2018年八年级数学下册 64 多边形的内角和与外角和 新版北师大版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在平面内,内角都相等,边也 都相等的多边形叫做正多边形。
认识多边形
想一想 :
1、一个多边形的边都相等, 它的内角一定都相等吗?
菱形
2、一个多边形的内角都相等, 它的边一定都相等吗?
矩形
活动二
探索四边形内角和
A D
B
C
探索四边形内角和
利用三角形知识探索 “四边形内角和是360 °”.
你能想到几种办法?
A D
活动计划
B
C
1. 四人小组合作,在纸上完成四边形的分割 .
2. 探究不同的分割方式所得到的四边形内角和 .
注意事项
1. 用直尺作图,分割线条用虚线“
”表示.
2. 尽可能多地想出不同的方法求其内角和.
探索四边形内角和 A D
A D
B
C
2 ×180 °
B
C
3× 180 °- 180°
A D
A D
…… 请问:n 边形从一个顶点出发,能引出 (n-3) 条对角线?
n边形 共有 条对角线?
探索n边形内角和
3 45
540 ° 720 ° 900 °
n-2 (n-2) 180 °
n边形的内角和等于(n-2) ·180°
活动四
多边形内角和公式的应用
(n-2) ·180°
多边形内角和公式的应用
例1、已知一个多边形,它的内角和等于720 °
边 对角线
(连接不相邻两个顶点的线段)
认识多边形
一般情况下,我们所说的多边形 指凸多边形
凸多边形
D
C
A
B
凹多边形
图1
图2
认识多边形
练一练:如图:作多边形过顶点A的所 有对角线,并分别用字母表示出来。
解:如图,有: 对角线AC 对角线AD
A B
C
F
E D
对角线AE
认识多边形
正三角形
正方形 正五边形 正六边形
A D
B
CB
CB
C
wk.baidu.com
4× 180 °- 360° 3× 180 °- 180° 3× 180 °- 180°
利用探索“四边形内角和是 360 °的方 法 .你能想到几种办法求 五边形内角和?
方法总结:
活动三
探索n边形内角和
探索n边形内角和
请问:四边形从一个顶点出发,能引出 1 条对角线? 请问:五边形从一个顶点出发,能引出 2 条对角线? 请问:六边形从一个顶点出发,能引出 3 条对角线?
多边形
义务教育课程标准实验教科书 --北师大版 《数学》八年级下册
6.4探索多边形的内角和与外角和(1)
活动一
认识多边形
认识多边形
三角形 是由三条不在同一条直线上的线段
首尾顺次连结组成的平面图形
认识多边形 顶点
在平面内,由若干条 不在同一条直线上的线段首 尾顺次相连组成的封闭图形
叫做多边形. 内角
求这个多边形的边数。
解: 设多边形的边数为 n,
由已知,得:
(n-2) ?180°= 720o。
解得:
n=6
? 这个多边形的边数为 6。
多边形内角和公式的应用
看谁算的“准又快”
1. 正八边形的内角和为 _1__0_8_0_°_.
2. 已知多边形的内角和为 900 ° ,则这个多边
形的边数为 _七__边____. 3.多边形的边形数增加一条,内角和就增加 1_8__0_°__。
4. 一个多边形每个内角的度数是 150 °,则这个多边形
的边数是 _十__二___边__形____.
5. 六____ 边形内角和是四边形内角和的 2倍。
多边形内角和公式的应用 正n边形每个内角度数
?n ? 2??1800
n
正三角形 60°
正方形 90°
正五边形 108°
正六边形 120°
正八边形 135°
思维升华
议一议: 剪掉一张长方形纸片的一个角后,
纸片还剩几个角? 这个多边形的内角和是 多少度? 与同伴交流.
相关文档
最新文档