最优化计算方法课程设计4
最优化方法课程设计
四川理工学院《最优化方法》课程论文题目:基于Matlab的单纯形法仿真实验姓名:刘宇泽专业:信息与计算科学班级:一班学号:12071030113完成日期:2015年6月27日四川理工学院理学院二O一五年六月摘要线性规划是运筹学中研究最早、发展最快、应用广泛、方法较成熟的一个重要分支,它是辅导人们进行科学管理的一种数学方法。
是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。
为了得到线性目标函数的极值,我们有多重方法。
本文采用单纯形算法求解线性规划问题的最优解,并通过Matlab软件编写程序进行求解。
最终得到线性规划问题的最优解,进一步验证了求解问题的精度,较良好。
关键词:线性规划单纯性算法Matlab程序目录一、问题提出 (1)二、设计思路和步骤 (1)三、程序设计 (2)3.1问题分析 (2)3.2 算法设计 (2)3.3 程序编制 (3)3.4算法框图 (4)四、结果分析 (5)4.1设计结果 (5)4.2 进一步讨论和验证 (5)五、收获和总结 (5)六、结束语 (6)6.1设计的优缺点 (6)6.2设计工作展望 (6)6.3学习心得与体会 (6)一、 问题提出本文运用单纯形算法解下列问题:,0,0,0,43252-2.5.53.26.00.2)(min 43214321432143214321≥≥≥≥≤-++≥+++≤--+-+--=x x x x x x x x x x x x x x x x ts x x x x x f ,,二、设计思路和步骤2.1设计思路单纯形法的基本思路:根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2,…x n 的值称为一个解,满足所有的约束条件的解称为可行解。
使目标函数达到最大值(或最小值)的可行解称为最优解。
这样,一个或多个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值)。
求解线性规划问题的目的就是要找出最优解。
最优化算法课程设计系统
最优化算法课程设计系统一、教学目标本节课的最优化算法课程设计系统教学目标分为三个维度:知识目标、技能目标和情感态度价值观目标。
1.知识目标:学生需要掌握最优化算法的基本概念、原理和常用的算法。
通过学习,学生能够了解最优化问题的定义、特点和解决方法,理解最优化算法的原理和应用场景,掌握常用的最优化算法及其优缺点。
2.技能目标:学生能够运用所学的最优化算法解决实际问题,提高问题求解的能力。
通过实践,学生能够熟练使用最优化算法进行问题求解,提高解决问题的效率和准确性。
3.情感态度价值观目标:学生能够认识最优化算法在实际生活和工作中的重要性,培养对最优化算法的兴趣和好奇心,培养合作、创新和持续学习的意识。
二、教学内容本节课的教学内容主要包括最优化算法的基本概念、原理和常用的算法。
1.最优化问题的定义和特点:介绍最优化问题的定义、特点和解决方法,让学生了解最优化问题的背景和应用场景。
2.最优化算法的原理:讲解常用的最优化算法(如梯度下降法、牛顿法、共轭梯度法等)的原理和实现方法,分析各种算法的优缺点和适用条件。
3.最优化算法的应用:通过实例分析,让学生了解最优化算法在实际问题中的应用,培养学生的实际问题求解能力。
三、教学方法为了提高教学效果,本节课将采用多种教学方法相结合的方式进行教学。
1.讲授法:通过讲解最优化算法的基本概念、原理和常用的算法,让学生掌握最优化算法的基础知识。
2.案例分析法:通过分析实际问题,让学生了解最优化算法的应用场景,提高问题求解能力。
3.实验法:让学生动手实践,使用最优化算法解决实际问题,培养学生的实际问题求解能力。
四、教学资源为了支持本节课的教学,将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供最优化算法的基本概念、原理和常用的算法。
2.参考书:提供相关领域的参考书籍,为学生提供更多的学习资料。
3.多媒体资料:制作精美的PPT,直观地展示最优化算法的基本概念、原理和常用的算法。
最优化方法及其应用课程设计
最优化方法及其应用课程设计一、引言随着计算机技术的不断发展,最优化问题得到了越来越广泛的应用,包括机器学习、数字信号处理、图像处理、智能控制等领域。
本文将介绍最优化方法及其应用课程设计的背景、目的、内容和教学方法。
二、背景与目的最优化方法是一种数学方法,其在现代工程领域应用广泛,包括寻找最优化解、优化设计、参数优化等方面。
本课程设计旨在让学生掌握最优化方法的基本原理与实际应用,培养学生的数学建模能力、计算机编程能力以及跨学科解决问题的综合能力。
三、内容本课程设计分为两个部分:最优化方法理论的讲授和实践操作。
1. 最优化方法理论在最优化方法理论的部分,我们将首先介绍最优化方法的基本思想和方法,包括:•单目标优化和多目标优化•线性规划•非线性规划•约束优化•动态优化紧接着,我们将通过实际案例演示最优化方法在实际问题中的应用,包括:•图像处理中的最优化问题•机器学习中的最优化问题•网络优化问题2. 实践操作在实践操作的部分,我们将采用Python语言讲授最优化方法的实现与应用。
具体包括:•Python语言基础•数值计算•优化算法通过课堂教学和实践操作的综合实践,学生将会掌握Python编程语言的基础知识、最优化方法的基本思想和方法、最优化方法在实际问题中的应用、采用Python语言对最优化方法的实现与应用。
四、教学方法本课程设计采用理论授课和实践操作相结合的教学模式。
在教学过程中,我们将引导学生积极参与,通过自主学习、探究和发现问题的方法,提高学生综合分析和解决问题的能力,同时注重教学的实际应用性,鼓励学生灵活运用所学知识解决实际问题。
五、总结本课程设计旨在为计算机科学与技术专业学生提供一门实践性很强并且具有广泛应用价值的课程,帮助学生了解最优化方法的基本思想和方法,掌握最优化方法在实际问题中的应用,提高专业能力和实践能力。
最优化课程设计
最优化课程设计一、课程目标知识目标:1. 学生能理解并掌握本章节最优化问题的基本概念,包括线性规划、整数规划和非线性规划等;2. 学生能够运用数学模型解决实际问题,并进行合理优化;3. 学生掌握常用的最优化方法,如单纯形法、分支定界法和梯度下降法等。
技能目标:1. 学生能够运用数学软件(如MATLAB、Excel等)进行最优化问题的求解;2. 学生通过小组合作,提高团队协作能力和沟通表达能力;3. 学生具备分析实际问题时,能够运用所学知识进行问题抽象和建模的能力。
情感态度价值观目标:1. 学生培养对数学学科的热爱,增强对最优化问题的兴趣;2. 学生通过解决实际最优化问题,培养解决问题的信心和耐心;3. 学生认识到数学知识在实际生活中的广泛应用,提高学习的积极性和主动性。
课程性质:本课程为数学学科的一章,主要研究最优化问题的基本概念、方法及其应用。
学生特点:学生为高中年级,具备一定的数学基础,对数学问题有一定的分析和解决能力。
教学要求:教师需结合学生特点,注重启发式教学,引导学生主动探究,提高学生的实践操作能力。
在教学过程中,将课程目标分解为具体的学习成果,以便于后续的教学设计和评估。
二、教学内容本章节教学内容主要包括以下几部分:1. 最优化问题的基本概念:介绍最优化问题的定义、分类和数学描述,包括线性规划、整数规划和非线性规划等。
2. 最优化方法:详细讲解以下几种常用最优化方法:- 单纯形法:解决线性规划问题;- 分支定界法:解决整数规划问题;- 梯度下降法:解决非线性规划问题。
3. 数学软件应用:结合实际案例,教授学生如何使用MATLAB、Excel等软件进行最优化问题的求解。
4. 实际案例分析与建模:选取与学生生活密切相关的实际案例,引导学生进行问题分析、建模和求解。
教学大纲安排如下:第一课时:最优化问题的基本概念;第二课时:线性规划及单纯形法的应用;第三课时:整数规划及分支定界法的应用;第四课时:非线性规划及梯度下降法的应用;第五课时:数学软件在求解最优化问题中的应用;第六课时:实际案例分析、建模与求解。
最优化方法及应用教学设计
最优化方法及应用教学设计最优化方法是一种应用数学的方法,用于找到函数的最佳解决方案。
它通常包括数学建模、问题分析、目标函数和约束条件的定义、算法的选择和实施等步骤。
最优化方法在实际问题的解决中具有广泛的应用,包括经济学、工程学、运筹学等领域。
在教学设计中,可以通过结合理论讲解和实际案例演示,帮助学生理解最优化方法的原理和应用。
以下是一个教学设计示例:1. 引入最优化方法概念(150字)首先引入最优化方法的概念和基本步骤,解释最优化问题的定义和解的概念。
通过举例说明最优化方法的重要性和应用领域。
2. 数学建模与问题分析(300字)介绍数学建模的基本思想和步骤,通过给定实际问题,引导学生提出数学建模的思路和方法。
然后,讲解问题分析的过程和方法,包括确定目标函数、约束条件、自变量和因变量等内容。
通过演示具体案例,让学生理解建模和问题分析的重要性。
3. 目标函数和约束条件的定义(300字)详细讲解目标函数和约束条件的定义,包括约束条件的等式和不等式形式。
通过实例展示目标函数和约束条件的具体定义过程,例如最小化成本、最大化利润等。
引导学生理解目标函数和约束条件在最优化问题中的作用。
4. 算法的选择和实施(400字)介绍最优化算法的选择和实施过程,包括线性规划、整数规划、非线性规划等常见的最优化算法。
通过给定实例,引导学生选择合适的算法,并讲解算法的实施步骤,如建立数学模型、求解最优解等。
通过实际操作,让学生熟悉算法的选择和实施过程。
5. 应用案例分析(300字)引导学生分析和解决实际应用问题,如生产优化、资源分配等。
通过给定的应用案例,让学生运用最优化方法进行问题求解,并提出优化建议。
通过实践操作,让学生掌握最优化方法在实际问题中的应用。
6. 总结和讨论(150字)总结教学内容,回顾最优化方法的基本概念和应用步骤。
展开讨论,让学生发表对最优化方法的理解和看法,并提出相关问题。
鼓励学生思考如何将最优化方法应用到其他领域中。
最优化方法课程设计_斐波那契法分析与实现 完整版
最优化方法题目:斐波那契法分析与实现院系:信息与计算科学学院专业:统计学姓名学号:小熊熊 11071050137 指导教师:大胖胖日期: 2014 年 01 月 10 日摘要科学的数学化是当代科学发展的一个主要趋势,最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案.一维搜索是指寻求一元函数在某个区间上的最优点的方法.这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化.本文就斐波那契法的一维搜索进行了详细的分析,并且成功的用 MATLAB 实现了斐波那契法求解单峰函数的极小值问题.斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进行的,斐波那契法成功地实现了单峰函数极值范围的缩减.从理论上来说,斐波那契法的精度比黄金分割法要高.但由于斐波那契法要事先知道计算函数值的次数,故相比之下,黄金分割法更为简单一点,它不需要事先知道计算次数,并且当n 7 时,黄金分割法的收敛速率与斐波那契法越来越接近.因此,在实际应用中,常常采用黄金分割法. 斐波那契法也是一种区间收缩算法,和黄金分割法不同的是:黄金分割法每次收缩只改变搜索区间的一个端点,即它是单向收缩法. 而斐波那契法同时改变搜索区间的两个端点,是一种双向收缩法.关键字:一维搜索斐波那契法单峰函数黄金分割法MATLABAbstractMathematical sciences is a major trend in contemporary scientific development, optimization theory and algorithms is an important branch of mathematics, the problems it was discussed in numerous research programs in the best of what programs and how to find the optimal solution .One-dimensional search is the best method of seeking functions of one variable on the merits of a certain interval. Such methods not only have practical value, but also a large number of multi-dimensional optimization methods rely on a series of one-dimensional optimization article on Fibonacci the one-dimensional search method carried out a detailed analysis, and successful in MATLAB Fibonacci method for solving unimodal function minimization problem.Fibonacci method of one-dimensional search process is based on the Fibonacci sequence is called a Fibonacci conducted on, Fibonacci method successfully achieved a unimodal function extreme range reduction. Theory , Fibonacci method accuracy is higher than the golden section method, but the number of times due to the Fibonacci method to calculate function values to know in advance, so the contrast, the golden section method is more simply, it does not need to know in advance the number of calculations and at that time, the rate of convergence of golden section and the Fibonacci method getting closer, so in practical applications, often using the golden section method. Fibonacci method is also a range contraction algorithm, and the golden section method the difference is: golden section each contraction only one endpoint to change the search range that it is unidirectional shrinkage law Fibonacci search method while changing the two endpoints of the range, is a two-way contraction method.Key words: one-dimensional search Fibonacci method unimodal function Golden Section function MATLAB目录1.前言 (1)1.1 一维搜索 (1)1.2 单峰函数 (1)1.3 单峰函数的性质 (1)2.斐波那契法分析 (2)2.1 区间缩短率 (2)2.2 斐波那契数列 (3)2.3 斐波那契法原理 (3)2.4 斐波那契法与黄金分割法的关系 (6)3.斐波那契法实现 (7)3.1 斐波那契算法步骤 (7)3.2 斐波那契法的MATLAB 程序 (8)3.3 斐波那契算法举例 (10)4.课程设计总结 (12)4.1 概述 (12)4.2 个人心得体会 (12)5.参考文献 (13)1 *1. 前言一维搜索是指寻求一元函数在某区间上的最优值点的方法.这类方法不仅有 实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化.斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进 行的.从理论上来说,斐波那契法的精度比黄金分割法要高.但由于斐波那契法要 事先知道计算函数值的次数,故相比之下,黄金分割法更为简单一点,它不需要 事先知道计算次数,并且当 n ≥ 7 时,黄金分割法的收敛速率与斐波那契法越来 越接近.因此,在实际应用中,常常采用黄金分割法. ·1.1 一维搜索很多迭代下降算法具有一个共同点,即得到点 x k 后,需要按某种规则确定 一个方向 d k ,再从 x k 出发,沿着方向 d k 在直线或射线上寻求目标函数的极小点, 进而得到 x k 的后继点 x k +1 .重复上面的做法,直至求得问题的解.这里所谓求目标 函数在直线上的极小点,称为一维搜索或线性搜索.·1.2 单峰函数定义 1.2.1 设 f 是定义在闭区间[a , b ]上的一元实函数,x * 是 f 在[a , b ]上的极小点,对 ∀x 1 , x 2 ∈ [a , b ] 且 x 1 < x 2 ,当 x 2 ≤ x 时, f (x 1 ) > f (x 2 ) ,当 x * ≤ x 时,f (x 2 ) > f (x 1 ) ,则称 f 是闭区间[a , b ]上的单峰函数.·1.3 单峰函数的性质单峰函数具有很重要的性质:通过计算闭区间[a , b ]内两个不同点处的函数 值,就能确定一个包含极小点的子区间.这也是斐波那契法的理论基础.为了后面分析的方便,先证明下面的定理,这个定理是斐波那契方法的理论 基础.定理 1.3.1 设 f 是闭区间 [a , b ] 上的单峰函数, x 1 , x 2 ∈ [a , b ] ,且 x 1 < x 2 .如果f (x 1 ) > f (x 2 ) , 则 对 ∀x ∈ [a , x 1 ] , 有 f (x ) > f (x 2 ) ; 如 果 f (x 1 ) ≤ f (x 2 ) , 则 对∀x ∈ [x 2 , b ],有 f (x ) ≥ f (x 1 ).证明:(反证法)先证第一种情形.假设当 f (x 1 ) > f (x 2 ) 时, []1x x a ,∈∃,使得* 2f (x )≤ f (x 2 ) .(1.3.1.1)显然 x 1 不是极小点.这时有两种可能性,要么极小点 x ∈ [a , x 1 ),要么 x ∈ (x 1 , b ] .当 x ∈ [a , x 1 )时,根据单峰函数的定义,有f (x 2 ) > f (x 1 ) .(1.3.1.2)这与假设矛盾.当 x ∈ (x 1 , b ]时,根据单峰函数的定义,有f (x )> f (x ). 1(1.3.1.3)由于假设 f (x 1 ) > f (x 2 ) ,因此(1.3.1.3)式与(1.3.1.1)式相矛盾.综上可知,当f (x 1 ) > f (x 2 ) 时,对∀x ∈ [a , x 1 ],必有f (x ) >f (x 2 ) .(1.3.1.4)同理可以证明第二种情形.证毕. 根据上面的定理知:只需选择两个试探点,就可以将包含极小点的区间缩短.事实上,如果 f (x 1 ) > f (x 2 ) ,则 x ∈ [x 1 , b ] ;如果 f (x 1 ) ≤ f (x 2 ) ,则 x * ∈ [a , x ].这就是斐波那契法的理论基础.2. 斐波那契法分析斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进 行的.在此之前,有必要知道区间缩短率以及斐波那契数列的概念. ·2.1 区间缩短率定义 2.1.1 在逐次缩短区间时,设)10(......)10()10(112211221111<<=--<<=--<<=----k k k k kk a b a b a b a b a b a b ττττττ称τk (k = 1,2,⋅ ⋅ ⋅) 为区间缩短率.对于上面的τk 不外乎两种情况,要么τk = c ,要么τk ≠ c ( c 为常数).第一种3情况就可以引入前面提到的黄金分割法,第二种情况就是下面要分析的斐波那契 法.·2.2 斐波那契数列斐波那契数列是 13 世纪,由意大利的数学家列昂纳多·斐波那契(Leonardo Fibonacci)提出的,当时和兔子的繁殖问题有关,它是一个很重要的数学模型. 斐波那契数列,又被称为“黄金分割数列”,它指的是这样的一个数列:数列的 第一个和第二个数都为 1,接下来每个数都等于前面两个数的和.在数学上,斐波那契数列有如下的递归定义:⎩⎨⎧=+===--,...3,2,12110n F F F F F n n n故,斐波那契数列如表 2.2.1 所示.表 2.2.1 斐波那契数列表n0 1 2 3 4 5 6 7 8 9 …F n11235813213455…斐波那契数列的通项公式(又称为“比内公式”)如下:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=nn n a 25125151 此时).,3(,1,1*2121N n n a a a a a n n n ∈≥+===-- 2.3 斐波那契法原理在定义2.1.1中,若为常数)c c (k ≠τ,可取kk k F F 1-=τ.其中k F 满足斐波那契数列的递推关系。
实用最优化方法第三版课程设计
实用最优化方法第三版课程设计一、引言随着数值计算技术和计算机硬件设施的快速发展,最优化方法在科学、工程和经济领域中得到了广泛应用。
实用最优化方法是一门交叉学科,涉及数学、计算机科学、应用统计学、运筹学、工业工程等多个领域。
本课程将介绍最优化方法的基本概念、数学理论和相关算法,以及它们在实际问题中的应用。
二、课程目标本课程旨在使学生掌握最优化方法的基本概念和理论,并能熟练应用各种最优化算法解决实际问题。
具体目标如下:1.理解最优化问题的定义、形式和分类;2.掌握最优化模型的建立方法和求解技巧;3.熟悉常用最优化算法的原理、优缺点和适用范围;4.能够使用软件工具解决实际的最优化问题;5.培养学生的科学素养和实际操作能力。
三、课程大纲第一章最优化问题的基本概念1.1 优化问题的定义与分类 1.2 最优解的存在与唯一性 1.3 凸优化问题的性质和解法 1.4 梯度下降法、牛顿法和拟牛顿法第二章线性规划2.1 线性规划问题的标准型 2.2 单纯形法和对偶理论 2.3 整数规划和混合整数规划第三章非线性规划3.1 非线性规划问题的形式化描述 3.2 无约束优化问题的解法3.3 约束优化问题的解法 3.4 全局优化问题的解法第四章非线性方程组和方程求解4.1 非线性方程组的求解方法 4.2 无约束最小化问题的求解及其应用 4.3 连续和离散函数最优化的重要应用第五章数值优化软件5.1 Matlab的优化工具箱 5.2 R语言的优化软件 5.3 Python的Scipy优化库第六章应用案例分析6.1 供应链优化 6.2 生产计划与排产 6.3 飞机航线优化 6.4 基于机器学习的最优化四、教学方法和评估方式本课程采用课堂讲授和实验练习相结合的教学方法,教师会提供许多实际问题和案例,学生可以在课后按照教材和指导文件完成实验练习。
评估方式主要包括平时成绩、实验成绩和期末考试成绩。
其中平时成绩包括作业成绩、上课表现及课堂积极性等方面。
最优化原理与方法课程设计
最优化原理与方法课程设计一、课程设计背景最优化原理与方法是现代数学和工程学的重要分支之一,它的应用广泛涉及到人工智能、金融、医学、生物、交通等众多领域中,因此它对于专业人士的培训显得非常必要。
本次课程设计将会着重介绍最优化原理与方法的相关知识,并给出实际应用的例子。
二、课程设计目的本次课程设计的目的在于:1.分析和研究加工工艺,提高生产效率和精度;2.通过分析与算法研究, 提高线路规划的效率;3.提高优化问题的设计和解决能力。
三、课程设计内容3.1 线性规划问题线性规划问题是最优化算法中经典的问题之一, 它是指对若干线性约束关系进行优化, 最终求解出使得某个标准函数最优的变量取值。
在线性规划问题中, 可以用的最常用的算法是单纯性法和内点算法。
3.2 非线性规划问题非线性规划问题是指在某些条件下, 优化目标函数不再是线性规划, 而会出现一些非线性的因素。
此时,硬件效能的速度就不能确保算法的正确性了, 需要使用一些新的逼近式算法。
目前比较常用的算法是线性规划的简单与复杂的变形方法。
3.3 数值优化方法数值优化方法是优化算法中的主要方法之一,主要是针对实数域上的优化问题,它可以使用各种不同的算法来解决特定的优化问题。
常见的数值优化算法包括牛顿法、拟牛顿法、共轭梯度法、漫步法等。
四、实验内容4.1 线性规划实验本实验主要用于理解和应用线性规划理论, 可以通过计算线性规划的算法, 解决相关的优化问题, 包括使某个标准函数最小或最大等方向的问题。
4.2 非线性规划实验本实验主要用于理解和应用非线性优化理论, 可以使用相关算法, 解决相关情况下出现的非线性问题。
通过这次实验,学生可以对非线性规划问题有一定的了解, 并能够对实际中常见的问题进行处理。
4.3 数值优化实验本实验主要用于理解和应用数值优化理论, 可以使用相关算法, 解决各种实数域上的优化问题, 例如求某函数的最小值,最大值等相关问题。
此外, 学生也可以通过本实验了解和掌握涉及到数字计算的优化问题,可以掌握相关算法和技术, 以在实际中的应用问题中起到实质性的帮助作用。
最优化计算方法(工程优化)第4章
点。
如果 2 f x 负定,则 x 为 f (x) 的严格局部极大点。
无约束优化的最优性条件----凸优化的一阶条件
定理(一阶充要条件)
设 f : Rn R 是凸函数且在 x 处连续可微,则 x 为 f (x)的全局极小点的充要条件是 f (x*) 0.
f (x p) f (x)+f (x)T p o( )
P是什么方向时,函数值 f (x p) 下降最快?也就是
p是什么方向时,f (x)T p 取得最小值?
f (x)T p f (x) p cos(f (x), p)
当 cos(f (x), p) 1 时,f (x)T p 最小,最小值为
令 f x 0, 即:
利用一阶条件 求驻点
利用二阶条件 判断驻点是否 是极小点
x12 1 0
x22
2x2
0
得到驻点: 1 1 1 1
x1
0 ,
x2
2 ,
x3
0
,
x4
2
.
无约束优化的最优性条件
函数 f x 的Hesse阵:
2
f
x
2x1
0
0
2
x2
2
利用二阶条件 判断驻点是否 是极小点
2 0
0 2
的行列式小于0;
x1, x4是鞍点;
2
f
x2
2 0
0
2
是正定矩阵;
x2 是极小点;
2
f
x3
2 0
0 2
是负定矩阵;
x3 是极大点。
• 对某些较简单的函数,这样做有时是可行的;
最优化算法课程设计
最优化算法课程设计一、课程目标知识目标:1. 让学生掌握最优化算法的基本概念和原理,如线性规划、整数规划等;2. 使学生了解最优化算法在实际问题中的应用,如资源分配、路径规划等;3. 帮助学生理解最优化问题的求解过程,以及不同算法的优缺点。
技能目标:1. 培养学生运用数学建模方法将实际问题转化为最优化问题的能力;2. 培养学生运用最优化算法解决实际问题的能力,包括选择合适的算法、编写程序、调试和优化等;3. 提高学生的团队合作意识和沟通能力,通过小组讨论和报告,分享解题思路和经验。
情感态度价值观目标:1. 培养学生对最优化算法的兴趣,激发他们探索数学问题的热情;2. 培养学生具备勇于挑战、不断尝试的精神,面对复杂问题时保持积极的心态;3. 培养学生认识到数学知识在实际生活中的重要作用,增强他们的应用意识和创新意识。
课程性质:本课程为数学选修课,适用于高中年级。
结合学生特点和教学要求,课程目标旨在提高学生的数学素养,培养他们的创新能力和实际应用能力。
1. 理解并掌握最优化算法的基本概念和原理;2. 运用数学建模方法将实际问题转化为最优化问题;3. 选择合适的最优化算法解决实际问题,并具备编写程序、调试和优化能力;4. 提高团队合作意识和沟通能力,分享解题思路和经验;5. 增强对数学知识的兴趣,培养勇于挑战、不断尝试的精神;6. 认识到数学知识在实际生活中的重要作用,提高应用意识和创新意识。
二、教学内容根据课程目标,教学内容主要包括以下几部分:1. 最优化算法基本概念与原理- 线性规划的基本概念、数学模型及求解方法;- 整数规划的基本概念、数学模型及求解方法;- 非线性规划的基本概念、数学模型及求解方法。
2. 最优化算法在实际问题中的应用- 资源分配问题的数学建模与求解;- 路径规划问题的数学建模与求解;- 生产计划问题的数学建模与求解。
3. 最优化算法程序设计与实践- 常见最优化算法的程序实现;- 编程环境与工具介绍;- 算法调试与优化。
最优化方法课程设计
《最优化方法》课程设计题目:可行方向法分析与实现院系:数学与计算科学学院专业:统计学姓名学号:XXXX 12007XXXXX指导教师:李丰兵日期:2015 年01 月22日摘要在各种优化算法中,可行方向法是非常重要的一种。
可行方向法是通过直接处理约束问题,得到一个下降可行方向,从而产生一个收敛于线性约束优化问题的K-T点。
本文主要介绍的Zoutendiji可行方向法是求解约束优化问题的一种有代表性的直接解法.在本次实验中,本人对该门课程中的线性约束非线性最优化问题进行了一定程度地了解和研究,而处理线性约束非线性最优化问题的关键是在求解过程中,不仅要使目标函数值单调下降,而且还要保证迭代点的搜索方向为下降可行方向。
所以,本人使用利用线性规划方法来确定d的可行方向法k——Z outendijk可行方向法进行处理。
本人通过数学软件MATLAB探讨了优化设计的实现方法及实现验证的效果,更进一步地加深了对它的理解也提高了处理该问题的水平能力。
而且该方法初始参数输入简单,编程工作量小,具有明显的优越性.关键词:Zoutendiji可行方向法,约束优化问题,下降可行方向。
AbstractIn a variety of optimization algorithms, the feasible descent method is a very important one. The feasible direction method is by directly dealing with constraints, getting a feasible direction, to produce a convergence in the k-t point of the linear constrained optimization problems. Zoutendiji feasible direction method is mainly introduced in this paper to solve the constrained optimization problem of a kind of typical and direct solution.In this experiment, We have a certain degree of understanding and researching in this course of linear constrained nonlinear optimization problem。
运筹学与最优化方法课程设计
运筹学与最优化方法课程设计一、背景本课程是针对大学计算机科学专业大二学生开设的一门课程,主要介绍运筹学和最优化方法的基本概念和应用。
从解决实际问题出发,掌握运筹学和最优化方法的基本思想和方法,特别是用线性规划模型、网络模型、整数规划模型以及动态规划模型来解决实际问题。
二、教学目标1.了解运筹学和最优化方法的基本概念和概念体系;2.掌握运筹学和最优化方法的基本思想和方法;3.能够应用线性规划模型、网络模型、整数规划模型以及动态规划模型来解决实际问题。
三、教学内容及安排第一章运筹学与线性规划1.运筹学的概述2.线性规划的概述3.线性规划的基本理论4.单纯形法5.敏感度分析6.对偶理论第二章网络模型1.网络模型的基本概念2.最小生成树问题3.最短路径问题4.最大流问题5.匹配问题第三章整数规划1.整数规划的概述2.分支定界法3.割平面法4.隐枚举法5.其他启发式算法第四章动态规划1.动态规划的基本原理2.状态转移方程3.最优子结构性质4.条件无后效性质5.多阶段决策过程四、课程设计任务本次课程设计的主要任务是,设计一个实际问题,运用运筹学和最优化方法中的线性规划模型、网络模型、整数规划模型、动态规划模型等方法进行求解,同时需要撰写一份课程设计报告,说明设计的过程和结果。
任务一:问题设计设计一个实际问题,涉及两个或多个决策变量,要求是一个具有较好的实际意义的问题,并能够运用所学方法进行求解。
任务二:方案求解根据所设计的问题,选择运筹学和最优化方法中的线性规划模型、网络模型、整数规划模型、动态规划模型等方法进行求解,并分析解的可行性和优越性。
任务三:课程设计报告撰写根据所设计问题的求解过程,撰写一份课程设计报告,要求结构严谨,内容全面,记录整个解题过程,包括问题的描述、模型的建立、数据的输入、求解算法的设计与实现、结果的分析和讨论等,同时要求表达清晰,语言规范,排版整洁。
五、评分要求评分将根据以下的标准进行:1.任务一:问题设计,评分依据涉及问题的实际意义和科学性;2.任务二:方案求解,评分依据所选方法的科学性和正确性;3.任务三:课程设计报告撰写,评分依据内容全面、表述清晰、结构严谨、排版整洁。
最优化计算方法
ymax=subs(y,x,xmax)
Newton 法
求方程F(x)=0的根.
牛顿法: x(n)=x(n-1)-F(x(n-1))/F’(x(n-1))
F = dydx; F1 = diff(F,x); format long N = 10; % number of iterations x0 = 19 % initial guess fprintf(' iteration xvalue\n\n'); for i=1:N x1=x0-subs(F,x,x0)/subs(F1,x,x0); fprintf('%5.0f %1.16f\n', i, x1); x0 = x1; end display('Hence, the critical point (solution of F=0) is (approx)'), x1
xmax figure, ezcontourf(z,[0.1 10 0.1 10]) hold on plot3(xmax(1),xmax(2),zmax, 'mo', 'LineWidth',2,... 'MarkerEdgeColor','k', 'MarkerFaceColor',[.49 1 .63],... 'MarkerSize',12); title('Countour plot and optimal value');
a=0; b=6; c=0; d=6; N=1000; x0 = a+(b-a)*rand(1); y0 = c+(d-c)*rand(1); zmin = subs(z,[x,y],[x0,y0]); fprintf(' Iteration xmin ymin zmin value\n\n'); for n=1:N xnew=a+(b-a)*rand(1); ynew=c+(d-c)*rand(1); znew=subs(z,[x,y],[xnew,ynew]); if znew<zmin xmin=xnew; ymin=ynew; zmin=znew; fprintf('%4.0f %1.6f %1.6f %1.6f\n', n, xmin, ymin, zmin); end end
最优化算法课程设计目的
最优化算法课程设计目的一、课程目标知识目标:1. 让学生掌握最优化算法的基本概念、原理和应用场景,理解其在工程、经济、管理等领域的重要意义。
2. 使学生了解几种典型的最优化算法,如线性规划、整数规划、非线性规划等,并掌握其数学模型和求解方法。
3. 帮助学生建立数学模型,运用最优化算法解决实际问题,提高数学应用能力。
技能目标:1. 培养学生运用数学软件(如MATLAB、Lingo等)进行最优化算法求解的能力。
2. 培养学生分析问题、建立模型、求解问题和总结反思的能力。
3. 提高学生的团队协作和沟通能力,学会在小组讨论中分享观点、倾听他人意见。
情感态度价值观目标:1. 培养学生对最优化算法的兴趣和热情,激发学生学习数学、研究问题的积极性。
2. 培养学生面对复杂问题时,具有勇于尝试、不断探索的精神。
3. 增强学生的创新意识,让学生认识到最优化算法在现实生活中的重要作用,提高社会责任感。
课程性质分析:本课程为选修课,旨在提高学生的数学素养和解决实际问题的能力。
课程内容具有一定的理论性和实践性,要求学生在理解基本概念和原理的基础上,学会运用最优化算法解决实际问题。
学生特点分析:学生为高中生,具有一定的数学基础和逻辑思维能力,但可能在面对实际问题时缺乏分析、求解的经验。
教学要求:结合课程性质、学生特点,将课程目标分解为具体的学习成果,注重理论与实践相结合,提高学生的数学建模和问题求解能力。
在教学过程中,关注学生的个体差异,提供针对性的指导,确保学生能够达到预期的学习效果。
二、教学内容1. 最优化算法概述- 定义、分类及应用场景- 最优化问题的数学模型2. 线性规划- 线性规划的基本概念与性质- 线性规划的数学模型- 简单线性规划的图解法- 单纯形法及求解过程3. 整数规划- 整数规划的基本概念与性质- 整数规划的数学模型- 分支定界法及求解过程- 割平面法及求解过程4. 非线性规划- 非线性规划的基本概念与性质- 非线性规划的数学模型- 拉格朗日乘数法及求解过程- 梯度投影法及求解过程5. 应用案例分析- 经济管理领域的最优化问题- 工程技术领域的最优化问题- 其他领域的最优化问题6. 数学软件应用- MATLAB、Lingo等软件的介绍与操作- 利用软件求解最优化问题教学内容安排与进度:第一周:最优化算法概述第二周:线性规划第三周:整数规划第四周:非线性规划第五周:应用案例分析第六周:数学软件应用教学内容与教材关联:本教学内容依据教材《数学建模与最优化方法》的相应章节进行组织,确保学生能够系统地学习和掌握最优化算法的相关知识。
最优化理论与方法课程设计
最优化理论与方法课程设计一、课程设计背景在现代工业和科学领域,优化问题绝对是一个非常重要的问题。
例如,在制造业领域中,如何使生产过程更加高效以及如何实现最小成本生产,这都是必须深入研究的问题。
在科学领域中,优化问题也常常出现在研究过程中。
因此,通过学习最优化理论和方法,可以帮助我们更好地理解和解决这些优化问题。
二、课程设计目标本次课程设计的目的是帮助学生了解最优化理论和方法,并能够通过所学知识解决相关优化问题。
通过本次课程设计,学生将掌握以下能力:1.理解最优化的相关概念和理论2.掌握常用最优化方法和算法3.能够分析并解决实际问题中的优化问题三、课程设计内容和要求1. 课程设计内容本次课程设计共分为两个阶段,具体如下:阶段一在第一阶段中,学生需要熟悉最优化的相关概念和理论,并掌握常用最优化方法和算法。
具体内容如下:1.最优化问题的定义和分类2.凸优化问题的概念和性质3.常用最优化方法和算法,如线性规划,非线性规划,整数规划等4.优化问题的求解工具和软件,如MATLAB、Python等阶段二在第二阶段中,学生需要分析并解决一个实际的优化问题。
具体内容如下:1.学生需要选择一个实际问题,并确定其优化目标2.学生需要从已学知识中选择一个或多个合适的算法进行求解3.学生需要编写求解程序,并通过算法求解该问题4.学生需要对算法的正确性和求解结果的合理性进行验证和分析2. 课程设计要求本次课程设计的要求如下:1.学生需要以Markdown文本格式进行输出,要求思路清晰,语言简洁明了2.学生需要在第二阶段中,对所选择的实际问题进行充分调研和了解,并对其优化目标进行明确3.学生需要对所编写的求解程序进行测试,并保证在合理时间内能够得到正确的求解结果4.学生需要对求解结果进行分析,并对所选算法的优缺点进行评价和总结四、总结通过本次课程设计,学生可以充分掌握最优化理论和方法,并能够通过所学知识解决实际的优化问题。
学生不仅可以提高自身的分析和解决问题的能力,还可以为未来从事相关领域的工作打下坚实的基础。
最优化理论与算法课程设计
最优化理论与算法课程设计1. 引言最优化理论和算法是一门非常重要的学科,在不同的领域中都有着广泛的应用。
本课程设计旨在通过学习最优化理论和算法的相关知识,掌握一些重要的算法和设计方法,以及相应的应用技巧。
通过本次课程设计,可以提高对最优化理论和算法的应用能力,从而为未来的相关工作打下坚实的基础。
2. 课程设计目标本课程的主要目标是让学生掌握最优化理论和算法的相关知识,包括:最优化方法的基本框架、各种不同类型的最优化算法、最优化模型的建立、以及相关的数学理论和应用。
通过本课程的学习,学生可以:•理解和掌握不同类型的最优化算法,例如:线性规划、非线性规划、整数规划、半定规划等。
•熟悉不同类型的最优化模型,并能够根据实际问题建立相应的模型来求解。
•掌握最优化算法的原理和实现方法,并能够编写相应的程序进行求解。
•了解最优化理论的最新进展,并能够将其应用于实际问题的求解中。
3. 课程设计内容本课程设计涵盖了如下内容:3.1 最优化理论的基本概念•最优化问题的定义和分类;•最优化问题存在性和唯一性的判定方法;•凸性和凸优化;•一些重要的最优化性质,例如KKT条件。
3.2 线性规划•线性规划的定义和标准形式;•单纯形法求解线性规划;•对偶性理论和应用;•整数线性规划的求解方法。
3.3 非线性规划•非线性规划的定义和分类;•一些基本的非线性规划算法,例如梯度法、牛顿法等;•一些复杂的非线性规划算法,例如全局优化算法等;•贝尔曼最优化原理及优化方法。
3.4 半定规划•半定规划的定义和分类;•一些基本的半定规划算法,例如内点法等;•半定规划的应用领域及实例。
3.5 近似算法•近似算法的定义和分类;•常用的近似算法,例如贪心算法、LP松弛算法等;•近似算法的理论保证和应用实例。
4. 课程设计要求本课程设计采用个人独立完成的形式,具体要求如下:•学生需要阅读相关的教材和文献,全面理解所学内容;•学生需要选取一个现实中的最优化问题,并对其模型进行建立;•学生需要选择一个或多个合适的最优化算法,并将其应用于求解所选问题;•学生需要编写程序实现所选择的算法,并给出相应的算法性能分析;•学生需要编写课程设计报告,详细介绍所选问题、所建立的模型、所选择的算法和程序实现等。
最优化课程设计
最优化课程设计一、课程目标知识目标:1. 学生能理解并掌握最优化问题的基础概念,如线性规划、非线性规划等。
2. 学生能运用数学模型解决实际问题,建立最优化问题的数学模型。
3. 学生能掌握并运用求解最优化问题的方法,如单纯形法、梯度下降法等。
技能目标:1. 学生具备分析实际问题时,能够将其转化为最优化问题的能力。
2. 学生能够运用数学软件或工具解决最优化问题,并能够解释结果。
3. 学生能够通过小组合作,共同探讨并解决复杂的最优化问题。
情感态度价值观目标:1. 学生能够认识到数学在解决实际问题中的广泛应用,增强数学学习的兴趣。
2. 学生通过解决最优化问题,培养严谨、细致的科学态度。
3. 学生能够从团队合作中学会相互尊重、沟通与协作,培养团队精神。
课程性质:本课程为数学学科的一节应用性课程,旨在让学生通过解决实际最优化问题,巩固数学知识,提高数学应用能力。
学生特点:学生处于高中年级,具有一定的数学基础和分析问题的能力,但对于最优化问题的理解尚浅。
教学要求:结合学生特点,课程要求注重理论与实践相结合,强调学生的动手操作能力和团队合作能力,培养解决实际问题的能力。
通过本课程的学习,使学生能够将所学知识应用于实际生活和工作中。
二、教学内容1. 最优化问题概念:介绍最优化问题的定义、分类(线性规划、非线性规划等)及其应用场景。
教材章节:第二章第二节《最优化问题的概念》2. 数学建模:通过实例讲解如何将实际问题抽象为数学模型,包括目标函数、约束条件等要素的确定。
教材章节:第二章第三节《数学建模》3. 求解方法:讲解线性规划问题的单纯形法、非线性规划问题的梯度下降法等求解方法。
教材章节:第二章第四节《最优化问题的求解方法》4. 数学软件应用:指导学生运用数学软件(如MATLAB、Lingo等)解决最优化问题。
教材章节:第二章第五节《数学软件在优化问题中的应用》5. 实践案例分析:分析实际案例,引导学生运用所学知识解决实际问题。
最优化方法课程设计.doc
最优化方法课程设计报告2016年 6月 14 日摘要最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各个部门及各个领域。
伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。
其中,MATLAB软件已经成为最优化领域应用最广的软件之一。
有了MATLAB这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。
关键词:优化、线性规划,黄金分割法、最速下降法、MATLAB、算法AbstractOptimization theory and methods and more attention, have penetrated into the production, management, business, military, decision-making and other fields, and optimization models and methods widely used in industry, agriculture, transportation, commerce, defense, construction, students, government various departments and agencies and other fields. With the rapid development of computer technology, optimization theory and methods for the rapid progress of the optimization problem to solve practical software is also developing rapidly. Which, MATLAB software has become the most optimization software is one of the most widely used. With this powerful computing platform MATLAB, either using MATLAB optimization toolbox (OptimizationToolbox) in the function, but also can achieve the appropriate algorithm to optimize into the calculation.Key words: Optimization、Golden section method、steepest descent method、MATLAB、algorithm第一章单纯形算法的基本思想与原理1.1 单纯形算法的基本思路单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。
最优化牛顿法课程设计
最优化牛顿法课程设计一、课程目标知识目标:1. 理解最优化牛顿法的基本概念、原理及数学表达式;2. 掌握运用牛顿法解决无约束最优化问题的步骤与方法;3. 了解牛顿法与其他优化算法(如梯度下降法)的区别与联系。
技能目标:1. 能够运用牛顿法求解无约束最优化问题,并分析其收敛性;2. 能够运用数学软件(如MATLAB、Python等)实现牛顿法求解最优化问题;3. 能够针对实际问题,选择合适的优化算法,并解释原因。
情感态度价值观目标:1. 培养学生对最优化问题的兴趣,激发其探索精神;2. 培养学生具备团队协作意识,善于倾听他人意见,共同解决问题;3. 培养学生具备严谨的科学态度,在面对复杂数学问题时,能够保持冷静,勇于挑战。
课程性质分析:本课程属于数学学科,旨在让学生掌握最优化方法及其应用。
课程内容具有一定的理论性、实践性和挑战性。
学生特点分析:学生为高中年级,具有一定的数学基础和逻辑思维能力,但可能对最优化问题的了解有限。
教学要求:结合学生特点,课程设计应注重理论与实践相结合,突出方法的应用,注重启发式教学,引导学生主动探究和思考。
通过本课程的学习,使学生在知识、技能和情感态度价值观方面得到全面提升。
二、教学内容1. 牛顿法的基本原理及其数学推导;- 定义无约束最优化问题;- 引入牛顿法的概念;- 探讨牛顿法的数学表达式及几何意义。
2. 牛顿法的算法步骤与应用实例;- 演示牛顿法的迭代过程;- 分析牛顿法的收敛性;- 举例说明牛顿法在实际问题中的应用。
3. 牛顿法与其他优化算法的比较;- 对比牛顿法与梯度下降法的优缺点;- 分析不同算法的适用场景;- 探讨牛顿法在实际应用中的优势。
4. 数学软件实现牛顿法;- 介绍MATLAB、Python等数学软件的基本操作;- 利用软件实现牛顿法求解无约束最优化问题;- 分析软件求解结果,验证算法的有效性。
5. 实际问题中的应用案例分析;- 选取实际问题,提出最优化问题模型;- 应用牛顿法求解,分析结果;- 讨论结果的实际意义,激发学生学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优化计算方法课程设计
2015.12.7
2015年11月30日上机题目
题目21
编写程序实现多元函数的牛顿法。
编写函数[x,minf]=minNewton(f,x0,var,eps).
其中f为目标函数,x0为初始点,
var自变量向量,eps为算法终止的精度。
用牛顿法求解多维无约束优化问题minf(x)。
算法为:
function [x,minf]=minNewton(f,x0,var,eps)
xk=x0;
k=0;
df=jacobian(f,var);
ddf=jacobian(df,var);
k1=0;
kmax=10000;
while(k1<kmax)
if(norm(subs(df,var,xk))<=eps)
x=double(xk);
minf=double(subs(f,var,xk));
break;
end
dk=-inv(subs(ddf,var,xk))*subs(df,var,xk)';
xk=xk+dk';
k=k+1;
k1=k1+1;
end
if(k1>=kmax)
x='error';
minf='error';
end
题目22
用牛顿法求解无约束二元函数f(t,s)=(t-4)2+(s+2)2+1的极小值,初始点取x
=(0,0)T。
在Matlab输入如下:
clear
clc
syms t;
syms s;
f=(t-4)^2+(s+2)^2+1;
x0=[0,0];
var=[t,s];
eps=0.01;
[x,minf]=minNewton(f,x0,var,eps)
结果为:
x =[4 ,-2]
minf = 1
题目23
编写程序实现多元函数的修正牛顿法。
编写函数[x,minf]=modifiedNewton(f,x0,var,eps).
其中f为目标函数,x0为初始点,
var自变量向量,eps为算法终止的精度。
用修正牛顿法求解多维无约束优化问题minf(x)。
算法为:
function [x,minf]=modifiedNewton(f,x0,var,eps)
xk=x0;
k=0;
df=jacobian(f,var);
ddf=jacobian(df,var);
syms alpha1;
k1=0;
kmax=10000;
while(k1<kmax)
if(norm(subs(df,var,xk))<=eps)
x=double(xk);
minf=double(subs(f,var,xk));
break;
end
dk=-inv(subs(ddf,var,xk))*subs(df,var,xk)';
[alphak,temp]=Goldstein(subs(f,var,xk+alpha1*dk'),inf,0.4 ,0.75,2,eps,alpha1);
if(alphak=='error')
x='error';
minf='error';
break;
end
xk=xk+alphak*dk';
k=k+1;
k1=k1+1;
end
if(k1>=kmax)
x='error';
minf='error';
end
题目24
用修正牛顿法求解无约束二元函数f(t,s)=(t-4)2+(s+2)2+1的极小值,初始点取x
=(0,0)T。
在Matlab输入如下:
clear
clc
syms t;
syms s;
f=(t-4)^2+(s+2)^2+1;
x0=[0,0];
var=[t,s];
eps=0.01;
[x,minf]=modifiedNewton(f,x0,var,eps)
结果为:
x = [3.9958 ,-1.9979]
minf =1.0000
题目25
编写程序实现多元函数的DFP法。
编写函数[x,minf]=QNDFP(f,x0,var,eps).
其中f为目标函数,x0为初始点,
var自变量向量,eps为算法终止的精度。
用DFP法求解多维无约束优化问题minf(x)。
算法为:
function [x,minf]=QNDFP(f,x0,var,eps)
xk=x0;
k=0;
n=length(xk);
Hk=eye(n);
syms alpha1;
df=jacobian(f,var);
k1=0;
kmax=1000;
s=2;
while(k1<=kmax)
if(s==2)
if(norm(subs(df,var,xk))<=eps)
x=double(xk);
minf=double(subs(f,var,xk));
break;
else
s=3;
end
end
if(s==3)
dk=-Hk*subs(df,var,xk)';
k=0;
s=4;
end
if(s==4)
[alphak,temp]=Goldstein(subs(f,var,xk+alpha1*dk'),inf,0.4 ,0.75,2,eps,alpha1);
if(alphak=='error')
x='error';
minf='error';
break;
end
tempxk=xk;
xk=xk+alphak*dk';
s=5;
end
if(s==5)
if(norm(subs(df,var,xk))<=eps)
x=double(xk);
minf=double(subs(f,var,xk));
break;
else
s=6;
end
end
if(s==6)
if(k==n+1)
s=3;
else
s=7;
end
end
if(s==7)
sk=xk-tempxk;
yk=subs(df,var,xk)-subs(df,var,tempxk);
Hk=Hk+sk'*sk/dot(sk,yk)-Hk*yk'*yk*Hk/dot(yk*Hk,yk);
dk=-Hk*subs(df,var,xk)';
s=4;
end
k1=k1+1;
end
if(k1>=kmax)
x='error';
minf='error';
end
题目26
用DFP法求解无约束二元函数f(t,s)=t2-ts+s2+2的极小值,初始点取x
=(-4,6)T。
在Matlab输入如下:
clear
clc
syms t;
syms s;
f=t^2-t*s+s^2+2;
x0=[-4,6];
var=[t,s];
eps=0.01;
[x,minf]=QNDFP(f,x0,var,eps)
结果为:
x =[0.0010, 0.0028]
minf =2.0000。