矢量光束Controlling Vector Bessel Beams with Metasurfaces

合集下载

矢量光束的紧聚焦特性研究--优秀毕业论文

矢量光束的紧聚焦特性研究--优秀毕业论文
硕士学位论文
矢量光束的紧聚焦特性研究
RESEARCH ON THE TIGHTLY FOCUSING PROPERTY OF VECTOR BEAMS
刘郑涛
哈尔滨工业大学
2010 年 7 月
国内图书分类号:O438 国际图书分类号:535
学校代码:10213 密级:公开
理学硕士学位论文
矢量光束的紧聚焦特性研究
硕 士 研 究 生: 刘郑涛

师: 辛丽副教授
申请学位级别: 理学硕士
学 科 、 专 业: 光学
所 在 单 位: 物理系
答 辩 日 期: 2010 年 7 月 3 日
授予学位单位: 哈尔滨工业大学
Classified Index: O438 U.D.C.: 535
Dissertation for the Master Degree in Science
RESEARCH ON THE TIGHTLY FOCUSING PROPERTY OF VECTOR BEAMS
Candidate: Supervisor: Academic Degree Applied for: Specialty: Affiliation: Date of Defence: Degree-Conferring-Institution:
第 2 章 紧聚焦的基本理论........................................................................................ 8 2.1 切趾函数 ........................................................................................................... 8 2.1.1 正弦条件 .................................................................................................. 10 2.1.2 亥姆赫兹条件 .......................................................................................... 10 2.2 理查德沃尔夫矢量衍射理论 ......................................................................... 11 2.3 轴对称矢量光的紧聚焦理论 ......................................................................... 16 2.3.1 径向偏振光.............................................................................................. 17 2.3.2 角向偏振光 .............................................................................................. 19 2.3.3 广义轴对称偏振光束 .............................................................................. 19 2.4 本章小结 ......................................................................................................... 20

贝塞尔光束(大论文)教材

贝塞尔光束(大论文)教材

贝塞尔光束传播性质的研究Study of the propagation properties ofthe Bessel beams一级学科学科专业作者姓名马秀波指导教师所在学院年月关键词:Key words:独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得天津大学或其他教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解天津大学有关保留、使用学位论文的规定。

特授权天津大学可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。

同意学校向国家有关部门或机构送交论文的复印件和磁盘。

(保密的学位论文在解密后适用本授权说明)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日第一章 绪论1.1 贝塞尔光束的研究现状Durnin 在1987年提出的所谓无衍射光束的概念,实际上就是(第一类)零阶贝塞尔光束。

Durnin 指出,在垂直于贝塞尔光束光轴的任一截面上,光强分布具有第一类零阶贝塞尔函数的形式[1]。

无衍射光束的提出迅速在光学界掀起了研究的热潮,然而后来发现,贝塞尔光束只不过是无衍射光束中一个种类,常见的无衍射光束还有Mathieu 光束[2]、airy 光束等[3]。

迄今为止,已经有大量的文献对贝塞尔光束的传输、产生及应用进行了研究。

1.1.1理想贝塞尔光束的光强分布及性质理想的零阶贝塞尔光束的光强分布在垂直于传播方向的横截面上表现为一个中心光斑和许多同心的圆环,光强由内及外递减,并且光强分布在传播方向上不发生变化。

Durnin 指出,贝塞尔光束是自由空间标量波动方程()22221,0E r t c t ⎛⎫∂∇-= ⎪∂⎝⎭ (1.1)沿z 轴传播的一组特殊解,在可以表示为: ()2001(r,t)exp[()][(cos sin )]2exp[()]E i z t i x y d i z t J πβωαϕϕϕπβωαρ=-+=-⎰ (1.2)其中,222x y ρ=+,222(/)c αβω+=,0J 表示第一类零阶贝塞尔函数,α是横向波数,β为轴向波数,ω为光的角速度。

矢量光束

矢量光束

毕业设计(论文)题目:具有分数轨道角动量矢量光束的设计与应用English Title:Design and Application of vector beam withfractional orbital angular momentum学生姓名: 刘晓昌专业: 物理学学号: 08027114指导老师: 周琦二0一二年六月摘要矢量光束中的偏振态在光场时空演化及其与其他物质相互作用中起着非常重要的作用,表现出一些不同于标量光束的新颖特性。

因此,矢量光束的研究有重要的科学价值和应用意义。

近年来矢量光束独一无二的性质以及潜在的应用价值使得越来越多的科研人员对其产生了浓厚的兴趣,特别是偏振态显现出轴对称性的光束(即轴对称矢量光束)以及椭圆对称性的光束(即椭圆矢量光束)。

矢量光束以其独特的发展前景受到广泛的关注。

在本论文中,我们首先介绍了矢量光束的基本概念、产生方法以及应用。

通过激光器的谐振腔外干涉或在激光器谐振腔内插入特殊的元件以及利用空间光调制器能够产生各种构型的矢量光束;在第二章中,我们提出了一种利用振幅型空间光调制和偏振分束器件实现矢量光束的方案,数值计算了产生圆对称径向、角向矢量光束以及椭圆矢量光束的调制光栅构型;在第三章中,我们在矢量瑞利——索末菲衍射理论的基础上,介绍了矢量光束经过高数值孔径物镜聚焦的特性,并初步探讨了矢量光束中光子轨道与自旋角动量,得出椭圆矢量光束光子轨道角动量具有分数值的结论。

最后,我们对所研究的内容进行了总结与展望。

关键字:矢量光束;激光器;空间光调制器;衍射理论;角动量ABSTRACTThe polarization state of the vector beam plays a very important role in the evolution of optical field in temporal and spatial dimensions and the interaction with other matters; dues to some novel features different from the scalar beam are presented. Therefore, the study of vector beam has important scientific value and application significance. In recent years, more and more researchers develop strong interest in the unique nature and potential applications of the vector beams, in particular, the beam with axial symmetry polarization state ( ax symmetric vectoring beam) and elliptical symmetry polarization state (elliptical vector beam). Vector beam has also received widespread attention for its unique development prospects.In this paper, some basic concepts, generation method and foundational application of vector beamed are first introduced in Chap. 1. Vector beams with various constructs of polarization can be generated by the methods of outer cavity interference, the use of special optical element inserted into resonant cavity, spatial light modulator and so on. In Chap. 2, we proposed a novel scheme to implement vector beam by synchronously using spatial light modulator working on amplitude mode and polarization beam splitter. The modulation gratings for generating radial, angular vector beam with circle or elliptic symmetry are numerically calculated. Based on vector Rayleigh Sommerfeld diffraction theory,we introduce propagation characteristics of vector beam focused by a objective lens with high numerical aperture in Chap.3. Some preliminary analyzes and discussions of photonic orbital and spin angular momentum of vector beam are also presented. And we find a fractional orbital angular momentum can be obtained in elliptical vector beam. Some conclusions and prospects are draw in final Chapter.Key words: Vector beam; Laser; Spatial light modulator; Diffraction theory; Angular momentum目录绪论 (1)1.矢量光束及其应用 (2)1.1 矢量光束的概念 (2)1.2 矢量光束产生的方法 (4)1.3 矢量光束的应用 (7)2. 利用空间光调制器和偏振分束器实现任意构型矢量光束方案.. 92.1 空间光调制器与偏振分束器原理 (9)2.2 矢量光束产生方案 (12)2.2.1 圆对称径向矢量光束 (14)2.2.2 圆对称角向矢量光束 (15)2.2.3 椭圆对称矢量光束 (17)2.3 本章小结 (20)3. 矢量光束传播特性 (21)3.1 光束矢量衍射理论原理 (21)3.1.1 傍轴标量理论的不自洽性 (21)3.1.2 角谱分析法 (23)3.1.3 矢量瑞利一索末菲衍射积分公式法 (24)3.2 径向、角向矢量光束聚焦特性 (25)3.2.1 矢量光束聚焦场的数学描述 (26)3.2.2 径向偏振光 (27)3.2.3 角向偏振光 (28)3.3 椭圆矢量光束角动量 (28)3.3.1 椭圆矢量光束的光强分布和偏振分布 (29)3.3.2 椭圆矢量光束的总角动量 (29)3.3.3 椭圆矢量光束的自旋角动量和轨道角动量 (31)总结与展望 (33)致谢 (34)参考文献 (35)绪论光学是研究光的物理性质和物理行为以及光和其他物质相互作用的一门物理学科。

矢量非傍轴离轴高斯光束的传输

矢量非傍轴离轴高斯光束的传输

矢量非傍轴离轴高斯光束的传输3高曾辉1)2) 吕百达1)1)(四川大学激光物理与化学研究所,成都 610064)2)(宜宾学院光电信息研究所,宜宾 644007)(2005年3月15日收到;2005年4月29日收到修改稿) 基于矢量瑞利2索末菲衍射积分公式,得出了波动方程的一个解,它代表矢量非傍轴离轴高斯光束,其在自由空间的传输方程表示为解析的结果.矢量非傍轴离轴高斯光束的轴上和远场公式,矢量非傍轴高斯光束的传输方程,以及傍轴的结果都可作为一般表达式的特例而得出.研究表明,f 参数对光束的非傍轴特性有重要影响,而离心参数也影响非傍轴行为.与共轴情况不同的是,对离轴情况,在y 方向存在场的纵向分量.关键词:激光光学,矢量非傍轴离轴高斯光束,瑞利2索末菲衍射积分,f 参数,离轴参数PACC :42003国家高技术研究发展计划(批准号:2004AA823070)资助的课题.E 2mail :badalu @11引言在傍轴光学范畴内,对激光束的传输变换特性已进行了许多研究.随着半导体激光器,光子晶体,微光学元件,微腔激光器等研究工作的进展,实际工作中要求用更为严格的理论来处理束宽与波长可相比拟的强聚焦激光束或有大发散角的非傍轴激光束的变换.对此,已采用多种方法进行了研究,不同的方法有其优缺点和使用条件[1—6].另一方面,实际工作中常使用多束离轴激光束进行光束合成或产生双曲余弦Π正弦高斯光束[7,8].本文从矢量瑞利2索末菲衍射积分公式出发研究矢量非傍轴离轴高斯光束在自由空间中的传输特性,得出了较为普遍的解析传输方程,并举例说明解析表述的应用.21矢量非傍轴离轴高斯光束在自由空间中的传输方程 假设源平面上有场为E (x ,y ,0)=E x (x 0,y 0,0)i +E y (x 0,y 0,0)j 沿x 方向线偏振的离轴高斯光束[7],E 0x (x 0,y 0,0)=exp -1w 20[(x 0-x d )2+(y 0-y d )2],(1a )E 0y (x 0,y 0,0)=0,(1b )式中i ,j 分别为x ,y 方向的单位矢量,w 0为束腰宽度,x d 和y d 为离轴高斯光束在x ,y 方向的位移,称为离轴参数.光传输问题可用Dirichlet 边界条件下的第一类矢量瑞利2索末菲衍射积分公式描写[9],它给出在z >0半空间波动方程的严格解为E x (r )=-12π∫∫∞-∞E x(x,y 0,0)×9G (r ,r 0)9zd x 0d y 0,(2a )E y (r )=-12π∫∫∞-∞E y(x,y 0,0)×9G (r ,r 0)9zd x 0d y 0,(2b )E z (r )=12π∫∫∞-∞E x (x 0,y 0,0)9G (r ,r 0)9x+E y (x 0,y 0,0)9G (r ,r 0)9yd x 0d y 0, (2c )式中 r 0=x 0i +y 0j ,r =x i +y j +z k ,k 为z 方向的单位矢量,G (r ,r 0)=exp (i k r -r 0)r -r 0,(3)第54卷第11期2005年11月100023290Π2005Π54(11)Π5144205物 理 学 报ACT A PHY SIC A SI NIC AV ol.54,N o.11,N ovember ,2005ν2005Chin.Phys.S oc.k =2πΠλ为波数,λ为波长.将|r -r 0|近似为[6]r -r 0≈r +x 20+y 20-2xx 0-2yy 02r.(4)将(3),(4)式代入(2)式,利用积分公式∫∞-∞exp (ps 2+qs )d s=-i πpexp -q24p ,(5)∫∞-∞exp (ps 2+qs )s d s=i πq 2p3Π2exp -q 24p .(6)经繁冗复杂的计算,最后结果可整理为E x (x ,y ,z )=i kz exp (i kr )2r 2pexp -x 2d +y 2d w 20×exp -q 2x +q 2y4p,(7a )E y (x ,y ,z )=0,(7b )E z (x ,y ,z )=-i k exp (i kr )4r 2p2(2px +q x )×exp -x 2d +y 2dw 20×exp -q 2x +q 2y4p,(7c )式中p =-1w 20+i k2r ,(8)q x =2x dw 20-i k x r ,q y =2y dw20-i ky r.(9)(7)式是本文的主要解析结果,它描述了矢量非傍轴离轴高斯光束在自由空间的传输规律.从(7)式可以看出,E x 在x 和y 方向是对称的,而E z 在x 和y 方向是不对称的,x =x d 时E z =01而且,x =0或y =0时,E z ≠0,因此电场的纵向分量E z 在x 和y 方向都存在.这是与非离轴情况(x d =0)E z 在y 方向为零[10]不同的.现讨论(7)式的一些特殊情况.矢量非傍轴离轴高斯光束轴上光场可由(7),(8)和(9)式中令x =y =0求得E x (0,0,z )=i k exp (i kz )2zt exp -x 2d+y 2dw 20×exp -x 2d +y 2d w 40t,(10a )E y (0,0,z )=0,(10b )E z (0,0,z )=-i k exp (i kz )2z 2t 2x dw 20×exp -x 2d +y 2dw 20×exp -x 2d +y 2dw 40t,(10c )式中t =-1w2+ik 2z.(11)因此E x 和E z 对轴上光场都有贡献,但当x d =0时,E z =0,轴上只有电场的横向分量E x 有贡献.对(4)式作远场近似r -r 0≈r -xx 0+yy 0r.(12)将(3),(12)式代入(2)式,矢量非傍轴离轴高斯光束的远场场分布为E xf (x ,y ,z )=-i z exp (i kr )2r 2f 2kexp [-f 2k 2(x 2d +y 2d )]×expi f x2r -kf x d2×expi f y2r-kf y d2,(13a )E yf (x ,y ,z )=0,(13b )E zf (x ,y ,z )=iexp (i kr )2r 2f 2k if 2x2kr+x -x d×exp [-f 2k 2(x 2d +y 2d )]×expi f x2r -kf x d2×exp i f y2r-kf y d2,(13c )式中f 为离轴高斯光束的f 参数,f =1kw 0.(14)令x d =y d =0,(7)式简化为E x (x ,y ,z )=i kz exp (i kr )2r 2p×exp k24r 2p(x 2+y 2),(15a )E y (0,0,z )=0,(15b )E z (x ,y ,z )=-i k exp (i kr )4r 2p22px -i k xr ×exp k24r 2p(x 2+y 2).(15c )(15)式为矢量非傍轴高斯光束在自由空间的传输公541511期高曾辉等:矢量非傍轴离轴高斯光束的传输式,与文献[10]中(10)式令w0x=w0y的结果一致.对于傍轴光束,若将(7a)式中e i kr的r作傍轴近似r z+x2+y22z,(16)其余部分的r近似为z,则(7a)式简化为E xp(x,y,z)=i k exp(i kz)2ztexp i k x2+y22z×exp-x2d+y2dw20exp-h2x+h2y4t,(17)式中h x=2x dw20-i k xz,h y=2y dw20-i kyz.(18)(17)式与文献[7]的(3)式离轴高斯光束在自由空间传输的结果是一致的.在(13a)式中若再作傍轴近似,则可得E xp f(x,y,z)=iexp(i kz)2zf2kexp i k x2+y22z×exp-f2k2(x2d+y2d)×exp ifx2z-kf x d2×exp ify2z-kf y d2.(19)(19)式与傍轴条件下使用夫琅禾费衍射积分公式积分的结果相同.31数值计算和分析 利用(7)式作了大量数值计算以研究矢量非傍轴离轴高斯光束在自由空间中的传输特性.典型例示于图1—31图1为在z=10z0面上矢量非傍轴离轴高斯光束在x方向归一化光强I=|E x(x,0,10z0)|2+|E y(x,0,10z0)|2+|E z(x,0,10z0)|2,z0=πw20Πλ为高斯光束的瑞利长度.为作比较,(17)式的傍轴计算结果Ip (x,0,10z)=|Exp(x,0,10z)|2也示于图中.由图1知当f很小[3],例如f=0101时,傍轴近似成立,I(x,0,10z)和I p(x,0,10z0)几乎无差别,Iz (x,0,10z)很小可以忽略.从图2看出当f参数较大,例如f=0130时,I(x,0,10z)和I p(x,0,10z0)有显著差别,I z(x,0,10z0)不再可以忽图1 矢量离轴高斯光束在z=10z0面上x方向的归一化光强分布 (计算参数为:f=0101,x d=y d=5101─为用(7)式的计算结果,×××为用(7c)式的计算结果,°°°为用(17)式的计算结果)图2 矢量离轴高斯光束在z=10z0面上x方向的归一化光强分布 (─为用(7)式的计算结果,×××为用(7c)式的计算结果,°°°为用(17)式的计算结果)略;而且随着偏心离轴参数xd,y d从x d=y d=015 (图2(a))增加至x d=y d=510(图2(b)),I(x,0, 10z0)和I p(x,0,10z0)差别加大,I z(x,0,10z0)也增加.图3为离轴高斯光束在z=10z0面上y方向的归一化光强I(0,y,10z)分布,与共轴情况[7]不同,此时在y方向上存在Iz(0,y,10z).6415物 理 学 报54卷图3 矢量离轴高斯光束在z =10z 0面上y 方向的归一化光强分布 (─为用(7)式的计算结果,×××为用(7c )式的计算结果,°°°为用(17)式的计算结果)41结论 本文利用瑞利积分公式,推导出了矢量非傍轴离轴高斯光束在自由空间较为普遍的解析的传输方程,对矢量非傍轴离轴高斯光束在自由空间的传输特性做了数值计算和比较.当f 参数较小(例如f =0101)时,所得结果与傍轴情况一致,z 分量可以忽略.当f 参数较大(例如f =013)时,所得结果与傍轴情况有显著差异,此时z 分量一般不能忽略.除f 参数外,离轴参数x d ,y d 对光束非傍轴行为会有影响.特别是,当x d ≠0时,在y 方向I z ≠0.[1]Lax M ,Louisell W H and M cK night W B 1975Phys .Rev .A 111365[2]Agrawal G P and Pattanayak D N 1979J .Opt .Soc .Am .69575[3]Nem oto S 1990Appl .Opt .291940[4]Laabs H 1998Opt .Commun .1471[5]Liu P S ,L üB D 2004Acta Phys .Sin .533724(in Chinese )[刘普生、吕百达2004物理学报533724][6]Duan KL and L üB D 2004Opt .Lett .29800[7]L üB D and M a H 1999Opt .Commun .171185[8]Zhang B ,M a H and L üB D 1999Acta Phys .Sin .481869(in Chinese )[张 彬、马 虹、吕百达1999物理学报481869][9]Luneberg R K 1966Mathematical Theory o f Optics (Berkeley California :California University Press )[10]Duan KL and L üB D 2004Opt .&Laser Tech .36489741511期高曾辉等:矢量非傍轴离轴高斯光束的传输8415物 理 学 报54卷Propagation of vectorial off2axis Gaussian beams beyondthe paraxial approximation3G ao Z eng2Hui1)2) LüBai2Da1)1)(Institute o f Laser Physics and Chemistry,Sichuan Univer sity,Chengdu 610064,China)2)(Institute o f Optoelectronic In formation,Yibin Univer sity,Yibin,644007,China)(Received15M arch2005;revised manuscript received29April2005)AbstractBased on the vectorial Rayleigh2S ommerfeld diffraction formulation,a solution of the electric2magnetic wave equation is found,which represents vectorial nonparaxial off2axis G aussian2beams whose propagation equation in free space is expressed in a closed form.The on2axis and far2field expressions of vectorial nonparaxial off2axis G aussian beams,the propagation equation of vectorial nonparaxial G aussian beams and the paraxial results are treated as special cases of our general expression.It is shown that the f parameter plays an im potant role in determ ining the beam nonparaxiality,whereas the off2axis parameters additionally affect the nonparaxial behavior of vectorial nonparaxial off2axis G aussian beams.M oreover,unlike the on2axis case,there exists the longitudinal com ponent of the field in the y direction for the off2axis case.K eyw ords:laser optics,vectorial nonparaxial off2axis G aussian beam,Rayleigh2S ommerfeld diffraction integral,f parameter, off2axis parameterPACC:42003Project supported by the National High T echnology Development Program of China(G rant N o.2004AA823070).E2mail:badalu@。

贝塞尔高斯光束和拉盖尔高斯光束

贝塞尔高斯光束和拉盖尔高斯光束

贝塞尔高斯光束和拉盖尔高斯光束在当代光学领域,贝塞尔高斯光束和拉盖尔高斯光束是两个备受关注的主题。

它们在光通信、激光加工、光学成像等领域有着重要的应用价值。

今天,我们就来深入探讨这两种光束的特点、应用以及在光学技术中的重要意义。

1. 贝塞尔高斯光束贝塞尔高斯光束是一种特殊的光束,它具有环状的振幅分布和高斯型的横向波前。

贝塞尔高斯光束的特点是携带着轨道角动量,因此在光通信中的应用非常广泛。

这种光束常常被用于光学操控和精密加工领域,尤其在激光聚焦方面具有独特的优势。

贝塞尔高斯光束的数学描述涉及到贝塞尔函数和高斯函数的乘积,在光学理论中具有重要的地位。

它的独特振幅分布和相位结构,使得其成为一种非常灵活的光学工具,能够实现更高效的能量传输和更精密的光学成像。

2. 拉盖尔高斯光束与贝塞尔高斯光束类似,拉盖尔高斯光束也是一种特殊的光束。

它具有环状的振幅分布和高斯型的横向波前,但其振幅分布不同于贝塞尔高斯光束。

拉盖尔高斯光束常常被用于光学拓扑和光学传输领域,其独特的相位结构和振幅特性使得其在光学通信和信息处理中具有重要的应用潜力。

相对于贝塞尔高斯光束而言,拉盖尔高斯光束在光学信息处理和光学成像领域具有更为广泛的适用性。

其特殊的相位结构和振幅分布,使得其能够实现更高精度的光学成像和更快速的光学信息处理。

3. 应用和意义贝塞尔高斯光束和拉盖尔高斯光束在光学技术中具有重要的应用意义。

它们的独特性质和灵活特点,使得其在光通信、激光加工、光学成像等领域有着广泛的应用前景。

特别是在光学拓扑和光学信息处理领域,这两种光束的应用将会为光学技术的发展提供更多可能性。

个人观点作为一名光学领域的研究者,我个人认为贝塞尔高斯光束和拉盖尔高斯光束的研究和应用将会为光学技术的发展带来新的突破。

它们的独特性质和广泛应用领域,使得其在当代光学科技领域具有重要的意义。

希望未来能够有更多的研究者和工程师投入到这一领域的研究中,推动光学技术的进步和创新。

基于 Stokes 参量法测量矢量光束偏振态的方法

基于 Stokes 参量法测量矢量光束偏振态的方法

基于 Stokes 参量法测量矢量光束偏振态的方法周哲海;祝连庆【摘要】Polarization state Measurement of vector beams is the key technology for the research of vector beams.The measurement method for polarization state of vector beams based on Stokes parameters is studied.The basic principle and realization procedure of the method are introduced,and then four types of axially symmetric linearly polarized beams are generated based on a cat-eye cavity laser and a Mach-Zenhder interferometer.Four Stokes parameters of generated vector beams are calculated as well as elliptical angle of orientations and ellipticity angles,and the polariza-tion purity of generated beams is obtained.The experimental results verify the feasibility of the method for polarization state measurement of vector beams.%矢量光束的偏振态检测是矢量光束研究的关键技术。

论文研究了基于 Stokes 参量法测量矢量光束偏振态的方法,介绍了该方法的基本原理和实现过程。

基于介质超表面的径向偏振贝塞尔透镜

基于介质超表面的径向偏振贝塞尔透镜

基于介质超表面的径向偏振贝塞尔透镜陈俊妍;张飞;张明;蔡吉祥;欧奕;喻洪麟【摘要】本文提出了一种基于介质超表面的径向偏振贝塞尔透镜,它可以高效率地将线偏光转换为径向偏振光,并且同时实现贝塞尔聚焦.在线偏振光入射下,利用非对称光子自旋轨道相互作用对线偏振光左右旋分量进行独立调控,最后通过自旋重组同时实现偏振转换和波前调控.在波长为532 nm处,数值孔径NA=0.9,超透镜实现了超越衍射极限聚焦焦斑.该项研究在粒子加速和超分辨率成像方面具有潜在的应用价值.【期刊名称】《光电工程》【年(卷),期】2018(045)011【总页数】10页(P20-29)【关键词】全介质超表面;径向偏振光束;贝塞尔无衍射光束【作者】陈俊妍;张飞;张明;蔡吉祥;欧奕;喻洪麟【作者单位】重庆大学光电技术及系统教育部重点实验室,重庆 400030;重庆大学光电技术及系统教育部重点实验室,重庆 400030;重庆大学光电技术及系统教育部重点实验室,重庆 400030;重庆大学光电技术及系统教育部重点实验室,重庆400030;重庆大学光电技术及系统教育部重点实验室,重庆 400030;重庆大学光电技术及系统教育部重点实验室,重庆 400030【正文语种】中文【中图分类】O436.3在过去的几十年里,圆柱矢量波特别是径向偏振光(radially polarized light, RPL),由于其在聚焦和成像中的独特性质而受到越来越多的关注,RPL是偏振方向为轴对称分布的光束[1],在聚焦平面上具有强的纵向分量,这使得RPL聚焦可产生更紧密的焦斑。

然而,传统的光学透镜组体积大、效率低的缺点严重限制了RPL的发展和应用。

超表面是一种新型电磁材料[2],不仅能够灵活地调控电磁波的波前,而且能够兼顾微型化和集成化。

现如今,超表面在实现偏振滤波器[3]、聚焦透镜[2,4]、光学全息[5]以及涡旋光束生成器[6]等光学器件时,均具有效率高、体积小等优势。

涡旋光束的矢量衍射以及瑞利条件下的光镊

涡旋光束的矢量衍射以及瑞利条件下的光镊

涡旋光束的矢量衍射以及瑞利条件下的光镊张冠鸣【摘要】用涡旋光束形成的光镊,利用其形成的光陷阱将分子物质困于光束中心附近,可以"夹取"分子物质,在医学和生物物理方面有重要的应用.将探讨涡旋光束的矢量衍射机制,在瑞利散射条件下与物质的相互作用,使用矢量衍射而非近轴近似的方法模拟矢量衍射,得到了更为精确的衍射图样;同时基于Y Harada和T Asakura的工作,在瑞利散射条件下使用数值模拟方法,模拟分子粒子所受的力,来解释光镊的原理和涡旋光束的一些性质,得到的结果与近轴近似不同,所采用的矢量衍射可以更好的模拟光束的衍射现象.【期刊名称】《江西科学》【年(卷),期】2017(035)005【总页数】5页(P671-675)【关键词】光镊;矢量衍射;瑞利散射条件;涡旋光束【作者】张冠鸣【作者单位】长春理工大学,130022,长春【正文语种】中文【中图分类】TN24Abstract:Optical vortex beams u sed as “optical tweezers” forms an optical trap which is able to trap molecule into the central region of the beam.This technique is useful in medical engineering and biophysicsresearches.This article discusses the mechanism of optical vortex beams and their interaction with molecules under Rayleigh scatteringregime.Vector diffraction of the beams by lens are simulated numerically,more accurate diffraction patterns are attained.Also based on the work of Y Harada and T Asakura,numerical methods are applied under Rayleigh regime to simulate the force exerted on the particle to explain the properties of optical tweezers and optical vortex beams.Different from paraxial approximation,vector diffraction theory could better explain diffraction phenomenon.Key words:optical tweezers;vector diffraction;rayleigh regime;optical vortex beams在生物物理以及生物工程领域,光镊是用来操纵分子的一种重要工具。

矢量光束

矢量光束

毕业设计(论文)题目:具有分数轨道角动量矢量光束的设计与应用English Title:Design and Application of vector beam withfractional orbital angular momentum学生姓名: 刘晓昌专业: 物理学学号: 08027114指导老师: 周琦二0一二年六月摘要矢量光束中的偏振态在光场时空演化及其与其他物质相互作用中起着非常重要的作用,表现出一些不同于标量光束的新颖特性。

因此,矢量光束的研究有重要的科学价值和应用意义。

近年来矢量光束独一无二的性质以及潜在的应用价值使得越来越多的科研人员对其产生了浓厚的兴趣,特别是偏振态显现出轴对称性的光束(即轴对称矢量光束)以及椭圆对称性的光束(即椭圆矢量光束)。

矢量光束以其独特的发展前景受到广泛的关注。

在本论文中,我们首先介绍了矢量光束的基本概念、产生方法以及应用。

通过激光器的谐振腔外干涉或在激光器谐振腔内插入特殊的元件以及利用空间光调制器能够产生各种构型的矢量光束;在第二章中,我们提出了一种利用振幅型空间光调制和偏振分束器件实现矢量光束的方案,数值计算了产生圆对称径向、角向矢量光束以及椭圆矢量光束的调制光栅构型;在第三章中,我们在矢量瑞利——索末菲衍射理论的基础上,介绍了矢量光束经过高数值孔径物镜聚焦的特性,并初步探讨了矢量光束中光子轨道与自旋角动量,得出椭圆矢量光束光子轨道角动量具有分数值的结论。

最后,我们对所研究的内容进行了总结与展望。

关键字:矢量光束;激光器;空间光调制器;衍射理论;角动量ABSTRACTThe polarization state of the vector beam plays a very important role in the evolution of optical field in temporal and spatial dimensions and the interaction with other matters; dues to some novel features different from the scalar beam are presented. Therefore, the study of vector beam has important scientific value and application significance. In recent years, more and more researchers develop strong interest in the unique nature and potential applications of the vector beams, in particular, the beam with axial symmetry polarization state ( ax symmetric vectoring beam) and elliptical symmetry polarization state (elliptical vector beam). Vector beam has also received widespread attention for its unique development prospects.In this paper, some basic concepts, generation method and foundational application of vector beamed are first introduced in Chap. 1. Vector beams with various constructs of polarization can be generated by the methods of outer cavity interference, the use of special optical element inserted into resonant cavity, spatial light modulator and so on. In Chap. 2, we proposed a novel scheme to implement vector beam by synchronously using spatial light modulator working on amplitude mode and polarization beam splitter. The modulation gratings for generating radial, angular vector beam with circle or elliptic symmetry are numerically calculated. Based on vector Rayleigh Sommerfeld diffraction theory,we introduce propagation characteristics of vector beam focused by a objective lens with high numerical aperture in Chap.3. Some preliminary analyzes and discussions of photonic orbital and spin angular momentum of vector beam are also presented. And we find a fractional orbital angular momentum can be obtained in elliptical vector beam. Some conclusions and prospects are draw in final Chapter.Key words: Vector beam; Laser; Spatial light modulator; Diffraction theory; Angular momentum目录绪论 (1)1.矢量光束及其应用 (2)1.1 矢量光束的概念 (2)1.2 矢量光束产生的方法 (4)1.3 矢量光束的应用 (7)2. 利用空间光调制器和偏振分束器实现任意构型矢量光束方案.. 92.1 空间光调制器与偏振分束器原理 (9)2.2 矢量光束产生方案 (12)2.2.1 圆对称径向矢量光束 (14)2.2.2 圆对称角向矢量光束 (15)2.2.3 椭圆对称矢量光束 (17)2.3 本章小结 (20)3. 矢量光束传播特性 (21)3.1 光束矢量衍射理论原理 (21)3.1.1 傍轴标量理论的不自洽性 (21)3.1.2 角谱分析法 (23)3.1.3 矢量瑞利一索末菲衍射积分公式法 (24)3.2 径向、角向矢量光束聚焦特性 (25)3.2.1 矢量光束聚焦场的数学描述 (26)3.2.2 径向偏振光 (27)3.2.3 角向偏振光 (28)3.3 椭圆矢量光束角动量 (28)3.3.1 椭圆矢量光束的光强分布和偏振分布 (29)3.3.2 椭圆矢量光束的总角动量 (29)3.3.3 椭圆矢量光束的自旋角动量和轨道角动量 (31)总结与展望 (33)致谢 (34)参考文献 (35)绪论光学是研究光的物理性质和物理行为以及光和其他物质相互作用的一门物理学科。

激光专业英语

激光专业英语

Elect‎r omag‎n etic‎电磁的pr‎i ncip‎l e原则p‎r inci‎p al主要‎的macr‎o scop‎i c宏观的‎m icro‎s copi‎c 微观的d‎i ffer‎e ntia‎l微分ve‎c tor矢‎量scal‎a r标量p‎e rmit‎t ivit‎y介电常数‎p hoto‎n s光子o‎s cill‎a tion‎振动den‎s ity ‎o f st‎a tes态‎密度dim‎e nsio‎n alit‎y维数tr‎a nsve‎r se w‎a ve横波‎d ipol‎e mom‎e nt偶极‎矩diod‎e二极管m‎o no-c‎h roma‎t ic单色‎t empo‎r al时间‎的spat‎i al空间‎的velo‎c ity速‎度wave‎pack‎e t波包b‎e per‎p endi‎c ular‎to线垂‎直 be ‎n omal‎to线面‎垂直iso‎t ropi‎c各向同性‎的anis‎t ropi‎c各向异性‎的vacu‎u m真空a‎s sump‎t ion假‎设semi‎c ondu‎c tor半‎导体non‎m agne‎t ic非磁‎性的con‎s ider‎a ble大‎量的ult‎r avio‎l et紫外‎的diam‎a gnet‎i c抗磁的‎p aram‎a gnet‎i c顺磁的‎a ntip‎a rama‎g neti‎c反铁磁的‎f erro‎-magn‎e tic铁‎磁的neg‎l igib‎l e可忽略‎的cond‎u ctiv‎i ty电导‎率intr‎i nsic‎本征的in‎e qual‎i ty不等‎式infr‎a red 红‎外的wea‎k ly d‎o ped弱‎掺杂hea‎v ily ‎d oped‎重掺杂a ‎s econ‎d der‎i vati‎v e in‎time‎对时间二阶‎导数van‎i sh消失‎t enso‎r张量re‎f ract‎i ve i‎n dex折‎射率cru‎c ial主‎要的qua‎n tum ‎m echa‎n ics量‎子力学tr‎a nsit‎i on p‎r obab‎i lity‎跃迁几率d‎e lve研‎究infi‎n ite无‎限的rel‎e vant‎相关的th‎e rmod‎y nami‎c equ‎i libr‎i um热力‎学平衡(动‎态热平衡)‎f ermi‎o ns费米‎子boso‎n s波色子‎p oten‎t ial ‎b arri‎e r势垒s‎t andi‎n g wa‎v e驻波t‎r avel‎l ing ‎w ave行‎波dege‎n erac‎y简并co‎n verg‎e收敛di‎v erge‎发散pho‎n ons声‎子sing‎u lari‎t y奇点(‎奇异值)v‎e ctor‎pote‎n tial‎向量式pa‎r tica‎l-wav‎e dua‎l ism波‎粒二象性h‎o moge‎n eous‎均匀的el‎l ipti‎c 椭圆的r‎e ason‎a ble公‎平的合理的‎r efle‎c tor反‎射器cha‎r acte‎r isti‎c特性pr‎e requ‎i site‎必要条件q‎u adra‎t ic二次‎的pred‎o mina‎n tly最‎重要的ga‎u ssia‎n bea‎m s高斯光‎束azim‎u th方位‎角evol‎v e推到s‎p ot s‎i ze光斑‎尺寸rad‎i us o‎f cur‎v atur‎e曲率半径‎c onve‎n tion‎管理hyp‎e rbol‎e双曲线h‎y perb‎o loid‎双曲面ra‎d ii半径‎a symp‎t ote渐‎近线ape‎x顶点ri‎g orou‎s精确地m‎a nife‎s tati‎o n体现表‎明wave‎diff‎r acti‎o n波衍射‎a pert‎u re孔径‎c ompl‎e x be‎a m ra‎d ius 复‎光束半径l‎e nsli‎k e me‎d ium类‎透镜介质b‎e adj‎a cent‎to与之‎相邻con‎f ocal‎beam‎共焦光束a‎unit‎y det‎e rmin‎a nt单位‎行列式wa‎v egui‎d e波导i‎l lust‎r atio‎n说明in‎d ucti‎o n归纳s‎y mmet‎r ic对称‎的stea‎d y-st‎a te稳态‎b e co‎n sist‎e nt w‎i th与之‎一致sol‎i d cu‎r ves实‎线dash‎e d cu‎r ves虚‎线be i‎d enti‎c al t‎o相同ei‎g enva‎l ue本征‎值note‎w orth‎y关注的c‎o unte‎r act抵‎消rein‎f orce‎加强the‎moda‎l dis‎p ersi‎o n模式色‎散the ‎g roup‎velo‎c ity ‎d ispe‎r sion‎群速度色散‎c hann‎e l波段r‎e peti‎t ion ‎r ate重‎复率ove‎r lap重‎叠intu‎i tion‎直觉mat‎e rial‎disp‎e rsio‎n材料色散‎i nfor‎m atio‎n cap‎a city‎信息量fe‎e d in‎t o注入d‎e rive‎from‎由之产生s‎e mi-i‎n tuit‎i ve半直‎觉inte‎r mode‎mixi‎n g模式混‎合puls‎e dur‎a tion‎脉宽mec‎h anis‎m原理di‎s sipa‎t e损耗d‎e sign‎a te b‎y命名为t‎o a l‎a rge ‎e xten‎t在很大程‎度上eta‎l on标准‎具arch‎e type‎圆形int‎e rfer‎o mete‎r干涉计b‎e att‎r ibut‎e d to‎归因于ro‎u ndtr‎i p 一个往‎返infi‎n ite ‎g eome‎t ric ‎p rogr‎e ssio‎n无穷几何‎级数con‎s erva‎t ion ‎o f en‎e rgy能‎量守恒fr‎e e sp‎e ctra‎l ran‎g e自由光‎谱区ref‎l ecti‎o n co‎e ffic‎i ent(‎f ract‎i on o‎f the‎inte‎n sity‎refl‎e cted‎)反射系数‎t rans‎m issi‎o n co‎e ffic‎i ent(‎f ract‎i on o‎f the‎inte‎n sity‎tran‎s mitt‎e d)透射‎系数opt‎i cal ‎r eson‎a tor光‎学谐振腔u‎n ity归‎一opti‎c al s‎p ectr‎u m an‎a lyze‎r光谱分析‎g requ‎e ncy ‎s epar‎a tion‎s频率间隔‎s cann‎i ng i‎n terf‎e rome‎t er扫描‎干涉仪sw‎e ep移动‎r epli‎c a复制品‎a mbig‎u ity不‎确定sim‎u ltan‎e ous同‎步的lon‎g itud‎i nal ‎l aser‎mode‎纵模den‎o mina‎t or分母‎f ines‎s e精细度‎t he l‎i miti‎n g re‎s olut‎i on极限‎分辨率th‎e wid‎t h of‎atr‎a nsmi‎s sion‎band‎p ass透‎射带宽co‎l lima‎t ed b‎e am线性‎光束non‎c olli‎m ated‎beam‎非线性光束‎t rans‎i ent ‎c ondi‎t ion瞬‎态情况sp‎h eric‎a l mi‎r ror ‎球面镜lo‎c us(l‎o ci)轨‎迹expo‎n enti‎a l fa‎c tor指‎数因子ra‎d ian弧‎度conf‎i gura‎t ion不‎举inte‎r cept‎截断bac‎k and‎fort‎h反复sp‎a tica‎l mod‎e空间模式‎a lgeb‎r a代数i‎n pra‎c tice‎在实际中s‎y mmet‎r ical‎对称的a ‎s ymme‎t rica‎l con‎f oral‎reso‎n ator‎对称共焦谐‎振腔cri‎t eria‎准则con‎c entr‎i c同心的‎b iper‎i odic‎lens‎sequ‎e nce双‎周期透镜组‎序列sta‎b le s‎o luti‎o n稳态解‎e quiv‎a lent‎lens‎等效透镜v‎e rge ‎边缘sel‎f-con‎s iste‎n t自洽r‎e fere‎n ce p‎l ane参‎考平面of‎f-axi‎s离轴sh‎a ded ‎a rea阴‎影区cle‎a r ar‎e a空白区‎p ertu‎r bati‎o n扰动e‎v olut‎i on渐变‎d ecay‎减弱uni‎m odua‎l mat‎r ix单位‎矩阵dis‎c repa‎n cy相位‎差long‎i tudi‎n al m‎o de i‎n dex纵‎模指数re‎s onan‎c e共振q‎u antu‎m ele‎c tron‎i cs量子‎电子学ph‎e nome‎n on现象‎e xplo‎i t利用s‎p onta‎n eous‎emis‎s ion自‎发辐射in‎i tial‎初始的th‎e rmod‎y nami‎c热力学i‎n phas‎e同相位的‎p opul‎a tion‎inve‎r sion‎粒子数反转‎t rans‎p aren‎t透明的t‎h resh‎o ld阈值‎p redo‎m inat‎e ove‎r占主导地‎位的mon‎o chro‎m atic‎i ty单色‎性spat‎i cal ‎a nd t‎e mpor‎a l co‎h eren‎c e时空相‎干性by ‎v irtu‎e of利‎用dire‎c tion‎a lity‎方向性su‎p erpo‎s itio‎n叠加pu‎m p ra‎t e泵浦速‎率shun‎t分流co‎r ona ‎b reak‎d own电‎晕击穿au‎d acit‎y畅通无阻‎v ersa‎t ile用‎途广泛的p‎h otoe‎l ectr‎i cef‎f ect光‎电效应qu‎a ntum‎dete‎c tor量‎子探测器q‎u antu‎m eff‎i cien‎c y量子效‎率vacu‎u mph‎o todi‎o de真空‎光电二极管‎p hoto‎e lect‎r ic w‎o rk f‎u ncti‎o n光电功‎函数cat‎h ode阴‎极anod‎e阳极fo‎r mida‎b le苛刻‎的恶光的i‎r resp‎e ctiv‎e无关的i‎m ping‎e撞击in‎turn‎依次cap‎a cita‎n ce电容‎p hoto‎m ulti‎p lier‎光电信增管‎p hoto‎c ondu‎c tor光‎敏电阻ju‎n ctio‎npho‎t odio‎d e结型光‎电二极管a‎v alan‎c he p‎h otod‎i ode雪‎崩二极管s‎h ot n‎o ise ‎散粒噪声t‎h erma‎l noi‎s e热噪声‎‎In‎this‎chap‎t er w‎e con‎s ider‎Maxw‎e ll’s‎equa‎t ions‎and ‎w hat ‎t hey ‎r evea‎l abo‎u t th‎epro‎p agat‎i on o‎f lig‎h t in‎vacu‎u m an‎d in ‎m atte‎r. We‎intr‎o duce‎the ‎c once‎p t of‎phot‎o ns a‎n d pr‎e sent‎thei‎r den‎s ity ‎o f st‎a tes.‎S ince‎the ‎d ensi‎t y of‎stat‎e s is‎a ra‎t her ‎i mpor‎t ant ‎p rope‎r ty,n‎o t on‎l y fo‎r pho‎t ons,‎w e ap‎p roac‎h thi‎s qua‎n tity‎in a‎rath‎e r ge‎n eral‎way.‎We w‎i ll u‎s e th‎e den‎s ity ‎o f st‎a tes ‎l ater‎also‎for ‎o ther‎(quas‎i-) p‎a rtic‎l es i‎n clud‎i ng s‎y stem‎s of ‎r educ‎e ddi‎m ensi‎o nali‎t y.In‎addi‎t ion,‎w e in‎t rodu‎c e th‎e occ‎u pati‎o n pr‎o babi‎l ity ‎o f th‎e se s‎t ates‎for ‎v ario‎u s gr‎o ups ‎o f pa‎r ticl‎e s.‎在本‎章中,我们‎讨论麦克斯‎韦方程和他‎们显示的有‎关光在真空‎中传播的问‎题。

新型光镊及光镊应用

新型光镊及光镊应用

光镊与单分子生物学
光镊技术的亚纳米线的空间分辨率和 飞牛顿级的
力分辨率正好满足了体外研究单个生物大分子的条 件。光镊能够实时跟踪生物分子运动,获取单分 子静态和动态的力学性质,已被越来越多地用于 研究生化或者生物物理的精细过程,为定量研究 生命规律和改造生命活动提供了一种不可或缺的 研究工具。光镊是通过微米“手柄”小球对大分子 进行间接操控和测量。目前测量的方法已发展 有多种,如单光镊、双光镊、光镊与微针结 合等,都有很好的应用。还有光镊与光致旋 转、光镊与磁镊,以及光镊与全内反射荧光 技术结合等,形成独特的技术和方法,有效地 解决了相应的科学问题。
光镊原理及其应用
精品课件
自1986年单光束光镊概念被提出以来,至今光 镊已经发展30多年,光镊的可操控尺寸从最初的微 米级发展到现在的纳米级,操控方法从最初的单光 束光镊到双光束光镊,再到全息光镊以及新型光束 捕获,极大地促进了定量生物学的发展,光镊技术 已经成为众多学科科学家所渴望的工具。
精品课件
精品课件
研究核糖体的运动规律
核糖体是细胞内蛋白质合成的场所,它通过读取信使核糖核酸 cRNA 核苷酸序列所包含的遗传信息,并使之转化为蛋白质中氨基 酸的序列信息以合成蛋白质。因此,核糖体在生物的生命活动中具 有非常重要的生理作用。2008年Wen等研究了核糖体在翻译过程中 的动力学特性,即其沿着信使RNA 运动的精细动力学过程,并首次 证明了核糖体在易位运动中存在3个亚步。
精品课件
布朗运动的新认识
1907年,爱因斯坦认为能量均分定理适用于布朗微粒,但是因为单个微粒 的瞬时速度变化太快,所以这个预言难以从实验上直接证明。2010年Science 杂志报道,采用光镊技术在真空中测量了微粒的瞬时速度,首次从实验上成功 地验证了布朗微粒符合能量均分定理。

基于等离激元超表面的径向和角向偏振矢量光束的产生

基于等离激元超表面的径向和角向偏振矢量光束的产生
实现了具 有 径 向 和 角 向 偏 振 特 性 的 矢 量 涡 旋 的 产
圆偏振入射光可表示为
Ein01Байду номын сангаас
,
(
Ein x ,
3)
y =

2±i
其中,“
LCP),“
+”号表示左旋圆偏振光(
-”号表示

等离激元超表面产生矢量光场方面也做了一些研究
π
ϕ2 =θ + 4 .

实现了轨道角动量的产生和叠加 .我们课题组在利用
中,采用 不 同 的 光 学 器 件,如 空 间 光 调 制 器
、波
[
9,
10]
[
11,
12]
片、
等,产 生 了 高 阶 庞 加 莱
Dama
n 光 栅、
q板
[
16]
量光束成为近 年 来 研 究 的 热 门 .
L
i
n等 提出了一
等离激元(
SPP)在 超 表 面 上 的 单 向 传 播,
SPP 的 叠
加不依 赖 于 线 偏 振 光,而 是 依 赖 于 圆 偏 振 光 的 旋
了全新途径 .该文设计了一种由正交纳米缝 对 组 成 的 表 面 等 离 激 元(
su
r
f
a
c
ep
l
a
smonpo
l
a
r
i
t
on,
SPP)超 表 面,
实现了径向和角向偏振矢量涡旋光束的产生 .利用惠 更 斯-菲 涅 尔 原 理 从 理 论 上 推 导 出 螺 旋 超 表 面 中 心 区 域
的表面等离激元光场表达式,并利用时域有限 差 分 法 (

Bessel光束的矢量分析及其能流密度的特征

Bessel光束的矢量分析及其能流密度的特征

Bessel光束的矢量分析及其能流密度的特征
刘雅洁;杨性愉
【期刊名称】《量子光学学报》
【年(卷),期】2006(12)3
【摘要】通过比较自由空间Besssel光束标量解E(r,t)满足的方程和光场矢量E(r,t)与矢量势A(r,t)之间的关系表达式,利用Bessel的特点,合理构造了矢量势A(r,t)的具体形式,推导出电场量E(r,t)的磁场量B(r,t)各分量满足的具体形式。

通过数值计算,给出电场E(r,t)在不同参数θ,φ下与径向坐标ρ之间的关系图线(图1,图2),发现由方程(6)描述的标量解仅是矢量场E(r,t)(方程15描述)在小θ下的近似。

通过对能量传输特性的讨论,说明“超光速”的提法是不恰当的。

【总页数】5页(P171-175)
【关键词】Bessel光束;矢量势;标量势;能流密度
【作者】刘雅洁;杨性愉
【作者单位】嘉兴学院物理教研室;内蒙古大学物理系
【正文语种】中文
【中图分类】O431
【相关文献】
1.Bessel波束的标量和矢量分析 [J], 余燕忠
2.涡旋洛伦兹-高斯光束的远场矢量结构特征 [J], 倪涌舟;周国泉
3.拉盖尔-高斯光束的近场矢量结构特征 [J], 周国泉
4.被圆相位片衍射的空心高斯光束的远场矢量结构特征 [J], 陆世专;游开明;陈列尊;王友文;杨辉;戴志平
5.一种矢量场高斯光束的近似解及其光束辐射压的分析 [J], 周清荃
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PHYSICAL REVIEW APPLIED 2, 044012 (2014)Controlling Vector Bessel Beams with MetasurfacesCarl Pfeiffer and Anthony Grbic*Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122, USA (Received 16 July 2014; published 23 October 2014) Unprecedented control of an electromagnetic wave front is demonstrated with reflectionless metasurfaces that can manipulate vector Bessel beams: cylindrical vector beams with a Bessel profile. First, two metasurfaces are developed to convert linearly and circularly polarized Gaussian beams into vector Bessel beams. Each unit cell of the metasurfaces provides polarization and phase control with high efficiency. Next, the reciprocal process is demonstrated: an incident radially polarized Bessel beam is transformed into collimated, linearly and circularly polarized beams. In this configuration, a planar Bessel beam launcher is integrated with a collimating metasurface lens to realize a low-profile lens-antenna. The lens-antenna achieves a high directivity (exceeding 20 dB) with a subwavelength overall thickness. Finally, a metasurface providing isotropic polarization rotation is used to transform a radially polarized Bessel beam into an azimuthally polarized Bessel beam. This work demonstrates that metasurfaces can be used to generate arbitrary combinations of radial and azimuthal polarizations for applications such as focus shaping or generating tractor beams.DOI: 10.1103/PhysRevApplied.2.044012I. INTRODUCTION Vector Bessel beams play a critical role in many optical systems [1]. These beams maintain a high-intensity focus over a considerable distance for applications such as particle trapping, tractor beams, near-field probes, laser machining, lithography, and optical data storage [2–4]. In addition, their azimuthal and radial polarizations are useful for the spectroscopy of magnetic dipole transitions in quantum dots [5]. Such beams also provide information about the orientation of a single molecule and are ideal sources for exciting surface plasmons in axially symmetric structures [5,6]. Therefore, developing a simple means of transforming a commonplace Gaussian beam into a vector Bessel beam is highly desirable. However, this transformation requires both polarization and phase control, which typically involve multiple lenses, spatial light modulators, dielectric wave plates, or other bulky components [1,6,7]. Recently, ultrathin metasurfaces have shown great promise for controlling electromagnetic wave fronts [8,9]. Metasurfaces are the two-dimensional equivalent of metamaterials and receive much attention, since they can offer reduced losses, are lower profile, and are simpler to fabricate than bulk metamaterials [10]. Single-layer metasurfaces with resonant geometries, such as V antennas, are used to control optical wave fronts [11–13]. However, such metasurfaces possess only an electric response. This response results in significant reflection, since electric dipoles are bidirectional radiators [14]. In addition, onlyTo whom correspondence should be addressed. agrbic@*a single component of the polarization can be manipulated, which severely limits polarization control. Realizing a vector Bessel beam requires both polarization and phase control, which introduce added challenges. To date, limited control of both polarization and phase has been demonstrated. However, the reported structures typically suffer from low efficiencies, since their impedance is mismatched to free space [15]. In this work, two metasurfaces are introduced to efficiently convert normally incident Gaussian beams into Bessel beams. The first metasurface transforms x- and y-polarized Gaussian beams into transverse magnetic (TM or radially polarized) and transverse electric (TE or azimuthally polarized) polarized Bessel beams, respectively. The second metasurface transforms an incident left-handedcircularly-polarized Gaussian beam into a transmitted TMpolarized Bessel beam, as shown in Fig. 1. Correspondingly, the two metasurfaces will be referred to as the linear-to-Bessel and the circular-to-Bessel metasurfaces. The unit cells comprising both metasurfaces utilize three anisotropic sheet ˆ). admittances cascaded along the direction of propagation (z The cells are individually designed to realize a stipulated phase shift along their respective spatially varying principal axes while at the same time maintaining high transmission. Thus, the metasurfaces are low loss and impedance matched to free space to maximize efficiency. Next, the reciprocal process is demonstrated: a TM-polarized Bessel beam is transformed into a collimated beam. In addition to providing further experimental verification, this configuration is used to develop a low-profile lens-antenna. The lens-antenna combines a planar Bessel beam launcher with collimating lenses (the proposed2331-7019=14=2(4)=044012(7)044012-1© 2014 American Physical SocietyCARL PFEIFFER AND ANTHONY GRBICPHYS. REV. APPLIED 2, 044012 (2014) of kρ ¼ 0.8k are chosen in this study. The Bessel beams under consideration are truncated with a Gaussian windowing function [expð−ρ2 =w2 0 Þ]. Hence, these beams are often referred to as Bessel-Gauss beams. III. METASURFACE DESIGN It is well known how to transform linear or circular polarization to cylindrical polarization by using the Jones matrices of spatially varying wave plates [6,20,21]. In short, each unit cell of the linear-to-Bessel metasurface acts as a half-wave plate, and each unit cell of the circular-toBessel metasurface acts as a quarter-wave plate. Such configurations allow the polarization to be transformed from linear and circular, respectively, to cylindrical. In addition, the metasurfaces must apply an inhomogeneous phase shift across their surfaces to transform the wave front from a Gaussian profile to a Bessel profile. The necessary phase shift provided by each unit cell is determined by simply subtracting the phase of the desired wave front (Bessel beam) from the phase of the incident wave front (Gaussian beam). Figure 2 shows the slow axis of each unit cell and the phase shift that should be imparted by the fast axis of the metasurface. For clarity, only the middle portion of the metasurfaces is shown. Note that the circular-toBessel metasurface requires quarter-wave plates whose fast axis provides a full 2π phase coverage. This property should not be confused with earlier metasurfaces that provided complete phase control for circularly polarized light by local changes in the polarization (PancharatnamBerry phase) [22]. Additional design details are provided in Supplemental Material [23]. The geometry shown in Fig. 3(a) is employed to realize the unit cells of the metasurfaces. It consists of patterned metallic sheets (sheet admittances) cascaded in the direction of propagation. The metallic patterns are separated by Rogers 4003 substrates (ϵr ¼ 3.55 and tan δ ¼ 0.0027) that are 1.52 mm ðλ=19.7Þ in thickness. Provided the overall thickness of the cascaded metallic and dielectric substrates is subwavelength, this structure is well modeled as a single metasurface boundary condition [10]. It has been shown that this structure can realize complete control of the transmitted phase while maintaining near-unity transmittance [24,25]. In addition, utilizing anisotropic sheets allows for polarization control [26]. However, in these previous structures, there is no experimental demonstration of wave-front control along two dimensions. Furthermore, the principal axes of every unit cell are aligned along the x and y axes, which limits the degree to which the polarization could be controlled. Here, it is experimentally demonstrated that wave fronts with arbitrary (spatially varying) phase and polarization profiles can be generated. A typical unit cell of the linear-to-Bessel metasurface is shown in Fig. 3(b). Each sheet admittance of a unit cell can be modeled as a parallel LC circuit. The inductance results from the metallic grid outlining the cell, and theFIG. 1. An inhomogeneous, anisotropic metasurface transforms a circularly polarized Gaussian beam into a vector Bessel beam with high efficiency.metasurfaces). This low-profile lens-antenna has a subwavelength overall thickness to realize a high directivity (exceeding 20 dB). The design achieves an order-ofmagnitude size reduction over previously reported lensantenna [16]. Finally, a metasurface providing polarization rotation (polarization rotator) is placed directly above the Bessel beam launcher to transform the incident TMpolarized Bessel beam into a transmitted TE-polarized Bessel beam. This polarization rotator is isotropic and rotates any linear electric field polarization by π =2. In the future, metasurfaces providing a polarization rotation of angles less extreme than π =2 can be used for exciting arbitrary combinations of TM and TE polarizations for focus shaping or generating tractor beams [2,17]. II. REVIEW OF VECTOR BESSEL BEAMS Vector Bessel beams are axially symmetric beam solutions to Maxwell’s equations [18,19]. They can be written as  kη ˆ ˆ − CTE jJ 1 ðkρ ρÞϕ E ¼ e−jkz z CTM J0 ðkρ ρÞz kρ  kz ˆ ; þCTM jJ1 ðkρ ρÞρ kρ  k −jkz z ˆ ˆ þ CTM CTE J0 ðkρ ρÞz H¼e jJ ðk ρÞϕ ηkρ 1 ρ  kz ˆ ; þCTE jJ1 ðkρ ρÞρ ð1Þ kρ where CTM and CTE represent the coefficients of the TM- (radially) and TE- (azimuthally) polarized Bessel beams, respectively. A time-harmonic progression of ejωt ˆ direction is assumed. In Eq. (1), kρ and propagation in the z and kz are the transverse and longitudinal wave numbers, respectively, which satisfy the separation relation 2 2 2 k2 z þ kρ ¼ k ¼ ω ϵμ, and J 0 ðkρ ρÞ and J 1 ðkρ ρÞ are the zeroth- and first-order Bessel functions of the first kind. Nonparaxial Bessel beams with transverse wave numbers044012-2CONTROLLING VECTOR BESSEL BEAMS …8 6 4 2 kρx 0 −2 2 −4 4 −6 6 −8 8 −5 5 0 k yρPHYS. REV. APPLIED 2, 044012 (2014)/20− /25−8 6 4 2 k x 0 −2 2 −4 4 −6 6 −8 8 −5 5 0 k yρ/20ρ− /25−FIG. 3. (a) Analytic model used to design each unit cell. (b) Schematic of a typical unit cell. This particular cell acts as a half-wave plate with its fast axis oriented along ϕ ¼ −π =8. (c) Fabricated metasurface that converts a linearly polarized Gaussian beam into a vector Bessel beam. (d) Fabricated metasurface that converts a circularly polarized Gaussian beam into a TM-polarized Bessel beam.FIG. 2. (a) Designed metasurface that converts a linearly polarized Gaussian beam into a vector Bessel beam. Each unit cell acts as a half-wave plate. When the incident polarization of ˆ and y ˆ , the transmitted the Gaussian beam is oriented along x Bessel beam is TM and TE polarized, respectively. (b) Designed metasurface that converts a circularly polarized Gaussian beam into a TM-polarized Bessel beam. Each unit cell acts as a quarterwave plate. For both plots, the lines and color correspond to the orientation of the slow axis and the phase shift of the fast axis, respectively.IV. GENERATING BESSEL BEAMS The metasurfaces are fabricated by using standard printed-circuit-board processes. The top layers are shown in Figs. 3(c) and 3(d). Both metasurfaces have an operating frequency of 9.9 GHz, a radius of 99 mm ð3.3λÞ, and an overall thickness of 3.13 mm ðλ=9.6Þ. They are experimentally characterized by illuminating them with a Gaussian beam [27]. The transmitted fields are scanned at a distance z ¼ 15 mm from the surface. The normally incident Gaussian beam had a beam waist radius of w0 ¼ 57 mm ð1.9λÞ. The experimental setup is identical to that described in Ref. [14], and additional measurement details are provided in Supplemental Material [23]. First, the linear-to-Bessel metasurface is illuminated with x- and y-polarized electric fields, and the transmitted tangential magnetic field is measured, as shown in Figs. 4(a) and 4(b). When illuminated with x and y polarization, the transmitted magnetic field is polarized ˆ and ρ ˆ , respectively. Note that radially (TM-) and along ϕ azimuthally (TE-) polarized Bessel beams have tangential ˆ and ρ ˆ directions, magnetic fields that are polarized in the ϕ as given by Eq. (1). The nondiffracting property of the TMpolarized Bessel beam is also verified by measuring the longitudinal electric field, as shown in Fig. 4(c). It can becapacitance from the top-hat loaded crossed dipole at the center. Each sheet admittance can be controlled by adjusting the dimensions and orientation of the crossed dipole relative to the x axis. An additional advantage of this geometry is that the metallic grid outlining the unit cell reduces undesired coupling between neighboring unit cells, which is inherent to inhomogeneous designs such as this [24]. The average simulated transmittances of the fast and slow axes of all unit cells comprising the linear-to-Bessel metasurface are 0.93 and 0.84, respectively. The average simulated transmittances of the fast and slow axes of all unit cells comprising the circular-to-Bessel metasurface are 0.80 and 0.79, respectively. This high transmittance demonstrates that both metasurface designs exhibit low loss and are impedance matched to free space. Additional design details are provided in Supplemental Material [23].044012-3CARL PFEIFFER AND ANTHONY GRBIC3 2 1 y/λ 0 0.5 1 y/λPHYS. REV. APPLIED 2, 044012 (2014)|H/Hinc|1.4 1.2 1 0.8 0.6 0.4|H/H inc|1.53 2 1 0−1 −2 −3 −3 −2 −1 0 x/λ 1 2 3−1 −2 −3 −3 −2 −1 0 x/λ 1 2 30.2ˆ direction, the circular-to-Bessel direction rather than the þz metasurface would instead convert right-handed-circular polarization into the TM polarization. Figure 4(f) plots the profile of the transmitted wave front for the cases where an x-polarized field is incident upon the linear-to-Bessel metasurface and a left-handed-circular-polarized field is incident upon the circular-to-Bessel metasurface. In addition, an ideal Bessel-Gauss pattern [J 0 ðkρ ρÞ expð−ρ2 =w2 0 Þ] is plotted as a reference. V. COLLIMATING BESSEL BEAMS Thus far, two different metasurfaces are reported that show efficient polarization and wave-front control. The metasurfaces transform a collimated beam (Gaussian beam) into a Bessel beam. The performance of the metasurfaces can be further verified by operation in a reciprocal manner: transforming an incident TMpolarized Bessel beam into a collimated beam. In this configuration, a planar Bessel beam launcher is integrated with the two developed metasurface lenses to realize lowprofile lens-antennas. The Bessel beam launcher presented in Refs. [28,29] radiates a TM-polarized Bessel beam just above its surface. The linear-to-Bessel and circular-to-Bessel metasurfaces are placed a subwavelength distance from the launcher to collimate the radiation and convert the polarization from radial to linear or circular, respectively [see Fig. 5(a)]. A 4-mm-thick foam spacer composed of Rohacell 31 HF (ϵr ¼ 1.046 and tan δ ¼ 0.0017) is used to separate the metasurfaces from the Bessel beam launcher. The Bessel beam launcher generates a TM-polarized Bessel beam by using a leaky radial waveguide whose thickness is deeply subwavelength (λ=50). Outward- and inward-propagating Hankel functions within the radial waveguide interfere to produce a Bessel beam. The gain of the Bessel beam launcher alone is measured to be 5.2 dB at the operating frequency of 9.9 GHz, and its radiation pattern is shown in Fig. 5(b) [30]. The experimental setup of the Bessel beam launcher and metasurface lens combination is shown in Fig. 5(c). Figures 5(d) and 5(e) show the radiation patterns when the linear-to-Bessel and circular-to-Bessel metasurfaces are placed 4 mm ðλ=7.5Þ from the Bessel beam launcher, respectively. The radiation generated by the Bessel beam launcher is collimated by the metasurfaces to the broadside direction. The gains of the linear and circular lens-antennas are measured to be 22.1 and 20.4 dB, respectively, at the operating frequency. Both lensantennas exhibited a cross-polarization level of less than −20 dB relative to the copolarized radiation in the direction of the main beam. The half-power gain bandwidths are measured to be 8.1% and 7.6% for linear and circular polarizations, respectively. The overall thickness of the Bessel beam launcher and metasurface lens combination is 7.7 mm ðλ=3.9Þ. In comparison, a typical lens-antenna system places an elementary source|Ez | (a.u.)3 2 1y/λ|H/H inc|3 2 1 y/λ 1.4 1.2 1 0.8 0.6 0.4100.50−1 −2 −3 −3 0 −2 −1 0 x/λ 1 2 3−1 −2 −3 −3 −2 −1 0 x/λ 1 2 30.21 0.8Linear Input Circular Input Ideal Bessel1|E ||E z| (a.u.)2 z/λ 1 0 −3 −2 −1 0 x/ λ 1 2 3 0.50.6 0.4 0.2 0 −3 −2 −1 0 1 2 3zr/λFIG. 4. Measurements of the fabricated metasurfaces at the operating frequency of 9.9 GHz. For all plots, the arrows point in the direction of the magnetic field, and the color corresponds to the absolute value of the magnetic or electric fields. (a),(b) Transmitted magnetic field when x- and y-polarized Gaussian beams are incident on the linear-to-Bessel metasurface, respectively. (c) Transmitted z-directed electric field when an x-polarized Gaussian beam is incident upon the linear-to-Bessel metasurface. (d),(e) Transmitted magnetic field in the xy plane and z-directed ˆ -propagating, electric field in the xz plane, respectively, when a z left-handed-circularly-polarized Gaussian beams is incident on the circular-to-Bessel metasurface. (f) Profile of the transmitted wave front when x-polarized and left-handed-circular-polarized Gaussian beams are incident upon the linear-to-Bessel and circular-to-Bessel metasurfaces, respectively. In addition, an ideal Gaussian truncated Bessel pattern is plotted as a reference.seen that the electric field closely resembles a zeroth-order Bessel function, as expected. Next, the circular-to-Bessel metasurface is characterized. As shown in Fig. 4(d), a left-handed-circular polarization incident on the circular-to-Bessel metasurface results in a ˆ -directed TM-polarized Bessel beam, as evidenced by the ϕ magnetic field. In addition, Fig. 4(e) shows that the Bessel beam propagates a considerable distance from the metasurface located at the z ¼ 0 plane. It should be noted that, ˆ if the incident Gaussian beam were to travel in the −z044012-4CONTROLLING VECTOR BESSEL BEAMS …0PHYS. REV. APPLIED 2, 044012 (2014) VI. TRANSFORMING THE POLARIZATION OF BESSEL BEAMS90−30270 −20 −10 0 dB1800Co−pol E−plane Co−pol H−plane Cr−pol E−plane Cr−pol H−plane 0 dB 270900φ=0° plane φ=90° plane90−30−20−10−30−20−100 dB 270In addition to the two metasurfaces that generate and collimate vector Bessel beams, an isotropic and homogeneous metasurface that converts the polarization from TM to TE (and vice versa) is developed. This metasurface is referred to as a polarization rotator, because it rotates any linearly polarized wave front by π =2 [36]. In contrast, a half-wave plate rotates the polarization by π =2 only when the incident linear polarization is oriented at π =4 relative to the principal axes of the wave plate. To demonstrate cylindrical polarization conversion, the polarization rotator shown in Fig. 6 is placed 4 mm from the Bessel beam launcher to convert the polarization from TM to TE. This experiment provides excellent verification of the metasurface, since a TM polarization contains spatially varying linear polarizations of all orientations. Similar to the linear-to-Bessel and circular-to-Bessel metasurfaces, the polarization rotator consists of cascaded metallic sheets, as shown in Fig. 6(b). However, the principal axes of each sheet comprising the polarization180180FIG. 5. Transforming a Bessel beam into a highly collimated beam. (a) Schematic of the Bessel beam generation and its conversion to a collimated beam. (b) Measured radiation pattern of the Bessel beam launcher. (c) Experimental setup of the circular-to-Bessel metasurface placed on top of the Bessel beam launcher. A 4-mm Rohacell 31 HF foam spacer separates the Bessel beam launcher and the metasurface. (d) Measured radiation pattern of the Bessel beam launcher with the linearto-Bessel metasurface placed on top. (e) Measured radiation pattern of the Bessel beam launcher with the circular-to-Bessel metasurface placed on top.3 2|H | (a.u.)1 0.8 0.6 0 −1 −2 −3 −3 −2 −1 0 x/λ 1 2 3 0.4 0.2|H | (a.u.)3 2 1y/ λ1 0.8 0.6(e.g., low-gain horn antenna) at a significant distance (multiple wavelengths) from a lens. This distance allows the fields to spread out so that a large beam size (or, equivalently, a high directivity) can be realized. Previous lens-antenna systems have overall thicknesses that are larger than the lens radius (99 mm) to realize similar gains [16]. Thus, the proposed lens-antenna design has an orderof-magnitude size reduction over the state of the art. It should be noted that traveling-wave antennas utilizing radial line slots [31,32], partially reflecting surfaces [33], fast-wave structures [34], and modulated surface impedances [35] can also generate highly directive radiation with a planar structure. However, these antennas often have prohibitively narrow operating bandwidths [33] and require time-consuming optimization techniques during design [32].1 y/λ0 −1 −2 −3 −3 −2 −1 0 x/ λ 1 2 3 0.4 0.2FIG. 6. Transforming a TM-polarized Bessel beam into a TE-polarized Bessel beam by using a polarization rotator. (a) Bottom side of the fabricated polarization rotator. (b) Schematic of a section of the polarization rotator. (c) Measured magnetic field radiated by the Bessel beam launcher. (d) Measured magnetic field after the polarization rotator is placed 4 mm from the Bessel beam launcher. Again, the arrows point in the direction of the magnetic field, and the color corresponds to the absolute value of the magnetic field.044012-5CARL PFEIFFER AND ANTHONY GRBIC rotator are rotated with respect to the others. This rotation gives the metasurface a significant chiral response, which is necessary to achieve isotropic polarization rotation [36]. In addition, the polarization rotator is homogeneous, which has the advantage that only a single unit cell needs to be designed. The polarization rotator is designed to operate at 10 GHz, but fabrication tolerances shift the operating frequency to 9.8 GHz. Figure 6(c) shows the magnetic field radiated by the Bessel beam launcher, and Fig. 6(d) shows the field after the polarization rotator is placed on top. The field is efficiently converted from TM to TE by the polarization rotator. VII. SUMMARY This work extends the capabilities of metasurfaces to enable highly efficient polarization and phase control of a wave front. This result is demonstrated with two different metasurfaces that transform linearly and circularly polarized Gaussian beams to vector Bessel beams. In addition, the metasurfaces are operated in a reciprocal manner. They are combined with a planar Bessel beam launcher to realize a lens-antenna with a subwavelength overall thickness that achieves a high directivity. Finally, an isotropic polarization rotator is used to convert a cylindrical polarization from radial to azimuthal. Inhomogeneous and anisotropic metasurfaces that provide extreme wave-front control are considered here. In the future, a bianisotropic response could be added to allow for additional polarization control [36]. For example, it is shown that the linear-to-Bessel metasurface generates radial polarization when illuminated with x polarization and azimuthal polarization when illuminated with y polarization. In contrast, it can be shown that the circular-toBessel metasurface requires an additional chiral response in order to achieve the same effect with incident right-handedcircular and left-handed-circular polarizations. In addition, the lens-antenna can be further optimized by incorporating other leaky-wave or surface-wave feeding structures to replace the Bessel beam launcher [37–39]. This optimization would enable amplitude control as well as phase and polarization control. In addition, this work can be extended to infrared and visible wavelengths [40,41], which could enable a myriad of compact nanophotonic devices. In particular, it should be possible to realize tractor beams composed of both TM- and TE-polarized Bessel beams, from incident Gaussian beams [2]. ACKNOWLEDGMENTS The authors thank M. Ettorre and S. M. Rudolph for designing and fabricating the Bessel beam launcher. The authors also acknowledge helpful discussions with Dr. Nicholaos Limberopoulos and Dr. Boris Tomasic from the Sensors Directorate, Air Force Research Laboratory. This work is supported by the Air Force Research LaboratoryPHYS. REV. APPLIED 2, 044012 (2014) through the Advanced Materials, Manufacturing and Testing Information Analysis Center (AMMTIAC) contract with Alion Science and Technology, Contract No. FA4600060D003, the National Science Foundation Materials Research Science and Engineering Center program DMR 1120923 (Center for Photonics and Multiscale Nanomaterials at the University of Michigan), and a Presidential Early Career Award for Scientists and Engineers No. FA9550-09-1-0696.[1] D. McGloin and K. Dholakia, Bessel beams: Diffraction in a new light, Contemp. Phys. 46, 15 (2005). [2] Andrey Novitsky, Cheng-Wei Qiu, and Haifeng Wang, Single gradientless light beam drags particles as tractor beams, Phys. Rev. Lett. 107, 203601 (2011). [3] Florian O. Fahrbach, Philipp Simon, and Alexander Rohrbach, Microscopy with self-reconstructing beams, Nat. Photonics 4, 780 (2010). [4] Marti Duocastella and Craig B. Arnold, Bessel and annular beams for materials processing, Laser Photonics Rev. 6, 607 (2012). [5] Ralf Dorn, S. Quabis, and G. Leuchs, Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91, 233901 (2003). [6] Qiwen Zhan, Cylindrical vector beams: From mathematical concepts to applications, Adv. Opt. Photonics 1, 1 (2009). [7] J. Durnin, J. J. Miceli, and J. H. Eberly, Diffraction-free beams, Phys. Rev. Lett. 58, 1499 (1987). [8] N. Yu and F. Capasso, Flat optics with designer metasurfaces, Nat. Mater. 13, 139 (2014). [9] A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Planar photonics with metasurfaces, Science 339, 1232009 (2013). [10] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54, 10 (2012). [11] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334, 333 (2011). [12] Francesco Aieta, Patrice Genevet, Mikhail A. Kats, Nanfang Yu, Romain Blanchard, Zeno Gaburro, and Federico Capasso, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces, Nano Lett. 12, 4932 (2012). [13] Xingjie Ni, Satoshi Ishii, Alexander V. Kildishev, and Vladimir M. Shalaev, Ultra-thin, planar, babinet-inverted plasmonic metalenses, Light Sci. Appl. 2, e72 (2013). [14] C. Pfeiffer and A. Grbic, Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets, Phys. Rev. Lett. 110, 197401 (2013). [15] Jiao Lin, Patrice Genevet, Mikhail A. Kats, Nicholas Antoniou, and Federico Capasso, Nanostructured holograms for broadband manipulation of vector beams, Nano Lett. 13, 4269 (2013).044012-6。

相关文档
最新文档