA 的延长线于G ,同理可求:ADE ∆的面积11393131333922228AE DG --=⨯⨯=⨯⨯=; 故答案为:133398+或133398-. 【点睛】 本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.12.问题情境:如图1,在正方形ABCD 中,E 为边BC 上一点(不与点B 、C 重合),垂直于AE 的一条直线MN 分别交AB 、AE 、CD 于点M 、P 、N .判断线段DN 、MB 、EC 之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P 恰好为AE 的中点,连接BD ,交MN 于点Q ,连接EQ ,并延长交边AD 于点F .求∠AEF 的度数;(2)如图3,当垂足P 在正方形ABCD 的对角线BD 上时,连接AN ,将△APN 沿着AN 翻折,点P 落在点P'处.若正方形ABCD 的边长为4 ,AD 的中点为S ,求P'S 的最小值.问题拓展:如图4,在边长为4的正方形ABCD 中,点M 、N 分别为边AB 、CD 上的点,将正方形ABCD 沿着MN 翻折,使得BC 的对应边B'C '恰好经过点A ,C'N 交AD 于点F .分别过点A 、F 作AG ⊥MN ,FH ⊥MN ,垂足分别为G 、H .若AG =52,请直接写出FH 的长.解析:问题情境:DN MB EC +=.理由见解析;问题探究:(1)45AEF ∠=︒;(2)P S '2514. 【分析】问题情境:过点B 作BF ∥MN 分别交AE 、CD 于点G 、F ,证出四边形MBFN 为平行四边形,得出NF =MB ,证明△ABE ≌△BCF 得出BE =CF ,即可得出结论;问题探究:(1)连接AQ ,过点Q 作HI ∥AB ,分别交AD 、BC 于点H 、I ,证出△DHQ 是等腰直角三角形,HD =HQ ,AH =QI ,证明Rt △AHQ ≌Rt △QIE 得出∠AQH =∠QEI ,得出△AQE 是等腰直角三角形,得出∠EAQ =∠AEQ =45°,即可得出结论;(2)连接AC 交BD 于点O ,则△APN 的直角顶点P 在OB 上运动,设点P 与点B 重合时,则点P′与点D 重合;设点P 与点O 重合时,则点P′的落点为O′,由等腰直角三角形的性质得出∠ODA =∠ADO′=45°,当点P 在线段BO 上运动时,过点P 作PG ⊥CD 于点G ,过点P′作P′H ⊥CD 交CD 延长线于点H ,连接PC ,证明△APB ≌△CPB 得出∠BAP =∠BCP ,证明Rt △PGN ≌Rt △NHP'得出PG =NH ,GN =P'H ,由正方形的性质得出∠PDG =45°,易得出PG =GD ,得出GN =DH ,DH =P'H ,得出∠P'DH =45°,故∠P'DA =45°,点P'在线段DO'上运动;过点S 作SK ⊥DO',垂足为K ,即可得出结果;问题拓展:延长AG 交BC 于E ,交DC 的延长线于Q ,延长FH 交CD 于P ,则EG =AG =52,PH =FH ,得出AE =5,由勾股定理得出BE 22AE AB -3,得出CE =BC ﹣BE =1,证明△ABE ∽△QCE ,得出QE =AE =203,AQ =AE+QE =203,证明△AGM ∽△ABE ,得出AM =258,由折叠的性质得:AB'=EB =3,∠B'=∠B =90°,∠C'=∠BCD =90°,求出B'M =2'278AM AB -=,AC'=1,证明△AFC'∽△MAB',得出AF =25253,DF 4777=-=,证明△DFP ∽△DAQ ,得出FP =57,得出FH =FP =15FP 214=. 【详解】问题情境:因为四边形ABCD 是正方形,所以90ABE BCD AB BC CD DC AB ∠=∠=︒==,,∥.过点B 作BF MN ∥分别交AE CD 、于点G F 、.所以四边形MBFN 为平行四边形.所以NF MB =.所以90BF AE BGE ∠=︒⊥,,所以90CBF AEB ∠+∠=︒,又因为90BAE AEB ∠+∠=︒,所以CBF BAE ∠=∠.ABE BCF △△≌,所以BE CF =.因为DN NF CF BE EC ++=+,所以DN NF EC +=,所以DN MB EC +=.问题探究:(1)连接AQ ,过点Q 作HI AB ∥,分别交AD BC 、于点H I 、.易得四边形ABIH 矩形. 所以HI AD HI BC ⊥⊥,且HI AB AD ==.因为BI 是正方形ABCD 的对角线,所以45BDA ∠=︒.所以DHQ 是等腰直角三角形,HD HQ =.所以AH QI =.因为MN 是AE 的垂直平分线,所以AQ QE =.所以Rt Rt AHQ QIE △≌△.所以AQH QEI ∠=∠.所以90AQH EQI ︒∠+∠=.所以90AQE ∠=︒.所以AQE 是等腰直角三角形,45EAQ AEQ ∠=∠=︒,即45AEF ∠=︒.(2)如图所示,连接AC 交BD 于点O ,由题意易得APN 的直角顶点P 在OB 上运动. 设点P 与点B 重合,则点P '与点D 重合;设P 与点O 重合,则点P 的落点为O '.易知45ADO '∠=︒.当点P 在线段BO 上运动时,过点P 作CD 的垂线,垂足为G ,过点P '作P H CD '⊥,垂足为点H .易证:Rt PGN Rt NHP '△△≌,所以PG NH G H P N '==,,因为BD 是正方形ABCD 的对角线,所以45PDG ∠=︒,易得PG GD =,所以GN DH =.所以DH H P '=.所以45P DH '∠=︒,故45P DA '∠=︒.所以点P '在线段DO '上运动.过点S 作SK DO '⊥,垂足为K ,因为点S 为AD 的中点,所以2DS =,则P S '的最小值为2.问题拓展:解:延长AG 交BC 于E ,交DC 的延长线于Q ,延长FH 交CD 于P ,如图4:则EG =AG =52,PH =FH , ∴AE =5,在Rt △ABE 中,BE 22AE AB -3,∴CE =BC ﹣BE =1,∵∠B =∠ECQ =90°,∠AEB =∠QEC ,∴△ABE ∽△QCE , ∴1520QE AE ,AQ AE QE 333===+= ∵AG ⊥MN ,∴∠AGM =90°=∠B ,∵∠MAG =∠EAB ,∴△AGM ∽△ABE , ∴AM AG AE AB =,即5254AM =, 解得:25AM 8=, 由折叠的性质得:AB'=EB =3,∠B'=∠B =90°,∠C'=∠BCD =90°,∴B'M 2'27,AC 18AM AB '-==, ∵∠BAD =90°,∴∠B'AM =∠C'FA ,∴△AFC'∽△MAB', ∴''1,25788AF AC AF AM MB ==, 解得:25253AF ,DF 4777==-=∵AG ⊥MN ,FH ⊥MN ,∴AG ∥FH ,∴AQ ∥FP ,∴△DFP ∽△DAQ , ∴FP DF AQ DA =,即372043FP =, 解得:FP =57, ∴FH =15FP 214=. 【点睛】本题是四边形综合题目,考查了正方形的性质、翻折变换的性质、勾股定理、相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解题的关键.13.(问题)如图1,在Rt ABC 中,90,ACB AC BC ∠=︒=,过点C 作直线l 平行于AB .90EDF ∠=︒,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC 交于点P ,研究DP 和DB 的数量关系.(探究发现)(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,通过推理就可以得到DP DB =,请写出证明过程;(数学思考)(2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,这个小组过点D 作DG CD ⊥交BC 于点G ,就可以证明DP DB =,请完成证明过程;(拓展引申)(3)如图4,在(1)的条件下,M 是AB 边上任意一点(不含端点AB 、),N 是射线BD 上一点,且AM BN =,连接MN 与BC 交于点Q ,这个数学兴趣小组经过多次取M 点反复进行实验,发现点M 在某一位置时BQ 的值最大.若4AC BC ==,请你直接写出BQ 的最大值.解析:【探究发现】(1)见解析;【数学思考】(2)见解析;【拓展引申】(3)22AM =BQ 有最大值为2.【分析】根据等腰三角形的性质及平行的定义即可解得根据证明()CDP GDB ASA ≌即可推出DP DB =过点M 作MH MN ⊥交AC 于点H ,连接,CM HQ ,可证明()AMH BNQ ASA ≌,再推出ACM BMQ ∽即可得AC AM BM BQ =42AM BQAM =-,则22AM = 【详解】证明:【探究发现】 (1)∵90,ACB AC BC ∠=︒=∴45CAB CBA ∠=∠=︒∵CD AB∴45CBA DCB ∠=∠=︒,且BD CD ⊥∴45DCB DBC ∠=∠=︒∴DB DC =即DB DP =【数学思考】(2)∵,45DG CD DCB ⊥∠=︒∴45DCG DGC ∠=∠=︒∴,135DC DG DCP DGB =∠=∠=︒,∵90BDP CDG ∠=∠=︒∴CDP BDG ∠=∠,且,135DC DG DCP DGB =∠=∠=︒,∴()CDP GDB ASA ≌∴BD DP =【拓展引申】(3)如图4,过点M 作MH MN ⊥交AC 于点H ,连接,CM HQ ,∵MH MN ⊥,∴90AMH NMB ∠+∠=︒∵,90CD AB CDB ∠=︒∥∴90DBM ∠=︒∴90NMB MNB ∠+∠=︒∴HMA MNB ∠=∠,且,45AM BN CAB CBN =∠=∠=︒∴()AMH BNQ ASA ≌∴AH BQ =∵90,4ACB AC BC ∠=︒==, ∴42,AB AC AH BC BQ =-=-∴CH CQ =∴45CHQ CQH CAB ∠=∠=︒=∠∴HQ AB ∥∴HQM QMB ∠=∠∵90ACB HMQ ∠=∠=︒∴点H ,点M ,点Q ,点C 四点共圆,∴HCM HQM ∠=∠∴HCM QMB ∠=∠,且45A CBA ∠=∠=︒∴ACM BMQ ∽ ∴AC AM BM BQ= ∴42AM BQ AM=- ∴2(22)2AM BQ --= ∴22AM =BQ 有最大值为2.【点睛】本题考查等腰三角形,解题关键在于熟练掌握等腰三角形的性质.14.(1)(探究发现)如图1,EOF ∠的顶点O 在正方形ABCD 两条对角线的交点处,90EOF ︒∠=,将EOF ∠绕点O 旋转,旋转过程中,EOF ∠的两边分别与正方形ABCD 的边BC 和CD 交于点E 和点F (点F 与点C ,D 不重合).则,,CE CF BC 之间满足的数量关系是 .(2)(类比应用)如图2,若将(1)中的“正方形ABCD ”改为“120BCD ∠=的菱形ABCD ”,其他条件不变,当60EOF ∠=时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.(3)(拓展延伸)如图3,120BOD =∠,34OD =,4OB =,OA 平分BOD ∠,13AB =,且2OB OA >,点C 是OB 上一点,60CAD ∠=,求OC 的长.解析:(1)CE CF BC +=(2)结论不成立.12CE CF BC +=(3)14【分析】 (1)结论:CE CF BC +=.根据正方形性质,证()BOE COF ASA ∆≅∆,根据全等三角形性质可得结论;(2)结论不成立.12CE CF BC +=.连接EF ,在CO 上截取CJ CF =,连接FJ .根据菱形性质,证180EOF ECF ︒∠+∠=,,,,O E C F 四点共圆,分别证EOF ∆是等边三角形,CFJ ∆是等边三角形,根据等边三角形性质证()OFJ EFC SAS ∆≅∆,根据全等三角形性质可得结论;(3)由2OB OA >可知BAO ∆是钝角三角形,90BAO ∠>,作AH OB ⊥于H ,设=OH x .根据勾股定理,可得到21OA OH ==,由180COD ACD ︒∠+∠=,得,,,A C O D 四点共圆,再证ACD ∆是等边三角形,由(2)可知:OC OD OA +=,故可得OC .【详解】(1)如图1中,结论:CE CF BC +=.理由如下:。
深圳历年中考数学压轴题(综合题)(1)
![深圳历年中考数学压轴题(综合题)(1)](https://img.taocdn.com/s3/m/62e24172102de2bd97058870.png)
深圳历年中考数学压轴题(综合题30)1.如图,⊙O 是ABC ∆的外接圆,AB AC =,2BC =,cos ABC ∠,点D 为»AC 上的动点,连接AD 并延长,交BC 的延长线于点E 。
(1)试求AB 的长;(2)试判断AD AE g 的值是否为定值?若为定值,请求出这个定值,若不为定值,请说明理由。
(3)如图2,连接BD ,过点A 作AH ⊥BD 于点H ,连接CD ,求证:BH CD DH =+。
2.如图,顶点为A 的抛物线21()22y a x =--经过3,22B ⎛⎫- ⎪⎝⎭,5,22C ⎛⎫⎪⎝⎭两点。
(1)试求抛物线的解析式;(2)如图2,连接AB ,交x 轴于点M ,交y 轴于点E ,抛物线与y 轴交于点F 。
若在直线AB 上有一点P ,使得OPM MAF ∠=∠,试求POE ∆的面积;(3)如图3,若点Q 是折线A B C --上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 交于点N ,连接QE ,将QEN ∆沿QE 翻折得到1QEN ∆。
若点1N 落在x 轴上,请直接写出Q 点的坐标。
图2图1图1 图2 图33.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.4.如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;(3)如图2,已知直线y=x﹣分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.5.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.6.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.7.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.8.如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.9.如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(,),抛物线的表达式为;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.10.如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1)m为何值时,△OAB面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数的图象与直线AB相交于C、D两点,若,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).11.如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?12.如图,在平面直角坐标系中,直线l:y=﹣2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b=时,直线l:y=﹣2x+b(b≥0)经过圆心M;当b=时,直线l:y=﹣2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.13.如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C 落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.14.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.15.如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.16.如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=﹣x﹣与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE,⊙M的半径r,CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.17.如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号).18.如图,在平面直角坐标系中,直线l:y=﹣2x﹣8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.19.如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF的面积.20.如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=.(1)求这个二次函数的表达式.(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.21.如图,抛物线y=ax2﹣8ax+12a(a<0)与x轴交于A、B两点(点A在点B的左侧),抛物线上另有一点C在第一象限,满足∠ACB为直角,且恰使△OCA∽△OBC.(1)求线段OC的长;(2)求该抛物线的函数关系式;(3)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.22.如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8.(1)求点C的坐标;(2)连接MG、BC,求证:MG∥BC;(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.23.已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(﹣1,0),P是AC上的一个动点(P与点A、C不重合)(1)求点A、E的坐标;(2)若y=x2+bx+c过点A、E,求抛物线的解析式;(3)连接PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.24.AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合.(1)求证:△AHD∽△CBD;(2)连HO,若CD=AB=2,求HD+HO的值.25.等腰梯形ABCD中,如图1,AB∥CD,AD=BC,延长AB到E,使BE=CD,连接CE.(1)求证:CE=CA;(2)上述条件下,如图2,若AF⊥CE于点F,且AF平分∠DAE,,求sin∠CAF 的值.26.直线y=﹣x+m与直线y=x+2相交于y轴上的点C,与x轴分别交于点A、B.(1)求A、B、C三点的坐标;(2)经过上述A、B、C三点作⊙E,求∠ABC的度数,点E的坐标和⊙E的半径;(3)若点P是第一象限内的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC 分别交⊙E于点M、N,设∠APC=θ,试求点M、N的距离.(可用含θ的三角函数式表示)27.如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.(1)求证:△ACF∽△BEC;(2)设△ABC的面积为S,求证:AF•BE=2S;(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.28.如图,已知A(5,﹣4),⊙A与x轴分别相交于点B、C,⊙A与y轴相且于点D,(1)求证过D、B、C三点的抛物线的解析式;(2)连接BD,求tan∠BDC的值;(3)点P是抛物线顶点,线段DE是直径,直线PC与直线DE相交于点F,∠PFD的平分线FG交DC于G,求sin∠CGF的值.29.已知:如图,直线y=﹣x+3与x轴、y轴分别交于B、C,抛物线y=﹣x2+bx+c经过点B、C,点A是抛物线与x轴的另一个交点.(1)求B、C两点的坐标和抛物线的解析式;(2)若点P在线段BC上,且,求点P的坐标.30.如图,等腰梯形ABCD中,AD∥BC,AB=DC,以HF为直径的圆与AB、BC、CD、DA相切,切点分别是E、F、G、H.其中H为AD的中点,F为BC的中点.连接HG、GF.(1)若HG和GF的长是关于x的方程x2﹣6x+k=0的两个实数根,求⊙O的直径HF(用含k的代数式表示),并求出k的取值范围.(2)如图,连接EG,DF.EG与HF交于点M,与DF交于点N,求的值.。
近五年深圳中考压轴题集锦
![近五年深圳中考压轴题集锦](https://img.taocdn.com/s3/m/bc50e258a300a6c30c229f78.png)
近五年深圳中考压轴题集锦0201912ABCD E F 4BE=AF BAD=1201.BCE ACF 2.CEF 3.AGE BEC 4.AF=1EG=3FGA ∠∆≅∆∆∠∠(深圳中考)已知菱形,、是动点,边长为,,,则下列结论,正确的有()个为正三角形=若,则1 B2 C3 D4201915ABCD BE=1BC CE AC AD AF AC EF (深圳中考)如图,在正方形中,,将沿翻折,使B点对应点刚好落在对角线上,将沿翻折,使D点对应点刚好落在对角线上,则=_ GD B C EF AB A CDEF0201916A 0-3ABC=90BAC AD=3CD y _k y k x∠∠=(深圳中考)如图,在平面直角坐标系中,(,),,轴平分,,点C在反例函数=上,则2201922(1,0),(0,3),OB=OCD E 1DE=1D ACDE y ax bx c A C x =++-=(深圳中考)如图:抛物线过且1.求抛物线的解析式及其对称轴2.点、是直线上的两个动点,且,点在点E的上方求四边的周长的最小值CP APBC P 3.点P为抛物线上一点,连接CP直线将四边形面积分为3:5的两个部分,求点的坐标.A DCB x yO B A Cxy23(3,0),(3,0),(3,8),BC E AC E OD OD E A B C --(2019深圳中考)已知在平面直角坐标系中,点以线段为直径作圆,圆心为直线交于点D,连接,1.求证:直线是的切线F CF EG BG tan x FCA ∠2.为轴上任意一点,连接交于点,连接1当=,求所有的F点的坐标___;72018深圳中考12题如图,A 、B 是函数y= 12x 上两点,P 为一动点,作PB ∥y 轴,PA ∥x 轴,下列说法正确的是 ( )①△AOP ≌△BOP ;②S △AOP=S △BOP ;③若OA=OB ,则OP 平分∠AOB ;④若S △BOP=4,则S △ABP=16A .①③B .②③C .②④D .③④2018深圳中考16题在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4, ,则AC=________2018深圳中考22题如图,△ABC 内接于⊙O ,BC=2,AB=AC ,点D 为上的动点,且cosB=10. (1)求AB 的长度;(2)在点D 的运动过程中,弦AD 的延长线交BC 延长线于点E ,问AD •AE 的值是否变化?若不变,请求出AD •AE 的值;若变化,请说明理由;(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH=CD+DH.2018深圳中考23题已知顶点为A 抛物线21()22y a x =-- 经过点 32B (-,2). (1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN1,若点N1落在x 轴上,请直接写出Q 点的坐标.2017深圳中考12如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= 13 16,其中正确结论的个数是()A.1B.2C.3D.42017深圳中考16如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P 在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.2017深圳中考22如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.2017深圳中考23如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=2/3S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2016深圳中考12如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F 作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A.1 B.2 C.3 D.42016深圳中考16如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将▱ABCO 绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y=kx(x<0)的图象上,则k的值为.2016深圳中考22如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.2016深圳中考23如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;(3)如图2,已知直线y=2/3x﹣4/9分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE 的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.2015深圳中考12如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:BEF 721.ADG FDG2.GB 2AG3.GDE BEF4.S =5∆∆≅∆∆∆ = 正确的有()个2015深圳中考16如图,已知点A 在反比例函数上,作RT ⊿ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若⊿BCE 的面积为8,则k=2015深圳中考22如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,,3,6cm OD cm BC AB === 开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动。
深圳深圳市福田区岗厦中学中考数学期末几何综合压轴题易错汇编
![深圳深圳市福田区岗厦中学中考数学期末几何综合压轴题易错汇编](https://img.taocdn.com/s3/m/16d828a2be23482fb4da4cfc.png)
深圳深圳市福田区岗厦中学中考数学期末几何综合压轴题易错汇编一、中考数学几何综合压轴题1.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.解析:(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===, ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.2.综合与实践数学问题:(1)如图1,ABC是等腰直角三角形,过斜边的中点D作正方形DECF,分别交BC,AC于点E,F,则AB,BE,AF之间的数量关系为______.问题解决:(2)如图2,在任意Rt ABC内,找一点D,过点D作正方形DECF,分别交BC,AC 于点E,F,若AB BE AF∠的度数;=+,求ADB图2拓展提升:(3)如图3,在(2)的条件下,分别延长ED,FD,交AB于点M,N,则MN,AM ,BN 的数量关系为______.图3(4)在(3)的条件下,若3AC =,4BC =,则MN =______.解析:(1))2AB AF BE +;(2)135°;(3)222MN AM BN =+;(4)2512【分析】(1)根据等腰直角三角形的斜边与直角边的关系及正方形的性质即可得出数量关系; (2) 延长AC 至点P ,使FP BE =,连接DP ,根据正方形的性质易证DFP DEB △△≌,从而可得DP =DB ,进而可证ADP ADB △△≌,从而可得12DAC DAB CAB ∠=∠=∠,12ABD CBD ABC ∠=∠=∠,由三角形内角和定理即可求得∠ADB 的度数; (3)由正方形的对边平行的性质易得AM =DM ,BN =DN ,从而在Rt △MDN 中,由勾股定理即可得MN 、AM 、BN 的数量关系;(4)由(2)知FP =BE ,即可求得DE =DF =1,根据相似三角形的性质可分别求得EM 、FN 的长,从而可得DM 、DN 的长,在Rt △MDN 中,由勾股定理即可求得MN 的长.【详解】(1)∵ABC 是等腰直角三角形,且AB =AC , ∴2AB =,∠A =∠B =45°,∵四边形DECF 是正方形,且D 是AB 的中点,∴DF =FC =CE =DE ,∠DFA =∠DEB =90°,DF ∥BC ,DE ∥AC ,∴∠ADF =∠B =45°,∠BDE =∠A =45°,∴AF =DF ,BE =DE ,∴F 、E 分别是AC 、BC 的中点,∴CF =BE ,∴AC =AF +CF =AF +BE , ∴)2AB AF BE +;(2)延长AC 至点P ,使FP BE =,连接DP .∵四边形DECF 是正方形,∴DF DE =,90DFC DEC ∠=∠=︒.∵FP BE =,90DFC DEB ∠=∠=︒,DF DE =,∴()SAS DFP DEB ≌△△.∴DP DB =.∵AB AF BE =+,AP AF FP =+,FP BE =,∴AP AB =.又∵DP DB =,AD AD =,∴()SSS ADP ADB ≌△△. ∴12DAC DAB CAB ∠=∠=∠. 同理可得:12ABD CBD ABC ∠=∠=∠. ∵90ACB ∠=︒,∴90CAB CBA ∠+∠=︒. ∴()1452DAB ABD CAB CBA ∠+∠=∠+∠=︒. ∴()180135ADB DAB ABD ∠=︒-∠+∠=︒.(3)∵DF ∥BC ,DE ∥AC ,∴∠CBD =∠NDB , ∠DAC =∠ADM ,∵ABD CBD ∠=∠,DAC DAB ∠=∠,∴∠ABD =∠NDB ,∠ADM =∠DAB ,∴BN =DN ,AM =DM .在Rt △MDN 中,由勾股定理得:22222MD DN MN AM BN ==++故答案为:222MN AM BN =+,(4)∵△ABC 是直角三角形,AC =3,BC =4,∴由勾股定理得:AB =5,设正方形DECF 的边长为x ,由(2)知,AP =AB =5,BE =FP ,CP =AP -AC =2,∵FP =CP +CF ,BE =BC -CE ,即4-x =2+x ,解得x =1,∴BE =BC -CE =3,AF =AC -CF =2,∵EM ∥AC ,FN ∥BC ,∴△BME ∽△BAC ,△AFN ∽△ACB ∴34ME BE AC BC ==,23FN AF BC AC ==, ∴94ME =,83FN =. ∵DM =ME -DE =54,DN =FN -DF =53, 222255254312MN DM DN ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 故答案为:2512MN =. 【点睛】 本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,截长补短法作辅助线是本题的关键.3.(了解概念)在凸四边形中,若一边与它的两条邻边组成的两个内角相等,则称该四边形为邻等四边形,这条边叫做这个四边形的邻等边.(理解运用)(1)在邻等四边形ABCD 中,40A ∠=︒,60B ∠=︒,若CD 是这个邻等四边形的邻等边,则C ∠的度数为__________;(2)如图,凸四边形ABCD 中,P 为AB 边的中点,ADP PDC ∽,判断四边形ABCD 是否为邻等四边形,并证明你的结论;(拓展提升)(3)在平面直角坐标系中,AB 为邻等四边形ABCD 的邻等边,且AB 边与x 轴重合,已知(2,0)A -,(,3)C m ,(2,4)D ,若在边AB 上使DPC BAD ∠=∠的点P 有且仅有1个,则m 的值是__________.解析:(1)130°;(2)四边形ABCD 是邻等四边形,理由见解析;(3)﹣6【分析】(1)根据邻等四边形的定义即可求解;(2)由△ADP ∽△PDC ,可得AP AD PC PD =,∠DAP =∠DPC ,∠APD =∠PCD ,由P 为AB 的中点,可得AP =BP ,则PB AD PC PD=,可证△BPC ∽△ADP ,由相似三角形的性质得出∠A =∠B 即可;(3)①若点B 在点A 右侧,如图,由AB 为邻等边,则有∠DAB =∠ABC =∠DPC ,可证△ADP ∽△BPC ,可得AP BC =AD BP ,设点P (n ,0),由等腰直角三角形可求∠BAD =45°,可求B 、C 横坐标之差为3,B (m +3,0),将AP ,BP ,AD ,BC ,代入得:n 2+(m +1)n +2m ﹣18=0,由题意可知n 只有一个解,可求得m =﹣;②若点B 在点A 左侧,可求得∠BAD =135°,可证△ADP ∽△BPC ,可得APBC =AD BP ,可求得B 、C 横坐标之差为3=m =﹣5﹣. 【详解】解:(1)∵CD 为邻等边,∴∠C =∠D ,又∵40A ∠=︒,60B ∠=︒,∴∠C =∠D =(360°﹣∠A ﹣∠B )÷2=130°,∴∠C =130°.故答案为:130°;(2)四边形ABCD 是邻等四边形,理由如下:∵△ADP ∽△PDC , ∴AP AD PC PD=,∠DAP =∠DPC ,∠APD =∠PCD ,∠ADP =∠PDC , 又∵P 为AB 的中点,∴AP =BP , ∴PB AD PC PD =, ∴PB PC AD PD=, ∵∠APD +∠BPC =180°﹣∠DPC ,∠PCD +∠PDC =180°﹣∠DPC ,且∠APD =∠PCD ,∴∠BPC =∠PDC ,∵∠ADP =∠PDC ,∴∠ADP =∠BPC ,∴△BPC ∽△ADP ,∴∠B =∠A ,∴四边形ABCD 为邻等四边形;(3)若点B在点A右侧,如图,∵AB为邻等边,则有∠DAB=∠ABC=∠DPC,又∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴∠DAB=∠DPC,∠ADP=∠BPC,∴△ADP∽△BPC,∴APBC =ADBP,设点P(n,0),∵A(﹣2,0),D(2,4),∴∠BAD=45°,∴∠ABC=45°,过点C作CE⊥x轴于点E,则∠CEB=90°,∠BCE=∠ABC=45°,∴CE=BE,∵点C(m,3),∴CE=3,∴BE=3,∴B(m+3,0),∴AP=n+2,BP=m+3﹣n,∴AD22(22)4++2BC2233+32代入APBC=ADBP得:4232整理可得:﹣n2+(m+1)n+2m﹣18=0,由题意可知n只有一个解,∴△=(m+1)2+4(2m﹣18)=0,解得:m=﹣6又∵点C 在点D 右侧,∴m =﹣5+46;②若点B 在点A 左侧,如图,此时,∵A (﹣2,0),D (2,4),∴∠OAD =45°,∴∠BAD =∠ABC =∠DPC =135°,∵∠ADP +∠DPA =180°﹣∠DAB ,∠BPC +∠DPA =180°﹣∠DPC ,∴ADP =∠BPC ,∴△ADP ∽△BPC ,∴AP BC =AD BP, 由①得:B (m +3,0),C (m ,3),P (n ,0),AP =﹣2﹣n ,BP =n ﹣m ﹣3,AD =42BC =32 ∴42332n m =--, 解得:m =﹣6又∵点C 在点D 左侧,∴m =﹣5﹣6;综上所述:m =﹣6.【点睛】本题是相似综合题,考查新定义图形,仔细阅读题目,抓住定义中的性质,会验证新定义图形,相似三角形的判定与性质,一元二次方程根的判别式,利用相似三角形的性质构造关于n 的一元二次方程是解题关键.4.平面上,矩形ABCD 与直径为QP 的半圆K 如图摆放,分别延长DA 和QP 交于点O ,且∠BOQ =60°,OQ =OD =3,OP =2,OA =AB =1.让线段OD 及矩形ABCD 位置固定,将线段OQ 连带着半圆K 一起绕着点O 按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).发现(1)当α=0°,即初始位置时,点P____直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B?(2)在OQ旋转过程中.简要说明α是多少时,点P,A间的距离最小?并指出这个最小值:(3)如图,当点P恰好落在BC边上时.求α及S阴影.拓展如图.当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究当半圆K与矩形ABCD的边相切时,求sin α的值.解析:发现:(1)在,15°;(2)当α=60°时,最小距离为1;(3)30°,3=+1624S π阴影.拓展:x 的范围是0221x <≤-; 探究:sinα的值为43310-或62110-或32. 【详解】 解:发现(1)在;当OQ 过点B 时,在Rt △OAB 中,AO =AB , 得∠DOQ =∠ABO =45°, ∴α=60°-45°=15°. (2)如图3.连AP ,有OA +AP≥OP ,当OP 过点A ,即α=60°时等号成立. ∴AP≥OP -OA =2-1=1.∴当α=60°时.P ,A 间的距离最小. ∴PA 的最小值为1. (3)如图3,设半圆K 与PC 交点为R ,连接RK ,过点P 作PH ⊥AD 于点H ,过点R 作RE ⊥KQ 于点E . 在Rt △OPH 中,PH =AB =1,OP =2,∴∠POH =30°, ∴α=60°-30°=30°.由AD//BC 知,∠RPQ =∠POH =30°. ∴∠RKQ =2×30°=60°.2160236024KRQS ππ⎛⎫⋅ ⎪⎝⎭∴==扇形, 在Rt △RKE 中,3sin 604RE RK =⋅︒=, 13·216PRK S PK RE ∆∴==, 32416S π∴=+阴影; 拓展如图5,∠OAN =∠MBN =90°,∠ANO =∠BNM ,所以△AON ∽△BMN . ∴AN AO BN BM =,即11BN BN x-=, ∴1xBN x =+. 如图4,当点Q 落在BC 上时,x 取最大值,作QF ⊥AD 于点F . 2222311221BQ AF OQ QF AO ==--=--=-.∴x 的范围是0221x <≤-.【注:如果考生答“221x ≤-或221x <-”均不扣分】探究半圆与矩形相切,分三种情况:①如图5,半圆K 与BC 切于点T ,设直线KT 与AD 和OQ 的初始位置所在直线分别交于S ,O′,则∠KSO =∠KTB =90°,作KG ⊥OO′于点G . Rt △OSK 中,222253222OS OK SK ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭.Rt △OSO′中,tan 6023SO OO ︒''==,3232KO '=-. Rt △KGO′中,∠O′=30°,KG=13=3-.24KO 'Rt △OGK 中,334334sin 5102KGOKα--===②半圆K 与AD 切于点T ,如图6,同理可得 11()22sin 5522O K O T KT KG OKα''-=== 225113222621510⎛⎫⎛⎫-⨯-⎪ ⎪-⎝⎭⎝⎭==.③当半圆K 与CD 相切时,成Q 与点D 重合,且为切点. ∴α=60°,∴3sin sin 60α=︒= 综上述,sinα433-621-3考点:圆,直线与圆的位置关系,锐角三角函数,相似,三角形法则求最值5.综合与实践如图①,在中Rt ABC △中,90ACB ∠=︒,4AC =,3BC =,过点C 作CD AB ⊥于D ,将CDB △绕点D 逆时针方向旋转,得到C DB ''△,连接B C ',C A ',记旋转角为α. (1)问题发现 如图②,当90α=︒时,B CAC '='__________;如图③,当180α=︒时,B CAC '='__________. (2)拓展探究试判断:当0360α︒≤≤︒时,B CAC ''的大小有无变化?请仅就图④的情形给出证明. (3)问题解决如图⑤,当CDB △绕点D 逆时针旋转至点C '落在边AC 上时,求线段B C '的长.解析:(1)34,34;(2)无变化,理由详见解析;(3)2125B C '=.【分析】(1)首先利用勾股定理可求出AB 的值,再根据三角形面积求出CD 的值,再次利用勾股定理求出AD 、BD 的值,再分情况进一步得出,AC B C ''的值即可;(2)根据旋转的性质可得出95B D BD '==,125C D CD '==,再证明CDB ADC ''△∽△即可得出结论;(3)过点D 作DE AC ⊥于E ,证DEC ADC ∽△△,推出3625CE =,得出72225CC CE '==,继而得到2825AC AC CC ''=-=,再根据34B C AC '=',即可得出答案. 【详解】解:(1)∵90ACB ∠=︒,4AC =,3BC = ∴5AB = ∵1122ABCSAC BC AB CD =⋅=⋅ ∴125CD =∴2216169,5555AD AC CD BD AB AD =-==-=-= 当90α=︒时,34,55B C CD B D CD BD AC AD C D AD CD ''''=-=-==-=-=∴34B C AC '=' 当180α=︒时,3,4B C BC AC AC ''=====∴34B C AC '=' 故答案为:34;34;(2)无变化.证明:∵在Rt ABC △中,4AC =,3BC =,90ACB ∠=︒,∴5AB ==. ∵CD AB ⊥, ∴90BDC ∠=︒.∵90BDC ACB ∠=∠=︒,B B ∠=∠, ∴BDC BCA ∽△△. ∴BD CD BC BC AC AB ==,即33445BD CD CD ===. ∴95BD =,125CD =. ∴165AD AB BD =-=. 由旋转可知95B D BD '==,125C D CD '==,90B DC BDC ''∠=∠=︒.∴34B D CDCD AD '=='. ∵90B DC ADC ''∠=∠=︒, ∴CDB ADC ''∠=∠. ∴CDB ADC ''△∽△. ∴34B C CD AC AD '=='. (3)如图,过点D 作DE AC ⊥于E . ∵DC DC '=, ∴12CE CC '=.∵90DEC ADC ∠=∠=︒,DCE ACD ∠=∠, ∴DEC ADC ∽△△. ∴CE CDCD AC=,即1251244CE =.∴3625CE =. ∴72225CC CE '==. ∴2825AC AC CC ''=-=. ∵34B C AC '=', ∴321425B C AC ''==.【点睛】本题考查了勾股定理、三角形的面积公式、旋转的性质、相似三角形的判定及性质等多个知识点,综合性较强,要会利用数形结合的思想把代数和几何图形结合起来,会利用相似三角形的性质解题,此题结构精巧,考查范围广.6.如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明:四边形CEGF 是正方形; (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由; (3)拓展与运用:正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图3所示,当B ,E ,F 三点在一条直线上时,延长CG 交AD 于点H ,若AG =6,GH =22,求BC 的长.解析:(1)证明见解析;(2)AG 2BE ,理由见解析;(3)5 【分析】(1)先说明GE ⊥BC 、GF ⊥CD ,再结合∠BCD=90°可证四边形CEGF 是矩形,再由∠ECG=45°即可证明;(2)连接CG ,证明△ACG ∽△BCE ,再应用相似三角形的性质解答即可;(3)先证△AHG ∽△CHA 可得AG GH AHAC AH CH==,设BC =CD =AD =a ,则AC =2a ,求出AH=23a ,DH=13a ,CH=103a ,最后代入AG AH AC CH =即可求得a 的值. 【详解】(1)∵四边形ABCD 是正方形, ∴∠BCD =90°,∠BCA =45°, ∵GE ⊥BC 、GF ⊥CD ,∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°, ∴EG =EC ,∴四边形CEGF 是正方形. (2)结论:AG =2BE ; 理由:连接CG ,由旋转性质知∠BCE =∠ACG =α, 在Rt △CEG 和Rt △CBA 中,CE CG =cos45°2,2cos 45CB CA ︒==, ∴2CE CA CG CB =, ∴△ACG ∽△BCE , ∴2AG CABE CB== ∴线段AG 与BE 之间的数量关系为AG 2; (3)∵∠CEF =45°,点B 、E 、F 三点共线, ∴∠BEC =135°, ∵△ACG ∽△BCE , ∴∠AGC =∠BEC =135°, ∴∠AGH =∠CAH =45°, ∵∠CHA =∠AHG , ∴△AHG ∽△CHA , ∴AG GH AHAC AH CH==, 设BC =CD =AD =a ,则AC 2a ,则由AG GH AC AH =,得6222AHa =, ∴AH =23a ,则DH =AD ﹣AH =13a ,2210CH CD DH 3a =+=,∴AG AH AC CH=,得2632103aa = , 解得:a =35,即BC =35. 【点睛】本题属于四边形综合题,主要考查相似形的判定和性质、正方形的性质等知识点,解题的关键是正确寻找相似三角形解决问题并利用参数构建方程解决问题. 7.如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想 图1中,线段与的数量关系是 ,位置关系是 ;(2)探究证明 把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由; (3)拓展延伸 把绕点在平面内自由旋转,若,,请直接写出面积的最大值.解析:(1)PM=PN ,;(2)等腰直角三角形,理由详见解析;(3).【详解】试题分析:(1)已知 点,,分别为,,的中点,根据三角形的中位线定理可得,,,根据平行线的性质可得∠DPM=∠DCE ,∠NPD=∠ADC ,在中,,,,可得BD=EC ,∠DCE+∠ADC=90°,即可得PM=PN ,∠DPM+∠NPD=90°,即;(2)是等腰直角三角形,根据旋转的性质易证△BAD ≌△CAE ,即可得BD=CE ,∠ABD=∠ACE ,根据三角形的中位线定理及平行线的性质(方法可类比(1)的方法)可得PM="PN," ∠MPD=∠ECD,∠PNC=∠DBC,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN为等腰直角三角形;(3)把绕点旋转到如图的位置,此时PN=(AD+AB)="7,"PM=(AE+AC)=7,且PN、PM的值最长,由(2)可知PM=PN,,所以面积的最大值为 .试题解析:(1)PM=PN,;(2)等腰直角三角形,理由如下:由旋转可得∠BAD=∠CAE,又AB=AC,AD=AE∴△BAD≌△CAE∴BD=CE,∠ABD=∠ACE,∵点,分别为,的中点∴PM是△DCE的中位线∴PM=CE,且,同理可证PN=BD,且∴PM="PN," ∠MPD=∠ECD,∠PNC=∠DBC,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN为等腰直角三角形.(3).考点:旋转和三角形的综合题.8.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:,.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D 的坐标:;拓展:(3)如图3,点P(2,n)在函数(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.解析:(1)答案见解析;(2)①;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3).【详解】试题分析:(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值.试题解析:(1)∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q=,∴OQ=OQ1+Q1Q=x1+=,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ= =,即线段P1P2的中点P(x,y)P的坐标公式为x=,y=;(2)①∵M (2,﹣1),N (﹣3,5),∴MN==,故答案为;②∵A (2,2),B (﹣2,0),C (3,﹣1),∴当AB 为平行四边形的对角线时,其对称中心坐标为(0,1),设D (x ,y ),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D 点坐标为(﹣3,3),当AC 为对角线时,同理可求得D 点坐标为(7,1),当BC 为对角线时,同理可求得D 点坐标为(﹣1,﹣3),综上可知D 点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如图,设P 关于直线OL 的对称点为M ,关于x 轴的对称点为N ,连接PM 交直线OL 于点R ,连接PN 交x 轴于点S ,连接MN 交直线OL 于点E ,交x 轴于点F ,又对称性可知EP=EM ,FP=FN ,∴PE+PF+EF=ME+EF+NF=MN ,∴此时△PEF 的周长即为MN 的长,为最小,设R (x ,),由题意可知OR=OS=2,PR=PS=n ,∴=2,解得x=﹣(舍去)或x=,∴R (,),∴,解得n=1,∴P (2,1),∴N (2,﹣1),设M (x ,y ),则=,=,解得x=,y=,∴M(,),∴MN==,即△PEF 的周长的最小值为.考点:一次函数综合题;阅读型;分类讨论;最值问题;探究型;压轴题. 9.(基础巩固)(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△. (尝试应用)(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AEAF的值. (拓展提高)(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.解析:(1)见解析;(2)54;(3)113AB = 【分析】(1)由,ABC ACD ACE A ABC α∠=∠=∠=∠+∠证明A DCE ∠=∠,再根据相似三角形的判定方法解题即可;(2)由菱形的性质,得到AB AD =,60A ∠=︒,继而证明ABD △是等边三角形,结合(1)中相似三角形对应边成比例的性质,设,2,,BP a DP a AE PE x AF PF y ======,则3,3DE a x BF a y =-=-可整理得到54x y =,据此解题; (3)在AD 边上取点E ,F ,使得30ABE DCF ∠=∠=︒,由矩形的性质,得到120BEP BPC PFC ∠=∠=∠=︒,结合(1)中相似三角形对应边成比例的性质解题即可.【详解】解:(1)证明:∵,ABC ACD ACE A ABC α∠=∠=∠=∠+∠, ∴DCE A αα∠+=∠+,即A DCE ∠=∠, ∵ABC CED α∠=∠=, ∴ABC CED ∽△△; (2)∵四边形ABCD 是菱形, ∴AB AD =, ∴60A ∠=︒,∴ABD △是等边三角形,∴60EPF A ADB ABD ∠=∠=∠=∠=︒, 由(1)得,EPD PFB ∽, ∴DE PD PEPB BF PF==, 设,2,,BP a DP a AE PE x AF PF y ======,则3,3DE a x BF a y =-=- ∴323a x a xa a y y-==-, 可得3ay xy ax -=①,32ax xy ay -=②, ①-②,得332ay ax ax ay -=-,∴54x y =, ∴AE AF 的值为54; (3)如图,在AD 边上取点E ,F ,使得30ABE DCF ∠=∠=︒,设AB =CD =m ,∵四边形ABCD 是矩形, ∴90A D ∠=∠=︒,∴120BEP BPC PFC ∠=∠=∠=︒, 60BPE DFC ︒∠=∠=21,sin 60233AB m mBE CF AE BE ∴=====︒= DF , 223mPE AE ∴=-=-443m PF DF ∴=-=-, 由(1)可得,BEP PFC ∽, ∴BE EPPF FC=, ∴22332433m mm m -=-,整理,得22380m m +-=, 解得113m =-或311m =--(舍去), ∴113AB =-. 【点睛】本题考查相似三角形的综合题、等边三角形的性质、菱形的性质、矩形的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.10.问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt △ABC 中,∠ACB=90°,∠ABC=30°,则:AC=12AB .探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB 边上中线CE ,由于CE=12AB ,易得结论:①△ACE 为等边三角形;②BE 与CE 之间的数量关系为 .(2)如图2,点D 是边CB 上任意一点,连接AD ,作等边△ADE ,且点E 在∠ACB 的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣3,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.解析:(1)EC=EB;(2)ED=EB,理由见解析;(3)ED=EB;拓展应用:C(1,2+3).【分析】探究结论:(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题.【详解】探究结论(1),如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=1AB=AE=EB,2∴△ACE是等边三角形,∴EC=AE=EB,故答案为:EC=EB;(2)如图2中,结论:ED=EB.理由:连接PE,∵△ACP,△ADE都是等边三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD ≌△PAE , ∴∠ACD=∠APE=90°, ∴EP ⊥AB ,∵PA=PB , ∴EA=EB ,∵DE=AE , ∴ED=EB ;(3)当点D 为边CB 延长线上任意一点时,同法可证:ED=EB , 故答案为:ED=EB ;拓展应用:如图3中,作AH ⊥x 轴于H ,CF ⊥OB 于F ,连接OA ,∵A 31), ∴∠AOH=30°, 由(2)可知,CO=CB , ∵CF ⊥OB , ∴OF=FB=1,∴可以假设C (1,n ), ∵OC=BC=AB , ∴1+n 2=1+3)2, ∴3 ∴C (1,3 【点睛】本题考查三角形综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,正确添加常用辅助线,构造全等三角形是解决问题的关键.11.(1)阅读理解:我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决:勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE 的中心O ,作FG HP ⊥,将它分成4份.所分成的四部分和以BC 为边的正方形恰好能拼成以AB 为边的正方形.若12,5AC BC ==,求EF 的值;(3)拓展探究:如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N 的边长为定值n ,小正方形,,,A B C D 的边长分别为a b c d ,,,.已知123α∠=∠=∠=,当角9(0)0αα︒<<︒变化时,探究b 与c 的关系式,并写出该关系式及解答过程(b 与c 的关系式用含n的式子表示).解析:(1)见详解;(2)EF=172或72;(3)c+b=n,理由见详解【分析】(1)根据大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和,即可得到结论;(2)设EF=a,FD=b,由图形的特征可知:a+b=12,a-b=±5,进而即可求解;(3)设正方形E的边长为e,正方形F的边长为f,由相似三角形的性质可知:22e cnf bn==,,结合勾股定理,可得222e f n+=,进而即可求解.【详解】(1)证明:∵在图①中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.∴c2=12ab×4+(b−a)2,化简得:a2+b2=c2;(2)由题意得:正方形ACDE被分成4个全等的四边形,设EF =a ,FD =b , ∴a +b =12,∵正方形ABIJ 是由正方形ACDE 被分成的4个全等的四边形和正方形CBLM 拼成, ∴E F EF ''=,KF FD '=,5E K BC '==, 当EF >DF 时, ∵E F KF E K ''''-=, ∴a -b =5,∴125a b a b +=⎧⎨-=⎩,解得:a =172,∴EF =172; 同理,当EF <DF 时,EF =72故EF =172或72(3)设正方形E 的边长为e ,正方形F 的边长为f , ∵123α∠=∠=∠=,∴图中①与②与③,三个直角三角形相似, ∴c e b fe nf n==,,即:22e cn f bn ==,, ∵图形③是直角三角形, ∴222e f n +=,∴2cn bn n +=,即:c +b =n ,【点睛】本题主要考查勾股定理及其证明过程,相似三角形的判定和性质,找准图形中线段长和面积的数量关系,是解题的关键. 12.(问题)如图1,在Rt ABC 中,90,ACB AC BC ∠=︒=,过点C 作直线l 平行于AB .90EDF ∠=︒,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC交于点P ,研究DP 和DB 的数量关系.(探究发现)(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,通过推理就可以得到DP DB =,请写出证明过程;(数学思考)(2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,这个小组过点D 作DG CD ⊥交BC 于点G ,就可以证明DP DB =,请完成证明过程;(拓展引申)(3)如图4,在(1)的条件下,M 是AB 边上任意一点(不含端点AB 、),N 是射线BD 上一点,且AM BN =,连接MN 与BC 交于点Q ,这个数学兴趣小组经过多次取M 点反复进行实验,发现点M 在某一位置时BQ 的值最大.若4AC BC ==,请你直接写出BQ 的最大值.解析:【探究发现】(1)见解析;【数学思考】(2)见解析;【拓展引申】(3)22AM =BQ 有最大值为2.【分析】根据等腰三角形的性质及平行的定义即可解得 根据证明()CDP GDB ASA ≌即可推出DP DB =过点M 作MH MN ⊥交AC 于点H ,连接,CM HQ ,可证明()AMH BNQ ASA ≌,再推出ACM BMQ ∽即可得AC AM BM BQ =42AMBQAM =-,则22AM = 【详解】证明:【探究发现】(1)∵90,ACB AC BC ∠=︒= ∴45CAB CBA ∠=∠=︒ ∵CDAB∴45CBA DCB ∠=∠=︒,且BD CD ⊥ ∴45DCB DBC ∠=∠=︒ ∴DB DC = 即DB DP = 【数学思考】(2)∵,45DG CD DCB ⊥∠=︒ ∴45DCG DGC ∠=∠=︒∴,135DC DG DCP DGB =∠=∠=︒,∵90BDP CDG ∠=∠=︒∴CDP BDG ∠=∠,且,135DC DG DCP DGB =∠=∠=︒,∴()CDP GDB ASA ≌∴BD DP =【拓展引申】(3)如图4,过点M 作MH MN ⊥交AC 于点H ,连接,CM HQ ,∵MH MN ⊥,∴90AMH NMB ∠+∠=︒∵,90CD AB CDB ∠=︒∥∴90DBM ∠=︒∴90NMB MNB ∠+∠=︒∴HMA MNB ∠=∠,且,45AM BN CAB CBN =∠=∠=︒∴()AMH BNQ ASA ≌∴AH BQ =∵90,4ACB AC BC ∠=︒==, ∴42,AB AC AH BC BQ =-=-∴CH CQ =∴45CHQ CQH CAB ∠=∠=︒=∠∴HQ AB ∥∴HQM QMB ∠=∠∵90ACB HMQ ∠=∠=︒∴点H ,点M ,点Q ,点C 四点共圆,∴HCM HQM ∠=∠∴HCM QMB ∠=∠,且45A CBA ∠=∠=︒∴ACM BMQ ∽ ∴AC AM BM BQ = ∴42AM BQ AM=- ∴2(22)2AM BQ --=∴22AM =时,BQ 有最大值为2.【点睛】本题考查等腰三角形,解题关键在于熟练掌握等腰三角形的性质.13.性质探究如图①,在等腰三角形ABC 中,0120ACB ∠=,则底边AB 与腰AC 的长度之比为________.理解运用⑴若顶角为120°的等腰三角形的周长为83+________;⑵如图②,在四边形EFGH 中,EF EG EH ==.①求证:EFG EHG FGH ∠+∠=∠;②在边,FG GH 上分别取中点,M N ,连接MN .若0120FGH ∠=,10EF =,直接写出线段MN 的长.类比拓展 顶角为2σ的等腰三角形的底边与一腰的长度之比为________(用含σ的式子表示). 解析:31)432)①见解析;②532sin α. 【分析】性质探究:作CD ⊥AB 于D ,则∠ADC=∠BDC=90°,由等腰三角形的性质得出AD=BD ,∠A=∠B=30°,由直角三角形的性质得出AC=2CD ,3,得出3,即可得出结果;理解运用:(1)同上得出则AC=2CD ,3,由等腰三角形的周长得出33CD=2,得出3 (2)①由等腰三角形的性质得出∠EFG=∠EGF ,∠EGH=∠EHG ,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH 即可;②连接FH ,作EP ⊥FH 于P ,由等腰三角形的性质得出PF=PH ,由①得:∠EFG+∠EHG=∠FGH=120°,由四边形内角和定理求出∠FEH=120°,由等腰三角形的性质得出∠EFH=30°,由直角三角形的性质得出PE=12EF=5,333MN 是△FGH 的中位线,由三角形中位线定理即可得出结果; 类比拓展:作AD ⊥BC 于D ,由等腰三角形的性质得出BD=CD ,∠BAD=12∠BAC=α,由三角函数得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出结果.【详解】性质探究解:作CD ⊥AB 于D ,如图①所示:则∠ADC=∠BDC=90°,∵AC=BC ,∠ACB=120°,∴AD=BD ,∠A=∠B=30°,∴AC=2CD ,AD=3CD , ∴AB=2AD=23CD , ∴232AB CD AC CD=3; 故答案为3; 理解运用(1)解:如图①所示:同上得:AC=2CD ,AD=3CD ,∵AC+BC+AB=8+43,∴4CD+23CD=8+43,解得:CD=2,∴AB=43,∴△ABC 的面积=12AB×CD=12×43×2=43;故答案为43(2)①证明:∵EF=EG=EH ,∴∠EFG=∠EGF ,∠EGH=∠EHG ,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH ;②解:连接FH ,作EP ⊥FH 于P ,如图②所示:则PF=PH ,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°-120°-120°=120°,∵EF=EH ,∴∠EFH=30°,∴PE=12EF=5,∴33∴FH=2PF=103, ∵点M 、N 分别是FG 、GH 的中点,∴MN 是△FGH 的中位线,∴MN=12FH=53;类比拓展解:如图③所示:作AD ⊥BC 于D ,∵AB=AC ,∴BD=CD ,∠BAD=12∠BAC=α,∵sinα=BD AB , ∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴2sin BC AB AB ABα⋅==2sinα; 故答案为2sinα.【点睛】本题是四边形综合题目,考查了等腰三角形的性质、直角三角形的性质、三角形中位线定理、四边形内角和定理、就直角三角形等知识;本题综合性强,熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.14.如图1,在等腰三角形ABC 中,120,,A AB AC ∠==点D E 、分别在边AB AC 、上,,AD AE =连接,BE 点M N P 、、分别为DE BE BC 、、的中点.(1)观察猜想图1中,线段NM NP 、的数量关系是____,MNP ∠的大小为_____;(2)探究证明把ADE 绕点A 顺时针方向旋转到如图2所示的位置,连接,MP BD CE 、、判断MNP △的形状,并说明理由;(3)拓展延伸把ADE 绕点A 在平面内自由旋转,若1,3AD AB ==,请求出MNP △面积的最大值. 解析:(1)相等,60;(2)MNP △是等边三角形,理由见解析;(3)MNP △面积的【分析】(1)根据"120,,A AB AC ∠==,AD AE =点M N P 、、分别为DE BE BC 、、的中点",可得MN //BD ,NP //CE ,根据三角形外角和定理,等量代换求出MNP ∠.(2)先求出ABD ACE △≌△,得出ABD ACE ∠=∠,根据MN //BD ,NP //CE ,和三角形外角和定理,可知MN=PN ,再等量代换求出MNP ∠,即可求解.(3)根据BD AB AD ≤+,可知BD 最大值,继而求出MNP △面积的最大值.【详解】()1由题意知:AB=AC ,AD=AE ,且点M N P 、、分别为DE BE BC 、、的中点,∴BD=CE ,MN //BD ,NP //CE ,MN=12BD ,NP=12EC∴MN=NP又∵MN //BD ,NP //CE ,∠A=120︒,AB=AC ,∴∠MNE=∠DBE ,∠NPB=∠C ,∠ABC=∠C=30根据三角形外角和定理,得∠ENP=∠NBP+∠NPB∵∠MNP=∠MNE+∠ENP ,∠ENP=∠NBP+∠NPB ,∠NPB=∠C ,∠MNE=∠DBE ,∴∠MNP=∠DBE+∠NBP+∠C=∠ABC+∠C =60. ()2MNP 是等边三角形.理由如下:如图,由旋转可得BAD CAE ∠=∠ 在ABD 和ACE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()ABD ACE SAS ∴≌BD CE ABD ACE ,=∠=∠∴.点M N 、分别为DE BE 、的中点,MN ∴是EBD △的中位线,12MN BD ∴=且//MN BD 同理可证12PN CE =且//PN CE ,MN PN MNE DBE NPB ECB ,∴=∠=∠∠=∠MNE DBE ABD ABE ACE ABE ∠=∠=∠+∠=∠+∠。
深圳十年中考数学压轴题汇总
![深圳十年中考数学压轴题汇总](https://img.taocdn.com/s3/m/06e5431851e79b8969022611.png)
200621.如图9,抛物线2812(0)y ax ax a a=-+<与x轴交于A、B两点(点A在点B的左侧),抛物线上另有一点C∽△OBC.(1)(3分)求线段OC的长.解:(2)(3分)求该抛物线的函数关系式.解:(3)(4分)在x轴上是否存在点P,使△的P解:200622.(10分)如图10-1⊙M 交x轴于A B、两点,交y轴于C D、G点,若点A的坐标为(-2,0),AE8=(1)(3分)求点C的坐标.解:(2)(3分)连结MG BC、,求证:MG∥BC证明:(3)(4分) 如图10-2,过点D作⊙M的切线,交x动时,PFOF解:200722.如图6,在平面直角坐标系中,正方形上,且OD OB=,BD交OC于点E.(1)求BEC∠的度数.(2)求点E的坐标.(3)求过B O D,,三点的抛物线的解析式.=②1==;③2==等运算都是分母有理化)200723.如图7x相交于A B,两点.(1)求线段AB的长.图6(2)若一个扇形的周长等于(1)中线段AB 的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少?(3)如图8,线段AB 的垂直平分线分别交x 轴、y 轴于C D ,两点,垂足为点M ,分别求出OM OC OD ,,的长,并验证等式222111OC OD OM+=是否成立. (4)如图9,在Rt ABC △中,90ACB =o ∠,CD AB ⊥,垂足为D ,设BC a =,AC b =,AB c =.CD b =,试说明:222111a+=.2+bx D 31.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.200922.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 200923.如图,在平面直角坐标系中,直线l :y =-2x -8两点,点P (0,k )是y (1)连结PA ,若PA =PB ,试判断⊙P 与x (2)当k 为何值时,以⊙P 与直线l 形?201022.(本题9分)如图9,抛物线y =ax 2+c (a >0形的底AD 在x 轴上,其中A (-2,0),B (-1, -3 (1)求抛物线的解析式;(3分)(2)点M 为y 轴上任意一点,当点M 到A 、B 的坐标;(2分)(3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4图7 图8 图9分)201023.(本题9分)如图10,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =- 33 x - 533与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F .(1)请直接写出OE 、⊙M 的半径r 、CH 的长;(3分)(2)如图11,弦HQ 交x 轴于点P ,且DP :PH =3:2,求cos ∠QHC 的值;(3分) (3)如图12,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT 交x 轴于点N .是否存在一个常数a ,始终满足MN ·MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.(3分)201123.如图13,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。
2002-2019深圳中考数学试题分类汇编 24选择题压轴题--函数+几何多选题 教师版
![2002-2019深圳中考数学试题分类汇编 24选择题压轴题--函数+几何多选题 教师版](https://img.taocdn.com/s3/m/e8b41e5caf1ffc4ffe47acc6.png)
近十五年深圳数学中考题分类汇编函数+几何多选题1.(2014)(3分)二次函数2y ax bx c =++图象如图,下列正确的个数为( ) ①0bc >; ②230a c -<; ③20a b +>;④20ax bx c ++=有两个解1x ,2x ,当12x x >时,10x >,20x <; ⑤0a b c ++>;⑥当1x >时,y 随x 增大而减小.A .2B .3C .4D .5【思路点拨】主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换.根据抛物线开口向上可得0a >,结合对称轴在y 轴右侧得出0b <,根据抛物线与y 轴的交点在负半轴可得0c <,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线1x =判断③;根据图象与x 轴的两个交点分别在原点的左右两侧判断④;由1x =时,0y <判断⑤;根据二次函数的增减性判断⑥.【详细解答】解:①抛物线开口向上,0a ∴>,对称轴在y 轴右侧,a ∴,b 异号即0b <,抛物线与y 轴的交点在负半轴,0c ∴<,0bc ∴>,故①正确;②0a >,0c <,230a c ∴->,故②错误;③对称轴12bx a=-<,0a >, 2b a ∴-<,20a b ∴+>,故③正确;④由图形可知二次函数2y ax bx c =++与x 轴的两个交点分别在原点的左右两侧, 即方程20ax bx c ++=有两个解1x ,2x ,当12x x >时,10x >,20x <,故④正确; ⑤由图形可知1x =时,0y a b c =++<,故⑤错误; ⑥0a >,对称轴1x =,∴当1x >时,y 随x 增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个. 故选:B .2.(2015)(3分)二次函数2(0)y ax bx c a =++≠的图象如图所示,下列说法正确的个数是( )①0a >;②0b >;③0c <;④240b ac ->.A .1B .2C .3D .4【思路点拨】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小,当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即0)ab >,对称轴在y 轴左; 当a 与b 异号时(即0)ab <,对称轴在y 轴右.(简称:左同右异);常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,)c .抛物线与x 轴交点个数由△决定:△240b ac =->时,抛物线与x 轴有2个交点;△240b ac =-=时,抛物线与x 轴有1个交点;△240b ac =-<时,抛物线与x 轴没有交点.根据抛物线开口方向对①进行判断;根据抛物线的对称轴位置对②进行判断;根据抛物线与y 轴的交点位置对③进行判断;根据抛物线与x 轴的交点个数对④进行判断. 【详细解答】解:抛物线开口向下,0a ∴<,所以①错误;抛物线的对称轴在y 轴右侧,02ba∴->, 0b ∴>,所以②正确;抛物线与y 轴的交点在x 轴上方,0c ∴>,所以③错误;抛物线与x 轴有2个交点,∴△240b ac =->,所以④正确.故选:B .3.(2015)(3分)如图,已知正方形ABCD 的边长为12,BE EC =,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①ADG FDG ∆≅∆;②2GB AG =;③GDE BEF ∆∆∽;④725BEF S ∆=.在以上4个结论中,正确的有( )A .1B .2C .3D .4【思路点拨】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.根据正方形的性质和折叠的性质可得AD DF =,90A GFD ∠=∠=︒,于是根据“HL ”判定ADG FDG ∆≅∆,再由12GF GB GA GB +=+=,EB EF =,BGE ∆为直角三角形,可通过勾股定理列方程求出4AG =,8BG =,进而求出BEF ∆的面积,再抓住BEF ∆是等腰三角形,而GED ∆显然不是等腰三角形,判断③是错误的. 【详细解答】解:由折叠可知,DF DC DA ==,90DFE C ∠=∠=︒,90DFG A ∴∠=∠=︒, ADG FDG ∴∆≅∆,①正确;正方形边长是12,6BE EC EF ∴===,设AG FG x ==,则6EG x =+,12BG x =-, 由勾股定理得:222EG BE BG =+, 即:222(6)6(12)x x +=+-, 解得:4x =4AG GF ∴==,8BG =,2BG AG =,②正确;6BE EF ==,BEF ∆是等腰三角形,易知GED ∆不是等腰三角形,③错误;168242S GBE ∆=⨯⨯=,67224105EF S BEF S GBE EG ∆=∆==,④正确. 故选:C .4.(2016)如图,CB CA =,90ACB ∠=︒,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG CA ⊥,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC FG =;②:1:2FAB CBFG S S ∆=四边形;③ABC ABF ∠=∠;④2AD FQ AC =, 其中正确的结论的个数是( )A .1B .2C .3D .4【思路点拨】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出90FAD ∠=︒,AD AF EF ==,证出CAD AFG ∠=∠,由AAS 证明FGA ACD ∆≅∆,得出AC FG =,①正确;证明四边形CBFG 是矩形,得出1122FAB CBFG S FB FG S ∆=⋅=四边形,②正确; 由等腰直角三角形的性质和矩形的性质得出45ABC ABF ∠=∠=︒,③正确; 证出ACD FEQ ∆∆∽,得出对应边成比例,得出2AD FE AD FQ AC ==,④正确. 【详细解答】解:四边形ADEF 为正方形,90FAD ∴∠=︒,AD AF EF ==,90CAD FAG∴∠+∠=︒,FG CA⊥,90GAF AFG∴∠+∠=︒,CAD AFG∴∠=∠,在FGA∆和ACD∆中,G CAFG CADAF AD∠=∠⎧⎪∠=∠⎨⎪=⎩,()FGA ACD AAS∴∆≅∆,AC FG∴=,①正确;BC AC=,FG BC∴=,90ACB∠=︒,FG CA⊥,//FG BC∴,∴四边形CBFG是矩形,90CBF∴∠=︒,1122FAB CBFGS FB FG S∆=⋅=四边形,②正确;CA CB=,90C CBF∠=∠=︒,45ABC ABF∴∠=∠=︒,③正确;FQE DQB ADC∠=∠=∠,90E C∠=∠=︒,ACD FEQ∴∆∆∽,::AC AD FE FQ∴=,2AD FE AD FQ AC∴==,④正确;或:2AD表示正方形的面积;连接AQ,FQ AC FQ AB FQ GF AFQ⨯=⨯=⨯=∆面积的2倍(FQ为底,GF为高)AFQ=∆面积的2倍(AF为底,AD为高)=正方形的面积,所以结论4是对的故选:D.5.(2017)(3分)如图,正方形ABCD 的边长是3,BP CQ =,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ DP ⊥;②2OA OE OP =;③AOD OECF S S ∆=四边形;④当1BP =时,13tan 16OAE ∠=,其中正确结论的个数是( )A .1B .2C .3D .4【思路点拨】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.由四边形ABCD 是正方形,得到AD BC =,90DAB ABC ∠=∠=︒,根据全等三角形的性质得到P Q ∠=∠,根据余角的性质得到AQ DP ⊥;故①正确;根据相似三角形的性质得到2AO OD OP =,由OD OE ≠,得到2OA OE OP ≠;故②错误;根据全等三角形的性质得到CF BE =,DF CE =,于是得到ADF DFO DCE DOF S S S S ∆∆∆∆-=-,即AOD OECF S S ∆=四边形;故③正确;根据相似三角形的性质得到34BE =,求得134QE =,135QO =,3920OE =,由三角函数的定义即可得到结论. 【详细解答】解:四边形ABCD 是正方形,AD BC ∴=,90DAB ABC ∠=∠=︒,BP CQ =, AP BQ ∴=,在DAP ∆与ABQ ∆中,AD AB DAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩,DAP ABQ ∴∆≅∆,P Q ∴∠=∠, 90Q QAB ∠+∠=︒, 90P QAB ∴∠+∠=︒, 90AOP ∴∠=︒,AQ DP ∴⊥;故①正确;90DOA AOP ∠=∠=︒,90ADO P ADO DAO ∠+∠=∠+∠=︒, DAO P ∴∠=∠, DAO APO ∴∆∆∽,∴AO OPOD OA=, 2AO OD OP ∴=,AE AB >, AE AD ∴>,OD OE ∴≠,2OA OE OP ∴≠;故②错误; 在CQF ∆与BPE ∆中FCQ EBP Q P CQ BP ∠=∠⎧⎪∠=∠⎨⎪=⎩,CQF BPE ∴∆≅∆, CF BE ∴=, DF CE ∴=,在ADF ∆与DCE ∆中,AD CD ADC DCE DF CE =⎧⎪∠=∠⎨⎪=⎩,ADF DCE ∴∆≅∆,ADF DFO DCE DOF S S S S ∆∆∆∆∴-=-,即AOD OECF S S ∆=四边形;故③正确;1BP =,3AB =, 4AP ∴=, PBE PAD ∆∆∽,∴43PB PA EB DA ==, 34BE ∴=,134QE ∴=,QOE PAD ∆∆∽, ∴1345QO OE QE PA AD PD ===, 135QO ∴=,3920OE =, 1255AO QO ∴=-=, 13tan 16OE OAE OA ∴∠==,故④正确, 故选:C .6(2018)(3分)如图,A 、B 是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④【思路点拨】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形4OMPN =,进而得出4mn =,最后用三角形的面积公式即可得出结论. 【详细解答】解:点P 是动点,BP ∴与AP 不一定相等,BOP ∴∆与AOP ∆不一定全等,故①不正确;设(,)P m n ,//BP y ∴轴, 12(,)B m m∴, 12||BP n m∴=-, 1121|||12|22BOP S n m mn m ∆∴=-⨯=- //PA x 轴,12(A n ∴,)n ,12||AP m n∴=-, 1121|||12|22AOP S m n mn n ∆∴=-⨯=-, AOP BOP S S ∆∆∴=,故②正确;如图,过点P 作PF OA ⊥于F ,PE OB ⊥于E ,12AOP S OA PF ∆∴=⨯,12BOP S OB PE ∆=⨯,AOP BOP S S ∆∆=,OB PE OA PF ∴⨯=⨯, OA OB =,PE PF ∴=,PE OB ⊥,PF OA ⊥,OP ∴是AOB ∠的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,AM y ∴⊥轴,BN x ⊥轴,∴四边形OMPN 是矩形,点A ,B 在双曲线12y x=上, 6AMO BNO S S ∆∆∴==,4BOP S ∆=,2PMO PNO S S ∆∆∴==, 4OMPN S ∴=矩形,4mn ∴=,4m n∴=, 12|||3|2||BP n n n n m∴=-=-=,128||||AP m n n =-=, 1182||822||APB S AP BP n n ∆∴=⨯=⨯⨯=,故④错误; ∴正确的有②③,故选:B .7.(2019•深圳)已知菱形ABCD ,E 、F 是动点,边长为4,BE =AF ,∠BAD =120°,则下列结论正确的有几个( )①△BEC ≌△AFC ;②△ECF 为等边三角形;③∠AGE =∠AFC ;④若AF =1,则=.A .1B .2C .3D .4【思路点拨】本题考查了菱形的性质,熟练运用菱形的性质、等边三角形性质以及全等三角形的判定与性质是解题的关键.①△REC≌△AFC(SAS),正确;②由△BEC≌△AFC,得CE=CF,∠BCE=∠ACF,由∠BCE+∠ECA=∠BCA =60°,得∠ACF+∠ECA=60,所以△CEF是等边三角形,正确;③因为∠AGE =∠CAF+∠AFG=60°+∠AFG,∠AFC=∠CFG+∠AFG=60°+∠AFG,所以∠AGE =∠AFC,故③正确;④过点E作EM∥BC交AC下点M点,易证△AEM是等边三角形,则EM=AE=3,由AF∥EM,则==.故④正确,【详细解答】解:①△REC≌△AFC(SAS),正确;②∵△BEC≌△AFC,∴CE=CF,∠BCE=∠ACF,∵∠BCE+∠ECA=∠BCA=60°,∴∠ACF+∠ECA=60,∴△CEF是等边三角形,故②正确;③∵∠AGE=∠CAF+∠AFG=60°+∠AFG;∠AFC=∠CFG+∠AFG=60°+∠AFG,∴∠AGE=∠AFC,故③正确正确;④过点E作EM∥BC交AC下点M点,易证△AEM是等边三角形,则EM=AE=3,∵AF∥EM,∴则==.故④正确,故①②③④都正确.故选:D.。
2002-2019深圳中考数学试题分类汇编 24选择题压轴题--函数+几何多选题 学生版
![2002-2019深圳中考数学试题分类汇编 24选择题压轴题--函数+几何多选题 学生版](https://img.taocdn.com/s3/m/f9e74c3952ea551811a68735.png)
近十五年深圳数学中考题分类汇编函数+几何多选题1.(2014)(3分)二次函数2y ax bx c =++图象如图,下列正确的个数为( ) ①0bc >;②230a c -<;③20a b +>;④20ax bx c ++=有两个解1x ,2x ,当12x x >时,10x >,20x <; ⑤0a b c ++>;⑥当1x >时,y 随x 增大而减小.A .2B .3C .4D .52.(2015)(3分)二次函数2(0)y ax bx c a =++≠的图象如图所示,下列说法正确的个数是( )①0a >;②0b >;③0c <;④240b ac ->.A .1B .2C .3D .43.(2015)(3分)如图,已知正方形ABCD的边长为12,BE EC=,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①ADG FDG∆≅∆;②2GB AG=;③GDE BEF∆∆∽;④725BEFS∆=.在以上4个结论中,正确的有()A.1 B.2 C.3 D.44.(2016)如图,CB CA =,90ACB ∠=︒,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG CA ⊥,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC FG =;②:1:2FAB CBFG S S ∆=四边形;③ABC ABF ∠=∠;④2AD FQ AC =, 其中正确的结论的个数是( )A .1B .2C .3D .45.(2017)(3分)如图,正方形ABCD 的边长是3,BP CQ =,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ DP ⊥;②2OA OE OP =;③AOD OECF S S ∆=四边形;④当1BP =时,13tan 16OAE ∠=,其中正确结论的个数是( )A .1B .2C .3D .46(2018)(3分)如图,A 、B 是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( ) ①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④7.(2019•深圳)已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个()①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则=.A.1 B.2 C.3 D.4。
2010年中考数学压轴题100题精选(71-80题)含答案
![2010年中考数学压轴题100题精选(71-80题)含答案](https://img.taocdn.com/s3/m/dcf45c78168884868762d6ea.png)
合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网2010年中考数学压轴题100题精选(71-80题)【071】已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(第24题图)合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网【072】如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积; ②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PD E ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.【073】)如图,半径为O 内有互相垂直的两条弦AB 、CD 相交于P 点.合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网(1)求证:PA ·PB =PC ·PD ;(2)设BC 的中点为F ,连结FP 并延长交AD 于E ,求证:EF ⊥AD : (3)若AB =8,CD =6,求OP 的长.【074】如图,在平面直角坐标系中,点1O 的坐标为(40) ,,以点1O 为圆心,8为半径的圆与x 轴交于A B ,两点,过A 作直线l 与x 轴负方向相交成60°的角,且交y 轴于C 点,以点2(135)O ,为第23题图合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网圆心的圆与x 轴相切于点D . (1)求直线l 的解析式;(2)将2O ⊙以每秒1个单位的速度沿x 轴向左平移,当2O ⊙第一次与1O ⊙外切时,求2O ⊙平移的时间.【075】如图11,已知抛物线b ax ax y --=22(0>a )与x 轴的一个交点为(10)B -,,与y 轴的负半轴交于点C ,顶点为D .(1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点A 的坐标; (2)以AD 为直径的圆经过点C . ①求抛物线的解析式;合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网②点E 在抛物线的对称轴上,点F 在抛物线上,且以E F A B ,,,四点为顶点的四边形为平行四边形,求点F 的坐标.【076】如图,抛物线n mx x y ++=221与x 轴交于A 、B 两点,与y 轴交于C 点,四边形OBHC 为矩形,CH 的延长线交抛物线于点D (5,2),连结BC 、AD . (1)求C 点的坐标及抛物线的解析式;(2)将△BCH 绕点B 按顺时针旋转90°后 再沿x 轴对折得到△BEF (点C 与点E 对应),判断点E 是否落在抛物线上,并说明理由;(3)设过点E 的直线交AB 边于点P ,交CD 边于点Q . 问是否存在点P ,使直线PQ 分梯形ABCD的面积为1∶3两部分?若存在,求出P 点坐标;若不存在,请说明理由.图11合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网【077】已知直线m x y +-=43与x 轴y 轴分别交于点A 和点B ,点B 的坐标为(0,6) (1)求的m 值和点A 的坐标;(2)在矩形OACB 中,点P 是线段BC 上的一动点,直线PD ⊥AB 于点D ,与x 轴交于点E ,设BP=a ,梯形PEAC 的面积为s 。
2019-2017近三年深圳市中考数学压轴题
![2019-2017近三年深圳市中考数学压轴题](https://img.taocdn.com/s3/m/10a7d02225c52cc58ad6be23.png)
2019-2017近三年深圳市中考数学压轴题2019年深圳市中考数学--压轴题23.(9分)(2019深圳)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标(直接写出);②求的最大值.【考点】MR:圆的综合题.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②方法1:如图4,过G作GH⊥BC于H,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG•CF∴===≤∴当H为BC中点,即GH=BC时,的最大值=.方法2:设∠BCG=α,则sinα=,cosα=,∴sinαcosα=∵(sinα﹣cosα)2≥0,即:sin2α+cos2α≥2sinαcosα∵sin2α+cos2α=1,∴sinαcosα≤,即≤∴的最大值=.【点评】本题是一道难度较大,综合性很强的有关圆的代数几何综合题,主要考查了圆的性质,切线的性质和判定定理,直角三角形性质,相似三角形性质和判定,动点问题,二次函数最值问题等,构造相似三角形和应用求二次函数最值方法是解题关键.2018年深圳市中考数学--压轴题23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【考点】HF:二次函数综合题.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得,即OP=FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点代入,解得:a=1,∴抛物线的解析式为:;(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴,设点P(t,﹣2t﹣1),则:解得,,由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.2017年深圳市中考数学--压轴题23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【考点】HF:二次函数综合题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=AB•OC=×5×2=5,∵S△ABC =S△ABD,∴S△ABD=×5=,设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压轴、
200621.如图9,抛物线2812(0)
=-+<与x轴交于A、B两点(点A在点B的左侧),
y ax ax a a Array P
200622.(10分)如图10-1,在平面直角坐标系xoy中,点M在x轴的正半轴上,⊙M交x轴
于 A B 、两点,交y 轴于C D 、两点,且C 为AE 的中点,AE 交y 轴于G 点,若点A 的坐标为(-2,0),AE 8=
(1)(3分)求点C 的坐标.
解:
200722.如图6,在平面直角坐标系中,正方形AOCB 的边长为1,点D 在x 轴的正半轴上,且OD OB =,BD 交OC 于点E .
(1)求BEC ∠的度数. (2)求点E 的坐标.
(3)求过B O D ,,三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分
母中的根号化去,叫分母有理化.例如:①
2525
555
=
=;
②
1==
2==等运算都是分
200723.如图7,在平面直角坐标系中,抛物线2
164
y x =-与直线12y x =相交于A B ,两点.
(1)求线段AB 的长.
(2)若一个扇形的周长等于(1)中线段AB 的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少?
(3)如图8,线段AB 的垂直平分线分别交x 轴、y 轴于C D ,两点,垂足为点M ,分别求出OM OC OD ,,的长,并验证等式
222
111
OC OD OM
+=是否成立. (4)如图9,在Rt ABC △中,90ACB =∠,CD AB ⊥,垂足为D ,设BC a =,AC b =,
AB c =.CD b =,试说明:222
111
+=
.
200822.如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,
与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),
OB =OC ,tan ∠ACO =3
1
.
(1)求这个二次函数的表达式.
(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.
(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.
(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.
200922.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .
(1)求点B 的坐标;
(2)求经过A 、O 、B 三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.
(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.
200923.如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴相交于A ,B 两
点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P . (1)连结PA ,若PA =PB ,试判断⊙P 与x 轴的位置关系,并说明理由;
(2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?
B
A O
y
x
201022.(本题9分)如图9,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1, -3).
(1)求抛物线的解析式;(3分)
(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;(2分)
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.(4分)
201023.(本题9分)如图10,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、
C 、
D ,直线y =- 33 x - 53
3 与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F .
(1)请直接写出OE 、⊙M 的半径r 、CH 的长;(3分)
(2)如图11,弦HQ 交x 轴于点P ,且DP :PH =3:2,求cos ∠QHC 的值;(3分)
(3)如图12,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT
图9
交x 轴于点N .是否存在一个常数a ,始终满足MN ·MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.(3分)
201123.如图13,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,
交y 轴于点D ,其中点B 的坐标为(3,0)。
(1)求抛物线的解析式;
(2)如图14,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中点E 的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为直线PQ 上的一动点,则x 轴上师范存在一点H ,使D 、G 、H 、F 四点所围成的四边形周长最小。
若存在,求出这个最小值及点G 、H 的坐标;若不存在,请说明理由。
(3)如图15,在抛物线上是否存在一点T ,过点T 作x 轴的垂线,垂足为点M ,过点M 作MN ∥BD ,交线段AD 于点N ,连接MD ,使△DNM ∽△BMD 。
若存在,求出点T 的坐标;若不存在,请说明理由。
201222.如图8,已知△ABC 的三个顶点坐标分别为(,),(,),(,)A B C --401026
(1)求经过A 、B 、C 三点抛物线的解析式
(2)设直线BC 交y 轴于点E ,连接AE ,求证:AE=CE
(3)设抛物线与y 轴交于点D ,连接AD 交BC 于点F ,试问以A 、B 、F 为顶点的三角形与△
ABC 相似吗?请说明理由。
201223.如图9—①,平在面直角从标系中,直线:()
20
≥的位置随b的不同取值
=-+
l y x b b
而变化。
(1)已知⊙M的圆心坐标为(4,2),半径为2
当b=时,直线:()
20
≥经过圆心M;
=-+
l y x b b
当b=时,直线:()
20
≥与⊙M相切;
=-+
l y x b b
(2)若把⊙M换成矩形ABCD,如图9—②,其三个顶点的坐标分别为:(,),(,),(,)
206062。
A B C
l: y = -2x
设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式。
l: y =。