熊伟编《运筹学》习题二详细解答
运筹学答案(熊伟)上
![运筹学答案(熊伟)上](https://img.taocdn.com/s3/m/3d8a7948e45c3b3567ec8bed.png)
教材习题答案部分有图形的答案附在各章PPT文档的后面,请留意。
第1章线性规划第2章线性规划的对偶理论第3章整数规划第4章目标规划第5章运输与指派问题第6章网络模型第7章网络计划第8章动态规划第9章排队论第10章存储论第11章决策论第12章对策论习题一1.1 讨论下列问题:(1)在例1.1中,假定企业一周内工作5天,每天8小时,企业设备A有5台,利用率为0.8,设备B有7台,利用率为0.85,其它条件不变,数学模型怎样变化.(2)在例1.2中,如果设x j(j=1,2,…,7)为工作了5天后星期一到星期日开始休息的营业员,该模型如何变化.(3)在例1.3中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简述板材下料的思路.(4)在例1.4中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化.(5)在例1.6中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每天的加工时间不超过另一种设备任一台加工时间1小时,模型如何变化.1.2 工厂每月生产A、B、C三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-22所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.3 建筑公司需要用6m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:【解】设x j (j =1,2,…,14)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为14112342567891036891112132347910121314min 2300322450232400232346000,1,2,,14jj j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩∑ 用单纯形法求解得到两个基本最优解X (1)=( 50 ,200 ,0 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=534 X (2)=( 0 ,200 ,100 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,150 ,0 ,0 );Z=534 (2)余料最少数学模型为134131412342567891036891112132347910121314min 0.60.30.70.40.82300322450232400232346000,1,2,,14j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j =+++++⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩ 用单纯形法求解得到两个基本最优解X (1)=( 0 ,300 ,0 ,0,50 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料550根 X (2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根 显然用料最少的方案最优。
运筹学版熊伟编著习题答案
![运筹学版熊伟编著习题答案](https://img.taocdn.com/s3/m/30c8f86d58f5f61fb73666c9.png)
运筹学(第3版)习题答案P36 P74 P88 P105 P142 P173 P195 P218 P248 P277 P304 品P343 P371全书420页第1章 线性规划工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.产品 资源 A B C 资源限量 材料(kg) 4 2500 设备(台时) 3 1400 利润(元/件)101412310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:型号A 型号B 每套窗架需要材料长度(m ) 数量(根)长度(m) 数量(根)A 1:2 2B 1: 2 A 2:3 B 2:23需要量(套)300400问怎样下料使得(1)用料最少;(2)余料最少. 【解 方案 一 二 三 四 五 六 七 八 九 十 需要量 B1 2 1 1 1 0 0 0 0 0 0 800 B2 2 0 1 0 0 2 1 1 0 0 0 1200 A1 2 0 0 1 0 0 1 0 2 1 0 600 A2120 2 3 900 余料(m) 0 1 1 1 01设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩某企业需要制定1~6月份产品A 的生产与销售计划。
熊伟编《运筹学》附录D判断题答案
![熊伟编《运筹学》附录D判断题答案](https://img.taocdn.com/s3/m/92cc3cf710661ed9ac51f3a1.png)
附录D判断题答案(把它下载到你的电脑,编辑,把字体放大就行了线性规划1.X不一定有最优解2.V3.X不一定4.V5.V6.X是非线性规划模型,但可以转化为线性规划模型7.V8.V9.X不一定是可行基,基本可行解对应的基是可行基10.V11.V12.V13.V14.X原问题可能具有无界解15.V16.V17.V18.V19.X应为|B|工020.X存在为零的基变量时,最优解是退化的;或者存在非基变量的检验数为零时,线性规划具有多重最优解线性规划的对偶理论21.V22.V23.X不一定24.V25.X对偶问题也可能无界26.( 1) X 应为CX*> Y*b ( 2) V (3) V ( 4) V (5) V (6) V27.V28.X应为对偶问题不可行29.X应为最优值相等30.X不一定31.X影子价格是单位资源对目标函数的贡献32.X用单纯形法计算;或原问题不可行对偶问题可行时用对偶单纯形法计算33.X原问题无可行解34.X求解原问题bi I c u - bi , c35.X应为max | ir 0 b r min | ir 0i ir ir36.V37.V38.X不一定39.V40.X同时变化时最优解可能发生变化整数规划41.X取整后不一定是原问题的最优解42.X称为混和整数规划43.V44.V45.V46.V47.V48.Vn49.X应是a ij x j b i—My ij 150.V目标规划51.X正负偏差变量全部非负52.V53.V54.X至少一个等于零55.V56.X应为min Z d57.V58.X—定有满意解59.V60.V运输与指派问题61.X 唯一62.X变量应为6个63.X—定有最优解64.V65.V66.有可能变量组中其它变量构成闭回路67.V68.X有mn个约束70.X(A) = m+n — 171.V72.V73.X应为存在整数最优解,但最优解不一定是整数74.X效率应非负。
运筹学习题答案(第二章)
![运筹学习题答案(第二章)](https://img.taocdn.com/s3/m/02893017f342336c1eb91a37f111f18582d00c54.png)
0
-5/4
(j)
第二章习题解答
2.4 给出线性规划问题 写出其对偶问题;(2)用图解法求解对偶问题;(3)利用(2)的结果及根据对偶问题性质写出原问题最优解。
最优解是:y1=-8/5,y2=1/5,目标函数值-19/5。
01
由于 y1=-8/5,y2=1/5都不等于零,原问题中的约束取等号。又上面第4个约束不等号成立,故x4=0,令x3=0就可以得到最优解: x1=8/5,x2=1/5。
3
2
5
0
0
0
CB
基
b
X1
X2
X3
X4
X5
X6
2
X2
15-7/4
1/4
1
0
0
0
1/4
5
X3
30+
3/2
0
1
0
1/2
0
0
X4
3 /2-5
-1
0
0
1
-1/2
-1/2
Cj-Zj
-7
0
0
-1
-2
0
第二章习题解答
第二章习题解答
2.14 某厂生产A,B,C三种产品,其所需劳动力、材料等有关数据见下表:
第二章习题解答
已知原问题最优解为X*=(2,2,4,0),代入原问题,第4个约束不等式成立,故y4=0。有由于x1,x2,x3大于0,上面对偶问题前3个约束取等号,故得到最优解: y1=4/5, y2,=3/5, y3=1, y4=0
第二章习题解答
2.8 已知线性规划问题A和B如下:
01
01
02
2.6 已知线性规划问题
运筹学II习题解答(DOC)
![运筹学II习题解答(DOC)](https://img.taocdn.com/s3/m/ad0bfed0de80d4d8d05a4f28.png)
第七章决策论1. 某厂有一新产品,其面临的市场状况有三种情况,可供其选择的营销策略也是 三种,每一钟策略在每一种状态下的损益值如下表所示,要求分别用非确定型 决策的五种方法进行决策(使用折衷法时a = 0.6)。
悲观法:根据“小中取大”原则,应选取的经营策略为 乐观法:根据“大中取大”原则,应选取的经营策略为 折中法(a =0.6):计算折中收益值如下:51 折中收益值=0.6x50+0.4x (-5)=28 52 折中收益值=0.6x30+0.4x0=18 S3 折中收益值=0.6x10+0.4x10=10 显然,应选取经营策略s1为决策方案。
平均法:计算平均收益如下:S3: 故选择策略s1,s2为决策方案。
'最小遗憾法:分三步 第一,定各种自然状态下的最大收益值,如方括号中所示;第二,确定每一方案在不同状态下的最小遗憾值, 并找出每一方案的最大 遗憾值如S1: x i = (50+10-5) /3=55/3 S2:X2=(30+25)/3=55/3(4)s3; s1X 3=(1O+1O)/3=1O(5)】(1) (2)圆括号中所示;第三,大中取小,进行决策。
故选取S1作为决策方案。
经营 策略市场状况Q1Q2 Q3 S1 0 (15)15S2 (20) 0 10 S3(40)152•如上题中三种状态的概率分别为:0.3,0.4, 0.3,试用期望值方法和决策树方法决策。
(1)用期望值方法决策:计算各经营策略下的期望收益值如下:CSi ) =£尸住 i )XH 二1匸53-13〔S3) =2 FC^i)X3i = 10j-1故选取决策S 2时目标收益最大。
(2)用决策树方法,画决策树如下:尸(內)=0. 4 八十)=0- 317.531抉策19 /—f …—30of 尸®曲4 △圧佥八、尸(内)二0・3 灵0 ——— 1010 尸(内)二0・3 P(&1)二Q ・3 P (i j l e i ) 构造差(11)构造一般(12)构造好(l 3)无油(e 1) 0.6 0.3 0.1 贫油(e 2)0.30.4 0.3 富油(e 3)0.10.40.5假定勘探费用为1万元,试确定:3.某石油公司拟在某地钻井,可能的结果有三:无油 (e 1),贫油(e 2)和富油(e3), 估计可能的概率为:P (e 1)=0.5, P (e 2)=O .3, P (e 3)=0.2。
运筹学课后习题答案 熊伟(第二版)
![运筹学课后习题答案 熊伟(第二版)](https://img.taocdn.com/s3/m/f98e4d2abd64783e09122b2a.png)
v5
v6
v1
0
8.8
8.6
5.6
8
6
v2
0
8
5
13
4
v3
0
3
4.8
12
v4
0
7.8
9
v5
0
9
v6
0
v1、v2、…、v6到各点的最优路线图分别为:
6.9设图6-43是某汽车公司的6个零配件加工厂,边上的数字为两点间的距离(km)。现要在6个工厂中选一个建装配车间。
(1)应选那个工厂使零配件的运输最方便。
距离表C
1
2
3
4
5
6
1
∞
8.8
9
5.6
8
6
2
8.8
∞
10
5
∞
4
3
9
10
∞
3
4.8
14
4
5.6
5
3
∞
12
∞
5
8
∞
4.8
12
∞
9
6
6
4
14
∞
9
∞
在C中行列分别减除对应行列中的最小数,得到距离表C1。
距离表C1
1
2
3
4
5
6
1
∞
3.2
3.4
0
0.6
0.4
2
2.8
∞
6
1
∞
0
3
4
7
∞
0
0
11
4
0.6
2
0
∞
7.2
A到H的最短路PAH={A,B,F,H},{A,C,F,H}最短路长22;A到I的最短路PAI={A,B,F,I},{A,C,F,I}最短路长21。
运筹学课后答案2
![运筹学课后答案2](https://img.taocdn.com/s3/m/b7989722cfc789eb172dc8a5.png)
运筹学(第2版)习题答案2第1章 线性规划 P36~40第2章 线性规划的对偶理论 P68~69 第3章 整数规划 P82~84 第4章 目标规划 P98~100 第5章 运输与指派问题 P134~136 第6章 网络模型 P164~165 第7章 网络计划 P185~187 第8章 动态规划 P208~210 第9章 排队论 P239~240 第10章 存储论 P269~270 第11章 决策论 Pp297-298 第12章 博弈论 P325~326 全书360页由于大小限制,此文档只显示第6章到第12章,第1章至第5章见《运筹学课后答案1》习题六6.1如图6-42所示,建立求最小部分树的0-1整数规划数学模型。
【解】边[i ,j ]的长度记为c ij ,设⎩⎨⎧=否则包含在最小部分树内边0],[1j i x ij数学模型为:,12132323243434364635365612132434343546562324463612132446362335244656121324354656m in 52,22,233344,510ij ijij i j ij Z c x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ==++≤++≤++≤++≤+++≤+++≤+++≤++++≤++++≤+++++≤=∑或,[,]i j ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩所有边6.2如图6-43所示,建立求v 1到v 6的最短路问题的0-1整数规划数学模型。
图6-42【解】弧(i ,j )的长度记为c ij ,设⎩⎨⎧=否则包含在最短路径中弧0),(1j i x ij数学模型为:,1213122324251323343524344546253545564656m in 100,00110,(,)ijiji jij Z cx x x x x x x x x x x x x x x x x x x x x x i j =⎧+=⎪---=⎪⎪+--=⎪⎪+--=⎨⎪++-=⎪⎪+=⎪=⎪⎩∑或所有弧 6.3如图6-43所示,建立求v 1到v 6的最大流问题的线性规划数学模型。
运筹学课后答案2
![运筹学课后答案2](https://img.taocdn.com/s3/m/b7989722cfc789eb172dc8a5.png)
运筹学(第2版)习题答案2第1章 线性规划 P36~40第2章 线性规划的对偶理论 P68~69 第3章 整数规划 P82~84 第4章 目标规划 P98~100 第5章 运输与指派问题 P134~136 第6章 网络模型 P164~165 第7章 网络计划 P185~187 第8章 动态规划 P208~210 第9章 排队论 P239~240 第10章 存储论 P269~270 第11章 决策论 Pp297-298 第12章 博弈论 P325~326 全书360页由于大小限制,此文档只显示第6章到第12章,第1章至第5章见《运筹学课后答案1》习题六6.1如图6-42所示,建立求最小部分树的0-1整数规划数学模型。
【解】边[i ,j ]的长度记为c ij ,设⎩⎨⎧=否则包含在最小部分树内边0],[1j i x ij数学模型为:,12132323243434364635365612132434343546562324463612132446362335244656121324354656m in 52,22,233344,510ij ijij i j ij Z c x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ==++≤++≤++≤++≤+++≤+++≤+++≤++++≤++++≤+++++≤=∑或,[,]i j ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩所有边6.2如图6-43所示,建立求v 1到v 6的最短路问题的0-1整数规划数学模型。
图6-42【解】弧(i ,j )的长度记为c ij ,设⎩⎨⎧=否则包含在最短路径中弧0),(1j i x ij数学模型为:,1213122324251323343524344546253545564656m in 100,00110,(,)ijiji jij Z cx x x x x x x x x x x x x x x x x x x x x x i j =⎧+=⎪---=⎪⎪+--=⎪⎪+--=⎨⎪++-=⎪⎪+=⎪=⎪⎩∑或所有弧 6.3如图6-43所示,建立求v 1到v 6的最大流问题的线性规划数学模型。
运筹学答案(熊伟)机械工业出版社(1-12章全)102页
![运筹学答案(熊伟)机械工业出版社(1-12章全)102页](https://img.taocdn.com/s3/m/694288f876eeaeaad1f330ef.png)
x12 x23
≤ ≤
20000 15000
x34
≤ 10000
xij ≥ 0, i = 1,L ,3; j = 1,L 4
最优解 X=(30000,0,66000,0,109200,0);Z=84720
1.6 IV 发展公司是商务房地产开发项目的投资商.公司有机会在三个建设项目中投资:高层
(3)在例 1.3 中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简
述板材下料的思路.
(4)在例 1.4 中,若允许含有少量杂质,但杂质含量不超过 1%,模型如何变化.
(5)在例 1.6 中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每
天的加工时间不超过另一种设备任一台加工时间 1 小时,模型如何变化.
和 130.试建立该问题的数学模型,使每月利润最大.
【解】设 x1、x2、x3 分别为产品 A、B、C 的产量,则数学模型为
max Z = 10x1 +14x2 +12x3
13.x51x+1
+ 1.2 x2 1.6x2 +
+ 4x3 1.2 x3
≤ ≤
2500 1400
150
≤
x1
≤
250
年份
项目 1 比例:0 项目 2 比例: 项目 3 比例:
16.5049
13.1067
0
0
1320.392
1179.603
1
0
2640.784
1834.938
2
0
3961.176
2097.072
3
0
5116.519
熊伟编《运筹学》习题二详细解答
![熊伟编《运筹学》习题二详细解答](https://img.taocdn.com/s3/m/2453032e2b160b4e767fcf75.png)
习题二1 •某人根据医嘱,每天需补充A、B、C三种营养,A不少于80单位,B不少于150单位,C不少于180单位.此人准备每天从六种食物中摄取这三种营养成分. 已知六种食物每百克的营养成分含量及食物价格如表2-22所示.(1)试建立此人在满足健康需要的基础上花费最少的数学模型;(2)假定有一个厂商计划生产一中药丸,售给此人服用,药丸中包含有A , B , C三种营养成分•试为厂商制定一个药丸的合理价格,既使此人愿意购买,又使厂商能获得最大利益,建立数学模型.表 2-221 X j jmin Z 0.5% 0.4X0.8X30 .9x40.3X50.2X613x125x214X3 40X48X5 11X6 8024x19x230X325X412X5 15X6 15018x17x221X3 34X410X5 180x1> x2、X、X4、X、X6 0(2 )设V i为第i种单位营养的价格,则数学模型为max w 80y1 150 y2180 y313V1 24 y2 18y3 0.525y1 9y2 7y30.414y1 30 y221y30.840y1 25y2 34 y3 0.98y1 12y2 10y3 0.311y1 15y2 0.5力,丫2”302 •写出下列线性规划的对偶问题max 2X14X2min w % 4y2八X1 3X2 1 ”y1 y2 2(1)X15X2 4 3y1 5y2 4X1,X2 0 y1, y2 0min w 9% 6y 2 2y 3+5y 4 10 y 5 3y i 6y 2 y 3 g 衣 2 对偶问题为:2y i 2y 2 3 y i 5y 2 出 6 6y i y 2 2y 37y i 无约束;y 2 0, y 3, 0, y 4 0, X 5 03 .考虑线性规划mi nZ 12X 120X 2X 1 4X 2 4 X 1 5X 22 2X 1 3X 27X 1, X 2 0(1) 说明原问题与对偶问题都有最优解; ⑵通过解对偶问题由最优表中观察出原问题的最优解; ⑶利用公式C B B^1求原问题的最优解; (4)利用互补松弛条件求原问题的最优解.【解】(1)原问题的对偶问题为maxw 4% 2y 2 7y 3 y i y 2 2y 312min Z 2x i X 2 3x 3 x 1 2X 210(2)1 2X i 3X 2 X 38X ,X 无约束,X 0maxw 10y i 8y 2 y i y 22 【解】2y i 3y 21y 2 3叶无约束;y 2 0maxZX 1 2X 24X 3 3X 410X 1X 2 X 3 4X 48(3)7X 1 6X 2 2X 3 5X 4 104X 1 8X 2 6X 3 X 4 6X 1,X 2 0,X 3 0,X 4无约束min w 8y 1 10y 2 6y 3【解】10 y 1 7y 2 4y 31 y 1 6y2 8y3 2 y 1 2y 2 6y 34 4y 1 5y 2 y 33y 1 无约束;y 2 0, y 3 0 max Z 2X -I 3X 2 6X 3 7X 43X -I 2X 2 X 3 6X 4 9 6X -I 5X 3 X 4X 1 2X 2 X 3 62X 45 X 1 10X 10, X 2,X 3, X 4无约束max Z2X -I 3X 2 6X 3 7X 43X 1 2X 2 X 3 6X 4 9 6X -| 5X 3 X 46【解】 X 1 2X 2 X 3 2X 42X -I 5 X -I10X - 0, X , X , X 无约束4y i 5y 3*20y j 0,j 1,2,3容易看出原问题和对偶问题都有可行解,女口X = (2, 1)、Y = (1 , 0, 1),由定理2.4知都有最优解。
运筹学答案(熊伟)下
![运筹学答案(熊伟)下](https://img.taocdn.com/s3/m/8d094738b80d6c85ec3a87c24028915f804d8470.png)
运筹学答案(熊伟)下习题七7.2(1)分别用节点法和箭线法绘制表7-16的项目网络图,并填写表中的紧前工序。
(2)用箭线法绘制表7-17的项目网络图,并填写表中的紧后工序表7-16工序ABCDEFG-IC,E,F,HJD,GKC,ELIMJ,K,L紧前工序---ACAF、D、B、E表7-17紧后工序D,EGEGGG工序紧前工序A-B-C-DBEBFA,BGBHD,G紧后工序FE,D,F,GI,H,I,H,IIKJKJMLMM-【解】(1)箭线图:节点图:(2)箭线图:7.3根据项目工序明细表7-18:(1)画出网络图。
(2)计算工序的最早开始、最迟开始时间和总时差。
(3)找出关键路线和关键工序。
表7-18工序紧前工序A-BA6CA12DB,C19EC6FD,E7GD,E8工序时间(周)9【解】(1)网络图(2)网络参数工序A000B9156C990D21210E213413F40411G40400最早开始最迟开始总时差(3)关键路线:①→②→③→④→⑤→⑥→⑦;关键工序:A、C、D、G;完工期:48周。
7.4表7-19给出了项目的工序明细表。
表7-19工序紧前工序ABC--5-7D12E8F17GE16HD,G8IEJKLM15N12A,BBB,CEHF,JI,K,LF,J,L工序时间(天)81451023(1)绘制项目网络图。
(2)在网络图上求工序的最早开始、最迟开始时间。
(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差。
(4)找出所有关键路线及对应的关键工序。
(5)求项目的完工期。
【解】(1)网络图(2)工序最早开始、最迟开始时间(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差工序tTESTEFTLSTLF总时差S自由时差FA80891790B5050500C7077700D12820172999E851351300F1772472400G1613 29132900H82937293700I14132733472020J51318192466K103747374700L232 447244700M154762476200N124759506233(4)关键路线及对应的关键工序11→○12;关键工序:B,E,G,H,K,M关键路线有两条,第一条:①→②→⑤→⑥→⑦→○11→○12;关键工序:C,F,L,M第二条:①→④→⑧→⑨→○(5)项目的完工期为62天。
熊伟运筹学(第2版)1-3章参考答案
![熊伟运筹学(第2版)1-3章参考答案](https://img.taocdn.com/s3/m/6651e3f351e79b8968022694.png)
运筹学(第2版)习题答案1--3习题一1.1 讨论下列问题:(1)在例1.2中,如果设x j (j=1,2,…,7)为工作了5天后星期一到星期日开始休息的营业员,该模型如何变化.(2)在例1.3中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简述板材下料的思路. (3)在例1.4中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化.(4)在例1.6中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每天的加工时间不超过另一种设备任一台加工时间1小时,模型如何变化.(5)在单纯形法中,为什么说当00(1,2,,)k ik a i m λ>≤=并且时线性规划具有无界解。
1.2 工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.根据市场需求,试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为1.3 建筑公司需要用6m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:问怎样下料使得(1【解】 设x j (j =1,2,…,14)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为用单纯形法求解得到两个基本最优解X (1)=( 50 ,200 ,0 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=534 X (2)=( 0 ,200 ,100 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,150 ,0 ,0 );Z=534 (2)余料最少数学模型为用单纯形法求解得到两个基本最优解X (1)=( 0 ,300 ,0 ,0,50 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料550根 X (2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根 显然用料最少的方案最优。
运筹学课后答案2
![运筹学课后答案2](https://img.taocdn.com/s3/m/b7989722cfc789eb172dc8a5.png)
运筹学(第2版)习题答案2第1章 线性规划 P36~40第2章 线性规划的对偶理论 P68~69 第3章 整数规划 P82~84 第4章 目标规划 P98~100 第5章 运输与指派问题 P134~136 第6章 网络模型 P164~165 第7章 网络计划 P185~187 第8章 动态规划 P208~210 第9章 排队论 P239~240 第10章 存储论 P269~270 第11章 决策论 Pp297-298 第12章 博弈论 P325~326 全书360页由于大小限制,此文档只显示第6章到第12章,第1章至第5章见《运筹学课后答案1》习题六6.1如图6-42所示,建立求最小部分树的0-1整数规划数学模型。
【解】边[i ,j ]的长度记为c ij ,设⎩⎨⎧=否则包含在最小部分树内边0],[1j i x ij数学模型为:,12132323243434364635365612132434343546562324463612132446362335244656121324354656m in 52,22,233344,510ij ijij i j ij Z c x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ==++≤++≤++≤++≤+++≤+++≤+++≤++++≤++++≤+++++≤=∑或,[,]i j ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩所有边6.2如图6-43所示,建立求v 1到v 6的最短路问题的0-1整数规划数学模型。
图6-42【解】弧(i ,j )的长度记为c ij ,设⎩⎨⎧=否则包含在最短路径中弧0),(1j i x ij数学模型为:,1213122324251323343524344546253545564656m in 100,00110,(,)ijiji jij Z cx x x x x x x x x x x x x x x x x x x x x x i j =⎧+=⎪---=⎪⎪+--=⎪⎪+--=⎨⎪++-=⎪⎪+=⎪=⎪⎩∑或所有弧 6.3如图6-43所示,建立求v 1到v 6的最大流问题的线性规划数学模型。
运筹学第3版熊伟编著习题答案
![运筹学第3版熊伟编著习题答案](https://img.taocdn.com/s3/m/537c50f519e8b8f67d1cb91c.png)
求没有限制,由于仓库容量有限,仓库最多库存产品 A1000 件,1 月初仓库库存 200 件。1~
6 月份产品 A 的单件成本与售价如表 1-25 所示。
表 1-25
月份
1
2
3
4
5
6
产品成本(元/件)
300 330 320 360
360
300
销售价格(元/件)
350 340 350 420
410
340
(1)1~6 月份产品 A 各生产与销售多少总利润最大,建立数学模型;
(2)当 1 月初库存量为零并且要求 6 月底需要库存 200 件时,模型如何变化。
【解】设 xj、yj(j=1,2,…,6)分别为 1~6 月份的生产量和销售量,则数学模型为
最新精品文档,知识共享!
max Z 300x1 350 y1 330x2 340 y2 320x3 350 y3 360x4
第1章 线性规划
1.1 工厂每月生产 A、B、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源
限量及单件产品利润如表 1-23 所示.
表1-23
产品 资源
A
B
C
资源限量
材料(kg)
1.5
1.2
4
2500
设备(台时)
3
1.6
1.2
利润(元/件)
10
14
12
1400
根据市场需求,预测三种产品最低月需求量分别是 150、260 和 120,最高月需求是 250、310 和 130.试建立该问题的数学模型,使每月利润最大. 【解】设 x1、x2、x3 分别为产品 A、B、C 的产量,则数学模型为
xj 0, j 1, 2, ,10
运筹学答案(熊伟)上汇总
![运筹学答案(熊伟)上汇总](https://img.taocdn.com/s3/m/4448773ac5da50e2524d7f47.png)
部分有图形的答案附在各章PPTபைடு நூலகம்档的后面,请留意。
第1章线性规划
第2章线性规划的对偶理论第3章整数规划第4章目标规划
第5章运输与指派问题第6章网络模型第7章网络计划第8章动态规划第9章排队论第10章存储论第11章决策论第12章对策论
习题一
1.1讨论下列问题:
(1)在例1.1中,假定企业一周内工作5天,每天8小时,企业设备A有5台,利用率为0.8,设备B有7台,利用率为0.85,其它条件不变,数学模型怎样变化.
1.4 A、B两种产品,都需要经过前后两道工序加工,每一个单位产品A需要前道工序1小时和后道工序2小时,每一个单位产品B需要前道工序2小时和后道工序3小时.可供利用的前道工序有11小时,后道工序有17小时.
每加工一个单位产品B的同时,会产生两个单位的副产品C,且不需要任何费用,产品C一部分可出售赢利,其余的只能加以销毁.
maxZ=3x 1+7x 2+2x 3-x 4⎧x 1+2x 2≤11⎪2x +3x ≤1712⎪⎪
⎨-2x 2+x 3+x 4=0⎪x ≤13⎪3⎪⎩x j ≥0, j =1, 2, , 4
1.5某投资人现有下列四种投资机会,三年内每年年初都有3万元(不计利息)可供投资:方案一:在三年内投资人应在每年年初投资,一年结算一次,年收益率是20%,下一年可继续将本息投入获利;
⎪-1.5x 12-1.2x 21+x 31+x 34≤30000⎪⎪
⎨x 12≤20000⎪x ≤15000⎪23
⎪x 34≤10000⎪⎪⎩x ij ≥0, i =1, ,3; j =1, 4
最优解X=(30000,0,66000,0,109200,0;Z=84720
熊伟运筹学(第2版)第二版课后习题答案1
![熊伟运筹学(第2版)第二版课后习题答案1](https://img.taocdn.com/s3/m/d27f94db700abb68a982fba0.png)
方案四:在三年内投资人应在第三年年初投资,一年结算一次,年收益 率是30%,这种投资最多不超过1万元. 投资人应采用怎样的投资决策使三年的总收益最大,建立数学模型. 【解】是设xij为第i年投入第j项目的资金数,变量表如下 项目 一 第1 年 第2 年 第3 年 数学模型为 最优解X=(30000,0,66000,0,109200,0);Z=84720 1.6 IV发展公司是商务房地产开发项目的投资商.公司有机会在三个建 设项目中投资:高层办公楼、宾馆及购物中心,各项目不同年份所需资 金和净现值见表1-24.三个项目的投资方案是:投资公司现在预付项 目所需资金的百分比数,那么以后三年每年必须按此比例追加项目所需 资金,也获得同样比例的净现值.例如,公司按10%投资项目1,现在 必须支付400万,今后三年分别投入600万、900万和100万,获得净现值 450万. 公司目前和预计今后三年可用于三个项目的投资金额是:现有2500万, 一年后2000万,两年后2000万,三年后1500万.当年没有用完的资金可 以转入下一年继续使用. IV公司管理层希望设计一个组合投资方案,在每个项目中投资多少百分 比,使其投资获得的净现值最大.
则标准型为 (4) 【解】令,线性规划模型变为 标准型为
1.9 设线性规划 取基分别指出对应的基变量和非基变量,求出基本解,并说明是不是可 行基. 【解】B1:x1,x3为基变量,x2,x4为非基变量,基本解为X=(15,0, 20,0)T,B1是可行基。B2:x1,x4是基变量,x2,x3为非基变量,基本解 X=(25,0,0,-40)T,B2不是可行基。 1.10分别用图解法和单纯形法求解下列线性规划,指出单纯形法迭代的 每一步的基可行解对应于图形上的那一个极点. (1) 【解】图解法 单纯形法: C(j) 1 3 0 0 b Ratio C(i) Basis X1 X2 X3 X4 0 X3 -2 [1] 1 0 2 2 0 X4 2 3 0 1 12 4 C(j)-Z(j) 1 3 0 0 0 3 X2 -2 1 1 0 2 M 0 X4 [8] 0 -3 1 6 0.75 C(j)-Z(j) 7 0 -3 0 6 3 X2 0 1 0.25 0.25 7/2 1 X1 C(j)-Z(j) 对应的顶点: 1 0 0 0 -0.375 0.125 3/4 -0.375 -0.875 11.25
运筹学II习题解答(DOC)
![运筹学II习题解答(DOC)](https://img.taocdn.com/s3/m/dac85f3accbff121dd368388.png)
第七章决策论1.某厂有一新产品,其面临的市场状况有三种情况,可供其选择的营销策略也是三种,每一钟策略在每一种状态下的损益值如下表所示,要求分别用非确定型决策的五种方法进行决策(使用折衷法时α=0.6)。
营销策略市场状况Q1 Q2 Q3S1 S2 S3 503010102510-510【解】(1)悲观法:根据“小中取大”原则,应选取的经营策略为s3;(2)乐观法:根据“大中取大”原则,应选取的经营策略为s1;(3)折中法(α=0.6):计算折中收益值如下:S1折中收益值=0.6⨯50+0.4⨯(-5)=28S2折中收益值=0.6⨯30+0.4⨯0=18S3折中收益值=0.6⨯10+0.4⨯10=10显然,应选取经营策略s1为决策方案。
(4)平均法:计算平均收益如下:S1:x_1=(50+10-5)/3=55/3S2:x_2=(30+25)/3=55/3S3:x_3=(10+10)/3=10故选择策略s1,s2为决策方案。
(5)最小遗憾法:分三步第一,定各种自然状态下的最大收益值,如方括号中所示;第二,确定每一方案在不同状态下的最小遗憾值,并找出每一方案的最大遗憾值如圆括号中所示;第三,大中取小,进行决策。
故选取S1作为决策方案。
2.如上题中三种状态的概率分别为: 0.3, 0.4, 0.3, 试用期望值方法和决策树方法决策。
(1)用期望值方法决策:计算各经营策略下的期望收益值如下:故选取决策S2时目标收益最大。
(2)用决策树方法,画决策树如下:3. 某石油公司拟在某地钻井,可能的结果有三:无油(θ1),贫油(θ2)和富油(θ3),估计可能的概率为:P (θ1) =0.5, P (θ2)=0.3,P (θ3)=0.2。
已知钻井费为7万元,若贫油可收入12万元,若富油可收入27万元。
为了科学决策拟先进行勘探,勘探的可能结果是:地质构造差(I1)、构造一般(I2)和构造好(I3)。
根据过去的经验,地质构造与出油量间的关系如下表所示:P (I j|θi) 构造差(I1) 构造一般(I2) 构造好(I3)无油(θ1) 0.6 0.3 0.1贫油(θ2) 0.3 0.4 0.3富油(θ3) 0.1 0.4 0.5假定勘探费用为1万元, 试确定:(1)是否值得先勘探再钻井?(2)根据勘探结果是否值得钻井?【解】第一步第二步,画出决策树如下:第三步,计算后验概率首先,知,各种地质构造的可能概率是:再由得到,每一种构造条件下每一状态发生的概率:构造差(I 1) 构造一般(I 2) 构造好(I 3)0.73170.4286 0.20830.21950.3429 0.3750 0.0488 0.2286 0.4167合计 1.0 1.0 1.0E(s 1)=-7⨯0.7313+5⨯0.2195+20⨯0.0488=-3.0484若勘探得到结果为“构造一般”,则有:E(s 2)=-7⨯0.4286+5⨯0.3429+20⨯0.2286=3.2863若勘探得到结果为“构造好”,则有:E(s 3)=-7*0.2083+5*0.3750+20*0.4167=8.7509E(勘探)=∑=ni 1E(s i )P(I i )=-3.0484⨯0.41+3.2863⨯0.35+8.7509⨯0.24=2.0006已知,勘探成本为1万元,所以值得先勘探后钻井;同时,由于不钻井的期望收益为0,勘探后的结果为值得钻井。
运筹学第3版熊伟编著习题答案
![运筹学第3版熊伟编著习题答案](https://img.taocdn.com/s3/m/3dfc834abdd126fff705cc1755270722192e598a.png)
运筹学第3版熊伟编著习题答案在学习运筹学的过程中,熊伟编著的第 3 版教材中的习题对于我们理解和掌握这门学科的知识起到了至关重要的作用。
下面,我将为大家详细呈现这些习题的答案。
首先,让我们来看第一章的习题。
在这部分习题中,主要涉及到了运筹学的基本概念和一些简单的数学模型构建。
例如,有一道关于线性规划的题目,给定了一些生产条件和资源限制,要求我们求出最优的生产方案。
对于这道题,我们需要先建立线性规划的数学模型,设定决策变量、目标函数和约束条件。
然后,通过图解法或者单纯形法来求解。
经过一系列的计算和分析,我们得出最优的生产方案是生产某种产品_____个,另一种产品_____个,从而实现利润最大化。
在第二章的习题中,重点考察了整数规划的相关知识。
整数规划相较于线性规划,多了决策变量必须为整数的限制条件,这使得问题的求解变得更加复杂。
有一道题目是关于背包问题的,给定了不同物品的价值和重量,以及背包的容量限制,要求找出能够装入背包且价值最大的物品组合。
对于这类问题,我们可以采用分支定界法或者割平面法来求解。
通过逐步缩小可行解的范围,最终确定最优的物品组合。
第三章的习题主要围绕动态规划展开。
动态规划是解决多阶段决策问题的一种有效方法。
比如,有一个资源分配的问题,在多个阶段中,如何合理分配有限的资源以达到最优的效果。
我们通过建立递推关系式,从最后一个阶段逐步向前推导,最终找到整个过程的最优策略。
第四章是关于图与网络分析的内容。
这部分的习题常常涉及到最短路径问题、最大流问题等。
例如,在一个交通网络中,要求找出从起点到终点的最短路径。
我们可以运用迪杰斯特拉算法或者弗洛伊德算法来解决。
对于最大流问题,则可以使用福特富尔克森算法来求得最大流量。
第五章的习题聚焦于存储论。
存储论主要研究在不同需求情况下,如何确定最佳的存储策略,以平衡存储成本和缺货成本。
例如,有一道关于确定经济订货批量的题目,给定了年需求量、单位订货成本和单位存储成本等参数,我们可以通过公式计算出经济订货批量为_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题二1.某人根据医嘱,每天需补充A 、B 、C 三种营养,A 不少于80单位,B 不少于150单位,C 不少于180单位.此人准备每天从六种食物中摄取这三种营养成分.已知六种食物每百克的营养成分含量及食物价格如表2-22所示.(1)试建立此人在满足健康需要的基础上花费最少的数学模型;(2)假定有一个厂商计划生产一中药丸,售给此人服用,药丸中包含有A ,B ,C 三种营养成分.试为厂商制定一个药丸的合理价格,既使此人愿意购买,又使厂商能获得最大利益,建立数学模型.表2-22含量 食物营养成分一 二 三 四 五 六 需要量 A 13 25 14 40 8 11 ≥80 B 24 9 30 25 12 15 ≥150 C18 7 21 34 10 0 ≥180 食物单价(元/100g )0.50.40.80.90.30.2【解】(1)设x j 为每天第j 种食物的用量,数学模型为⎪⎪⎩⎪⎪⎨⎧≥≥++++≥+++++≥++++++++++=01801034217181501512253092480118401425132.03.09.08.04.05.0min 65432154321654321654321654321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Z 、、、、、(2)设y i 为第i 种单位营养的价格,则数学模型为12312312312312312312123max 801501801324180.525970.41430210.84025340.9812100.311150.5,,0w y y y y y y y y y y y y y y y y y y y y y y y =++++≤⎧⎪++≤⎪⎪++≤⎪++≤⎨⎪++≤⎪⎪++≤⎪≥⎩2.写出下列线性规划的对偶问题(1)⎪⎩⎪⎨⎧≥≤+-≤+-+-=0,451342max 21212121x x x x x x x x 【解】12121212min 42354,0w y y y y y y y y =-+-+≥-⎧⎪+≥⎨⎪≥⎩(2)⎪⎩⎪⎨⎧≥≥+--=++-=0,8310232min 32132121321x x x x x x x x x x x Z 无约束, 【解】121212212max 108223130w y y y y y y y y y =+-=⎧⎪-=-⎪⎨≤⎪⎪≥⎩无约束;(3)⎪⎪⎩⎪⎪⎨⎧≤≥≤++-≥--+=--+-++=无约束43214321432143214321,0,0,66841052678410342max x x x x x x x x x x x x x x x x x x x x Z 【解】123123123123123123min 8106107416822644530,0w y y y y y y y y y y y y y y y y y y =++++≥⎧⎪+-≥⎪⎪--+≤⎨⎪--+=-⎪≤≥⎪⎩无约束; (4)12341234134123411234max 236732696562225100,,,Z x x x x x x x x x x x x x x x x x x x x =-++--+-=⎧⎪+-≥⎪⎪-+-+≤-⎨⎪≤≤⎪≥⎪⎩无约束【解】123412341341234111234max 236732696562225100,,,Z x x x x x x x x x x x x x x x x x x x x x =-++--+-=⎧⎪+-≥⎪⎪-+-+≤-⎪⎨≥⎪⎪≤⎪≥⎪⎩无约束对偶问题为: 12345123451212312312345min 962+510362223566270,000w y y y y y y y y y y y y y y y y y y y y y y x =--+--+-≥-⎧⎪-+=⎪⎪--=⎨⎪-++=-⎪≤≥≤≥⎪⎩无约束;,,, 3.考虑线性规划⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥++=0,73225442012min 2121212121x x x x x x x x x x Z(1)说明原问题与对偶问题都有最优解;(2)通过解对偶问题由最优表中观察出原问题的最优解;(3)利用公式C B B -1求原问题的最优解; (4)利用互补松弛条件求原问题的最优解. 【解】(1)原问题的对偶问题为123123123max 427212453200,1,2,3jw y y y y y y y y y y j =++⎧++≤⎪++≤⎨⎪≥=⎩容易看出原问题和对偶问题都有可行解,如X =(2,1)、Y =(1,0,1),由定理2.4知都有最优解。
(2)对偶问题最优单纯形表为C(j) 4 2 7 0 0 R. H. S. Basis C(i) y1 y2 y3 y4 y5 y3 7 0 -1/5 1 4/5 -1/528/5y1 417/5-3/52/54/5C(j)-Z(j)0 -11/5 0 -16/5 -1/5w =42.4对偶问题的最优解Y =(4/5,0,28/5),由定理2.6,原问题的最优解为X=(16/5,1/5),Z =42.4(3)C B =(7,4),141553255B -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦, 4155(7,4)(16/5,1/5)3255X ⎡⎤-⎢⎥==⎢⎥⎢⎥-⎢⎥⎣⎦ (4)由y 1、y 3不等于零知原问题第一、三个约束是紧的,解等式121244237x x x x +=⎧⎨+=⎩ 得到原问题的最优解为X=(16/5,1/5)。
4.证明下列线性规划问题无最优解⎪⎩⎪⎨⎧≥≥+-=-+--=无约束321321321321,0,23232222min x x x x x x x x x x x x Z 证明:首先看到该问题存在可行解,例如x=(2,1,1),而上述问题的对偶问题为1212121221max 3221222320,w y y y y y y y y y y =++≤⎧⎪-≤-⎪⎨-+=-⎪⎪≥⎩无约束由约束条件①②知y 1≤0,由约束条件③当y 2≥0知y 1≥1,对偶问题无可行解,因此原问题也无最优解(无界解)。
5.已知线性规划123123123123123max 152055556631070,0,Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎨++≤⎪⎪≥≥⎩无约束的最优解119(,0,)44TX =,求对偶问题的最优解. 【解】其对偶问题是:123123123123123min 56753155610205,,0w y y y y y y y y y y y y y y y =++++≥⎧⎪++≥⎪⎨++=⎪⎪≥⎩ 由原问题的最优解知,原问题约束①等于零,x 1、x 2不等于零,则对偶问题的约束①、约束③为等式,y 1=0;解方程232353155y y y y +=⎧⎨+=⎩ 得到对偶问题的最优解Y=(5/2,5/2,0);w =55/2=27.5 6.用对偶单纯形法求解下列线性规划⎪⎩⎪⎨⎧≥≥++≥++++=0,,1022832543min 1321321321321x x x x x x x x x x x x Z )(【解】将模型化为12312341235min 34523822100,1,2,3,4,5jZ x x x x x x x x x x x x j =++⎧---+=-⎪---+=-⎨⎪≥=⎩ 对偶单纯形表:c j3 4 5 0 0C B X B X 1 X 2 X 3 X 4 X 5 b0 0X 4 X 5 -1 [-2] -2 -2 -3 -1 1 0 0 1 -8 -10 C(j)-Z(j) 3 4 5 0 0 0 0 3X 4 X 1 0 1 [-1] 1 -5/2 1/2 1 0 -1/2 -1/2 -3 5 C(j)-Z(j)17/23/25 3 X 2 X 1 0 1 1 0 5/2 -2 -1 1 1/2 -1 3 2 C(j)-Z(j)111b 列全为非负,最优解为x =(2,3,0);Z =18⎪⎩⎪⎨⎧≥≥≤+≥++=0,022443min 221212121x x x x x x x x Z )(【解】将模型化为12123124min 344220,1,2,3,4j Z x x x x x x x x x j =+⎧--+=-⎪++=⎨⎪≥=⎩3 4 0 0 b X B C B X 1 X 2 X 3 X 4 X 3 0 [-1] -1 1 0 -4 X 42 1 0 1 2 Cj -Zj34 0 0 X 1 3 1 1 -1 0 4 X 40 0 [-1] 2 1 -6 Cj -Zj 0 1 3 0 X 1 3 1 0 1 1 -2 X 24 0 1 -2 -1 6 Cj -Zj51出基行系数全部非负,最小比值失效,原问题无可行解。
⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≤++=0,153102243242min )3(2121212121x x x x x x x x x x Z【解】将模型化为12123124125min 2423242103150,1,2,3,4,5j Z x x x x x x x x x x x x j =+++=⎧⎪--+=-⎪⎨--+=-⎪⎪≥=⎩c j 2 4 0 0 0 bX BC BX 1X 2X 3X 4X 5X 3 0 2 3 1 0 0 24 X 4 0 -1 -2 0 1 0 -10 X 50 -1 [-3] 0 0 1 -15 Cj -Zj 2 4 0 0 0 X 3 0 1 0 1 0 1 9 X 4 0 -1/3 0 0 1 -2/3 0 X 241/3 1 0 0 -1/3 5 Cj -Zj2/34/3最优解X=(0,5);Z =201234123412344min 23562322330,1,,4jZ x x x x x x x x x x x x x j =+++⎧+++≥⎪-+-+≤-⎨⎪≥=⎩L ()【解】将模型化为12341234512346min 23562322330,1,,6jZ x x x x x x x x x x x x x x x j =+++⎧----+=-⎪-+-++=-⎨⎪≥=⎩L Cj 2 3 5 6 0 0b X B C B X 1 X 2 X 3 X 4 X 5 X 6X 5 0 -1 [-2] -3 -4 1 0 -2 X 6-2 1 -1 3 0 1 -3 Cj -Zj 2 3 5 6 0 0 X 2 3 1/2 1 3/2 2 -1/2 0 1 X 60 -5/2 0 [-5/2] 1 1/2 1 -4 Cj -Zj 1/2 0 1/2 0 3/2 0 X 2 3 [-1] 1 0 13/5 -1/5 3/5 -7/5 X 35 1 0 1 -2/5 -1/5 -2/5 8/5 Cj -Zj 0 0 0 1/5 8/5 1/5 X 1 2 1 -1 0 -13/5 1/5 -3/5 7/5 X 35 0 [1] 1 11/5 -2/5 1/5 1/5 Cj -Zj 0 0 0 1/5 8/5 1/5 X 1 2 1 0 1 -2/5 -1/5 -2/5 8/5 X 23 0 1 1 11/5 -2/5 1/5 1/5 Cj -Zj1/58/51/5原问题有多重解:X (1)=(7/5,0,1/5,);最优解X (2)=(8/5,1/5,0);Z =19/5 如果第一张表X 6出基,则有Cj 2 3 5 6 0 0b X B C B X 1 X 2 X 3 X 4 X 5 X 6X 5-1-2-3-41-2X 60 [-2] 1 -1 3 0 1 -3 Cj -Zj 2 3 5 6 0 0 X 5 0 0 [-5/2] -5/2 -11/2 1 -1/2 -1/2 X 12 1 -1/2 1/2 -3/2 0 -1/2 3/2 Cj -Zj 0 2 4 9 0 1 X 23 0 1 1 11/5 -2/5 1/5 1/5 X 121 0 1 -7/5 -1/5 -2/5 8/5 Cj -Zj223/54/53/57.某工厂利用原材料甲、乙、丙生产产品A 、B 、C ,有关资料见表2-23.表2-23产品材料消耗原材料A B C 每月可供原材料(Kg )甲 乙 丙2 1 1 200 1 23 500 2 2 1 600 每件产品利润413(1)怎样安排生产,使利润最大.(2)若增加1kg 原材料甲,总利润增加多少.(3)设原材料乙的市场价格为1.2元/Kg ,若要转卖原材料乙,工厂应至少叫价多少,为什么?(4)单位产品利润分别在什么范围内变化时,原生产计划不变.(5)原材料分别单独在什么范围内波动时,仍只生产A 和C 两种产品.(6)由于市场的变化,产品B 、C 的单件利润变为3元和2元,这时应如何调整生产计划. (7)工厂计划生产新产品D ,每件产品D 消耗原材料甲、乙、丙分别为2kg ,2kg 及1kg ,每件产品D 应获利多少时才有利于投产. 【解】(1)设 x 1、x 2、x 3分别为产品A 、B 、C 的月生产量,数学模型为123123123123123max 43212002350026000,0,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎨++≤⎪⎪≥≥≥⎩ 最优单纯形表:C(j) 4 1 3 0 0 0 R.H.S. Ratio X B C B X1X2 X3 X4 X5 X6 X1 4 1 1/5 0 3/5 -1/5 0 20 X3 3 0 3/5 1 -1/5 2/5 0 160 X60 0 0 -1 0 1 400C(j)-Z(j)-8/5-9/5-2/5Z=560最优解X=(20,0,160),Z=560。