结构力学 静定梁与静定刚架习题

合集下载

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第3章 静定梁与静定刚架【圣才出品】

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第3章 静定梁与静定刚架【圣才出品】

第3章 静定梁与静定刚架
3.1 复习笔记【知识框架】
【重点难点归纳】
一、单跨静定梁 ★★★★
1.内力
表3-1-1 内力的基本概念
图3-1-1
图3-1-22.内力与外力间的微分关系及积分关系(1)由平衡条件导出的微分关系式
计算简图如图3-1-3所示,微分关系式为
(Ⅰ)
d d d d d d s
s N
F q x
x M F
x F p x
x ⎧=⎪⎪⎪=
⎨⎪⎪=-⎪⎩-()()
图3-1-3
(2)荷载与内力之间的积分关系
如图3-1-4
所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-2。

图3-1-4
表3-1-2 内力的积分公式及几何意义
3.叠加法作弯矩图
表3-1-3 常用叠加法及其作图步骤
图3-1-5
图3-1-6
二、多跨静定梁 ★★★★
多跨静定梁是由构造单元(如简支梁、悬臂梁)多次搭接而成的几何不变体系,其计算简图见图3-1-7,几何构造、计算原则、传力关系见表3-1-4。

长沙理工结构力学期末考试题库和答案第二章静定梁与钢架 结构力学超静定

长沙理工结构力学期末考试题库和答案第二章静定梁与钢架 结构力学超静定

长沙理工结构力学期末考试题库和答案第二章静定梁与钢架结构力学超静定第二章静定梁及静定刚架一、判断题1.静定结构在荷载作用下产生的内力与杆件弹性常数、截面尺寸无关。

( O )2.计算位移时,对称的静定结构是指杆件几何尺寸、约束、刚度均对称的结构。

( O ) 3.静定结构在支座移动、变温及荷载分别作用下,均产生位移和内力。

( X )4.几何不变体系一定是静定结构。

( X )25.图示结构 MK = ql/2(内侧受拉)。

( X )q6.图示结构中 AB 杆弯矩为零。

( X ) q7.图示结构中 |MAC|=|MBD|。

( O )|8.图示结构中 |MAC|=|MBD。

( O )l9.图示结构 M 图的形状是正确的。

( X ) M 图 10.图示结构|MC|=0 。

( O)11.图示结构中 A、B 支座反力均为零。

d二、选择题12.静定结构有变温时:( C )A. 无变形,无位移,无内力;B. 有变形,有位移,有内力;C. 有变形,有位移,无内力;D. 无变形,有位移,无内力。

13.静定结构在支座移动时:( D )A. 无变形,无位移,无内力;B. 有变形,有位移,有内力;C. 有变形,有位移,无内力; D 无变形,有位移,无内力。

O )(14.静定结构的内力计算与( A )A. EI 无关;B. EI 相对值有关;C. EI 绝对值有关;D. E 无关, I 有关。

15.图示结构MA 、MC (设下面受拉为正)为:( C )A.MA =0 ,MC=Pa/2 ;B.MA =2Pa ,MC=2Pa ;C.MA =Pa ,MC=Pa ;D.MA =-Pa,MC=Pa 。

16.图示结构 MA、 MB (设以内侧受拉为正)为:( DA. MA=-Pa , MB =Pa;B. MA=0 , MB =-Pa ;C. MA=Pa ,MB =Pa ;D.MA=0 , MB =Pa 。

17.图示结构 B 点杆端弯矩(设内侧受拉为正)为:( C )A.MBA = Pa, MBC = -Pa ;B.MBA = MBC = 2Pa;C. MBA = MBC = Pa ;D.MBA = MBC = 0 。

结构力学分章节练习题------第四-十一章

结构力学分章节练习题------第四-十一章

第四章一、选择题1、如图所示刚架,给出四个不同形状的弯矩图,其中形状正确的是()题图2、如图所示正方形封闭荷载及框架,四个角上的弯矩相等且均为外侧受拉,其值等于 ( )PlA、8PlB、12PlC、16PlD、243、图为AB杆段的弯矩图,则杆上作用的外力P的大小应为()A、8KNB、10 KNC、12 KND、15 KN选择题3 填空题1二、填空题1、图所示所示刚架,截面D的弯矩值等于,侧受拉。

2、图示刚架,其中CD 杆D 截面的弯矩为 kn m,CD 杆的轴力为 kn (设弯矩以内侧受拉为正,轴力以拉力为正)。

3、如图所示刚架中的弯矩=DC M ,轴力=ED N ,支座A 的竖向反力=A V 。

三、计算题1、如图所示刚架的M 图,试做Q 图与N 图2、试作出图如图所示刚架的M 、Q 图。

3、作图刚架的 M 、Q 图。

6Kn第五章一、选择题:1、如图所示三铰拱,已知其水平推力H=23P ,该拱的失跨比lf 等于 ( )A 、81B 、61C 、41 D 、312、如图所示对称三铰拱,设拱轴线为抛物线。

铰C 右侧截面C '的轴力(受压为正)为( )。

3、经判断,如图所示结构的水平反力为 ( )A 、2,2P H P H B A -==B 、0,==B A H p HC 、P H H B A -==,0D 、2,2P H P H B A =-=二、填空题 :1、当拱的轴线与压力线完全重合时,各截面 和 都为零,而只有 。

这样的拱轴线称为 。

第六章一、选择题1、所示组合结构,其中二力杆AB 的轴力为 ( )A 、-P 2 B 、0C 、P 2D 、P 222、如图所示静定刚架及荷载,截面B 的弯矩B M 等于 ( )A 、Pa (外侧受拉)B 、2Pa (内侧受拉)C 、2Pa (外侧受拉)D 、3Pa (内侧受拉)二、填空题1、如图所示桁架1、2杆的内力分别为1N = ,2N = 。

三、计算题1、试计算图所示桁架杆件1、2的内力。

李廉锟《结构力学》(上册)配套题库【课后习题】(静定梁与静定刚架)【圣才出品】

李廉锟《结构力学》(上册)配套题库【课后习题】(静定梁与静定刚架)【圣才出品】

第3章静定梁与静定刚架复习思考题1.用叠加法作弯矩图时,为什么是竖标的叠加,而不是图形的拼合?答:因为有时叠加弯矩图时的基线与杆轴不重合,如果用图形拼合,不能完全保证叠加后弯矩值是实际同一点的两个弯矩相加后的值。

2.为什么直杆上任一区段的弯矩图都可以用简支梁叠加法来作?其步骤如何?答:(1)因为根据内力分析可以求出直杆任一区段两端的内力,所以直杆任一区段两端均可以看成两端有外力(集中力或集中力偶)的简支梁。

(2)设有直杆任一区段简支梁AB,具体步骤如下①分解作用区段AB上的荷载;②分别作出分解荷载下的弯矩图;③求解出区段AB两端的弯矩M A和M B;④将两端弯矩M A和M B绘出并连以直线(虚线);⑤以步骤④中的虚线为基线叠加各个分解荷载下的弯矩图(竖标叠加),得最终弯矩图。

3.试判断图3-1所示刚架中截面A、B、C的弯矩受拉边和剪力、轴力的正负号。

图3-1答:轴力以受压为负,受拉为正;剪力以使截面顺时针旋转为正。

(1)截面A:左边受拉,剪力为负,轴力为负;(2)截面B:右边受拉,剪力为正,轴力为正;(3)截面C:左边受拉,剪力为正,轴力为正。

4.怎样根据静定结构的几何构造情况(与地基按两刚片、三刚片规则组成,或具有基本部分与附属部分等)来确定计算反力的顺序和方法?答:(1)与地基按两刚片,例如简支梁,支座反力只有三个,对某一端点取矩直接解除约束反力。

(2)与地基按三刚片规则组成,例如三铰刚架,支座反力有四个,考虑结构整体的三个平衡方程外,还需再取刚架的左半部(或右半部,一般取外荷载较少部分)为隔离体建立一个平衡方程方可求出全部反力。

(3)具有基本部分与附属部分时,按先附属后基本的计算顺序,求解支座反力。

5.当不求或少求反力而迅速作出弯矩图时,有哪些规律可以利用?答:当不求或少求反力而迅速作出弯矩图时,如下规律可以利用(1)结构上若有悬臂部分及简支梁部分(含两端铰接直杆承受横向荷载)弯矩图可先行绘制出;(2)直杆的无荷区段弯矩图为直线和铰处弯矩为零;(3)刚结点的力矩平衡条件;(4)外力与杆轴重合时不产生弯矩;(5)外力与杆轴平行及外力偶产生的弯矩为常数;(6)对称性的合理利用;(7)区段叠加法作弯矩图。

结构力学 静定梁与静定刚架习题

结构力学 静定梁与静定刚架习题

M BC 2kNm
3、取AB为研究对象
MBA
或 取B节点为研究对象
2 kNm 2 kNm MBA
MBA=0
-4 kN
练习题
2
M
2
B
A 2m 1m
D
2m L P L L L L L
P
练习题
L
P L
P
L
P L
练习题
C
1kN/m
VC A VA 4m D
3、取AD为研究对象 B 4m
4m
VA
MDA VDA
3 kNm
3、取BCD为研究对象
2 kN
B
A 2m
C
D
1m
1m
MBC
1m
MBC= -1 kNm,上侧 1
MBA
1、取整体为研究对象
VC=4 kN
HA=2 kN 2、取AB为研究对象 MBA= - 2 kNm ,右侧受拉
B
2 A
C
D
练习题 2kN/m
C
8kN
20kNm 2m
3、BC为悬臂部分 MBC= 4 kNm,左侧
20 kN/m
4m
VB
MCB
MCD=90
MCF=135
VF
3.基本部分的计算,为悬臂杆。
VB=135
ME=135×3=405 kNm,左侧受拉
4. 作出弯矩图。
90 90
405
135
45
[习题3] 作弯矩图,剪力图,轴力图。
1.取整体为研究对象, ∑MA=0 ,VC×94×5-2×5×2.5=0 , 解得VC= 5 kN , ∑Y=0,VA=5 kN ∑X=0,HA=8 kN 8 kN 4 kN 2 kN/m HA VA VC

结构力学(一)·随堂练习2020秋华南理工大学网络教育答案

结构力学(一)·随堂练习2020秋华南理工大学网络教育答案

构力学(一)第一章绪论第二章平面体系的机动分析1.(单选题) 计算自由度W是有意义的,若W>0,则表示体系。

A.几何常变B.几何瞬变C.几何不变D.几何可变答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题) 图示体系的几何组成为。

A.几何不变,无多余约束B.几何不变,有一个多余约束C.瞬变体系D.几何不变,有2个多余约束答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(判断题) 瞬变体系的计算自由度可能小于0。

()答题:对. 错. (已提交)参考答案:√问题解析:4.(判断题) 图示体系为无多余约束的几何不变体系。

()答题:对. 错. (已提交)参考答案:√问题解析:5.(单选题) 图示体系为。

A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题) 图示体系为。

A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:7.(判断题) 若体系计算自由度W≤0,则该体系几何不变。

()答题:对. 错. (已提交)参考答案:×问题解析:8.(判断题) 下图的体系为几何不变体系。

()答题:对. 错. (已提交)参考答案:×问题解析:9.(单选题) 图示体系为。

A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:B问题解析:10.(单选题) 下图所示正六边形体系为。

A.几何常变体系B.无多余约束的几何不变体系C.瞬变体系D.有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:11.(判断题) 静定结构可以是瞬变体系。

()答题:对. 错. (已提交)参考答案:×问题解析:12.(判断题) 静定结构可以通过静力平衡方程求出结构所有的内力。

静定梁与静定刚架

静定梁与静定刚架

(二)绘内力图:
H A
=0
V
A =130KN
X 0 Y 0 M 0
C
NC 0 QC 130 KN M C 130 KN .M
第3章 例题: 试绘制图示外伸梁的内力图。
解:
10KN/m A HA=0 4m C 2m D B E 30KN.m 20KN
(1)计算支座反力
2m
2kN E
2m F
F
2m
G 2kN
2m
(b)
A
4kN/m B
C
G 2kN
G
B
11kN 4
4kN
4
(d)
8 7
(e) 9
4 M(kN.m) 2 2
Q(kN)
2
第3章 例题2: 图示三跨静定梁,全长承受均布荷载q,试确定铰E、F的位置,使中 间一跨支座的负弯矩与跨中正弯矩数据数值相等。
第3章
3.3 静定平面刚架的内力计算 一、刚架的组成 1、刚架的特征 由若干梁和柱用刚结点联结而成的结构。具有刚结点是 刚架的主要特征。 2、刚架的应用 刚架在工程上有广泛的应用。
(1)斜梁的倾角为常数,而曲梁各截面的的倾角是变量。 (2)计算曲梁的倾角时,可先写出曲梁的轴线方程y=f(x),而后对x求一 阶导数,进而确定倾角:
dy tan ; dx
tan1 (tan )
(3)角以由x轴的正方向逆时针转到切线方向时为正,反时针方向为负。
例题:试求图示曲梁C截面的内力值。已知曲梁轴线方程为:
y 4f 4 4 (l x) x 2 (12 1.5) 1.5 1.75m l2 12
4f 4 4 tan yx 1.5 2 (l 2 x) x1.5 2 (12 2 1.5) 1 l 12 2 450 sin con 0.707 2

结构力学习题

结构力学习题

2、产生位移的原因主要有三种
3、变形体系的虚功原理:

a)荷载作用 b)温度改变和材料胀缩
c)支座沉降和制造误差
变形体虚功原理:各微段内力在应变上所作的内虚功总和Wv,
等于荷载在位移上以及支座反力在支座位移上所作的外虚功总
和W。
F + FRk ck = FN du + M d + FS ds
M
M
第四章
一、三铰拱的主要受力特点:
静定拱
在竖向荷载作用下,产生水平推力。 优点:水平推力的存在使拱截面弯矩减小,轴力增大; 截面应力分布较梁均匀。节省材料,自重轻能跨越大跨 度;截面一般只有压应力,宜采用耐压不耐拉的材料砖、 石、混凝土。使用空间大。 缺点:施工不便;增大了基础的材料用量。
二、反力计算公式:
FN FN P MM P EI ds + EA ds
8)该公式既用于静定结构和超静定结构。但必须是弹性体系 9)虚拟力状态:在拟求位移处沿着拟求位移的方向,虚设相应 的广义单位荷载。
A B 求A点的 水平位移 P=1 求A截面 的转角
m=1
m=1
m=1
P=1 求AB两点 的相对位移
P=1
教材57页(4-1)
注:1)该组公式仅用于:两底铰在同一水平线上且承受竖向荷载。 2)三铰拱的反力与跨度、矢高(即三铰的位臵)有关, 而与拱轴线的形状无关;水平推力与矢高成反比。
三、内力计算公式: 0 注:1、该组公式仅用于两底铰 FS = FS cos - FH sin 在同一水平线上,且承受 0 FN = - FS sin - FH cos 竖向荷载; 2、仍有 FS=dM/ds 即剪力等零处弯矩达极值; 3、 M、FS、FN图均不再为直线。 4、集中力作用处FS图将发生突变。 5、集中力偶作用处M图将发生突变。 四、三铰拱的合理轴线 在给定荷载作用下使拱内各截面弯矩 剪力等于零,只有轴力的拱轴线。合理拱轴线方程为:

结构力学章节习题及参考答案

结构力学章节习题及参考答案
(7)习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。( )
习题2.1(6)图
习题2.2填空
(1)习题2.2(1)图所示体系为_________体系。
习题2.2(1)图
(2)习题2.2(2)图所示体系为__________体系。
习题2-2(2)图
习题2.2(5)图
(6)习题2.2(6)图所示体系为_________体系,有_________个多余约束。
习题2.2(6)图
(7)习题2.2(7)图所示体系为_________体系,有_________个多余约束。
习题2.2(7)图
习题2.3对习题2.3图所示各体系进行几何组成分析。
习题2.3图
第3章静定梁与静定刚架习题解答
习题7.2(4)图
习题9.3用力矩分配法计算习题7.3图所示连续梁,作弯矩图和剪力图,并求支座B的反力。
(1)(2)
习题7.3图
习题9.4用力矩分配法计算习题7.4图所示连续梁,作弯矩图。
(1)(2)
习题7.4图
习题9.5用力矩分配法计算习题7.5图所示刚架,作弯矩图。
(1)(2)
习题7.5图
第11章影响线及其应用习题解答
习题11.1是非判断题
(1)习题8.1(1)图示结构BC杆轴力的影响线应画在BC杆上。( )
习题8.1(1)图习题8.1(2)图
(2)习题8.1(2)图示梁的MC影响线、FQC影响线的形状如图(a)、(b)所示。
(3)习题8.1(3)图示结构,利用MC影响线求固定荷载FP1、FP2、FP3作用下MC的值,可用它们的合力FR来代替,即MC=FP1y1+FP2y2+FP3y3=FR 。( )

结构力学(2.1.2)--静定结构内力分析习题及参考答案

结构力学(2.1.2)--静定结构内力分析习题及参考答案
2
Fp
Fp
4×d
(d)
3-7 试求图示抛物线( y 4 fx(l x) / l 2 ) 三铰拱距左支座 5m 的截面内力。
4m 4m 3d
4m
5 kNF P 1
d
10 kN 1 F3(Pf×)d F2P
2
NN N
习题 3-6 图
2
d
N
15 kN
1
d2/02kN/md d/2
40 kN·m
y
A
B 20 kN
8×1 m
习题 3-5 图
杆件的内力。
80 kN
1 N
2 N
4m 2m
4m
2m
(a)
2m 2m 2×d
20 kN
3.6 试 用 较 简单的 方法求 图示桁 架指定
4
3
1
N 2
NN
Fp
Fp
Fp Fp 8×d
Fp
Fp N
Fp N
(b)
3×2 m d
60 kN
1
N
2
N
4×2 m (c)
Fp 1
2m
6m
6m
2m
(b)
习题 3-16 图
l
3m
4m 4m
3-17 试作图示组合结构的弯矩图和轴力图。
20 kN/m
B
C
A 4m 4m 4m 4m
(a)
习题 3-17 图
20 kNA 20 kN/m
BCD源自4m4m4m(b)
3-1 略
参考答案
3-2 (a) FNAB 25kN (b) FNAB 2.5FP
A
3m
(a) C

结构力学第3章静定梁与静定刚架(f)

结构力学第3章静定梁与静定刚架(f)

§3-2 多跨静定梁
例3-4 试作图a所示多跨静定梁的内力图,并求出各支座反力。
解:不算反力 先作弯矩图
1)绘AB、GH段弯矩图,与悬臂梁相同; 2)GE间无外力,弯矩图为直线,MF=0,可绘出; 同理可绘出CE段; 3)BC段弯矩图用叠加法画。
§3-2 多跨静定梁
由弯矩与剪力的微分关系画剪力图
由若干根梁用铰相联,并用若干支座与基础相联而组成的静定结构。
分析多跨静定梁的一般步骤
对如图所示的多跨静定梁,应先从附属部分CE开始分析:将 支座C 的支反力求出后,进行附属部分的内力分析、画内力图, 然后将支座 C 的反力反向加在基本部分AC 的C 端作为荷载,再 进行基本部分的内力分析和画内力图,将两部分的弯矩图和剪力 图分别相连即得整个梁的弯矩图和剪力图 。
弯矩图为直线:其斜率为剪力。图形从基线顺时针转,
剪力为正,反之为负。 弯矩图为曲线:根据杆端平衡条件求剪力,如图c。
剪力图作出后即可求支座反力 取如图e的隔离体可求支座 c— 的反力 弯矩—剪力 支座反力
§3-3 静定平面刚架
常见静定刚架的型式
悬臂刚 架
简支刚 架
三铰刚 架
§3-3 静定平面刚架
R FSR F E SD 8kN
FSR F 12kN
FSR B 0
§3-1 单跨静定梁
用截面法计算 控制截面弯矩。
MC 0
M A 20kN 1m 20kN m
M D 20kN 2m 58kN 1m 18kN m M E 20kN 3m 58kN 2m 30kN 1m 26kN m M F 12kN 2m 16kN m 10kN m 18kN m

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/219、求图示结构A、B两截面的相对转角,EI=常数。

l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。

ll21、求图示结构B点的竖向位移,EI = 常数。

结构力学习题

结构力学习题

1、杆系结构中梁、刚架、桁架及拱的分类,是根据结构计算简图来划分的。

(正确)2、定向支座总是存在—个约束反力矩(正确)和一个竖向约束反力。

(错误)3静力和动力荷载的区别,主要是取决于它随时间变化规律、加载速度的快慢。

其定性指标由结构的自振周期来确定。

(正确)4、铰结点的特性是被连杆件在连接处既不能相对移动,(正确)又不能相对转动。

(错误)5、线弹性结构是指其平衡方程是线性的,(正确)变形微小,(正确)且应力与应变之间服从虎克定律。

(正确)1、学习本课程的主要任务是:研究结构在各种外因作用下结构内力与()计算,荷载作用下的结构反应;研究结构的()规则和()形式等问题。

正确答案:位移,动,组成,合理2、支座计算简图可分为刚性支座与弹性支座,其中刚性支座又可分为()、()、()和()。

正确答案:链杆,固定铰支座,固定支座,滑动支座3、永远作用在结构上的荷载称为固定荷载,暂时作用在结构上的荷载称为()它包括()、()、()、()和()等正确答案:活载,风,雪,人群,车辆,吊车4、刚节点的特性是被连接的杆件载连接处既无()又不能相对();既可传递(),也可传递()正确答案:移动,转动,力,力矩第二章平面体系的几何构成分析1、图中链杆1和2的交点O可视为虚铰。

()O正确答案:正确2、两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。

()正确答案:正确3、在图示体系中,去掉1-5,3-5,4-5,2-5,四根链杆后,的简支梁12,故该体系具有四个多余约束的几何不变体系。

()12345正确答案:错误4、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。

()正确答案:错误5、图示体系是几何不变体系。

()正确答案:错误2-2几何组成分析1.正确答案:几何不变,且无多余联系。

2.(图中未编号的点为交叉点。

)A B CDEF正确答案:铰接三角形BCD视为刚片I,AE视为刚片II,基础视为刚片III;I、II间用链杆AB、EC构成的虚铰(在C点)相连,I、III间用链杆FB和D处支杆构成的虚铰(在B点)相联,II、III 间由链杆AF和E处支杆构成的虚铰相联3.(图中未画圈的点为交叉点。

结构力学习题及答案(武汉大学)

结构力学习题及答案(武汉大学)

结构力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进行几何组成分析。

若是具有多余约束的几何不变体系,则需指明多余约束的数目。

题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-1 1W=2-1 9W-=2-3 3W-=2-4 2W=-2-5 1=W-2-6 4=W-2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。

(a)(b)(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。

(a)(b)(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。

习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定结构的弯矩图是否正确。

(a)(b)(c)(d)部分习题答案3-1 (a )m kN M B ⋅=80(上侧受拉),kN F RQB 60=,kN F L QB 60-=(b )m kN M A ⋅=20(上侧受拉),m kN M B ⋅=40(上侧受拉),kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c) 4Fl M C =(下侧受拉),θcos 2F F L QC =3-2 (a) 0=E M ,m kN M F ⋅-=40(上侧受拉),m kN M B ⋅-=120(上侧受拉)(b )m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11(下侧受拉)(c )m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10(左侧受拉),m kN M DF ⋅=8(上侧受拉),m kN M DE ⋅=20(右侧受拉) 3-4 m kN M BA ⋅=120(左侧受拉)3-5 m kN M F ⋅=40(左侧受拉),m kN M DC ⋅=160(上侧受拉),m kN M EB ⋅=80(右侧受拉)3-6 m kN M BA ⋅=60(右侧受拉),m kN M BD ⋅=45(上侧受拉),kN F QBD 46.28=3-7 m kN M C ⋅=70下(左侧受拉),m kN M DE ⋅=150(上侧受拉),m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0(上侧受拉),m kN M BA ⋅=36.0(右侧受拉) 3-9 m kN M AB ⋅=10(左侧受拉),m kN M BC ⋅=10(上侧受拉) 3-10 (a )错误 (b )错误 (c )错误 (d )正确第4章 静定平面桁架和组合结构的内力分析4-1 试判别习题4-1图所示桁架中的零杆。

结构力学(二)·随堂练习2020秋华南理工大学网络教育答案

结构力学(二)·随堂练习2020秋华南理工大学网络教育答案

结构力学(二)第一章绪论第二章平面体系的机动分析3.(判断题) 图示体系为无多余约束的几何不变体系。

()答题:对. 错. (已提交)参考答案:√问题解析:A. 几何不变,无多余约束B. 几何不变,有一个多余约束C. 瞬变体系D. 几何不变,有2个多余约束答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题) 图示体系为。

A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:8.(判断题) 下图的体系为几何不变体系。

()答题:对. 错. (已提交)参考答案:×问题解析:A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:B问题解析:10.(单选题) 下图所示正六边形体系为。

A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:第三章静定梁与静定刚架问题解析:4.(判断题) 如图所示力作用在梁上,最右边支座反力不为0。

()答题:对. 错. (已提交)6.(单选题) 图示两结构及其受载状态,它们的内力符合:()A. 弯矩相同,剪力不同B. 弯矩相同,轴力不同C. 弯矩不同,剪力相同D. 弯矩不同,轴力不同答题: A. B. C. D. (已提交)参考答案:B问题解析:7.(单选题) 图示结构MDC(设下侧受拉为正)为:()A. -PaB. PaC. -Pa/2D. -Pa/2答题: A. B. C. D. (已提交)参考答案:C8.(单选题) 图a结构的最后弯矩图为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20 kN/m A B C D 4m E 3m 3m 3m F
MCD=90
MCB
MCF=135
*由结点 的平衡, 由结点C的平衡 由结点 的平衡, MCB=-45 kNm,下侧受拉 ,
VB B ME=135×3=405 kNm,左侧受拉 × 左侧受拉
E
90
90
405 135
45
M图(kNm) 图 ) 75 60 15
MCB
MCB=6 kNm, 左侧受拉
F
-2 3
-3
练习题 C D E
18 kNm 3m
B 3m A 2m 2m F C D
6 6
B
6、取AB为研究对象
VB= -3 HB= -2
12
E
A
MAB= -6 kNm 右侧受拉
[习题 作弯矩图,剪力图,轴力图。 习题2] 作弯矩图,剪力图,轴力图。 习题
1.取整体为研究对象 取整体为研究对象 ∑MA=0 ,YC×94×5-2×5×2.5=0 , × - × ×2. 解得Y 解得 C= 5 kN , ∑Y=0,YA=5 kN , ∑X=0,HA=8 kN , 8 kN 2×5=10 kN × 6 kN 2 kN/m HA YA YC 4 kN
F VF HF
VF = 3kN, HF = −2kN HB = −2kN,VB = −3kN
练习题 C D E
18 kNm 3m
4、取结点E的弯矩平衡
MED
B 3m A 2m 2m F
18 12
MED= - 6 kNm, 上侧受拉 5、取BC为研究对象
3、取EF为研究对象
E MEF
MEF=12 kNm, 左侧 -2
5.弯矩图 弯矩图 6 kNm 6 kNm 6 kNm
6 kNm 6 kNm
6 kNm
练习题
2 kNm C D
4 kN
2 kN
1、求支座反力 、 2、取BCD为研究对象 、 为研究对象 2 kN 4 kN
B 0 A 2m
-2 kN
2m NBC 1m
MBC VBC
∑M
B
= 0, MBC + 2×3− 4×2 = 0
内侧受拉
q 2qa2
B C D E
qa a a
F
A
a
a
a
11qa2/6
5、取EF为研究对象
MEF qa2/12 4qa2/3
MEF=
11qa/12
-11qa2/6
25qa2/12
右侧受拉
有关弯矩符号的画法
容易判断受拉侧的画法
不容易判断受拉侧的画法
小结:
1、结构是有杆件通过结点连接而成; 结构是有杆件通过结点连接而成; 结构是有杆件通过结点连接而成 2、做结构的弯矩图就是做杆件的弯矩图; 、做结构的弯矩图就是做杆件的弯矩图; 3、做杆件的弯矩图就是确定杆端的弯矩; 、做杆件的弯矩图就是确定杆端的弯矩; 4、确定杆端的弯矩就要用截面法取研究对象,暴露杆端弯矩; 、确定杆端的弯矩就要用截面法取研究对象,暴露杆端弯矩; 5、每个杆端弯矩确定后,用直杆弯矩的叠加法做杆件的弯矩图。 、每个杆端弯矩确定后,用直杆弯矩的叠加法做杆件的弯矩图。
MBC = 2kNm
3、取AB为研究对象 、 为研究对象
MBA
或 取B节点为研究对象 节点为研究对象
2 kNm 2 kNm MBA
MBA=0
-4 kN
练习题
2 2 B A 2m 1m L D 2m
M
L
P L L L
P
L
练习题
L P L
P L P L
练习题
C VC
1kN/m
3、取AD为研究对象
MDA
练习题
C
A 8 D 4
4
B
送同学们 3句话:
听-------能明白 看------能懂 动手-----才能会
关于简支梁、悬臂梁在简单荷载作用下的弯矩图
P q
PL/4 qL2/2 PL P
qL2/8
M M
练习题
2 kN B
HA
2 kN D 2m A 2m
YC
3、由节点B的平衡
MBD
MBA
1m
MBD=MBA= - 4 kNm; 下侧受拉 4 、做弯矩图 B A D
2. 取BC为研究对象, 为研究对象, 为研究对象 ∑MB=0 ,得:MBC=22 kNm 下侧受拉) (下侧受拉) ∑Y=0,得:VBC= -1 kN , ∑X=0, NBC=0 , Y NBA MBA VBA 2 kN/m X NBC
VBC
4 kN MBC
3.取AB为研究对象, 取AB为研究对象, 为研究对象 ∑Y=0, NBA=0.8 kN , . ∑X=0, VBA= -0.6 kN , . 4 kN
4×2m × 2.由对称性, 由对称性, 由对称性 YA=YB=6 kN 3. 计算 计算DFH部分 部分 3 kN 3 kN 6 kN 3 kN 3 kN 6 kNm
同理, 部分的弯矩图与DEH部分对称。 部分对称。 同理,GAEC部分的弯矩图与 部分的弯矩图与 部分对称 4.计算中间工字型 计算中间工字型 6 kN 3 kN 3 kN 3 kN 3 kN 3 kN 3 kN 3 kN 6 kNm 6 kN 3 kN 6 kNm
YC
YA
HA
Y 4. 取结点 为研究对象, 取结点A为研究对象 为研究对象, VAB=9.4 kN . NAB= 0.8 kN . HA YA 5. 作M、V、N图 、 、 图 4 kN 22 kNm 2 kN/m M图 图 X NAB VAB
0.6
– – 1
– 5
+ 9.4 kN
剪力图
0.8 kN
B 2m 30kN 2m
C 2m F G 20kN/m H HC VC C
1、取整体为研究对象 HC=30 kN 2、取FGHC为研究对象 VC=120 kN
30kN
D
E
F
G 20kN/m H 2m 2m
A 3m 3m
B 2m 2m
C 2m MDA
3、取整体为研究对象,以B为力矩中心 VA=80/3 kN 取整体,Y方向平衡,VB= -320/3 4、取AD为研究对象, MDA=80 kNm, 内侧
30kN
D
E
F
G 20kN/m H 2m 2m
A 3m 3m
B 2m 2m
C 2m
5、取HC为研究对象 5 HC
MHC
6、取GHC为研究对象 6 GHC
MGH
MHC=60 kNm,右侧
MGH= -160 kNm 右侧受拉
30kN
D
E
F
G 20kN/m H 2m 2m
A 3m 3m
B 2m 2m
C 2m
MCD
MBA
MCD=4 kNm,左侧受拉
练习题
4kNm A 2kN D 2m 2kN B C 2m
1kN/m
6m
4、由B、C节点的平衡
MBA MBC MCD
A
4 2
D
MCB
B
C
MBC=4 kNm,下侧; MCB= 4 kNm,上侧。
4
4
练习题
30kN
D
E
F
G 20kN/m H 2m 2m
A 3m 3m
81 V图(kN) 图 )
27 108
36
N图(kN) 图 )
[习题 作弯矩图 习题4] 习题
1.几何构造分析, 10 kN/m 几何构造分析, 几何构造分析 DEFG是附属部分, 是附属部分, 是附属部分 ABCD是基本部分 是基本部分 2.先计算附属部分 先计算附属部分
∑Y=0 ,YF =20+10×4=60 kN × ∑MD=0 ,MD= - 40 kNm(上侧受拉) (上侧受拉) MFG =80 kNm (上侧受拉) 上侧受拉) 为研究对象, 取DE为研究对象, 为研究对象 ∑MD=0 , MD - MED +20×2= 80 kNm × MED= 80 kNm(上侧受拉) (上侧受拉)
+ 轴力图
[习题 作弯矩图,剪力图,轴力图。 习题3] 作弯矩图,剪力图,轴力图。 习题
20 kN/m A B C D 4m E 3m 3m 3m F
是附属部分, 是基本部分 解:①几何构造分析。ABCDF是附属部分,BE是基本部分 几何构造分析。 是附属部分 ②先计算附属部分,是简支刚架。 先计算附属部分,是简支刚架。
20 kN/m HB A B C D 4m E 3m 3m 3m
*MCF=YF×3=135 kNm ,下侧受拉 *CD、AB是悬臂杆,直接写出弯矩 、 是悬臂杆 是悬臂杆, MBA=90 kNm, , MCD=90 kNm, , 上侧受拉。 上侧受拉。
B YB
C
F YF
F
取整体为研究对象, 取整体为研究对象, ∑MB=0, , YF×6+20×3×1.5-20×6×3=0 × × . - × × 得:YF = 45 kN ∑Y=0,得:YB=135 kN , ∑X=0,得:HB=0 ,
20 kN 10 kN/m
MD HD
20 kN
10 kN/m MED E YF
20 kN D
MD
3. 计算基本部分 取整体, 取整体,∑MB=0 MA-10×4×2+MDE = 0 × × + 下侧受拉) 得:MA= 40 kNm (下侧受拉) ∑Y=0,YB=40kN , 取BCD为研究对象, 为研究对象, 为研究对象 ∑MB=0 , BCD可视为悬臂。 可视为悬臂。 可视为悬臂 左侧受拉) 得:MBC= 40 kNm (左侧受拉) B MBC C D 40 YB MA MDE
相关文档
最新文档