高中数学竞赛讲义(8)平面向量

合集下载

高中数学竞赛_直线 圆锥曲线 平面向量

高中数学竞赛_直线 圆锥曲线 平面向量

专题五 直线 圆锥曲线 平面向量一 能力培养1,函数与方程思想 2,数形结合思想 3,分类讨论思想 4,转化能力 5,运算能力 二 问题探讨问题1设坐标原点为O,抛物线22y x =与过焦点的直线交于A,B 两点,求OA OB ⋅的值.问题2已知直线L 与椭圆22221x y a b +=交于P,Q 不同两点,记OP,OQ 的斜率分别为OP k ,OQ k ,如果22OP OQb k k a⋅=-,求PQ 连线的中点M 的轨迹方程.问题3给定抛物线C:24y x =,F 是C 的焦点,过点F 的直线l 与C 相交于A,B 两点.(I)设l 的斜率为1,求OA 与OB夹角的大小;(II)设FB AF λ=,若[4,9]λ∈,求l 在y 轴上截距的变化范围.问题4求同时满足下列三个条件的曲线C 的方程:①是椭圆或双曲线; ②原点O 和直线1x =分别为焦点及相应准线;③被直线0x y +=垂直平分的弦AB 的长为三 习题探 选择题1已知椭圆2215x y k+=的离心率e =,则实数k 的值为A,3 B,3或25332一动圆与两圆221x y +=和228120x y x +++=都外切,则动圆圆心的轨迹为 A,圆 B,椭圆 C,双曲线的一支 D,抛物线3已知双曲线的顶点为(2,1)-与(2,5),它的一条渐近线与直线340x y -=平行,则双曲 线的准线方程是 A,925y =±B,925x =± C,1225y =± D,1225x =± 4抛物线22y x =上的点P 到直线4y x =+有最短的距离,则P 的坐标是 A,(0,0) B,1(1,)2 C,1(,1)2 D,11(,)225已知点F 1(,0)4,直线l :14x =-,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段 BF 的垂直平分线交于点M,则点M 的轨迹是A,双曲线 B,椭圆 C,圆 D,抛物线 填空题6椭圆22221x y a b+=(0)a b >>上的一点到左焦点的最大距离为8,到右准线的最小距离为103,则此椭圆的方程为 . 7与方程3x y =的图形关于y x =-对称的图形的方程是 . 8设P 是抛物线2440y y x --=上的动点,点A 的坐标为(0,1)-,点M 在直线PA 上,且分PA所成的比为2:1,则点M 的轨迹方程是 .9设椭圆与双曲线有共同的焦点12(1,0),(1,0)F F -,且椭圆长轴是双曲线实轴的2倍, 则椭圆与双曲线的交点轨迹是 . 解答题10已知点H (3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足0HP PM ⋅= ,32PM MQ =- .(I)当点P 在y 轴上移动时,求点M 的轨迹C;(II)过点T (1,0)-作直线l 与轨迹C 交于A,B 两点,若在x 轴上存在一点E 0(,0)x , 使得ABE ∆是等边三角形,求0x 的值.11已知双曲线C:22221x y a b-=(0,0)a b >>,点B,F 分别是双曲线C 的右顶点和右焦点,O 为坐标原点.点A 在x 轴正半轴上,且满足,,OA OB OF成等比数列,过点F 作双曲线C 在第一,第三象限的渐近线的垂线l ,垂足为P.(I)求证:PA OP ⋅= PA FP ⋅; (II)设1,2a b ==,直线l 与双曲线C 的左,右两分支分别相交于点D,E,求DFDE的值.12已知双曲线的两个焦点分别为1F ,2F ,其中1F 又是抛物线24y x =的焦点,点A (1,2)-, B (3,2)在双曲线上.(I)求点2F 的轨迹方程; (II)是否存在直线y x m =+与点2F 的轨迹有且只 有两个公共点?若存在,求实数m 的值,若不存在,请说明理由.四 参考答案问题1解:(1)当直线AB ⊥x 轴时,在22y x =中,令12x =,有1y =±,则 11(,1),(,1)22A B -,得113(,1)(,1)224OA OB ⋅=⋅-=- . (2)当直线AB 与x 轴不互相垂直时,设AB 的方程为:1()2y k x =-由21(22y k x y ⎧=-⎪⎨⎪=⎩,消去y ,整理得22221(2)04k x k x k -++=,显然0k ≠.设1122(,),(,)A x y B x y ,则21212221,4k x x x x k ++=⋅=,得 OA OB ⋅= 1122(,)(,)x y x y ⋅=12x x ⋅+1y 2y =12x x ⋅+11(2k x -21(2k x ⋅-=22212121(1)()24k k x x x x k +⋅-++=22222121(1)424k k k k k ++-⋅+=34-.综(1),(2)所述,有34OA OB ⋅=-. 问题2解:设点P,Q,M 的坐标分别为1122(,),(,)x y x y ,(,)x y由条件知2211221x y a b += ①2222221x y a b += ②122x x x +=,122y y y += ③212212y y b x x a =- ④ ①+②得22221212222x x y y a b+++= 即22121212122222()()222x x y y x x y y a b a b +++--=,将③,④代入得2222442x y a b+=, 于是点M 的轨迹方程为2222122x y a b +=.问题3解:(I)C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为1y x =-,把它代入24y x =,整理得2610x x -+= 设A 11(,)x y ,B 22(,)x y 则有12126,1x x x x +==.112212121212(,)(,)2()OA OB x y x y x x y y x x x x ⋅=⋅=+=-++1=3-. OA OB ===cos ,41OA OB OA OB OA OB⋅<>==-, 所以OA 与OB夹角的大小为arccos41π-. (II)由题设FB AF λ= 得2211(1,)(1,)x y x y λ-=--,即21211(1)x x y y λλ-=-⎧⎨=-⎩.得22221y y λ=,又2211224,4y x y x ==,有221x x λ=,可解得2x λ=,由题意知0λ>, 得B (,λ或(,λ-,又F(1,0),得直线l 的方程为(1)1)y x λ-=-或(1)1)y x λ-=--,当[4,9]λ∈时,l 在y或,21λ=-,可知1λ-在[4,9]上是递减的,于是34413λ≤≤-,43314λ-≤-≤--, 所以直线l 在y 轴上的截距为[43,34--]34[,]43. 问题4解:设M (,)x y 为曲线C 上任一点,曲线C 的离心率为e (0,1)e e >≠,由条件①,②得e =,化简得:22222(1)20e x y e x e -++-= (i)设弦AB 所在的直线方程为y x m =+ (ii) (ii)代入(i)整理后得:22222(2)2()0e x m e x m e -+++-= (iii), 可知22e =不合题意,有220e -≠,设弦AB 的端点坐标为A 11(,)x y ,B 22(,)x y ,AB 的中点P 00(,)x y .则1x ,2x 是方程(iii)的两根.21222()2m e x x e ++=--,2121222()()()22m e y y x m x m m e ++=+++=-+-2120222x x m e x e ++==-,21202(1)22y y m e my e ++-==-,又中点P 00(,)x y 在直线0x y +=上, 有222m e e +-+22(1)2m e me +--=0,解得2m =-,即AB 的方程为2y x =-,方程(iii)为 2222(2)2(2)40e x e x e -+-+-=,它的28(2)0e ∆=->,得22e >.21222(2)22e x x e -++=-=-,212242e x x e-⋅=-由12AB x =-,得22222121212()(1)[()4](1)AB x x k x x x x k =-+=+-+即222224(24)(11)2e e-=-⋅+-,得242e =>,将它代入(i)得223840x y x --+=. 所求的曲线C 的方程为双曲线方程:224()314493x y --=.1焦点在x 轴得3k =;焦点在y 轴得253k =,选B.2设圆心O(0,0),1(4,0)O -,'O 为动圆的圆心,则''1(4)(1)3O O O O r r -=+-+=,选C.3知双曲线的中心为(2,2),由340x y -=变形得220916y x -=,于是所求双曲线方程为 22(2)(2)1916y x ---=,它的准线为925y -=±,即925y =±,选A. 4设直线y x m =+与22y x =相切,联立整理得222(1)0x m x m +-+=, 由224(1)40m m ∆=--=,得12m =,这时得切点(12,1),选B.5由MF MB =知点M 的轨迹是抛物线,选D.6可得28103a c a a c+=⎧⎪⎨-=⎪⎩,消去c ,整理得237400a a --=,有5a =或83-(舍去),得3c =,4b =,所以所求的椭圆方程为2212516x y +=. 7设点P (,)x y 是所求曲线上任一点,它关于y x =-对称的点'(,)P y x --在3x y =上, 有3()y x -=-,即3y x =. 8设点P 00(,)x y ,M (,)x y ,有0203x x +⨯=,02(1)3y y +⨯-=,得03x x =,032y y =+ 而2000440y y x --=,于是得点M 的轨迹方程是291240y x --=.9由条件可得123PF PF =或213PF PF =,设P (,)x y 代入可知交点的轨迹是两个圆.10解:(I) 设点M (,)x y ,由32PM MQ =- ,得P (0,),(,0)23y xQ -由0HP PM ⋅= ,得3(3,)(,)0,22y y x -⋅=所以24y x =.又点Q 在x 轴的正半轴上,得0x >.所以,动点M 的轨迹C 是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点.(II)设直线l :(1)y k x =+,其中0k ≠,代入24y x =,整理得22222(2)0k x k x k +-+= ①设A 11(,)x y ,B 22(,)x y ,2121222(2),1k x x x x k -+=-=,1212(1)(1)y y k x k x +=+++=124()2k x x k k++=,有AB 的中点为2222(,)k k k -,AB 的垂直平分线方程为22212()k y x k k k --=--,令0y =,0221x k =+,有E 22(1,0)k + 由ABE ∆为正三角形,E 到直线AB,知2AB k =由2k k =,解得k =,所以0113x =. 11(I)证明:直线l 的方程为:()ay x c b=-- 由()a y x c b b y x a ⎧=--⎪⎪⎨⎪=⎪⎩,得P 2(,)a ab c c ,又,,OA OB OF 成等差数列,得A(2a c,0),有22(0,),(,),(,)ab a ab b ab PA OP FP c c c c c =-==- ,于是222a b PA OP c ⋅=- ,222a b PA FP c⋅=- ,因此PA OP ⋅= PA FP ⋅ .(II)由1,2a b ==,得c =,l:1(2y x =--由221(214y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去x ,整理得215160y -+= ① 设D 11(,)x y ,E 22(,)x y ,由已知有12y y >,且1y ,2y 是方程①的两个根.12y y +=121615y y =,21212122112()2103y y y y y y y y y y +-+==,解得213y y =或13. 又12y y >,得21y y =13,因此121211321DF y y y y DEy ===--. 12解:(I)1(1,0)F,12AF BF ==,设2(,)F x y 则121220AF AF BF BF a -=-=>,去掉绝对值号有两种情况,分别得2F 的轨迹方程为1x =和22(1)(2)184x y --+=(0,4y y ≠≠)(II)直线1l :1x =,2l :y x m =+,D(1,4),椭圆Q:22(1)(2)184x y --+=①若2l 过点1F 或D,由1F ,D 两点既在直线1l 上,又在椭圆Q 上,但不在2F 的轨迹上, 知2l 与2F 的轨迹只有一个公共点,不合题意.②若2l 不过1F ,D 两点(1,3m m ≠-≠).则2l 与1l 必有一个公共点E,且点E 不在椭圆Q 上, 所以要使2l 与2F 的轨迹有且只有两个公共点,必须使2l 与Q 有且只有一个公共点, 把y x m =+代入椭圆的方程并整理得223(104)2810x m x m m --+-+= 由0∆=,得1m =±。

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

高中数学竞赛试题汇编五《平面向量》空白讲义

高中数学竞赛试题汇编五《平面向量》空白讲义

高中数学竞赛试题汇编五《平面向量》1. 在ABC ∆中,BC BA CB CA ⋅=⋅ ,则ABC ∆是 .A.等腰三角形B.直角三角形C.等腰直角三角形D.以上均不对2. 在直角坐标系xoy 中,已知三点(,1),(2,),(3,4)A a B b C ,若向量,OA OB 在OC 上的投影相同,则34a b -= .3. 设,a b 是非零向量,且2a = ,22a b += ,则a b b ++ 的最大值是 .4. 已知()()375a b a b +⊥- ,且()()472a b a b -⊥- ,则a b 与的夹角是 .5. 在ABC ∆中,点O 为BC 的中点,过点O 的直线分别交 直线AB 、AC 于不同的两点M 、N ,若AB mAM = ,AC nAN = ,则m n +的值为 .6. 在ABC ∆中3,5,6AB BC CA ===,则AB BC BC CA CA AB ⋅+⋅+⋅= .7. 在ABC ∆中,若321AB BC BC CA CA AB ⋅⋅⋅== ,则tan A = .AB CM O N8. 已知O 是ABC ∆的外接圆,8,6AC AB ==,则AO BC ⋅= .9. 在△ABC 中,AB=BC=2,CA=3.①求AB AC ⋅ ;②设△ABC 的内心为O ,求满足AO=pAB+qAC 的实数p 、q 的值.10. 若P 是ABC ∆所在平面内的一点,满足PA PB PC BC --= ,则ABP ABCS S ∆∆= .11. 已知O 是ABC ∆内一点,且432AO AB BC CA =++ ,则ABC OBCS S ∆∆= .12. 若O 是ABC ∆内一点,且1134AO AB AC =+ ,则OAB OBC S S ∆∆= .。

高一平面向量讲义

高一平面向量讲义

平面向量讲义§2.1平面向量的实际背景及基本概念1.向量:既有,又有的量叫向量.2.向量的几何表示:以A为起点,B为终点的向量记作.3.向量的有关概念:(1)零向量:长度为的向量叫做零向量,记作.(2)单位向量:长度为的向量叫做单位向量.(3)相等向量:且的向量叫做相等向量.(4)平行向量(共线向量):方向的向量叫做平行向量,也叫共线向量.①记法:向量a平行于b,记作.②规定:零向量与平行.考点一向量的有关概念例1判断下列命题是否正确,并说明理由.①若a≠b,则a一定不与b共线;②若=,则A、B、C、D四点是平行四边形的四个顶点;③在平行四边形中,一定有=;④若向量a与任一向量b 平行,则a=0;⑤若a=b,b=c,则a=c;⑥若a∥b,b∥c,则a∥c.变式训练1判断下列命题是否正确,并说明理由.(1)若向量a与b同向,且>,则a>b;(2)若向量=,则a与b 的长度相等且方向相同或相反;(3)对于任意=,且a与b的方向相同,则a=b;(4)向量a与向量b平行,则向量a与b方向相同或相反.考点二向量的表示方法例2一辆汽车从A点出发向西行驶了100到达B点,然后又改变方向向西偏北50°走了200到达C点,最后又改变方向,向东行驶了100到达D点.(1)作出向量、、;(2)求|.考点三相等向量与共线向量例3如图所示,O是正六边形的中心,且=a,=b,=c.(1)与a的模相等的向量有多少个?(2)与a的长度相等,方向相反的向量有哪些?(3)与a共线的向量有哪些?(4)请一一列出与a,b,c相等的向量.§2.2平面向量的线性运算1.向量的加法法则(1)三角形法则如图所示,已知非零向量a,b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和(或和向量),记作,即a+b=+=.上述求两个向量和的作图法则,叫做向量求和的三角形法则.对于零向量与任一向量a的和有a+0=+=.(2)平行四边形法则如图所示,已知两个不共线向量a,b,作=a,=b,则O、A、B 三点不共线,以,为邻边作,则对角线上的向量=a+b,这个法则叫做两个向量求和的平行四边形法则.2.向量加法的运算律(1)交换律:a+b=.(2)结合律:(a+b)+c=.3.相反向量(1)定义:如果两个向量长度,而方向,那么称这两个向量是相反向量.(2)性质:①对于相反向量有:a+(-a)=.②若a,b互为相反向量,则a=,a+b=.③零向量的相反向量仍是.4.向量的减法(1)定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的.(2)作法:在平面内任取一点 O ,作=a ,=b ,则向量 a -b =.如图所示.(3)几何意义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点 为,被减向量的终点为的向量.例如:-=.5.向量数乘运算实数 λ 与向量 a 的积是一个,这种运算叫做向量的,记作,其长度与方向规定如下: (1)|λ=.(2)λa (a ≠0)的方向错误!;特别地,当 λ=0 或 a =0 时,0a =或 λ0=.6.向量数乘的运算律 (1)λ(a μ)=.(1)(λ+μ)a =. (3)λ(a +b )=.特别地,有(-λ)a ==; λ(a -b )=.7.共线向量定理向量 a (a ≠0)与 b 共线,当且仅当有唯一一个实数 λ,使.8.向量的线性运算向量的、 运算统称为向量的线性运算,对于任意向量 a 、b ,以及任意实数 λ、μ 、μ ,恒 有λ(μ a ±μ b )=.考点一 运用向量加法法则作和向量例 1如图所示,已知向量 a 、b ,求作向量 a +b .变式训练 1 如图所示,已知向量 a 、b 、c ,试作和向量 a +b +c .考点二 运用向量加减法法则化简向量 例 2 化简:(1)+;(2)++;(3)++++. (4)(-)-(-).(5)(-)-(-); (6)(++)-(--).1 212变式训练2如图,在平行四边形中,O是和的交点.(1)+=;(2)++=;(3)++=;(4)++=.变式训练3如图所示,O是平行四边形的对角线、的交点,设=a,=b,=c,求证:b+c-a=.考点三向量的共线例3设e,e是两个不共线的向量,若向量m=-e+(k∈R)与向量n=e-2e共线,则121221()A.k=0B.k=1C.k=2D.k=变式训练4已知△的三个顶点A,B,C及平面内一点P,且++=,则( )A.P在△内部B.P在△外部C.P在边上或其延长线上D.P在边上考点四:三点共线例4两个非零向量a、b不共线.(1)若=a+b,=2a+8b,=3(a-b),求证:A、B、D三点共线;(2)求实数k使+b与2a+共线.变式训练5已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是( ) A.B、C、D B.A、B、C C.A、B、D D.A、C、D变式训练 6 已知平面内 O ,A ,B ,C 四点,其中 A ,B ,C 三点共线,且=+,则 x +y =.§2.3 平面向量的基本定理及坐标表示1.平面向量基本定理 (1)定理:如果 e ,e 是同一平面内的两个向量,那么对于这一平面内的向量 a ,实数 λ ,λ , 使 a =.(2)基底:把的向量 e ,e 叫做表示这一平面内向量的一组基底.2.两向量的夹角与垂直(1)夹角:已知两个和 b ,作=a ,=b ,则=θ (0°≤θ≤180°),叫做向量 a 与 b 的夹角. ①范围:向量 a 与 b 的夹角的范围是. ②当 θ=0°时,a 与. ③当 θ=180°时,a 与.(2)垂直:如果 a 与 b 的夹角是,则称 a 与 b 垂直,记作.3.平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个的向量,叫作把向量正交分解.(2)向量的坐标表示:在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个,j 作为基 底,对于平面内的一个向量 a ,有且只有一对实数 x ,y 使得 a =,则叫作向量 a 的坐标,叫 作向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若 A (x ,y ),则=,若 A (x ,y ),B (x ,y ),则=. 4.平面向量的坐标运算(1)若 a =(x ,y ),b =(x ,y ),则 a +b =,即两个向量和的坐标等于这两个向量相应坐标 的和.(2)若 a =(x ,y ),b =(x ,y ),则 a -b =,即两个向量差的坐标等于这两个向量相应坐标 的差.(2)若 a =(x ,y ),λ∈R ,则 λa =,即实数与向量的积的坐标等于用这个实数乘原来向量的相 应坐标.5.两向量共线的坐标表示 设 a =(x ,y ),b =(x ,y ). (1)当 a ∥b 时,有. (2)当 a ∥b 且 x y ≠0 时,有.即两向量的相应坐标成比例.6.若=λ,则 P 与 P 、P 三点共线. 当 λ∈时,P 位于线段 P P 的内部,特别地 λ=1 时,P 为线段 P P 的中点; 当 λ∈时,P 位于线段 P P 的延长线上; 当 λ∈时,P 位于线段 P P 的反向延长线上.考点一 对基底概念的理解1 2 1 2 1 21 12 2 1 1 2 2 1 1 2 2 1 1 2 2 2 21 2 1 2 1 2 1 2 1 2例 1 如果 e ,e 是平面 α 内两个不共线的向量,那么下列说法中不正确的是( ) ①λe +μe (λ、μ∈R )可以表示平面 α 内的所有向量;②对于平面 α 内任一向量 a ,使 a =λe +μe 的实数对(λ,μ)有无穷多个; ③若向量 λ e +μ e 与 λ e +μ e 共线,则有且只有一个实数 λ,使得 λ e +μ e =λ(λ e +μ e );④若存在实数 λ,μ 使得 λe +μe =0,则 λ=μ=0. A .①②B .②③C .③④D .②变式训练 1 设 e 、e 是不共线的两个向量,给出下列四组向量:①e 与 e +e ;②e -2e 与 e -2e ; ③e -2e 与 4e -2e ;④e +e 与 e -e . 其中能作为平面内所有向量的一组基底的序号是.(写出所有满足条件的序号)考点二 用基底表示向量例 2 .如图,梯形中,∥,且=2,M 、N 分别是和的中点,若=a ,=b 试用 a ,b 表示、、变式训练 2 如图,已知△中△ ,D 为的中点,E ,F 为的三等分点,若=a ,=b ,用 a ,b 表 示,,.考点三 平面向量基本定理的应用例 3 如图所示, △在中,点 M 是的中点,点 N 在边上,且=2,与相交于点 P ,求证:∶ =4∶1.变式训练 3 如图所示,已知△中,点 C 是以 A 为中点的点 B 的对称点,=2,和交于点 E , 设=a ,=b .(1)用 a 和 b 表示向量、; (2)若=λ,求实数 λ 的值.1 212 1 2 1 1 1 2 2 1 2 2 1 1 1 22 12 21 2 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 2考点四平面向量的坐标运算例4已知平面上三点A(2,-4),B(0,6),C(-8,10),求(1)-;(2)+2;(3)-.变式训练4已知a=(-1,2),b=(2,1),求:(1)2a+3b;(2)a-3b;(3)a-b.考点五平面向量的坐标表示例5已知a=(-2,3),b=(3,1),c=(10,-4),试用a,b表示c.变式训练5设i、j分别是与x轴、y轴方向相同的两个单位向量,a=i-(2m-1)j,b=2i+(m∈R),已知a∥b,求向量a、b的坐标.考点六平面向量坐标的应用例6已知的顶点A(-1,-2),B(3,-1),C(5,6),求顶点D的坐标.变式训练6已知平行四边形的三个顶点的坐标分别为(3,7),(4,6),(1,-2),求第四个顶点的坐标.考点七平面向量共线的坐标运算例7已知a=(1,2),b=(-3,2),当k为何值时,+b与a-3b平行?平行时它们是同向还是反向?变式训练7已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的方向相同还是相反?考点八平面向量的坐标运算例8已知点A(3,-4)与点B(-1,2),点P在直线上,且|=2|,求点P的坐标.变式训练8已知点A(1,-2),若向量与a=(2,3)同向,|=2,求点B的坐标.考点九利用共线向量求直线的交点例9如图,已知点A(4,0),B(4,4),C(2,6),求与的交点P 的坐标.变式训练9平面上有A(-2,1),B(1,4),D(4,-3)三点,点C在直线上,且=,连接,点E在上,且=,求E点坐标.§2.4 平面向量的数量积1.平面向量数量积(1)定义:已知两个非零向量 a 与 b ,我们把数量叫做 a 与 b 的数量积(或内积),记作 a · b , 即 a · b = θ,其中 θ 是 a 与 b 的夹角.(2)规定:零向量与任一向量的数量积为.(3)投影:设两个非零向量 a 、b 的夹角为 θ,则向量 a 在 b 方向的投影是,向量 b 在 a 方向 上的投影是.2.数量积的几何意义a ·b 的几何意义是数量积 a · b 等于 a 的长度与 b 在 a 的方向上的投影的乘积.3.向量数量积的运算律 (1)a·b =(交换律); (2)(λa )· b ==(结合律); (3)(a +b )· c =(分配律).4.平面向量数量积的坐标表示 若 a =(x ,y ),b =(x ,y ),则 a·b =. 即两个向量的数量积等于.5.两个向量垂直的坐标表示 设两个非零向量 a =(x ,y ),b =(x ,y ), 则 a ⊥ b .6.平面向量的模(1)向量模公式:设 a =(x ,y ),则=. (2)两点间距离公式:若 A (x ,y ),B (x ,y ),则|=.7.向量的夹角公式 设两非零向量 a =(x ,y ),b =(x ,y ),a 与 b 的夹角为 θ,则 θ==.考点一 求两向量的数量积例 1 已知=4,=5,当(1)a ∥b ;(2)a ⊥b ;(3)a 与 b 的夹角为 30°时,分别求 a 与 b 的数 量积.变式训练 1 已知正三角形的边长为 1,求: (1)· ;(2)· ;(3)·.考点二 求向量的模长1 12 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2例2已知==5,向量a与b的夹角为,求+,-.变式训练2已知==1,|3a-2=3,求|3a+.考点三向量的夹角或垂直问题例3设n和m是两个单位向量,其夹角是60°,求向量a=2m+n与b=2n-3m 的夹角.变式训练3已知=5,=4,且a与b的夹角为60°,则当k为何值时,向量-b与a+2b垂直?考点四向量的坐标运算例4已知a与b同向,b=(1,2),a·b=10.(1)求a的坐标;(2)若c=(2,-1),求a(b·c)及(a·b)c.变式训练4若a=(2,3),b=(-1,-2),c=(2,1),则(a·b)·c=;a·(b·c)=.考点五向量的夹角问题例5已知a=(1,2),b=(1,λ),分别确定实数λ的取值范围,使得:(1)a与b的夹角为直角;(2)a与b的夹角为钝角;(3)a与b的夹角为锐角.变式训练5已知a=(1,-1),b=(λ,1),若a与b的夹角α为钝角,求λ的取值范围.考点六向量数量积坐标运算的应用例6已知在△中,A(2,-1)、B(3,2)、C(-3,-1),为边上的高,求|与点D的坐标.变式训练6以原点和A(5,2)为两个顶点作等腰直△角,∠B=90°,求点B和的坐标.§2.5平面向量应用举例1.向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)⇔⇔.(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:a⊥b⇔⇔.(3)求夹角问题,往往利用向量的夹角公式θ==.(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:=.2.力向量力向量与前面学过的自由向量有区别.(1)相同点:力和向量都既要考虑又要考虑.(2)不同点:向量与无关,力和有关,大小和方向相同的两个力,如果不同,那么它们是不相等的.3.向量方法在物理中的应用(1)力、速度、加速度、位移都是.(2)力、速度、加速度、位移的合成与分解就是向量的运算,运动的叠加亦用到向量的合成.(3)动量mν是.(4)功即是力F与所产生位移s的.考点一三角形问题例1点O是三角形所在平面内的一点,满足·=·=·,则点O是△的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点变式训练1在△中,已知A(4,1)、B(7,5)、C(-4,7),则边的中线的长是()A.2C.3变式训练2若O是△所在平面内一点,且满足-|=+-2|,△则的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形变式训练3设平面上有四个互异的点A、B、C、D,已知(+-2)·(-)=0,△则的形状一定是.考点二向量的计算例2已知平面上三点A、B、C满足|=3,|=4,|=5.则·+·+·=.变式训练4如图,在△中,点O是的中点,过点O的直线分别交直线、于不同的两点M、N,若=,=,则m+n的值为.考点三向量的应用例3两个大小相等的共点力F,F,当它们夹角为90°时,合力大小为20N,则当它们的12夹角为120°时,合力大小为()A.40N B.10N C.20N D.10N变式训练5在水流速度为4千米/小时的河流中,有一艘船沿与水流垂直的方向以8千米/小时的速度航行,则船实际航行的速度的大小为.。

平面向量讲义

平面向量讲义

平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a |a |和-a|a |.3.向量的线性运算❷多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 只有a ≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P 为线段AB 的中点,O 为平面内任一点,则OP ―→=12(OA ―→+OB ―→).(2)OA ―→=λOB ―→+μOC ―→(λ,μ为实数),若点A ,B ,C 三点共线,则λ+μ=1. 考点一 平面向量的有关概念[典例] 给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c . ②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→,又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零; ③λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( ) A .0 B .1C .2 D .3解析:①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( ) A.34AB ―→-14AC ―→ B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→ (2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r+3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解. (3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( )A .AD ―→=-13AB ―→+43AC ―→ B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→ D .AD ―→=43AB ―→-13AC ―→解析: 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→.2.在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________. 解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→,∴AB ―→,BD ―→共线. 又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形C .梯形 D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0C .e 1∥e 2 D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P 在射线AB 上,故选D.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→. [解] ∵BA ―→=OA ―→-OB ―→=a -b ,BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b ,∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→=23OD ―→=23a +23b ,∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 解析:由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b .2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→ (0<λ<1),由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c ,∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18). [变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________.解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.2.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解. 2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1),∴k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3),BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→,∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13 B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→. 设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π].当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律(1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e ·a =a ·e =|a |cos θ.(2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a||b|;当a 与b 反向时,a ·b =-|a||b|. 特别地,a ·a =|a|2或|a|=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a |=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a ·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2;(2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A .0 B .4C .-92D .-172(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12,∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN .∵BM ―→=2MA ―→,CN ―→=2NA ―→,∴AM AB =AN AC =13.∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→).∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2)=3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0.故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解. [题组训练]1.已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1C.6D .2 2 解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0,∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( ) A.55 B .-55C .-255 D .-355解析:由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→(λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0,∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .2 2D .3(2)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34 D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________. [解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b|a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3.考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A .-4 B .-3C .-2 D .-1解析: ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B. 2.已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B .1C. 2 D .2 解析: ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________. 解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cosθ=a ·b|a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 第四节 平面向量的综合应用 考点一 平面向量与平面几何[典例] 在平行四边形ABCD 中,|AB ―→|=12,|AD ―→|=8.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .36D .6[解析] 法一:由BM ―→=3MC ―→,DN ―→=2NC ―→知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,AN ―→=AD ―→+DN ―→=AD ―→+23AB ―→,所以NM ―→=AM ―→-AN ―→=AB ―→+34AD ―→-⎝⎛⎭⎫AD ―→+23AB ―→=13AB ―→- 14AD ―→,所以AM ―→·NM ―→=⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫13AB ―→-14AD ―→=13⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫AB ―→-34AD ―→= 13⎝⎛⎭⎫AB ―→2-916AD ―→2=13⎝⎛⎭⎫144-916×64=36,故选C.法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM ―→=(12,6),NM ―→=(4,-2),所以AM ―→·NM ―→=12×4+6×(-2)=36,故选C.[题组训练]1.若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形C .正三角形 D .等腰直角三角形解析:选A 由(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,得CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→, ∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形.2.已知P 为△ABC 所在平面内一点,AB ―→+PB ―→+PC ―→=0,|AB ―→|=|PB ―→|=|PC ―→|=2,则△ABC 的面积等于( )A. 3 B .23C .3 3 D .4 3解析:由|PB ―→|=|PC ―→|得,△PBC 是等腰三角形,取BC 的中点D ,连接PD (图略),则PD ⊥BC ,又AB ―→+PB ―→+PC ―→=0,所以AB ―→=-(PB ―→+PC ―→)=-2PD ―→,所以PD =12AB =1,且PD ∥AB ,故AB ⊥BC ,即△ABC 是直角三角形,由|PB ―→|=2,|PD ―→|=1可得|BD ―→|=3,则|BC ―→|=23,所以△ABC 的面积为12×2×23=2 3.3.如图,在扇形OAB 中,OA =2,∠AOB =90°,M 是OA 的中点,点P 在弧AB 上,则PM ―→·PB ―→的最小值为________.解析:如图,以O 为坐标原点,OA ―→为x 轴的正半轴,OB ―→为y 轴的正半轴建立平面直角坐标系,则M (1,0),B (0,2),设P (2cos θ,2sin θ),θ∈⎣⎡⎦⎤0,π2,所以PM ―→·PB ―→=(1-2cos θ,-2sin θ)·(-2cos θ,2-2sin θ)=4-2cos θ- 4sin θ=4-2(cos θ+2sin θ)=4-25sin(θ+φ)⎝⎛⎭⎫其中sin φ=55,c os φ=255,所以PM ―→·PB ―→的最小值为4-2 5.答案:4-2 5考点二 平面向量与解析几何[典例] 已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. [解] (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .则t a n x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32. 于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.[题组训练]1.已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.解析:∵AB ―→=OB ―→-OA ―→=(4-k ,-7),BC ―→=OC ―→-OB ―→=(6,k -5),且AB ―→∥BC ―→,∴(4-k )(k -5)+6×7=0,解得k =-2或k =11.由k <0,可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.2.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ―→·FP ―→的最大值为________.解析:由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 20=3⎝⎛⎭⎫1-x 204,因为FP ―→=(x 0+1,y 0),OP ―→=(x 0,y 0),所以OP ―→·FP ―→=x 0(x 0+1)+y 20=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP ―→·FP ―→取得最大值224+2+3=6.考点三 平面向量与三角函数[典例] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A ―→+PB ―→+PC ―→|的最大值为( )A .6B .7C .8D .9[解析] 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,知线段AC 为圆的直径,设圆心为O ,故P A ―→+PC ―→=2PO ―→=(-4,0),设B (a ,b ),则a 2+b 2=1且a ∈[-1,1],PB ―→=(a -2,b ),所以P A ―→+PB ―→+PC ―→=(a -6,b ).故|P A ―→+PB ―→+PC ―→|=-12a +37,所以当a =-1时,|P A ―→+PB ―→+PC ―→|取得最大值49=7.[解题技法]平面向量与三角函数的综合问题的解题思路(1)若给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)若给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.[题组训练]1.已知a =(cos α,sin α),b =(cos(-α),sin(-α)),那么a ·b =0是α=k π+π4(k ∈Z)的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵a ·b =cos α·cos(-α)+sin α·sin(-α)=cos 2α-sin 2α=cos 2α,若a ·b =0,则cos 2α=0,∴2α=2k π±π2(k ∈Z),解得α=k π±π4(k ∈Z).∴a ·b =0是α=k π+π4(k ∈Z)的必要不充分条件.故选B.2.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n = (cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3解析:选C 由m ⊥n ,得m ·n =0,即3cos A -sin A =0,由题意得cos A ≠0,∴t a n A =3,又A ∈(0,π),∴A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c (R 为△ABC 外接圆半径),且a cos B +b cos A =c sin C ,所以c =c sin C ,所以sin C =1,又C ∈(0,π),所以C =π2,所以B =π-π3-π2=π6.。

数学竞赛中的平面向量问题

数学竞赛中的平面向量问题

数学竞赛中的平面向量问题KeYuLanSheng课余揽胜平面向量具有几何形式与代数形式双重特征,能融数形于一体,它是沟通代数、平面几何、解析几何与三角函数的一种工具,是中学数学知识交汇的一条重要纽带.在高中数学竞赛中,平面向量问题所占的比重有增大的趋势,且凸现其综合性、灵活性和创新性.数学竞赛中的平面向量问题◇江西廖东明一、求两向量数量积的取值范围或最值例1(2005年第16届“希望杯”高二第2“!"试)平面内的向量!(1,1),O(-1,-1),点POA=B="是抛物线y=x2+2(-3≤x≤1)上任意一点,则!AP!"BP的取值范围是_______.解由题意,可设点P(x,x2+2)(-3≤x≤1),三、三角形的“透视”“心”与三角形的外心、内心、垂心”有关的“重心、向量问题是一类极富思考性和挑战性的问题,备受竞赛命题者的青睐.三角形可用向量的统一形式表示,探“四心”索如下:设O为△ABC内的任意一点,如图以OA所在的直线为x轴,O为原点建立直角坐标系.并设OA=m,OB=n,OC=p,,∠AOC=β,0<α,β∠AOB=α<yB高一人教大纲"!""!"!"!"则!(x-1,x2+1),B(x+1,AP=OP-!OA=P=OP-OB=!"(x-1,x2+1)(x+1,x2+3)=x4+P=x2+3),所以B[-3,1],所以x2∈[0,9],所以5x2+2.因为x∈专业S精心策划!"[2,128].BP∈点评!"将BP表示为关于x的函数式,针对该函数式及x∈[-3,1]来求函数的值域.多数情况下所得到的函数与二次函数有关,如本例令t=x2,"!"则![0,9].APBP=t2+5t+2,t∈二、判断三角形的形状注意从函数t=x角2度来确定t∈[0,9],不要得出错误结论t∈[1,9].,则A(m,0),B(ncosα,nsinα),C(pcosβ,-psinβ)π(点C在x轴的下方).由平面向量基本定理,设例2(2005年第3届高二初赛)O“创新杯”为△ABC所在平面内一点,且满足(!"""OB-!OC)(!OB!"!"!" OA=xOB+yOC(x,y∈R),则!"!"C-2OA)=0,则三角形形状为_______三角形.+O解即(!"""!"!"由条件,得CB(!OB-!OA+OC-OA)=0,!"!"!"!"AB-AC)(AB+AC)=0,’,m=xncosα+ypcosβ,0=xnsinα-ypsinβ解得(__)__+x=y=msinβ,msinα.()"!""!"所以!AB2=AC2,即!AB=AC.所以△ABC是等腰三角形.点评!""所以pnsin(α)O! A=mpsinβOB+mnsinα+β!",∠AOC=β,∠BOC=2π),OC.因为∠AOB=α-(α+β!"!"!"所以S△OBCOA+S△OCAOB+S△OABOC=0.(1)若O是△ABC的内心,设BC=a,AC=b,!"!"!"!""灵活运用OB-OC=CB=AB-!AC等将条件式中的字母O去除,转化为用三角形的边所对应的向量来表示,这是解决问题的思路.AB=c,则利用面积公式S=1absinC和角平分线知数学爱好者"$#课余揽胜KeYuLanSheng"#"$识易得S△OBC∶A-bOB+S△OCA∶S△OAD=a∶b∶c,所以aO"$(C=0cO"$"$"$或sinAOA+sinBOB+sinCOC=0);(2)若O是△ABC的重心,则S△OBC=S△OCA="$"$AABC"$$+BC=-"CBcos∠ABCcos∠BCAABAC-$"$"$OA+OB+OC=0;S△OAB=1S△ABC,故"(3)若O是△ABC的外心,则S△OBC∶S△OCA∶"$"$AABC"$所以+CB=0,λABcos∠ABCACcos∠BCA"$表示垂直于BC的向量,即P点在过点A且垂直于-BC的直线上,所以动点P的轨迹一定通过△ABC的垂心.故选D.点评正确理解向量的夹角公式cosABC=S△OAB=sin∠BOC∶sin∠COB∶sin∠AOB=sin2A∶sin2B∶"$"$"$ OA+sin2BOB+sin2COC=0.sin2C,故sin2A另外,从几何角度看,O为△ABC的外心’"$$"$OA="OB=OC;(4)若O是△ABC(非直角三角形)的垂心,则OCsin(πS△OBC=OB-A)=OBOTsinA=(△OCA)"$$$$ABA"BC=-"B"BC和审察所给式子的BCBCBAAB结构特征进行联想并活用公式整体处理是正确而快捷地解决本题的关键.还可推知:“O是平面上一定点,A,B,C平面上不共线的三个点,动点P满足tanA.其中CO的延长线交AB于T,∠AOT=∠B,人教大纲"$O"$C"$OOB+λABcos∠ABC"$ABACcos∠BCA"$AC-,∠BOT=∠A,利用四点共圆知识得到.同理可得,S△OBC∶S△OCA∶S△OAB=tanA∶tanB∶tanC.(0,+∞),则P的轨迹一定通过△ABC的外心.”λ∈例4已知O为△ABC所在平面上的一点,"$"$"$因此,tanAOA+tanBOB+tanCOC=0.当∠C=90°时,O与C重合,即C为垂心,此时"$"$"$角A、A+bOB+cOCB、C所对的边为a、b、c,若aO=0,则O为△ABC的A.重心C.外心解()专业S精心策划"$"$CACB=0.另外,着眼于图形中的垂直关系,还可得到:HB.内心D.垂心高一"$$"$$"$$为△ABC的垂心’HA"HB=HB"HC=HC"HA"$"$"$"$"$$(如HAHB=HCHA’HA"BC=0);H为△ABC2222$$"$$"$的垂心’"HC2+HHA+BC="B+CA=""$"$"$$"$"$因为aOA+bOB+cOC=0,"OB=OA+AB,"$AB2"$"$$$$(如HBHAA2+"C2="C2+"B2’AC"$"$"$$"$"$(a+b+c)"OC=OA+AC,AOAB=c,AC=b,所以"$$B+"CAAbc"$"$"$即AO=+bAB+cAC=0,.ABAC-"$HB=0’HB⊥AC).例3(2007年宁波高一二试)O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满"$"$A"$"$"$"$$设"AD=AB,AE=C,AP=AB+AC=BACABACA"$"$AD+AE,则四边形ADPE为平行四边形,因为"$"$足OP=OA+λ+A*Bcos∠ABCACcos∠BCA,)"$AB"$AC"$"$"$"$AD、AE分别为AB、AC方向上的单位向量,即"$"$AD=AE=1,所以四边形ADPE为菱形,所以$AO=AP平分∠BAC.又"bc"$AP,所以AO平分(0,+∞),则P的轨迹一定通过△ABC的(λ∈A.外心C.重心解B.内心D.垂心将所给的条件式化为∠BAC.同理,可得BO平分∠ABC,CO平分∠ACB."$AP=λ由于故O为△ABC的内心.点评探求AO在△ABC中的特征时应将"$AB+ABcos∠ABCCcos∠BCAA"$AC-,"$"$OB、OC转化掉,用跟△ABC的边有关的向量表示,"$在建构出的新的向量关系等式中寻觅OA在△ABC$数学爱好者#"KeYuLanSheng课余揽胜中的特征.四、平面几何中的求值问题例5(2006年第(2)证明:i=1)+ni<3.证明(1)因为a(x≠b=-1,所以y=x3-x+1(x≠0).又因为)(0),即y-1=x-xfai)-n=)ai3-3i=1i=1nn高二第2“希望杯”17届试)如图,在△ABC中,P"#"$"$已知BD=2DC,AM=3"$D,过点M作直线交M(n∈N*),所以)a-nan23ii=1n)a=)aii=1i=1nn3i-n2an,所以①AB、AC于P、Q两点,则AB+2AC=_______.解i=1)a=na,i2nn"$$"$"$$构造基底AB=a,"AC=b,则BC=AC-"AB=又因为i=1()a=in-1n-1)2an-1,②$"$$$BD=2BC=2b-a),"DC=1"BC=1b-a),b-a,""$"$"$"$$AD=AB+BD=1a+2b,AM=3"AD=1a+1b."$"$"$"$设AP=λAB=λQ=μAC=μa,Ab,因为点P,Q,"$"$(1-m)AA$M=P+mAQ(m∈R),M三点共线,所以"于是1a+1b=(1-m)λa+mμb.又a、b不共线,所两式相减得:an=n2an-(n-1)2an-1,所以an=n-1n-1,则a=anan-1an-2a2a=n-1×n1n-1n-2n-31n-2n-3×2-11=1n∈N*);。

高考数学竞赛平面向量教案讲义

高考数学竞赛平面向量教案讲义

高考数学竞赛平面向量教案讲义一、平面向量的概念1. 向量的定义:在平面直角坐标系中,一个向量可以用一个有序数对(a, b)表示,其中a和b分别是向量在x轴和y轴上的分量。

2. 向量的表示方法:用箭头“→”表示向量,例如→v = (3, 2)。

3. 向量的长度(模):向量→v的长度等于√(a²+ b²),表示为|→v|。

4. 向量的方向:向量的方向由其分量的符号确定,正方向为右上方向,负方向为左下方向。

二、向量的加法和减法1. 向量的加法:两个向量→v1 = (a1, b1)和→v2 = (a2, b2)的和表示为→v1 + →v2 = (a1 + a2, b1 + b2)。

2. 向量的减法:两个向量→v1 = (a1, b1)和→v2 = (a2, b2)的差表示为→v1 →v2 = (a1 a2, b1 b2)。

3. 三角形法则:对于任意三个向量→v1, →v2, →v3,有→v1 + →v2 + →v3 = (a1 + a2 + a3, b1 + b2 + b3)。

三、向量的数乘1. 数乘向量:给定向量→v = (a, b),数k乘以该向量得到k→v = (ka, kb)。

2. 数乘的性质:k(→v1 + →v2) = k→v1 + k→v2,(k1 + k2)→v = k1→v + k2→v。

3. 数乘与向量长度的关系:|k→v| = |k||→v|。

四、向量的数量积(点积)1. 数量积的定义:两个向量→v1 = (a1, b1)和→v2 = (a2, b2)的数量积表示为→v1 ·→v2 = a1a2 + b1b2。

2. 数量积的性质:→v1 ·→v2 = →v2 ·→v1,(k→v1) ·→v2 = k(→v1 ·→v2),→v1 ·(→v2 + →v3) = →v1 ·→v2 + →v1 ·→v3。

高中数学平面向量PPT课件

高中数学平面向量PPT课件

a
CA OA OC
空间向量的加减法
k a (k>0)
空间向量的数乘
2021/3/8
k a (k<0)
思考:空间任意两个向量是否可能异面?
B
b
O
A
思考:它们确定的平面是否唯一?
a
结论:空间任意两个向量都是共面向量,所以它们可用 同一平面内的两条有向线段表示。 因此凡是涉及空间任意两个向量的问题,平面向量中有 关20结21/3论/8 仍适用于它们。
向量减法的三角形法则 2021/3/8
b a
向量加法的平行四边形法则
a k a (k>0) k a (k<0)
向量的数乘
3、平面向量的加法、减法与数乘运算律
加法交换律: a b b a 加法结合律: (a b) c a (b c) 数乘分配律: k(a b) k a+kb
2021/3/8
点分别重合; (2)模相等的两个平行向量是相等的向量; (3)如果两个向量是单位向量,那么它们相等; (4)两个相等向量的模相等。
2021/3/8
正确的有:(4)
练习:
1.设O为正△ABC的中心,则向量AO,BO,CO是 (B )
A.相等向量
B.模相等的向量
C.共线向量 C
D.共起点的向量
A2021/3/8
F
若不相等,则之间有什么关系?
D C
解:(1)BC,OA
A
B
(2)BC FE
(3)虽然OA // BC,且|OA|=|BC|,
但是它们方向相反,故这两个向量不相等.
2021/3/8
OA BC
例2:在图中的4×5方格纸中有一个向量 AB,

(完整版)高中数学平面向量讲义

(完整版)高中数学平面向量讲义

平面向量 (学生专用 )专题六平面向量一. 基本知识【1】向量的基本看法与基本运算(1)向量的基本看法:①向量:既有大小又有方向的量向量不能够比较大小,但向量的模能够比较大小.②零向量:长度为0 的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为 1 个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量uuur r uuur r r uuur uuur uuur(2)向量的加法:设AB a, BC b ,则a+ b = AB BC = AC① 0 a a 0 a ;②向量加法满足交换律与结合律;uuur uuur uuur uuur uuur uuurAB BC CD L PQ QR AR ,但这时必定“首尾相连”.(3)向量的减法:①相反向量:与 a 长度相等、方向相反的向量,叫做 a 的相反向量②向量减法:向量 a 加上b的相反向量叫做 a 与b的差,③作图法: a b 能够表示为从 b 的终点指向a的终点的向量( a 、b有共同起点)(4)实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定以下:(Ⅰ)a a ;(Ⅱ)当0 时,λ a 的方向与 a 的方向相同;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是任意的(5)两个向量共线定理:向量b与非零向量 a 共线有且只有一个实数,使得b= a (6)平面向量的基本定理:若是e1, e2是一个平面内的两个不共线向量,那么对这一平面内的任向来量 a ,有且只有一对实数 1 ,2使:a1e12e2,其中不共线的向量e1 , e2叫做表示这一平面内所有向量的一组基底【2】平面向量的坐标表示第1页(1) 平面向量的坐标表示 :平面内的任向来量rr r rr 。

a 可表示成 axi yj ,记作 a =(x,y) (2)平面向量的坐标运算:rrr rx 1 x 2 , y 1 y 2①若 ax 1 , y 1 , bx 2 , y 2 ,则 a buuur②若 A x 1 , y 1 , B x 2 , y 2 ,则 AB x 2 x 1 , y 2 y 1r =(x,y) ,则 r x, y)③若 a a =(r r r r x 1 y 2 x 2 y 1 0④若 ax 1 , y 1 , b x 2 , y 2 ,则 a // b r r r r y 1 y 2⑤若 a x 1 , y 1 , b x 2 , y 2 ,则 a b x 1 x 2r r y 1 y 2⑥若 a b ,则 x 1 x 2【3】平面向量的数量积(1)两个向量的数量积:已知两个非零向量r rr r r rr ra 与b ,它们的夹角为 ,则 a · b =︱ a ︱·︱ b ︱ cos 叫做 a 与 b 的数量积(或内积)r r规定 0 arr rrr= a b(2)向量的投影: ︱ b ︱ cosr ∈ R ,称为向量 b 在 a 方向上的投影 投影的绝对值称| a |为射影(3)数量积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积(4)向量的模与平方的关系:r r r 2 r 2 a a a | a |(5)乘法公式成立:r r rrr 2 r 2 r 2 r 2 r r 2 r 2r r r 2r 2 r r r 2a b a ba b ab ; a ba 2ab ba2a b b(6)平面向量数量积的运算律:①交换律成立:rrr r a bb a②对实数的结合律成立: r r r r r r Ra ba b a b③分配律成立:r r r r r r r r r r a b c a cb c c a b第 2页特别注意:( 1)结合律不成立:r r r r r r ab c a b c ;r rrrr r ( 2)消去律不成立 a ba c 不能够获取b c(rr=0r r r r3) a b 不能够获取 a =0 或 b=0(7)两个向量的数量积的坐标运算:rrrry 1 y 2已知两个向量 a ( x 1, y 1), b ( x 2 , y 2 ) ,则 a · b= x 1 x 2r r uuur r uuur r ( 8 ) 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB= (0 0180 0 ) 叫做 向量r 与 r 的夹角abr r r rx 1 x 2 y 1 y 2a ? bcos= cosa ,br r = 2222a ? bx 1y 1x 2y 2当且仅当两个非零向量rrr rra 与b 同方向时, θ =0 ,当且仅当 a 与 b 反方向时θ=180 ,同时 0 与其他任何非零向量之间不谈夹角这一问题r r 0则称 r r r r (9)垂直 :若是 a 与 b 的夹角为 90 a 与 b 垂直,记作 a ⊥ b( 10)两个非零向量垂直的充要条件: a ⊥ ba ·b = Ox xy y20 平面向量1 21数量积的性质二. 例题解析【模块一】向量的基本运算【例 1】给出以下六个命题:①两个向量相等,则它们的起点相同,终点相同;rr r r ②若 a b ,则 ab ③在平行四边形 ABCD 中必然有uuur uuurAB DC ;ur r r ur ur ur r r r r r r④若 m n, n p ,则 m p ; ⑤若 a // b , b // c , 则 a // cr r r r r r r⑥任向来量与它的相反以下不相等. ⑦已知向量 a 0 ,且 a b 0 ,则 b 0r r r r r r r r r r r r⑧ a b 的充要条件是 a b 且 a // b ;⑨若 a 与 b 方向相同,且 a b ,则 ab ;⑩由于零向量的方向不确定,故零向量不与任意向量平行; 其中正确的命题的序号是第 3页r rr r ruur【例 2】已知向量 a, b 夹角为 45 ,且 a 1, 2a b10 ;求 b 的值 .uur uur r rr r【变式 1】若 a 2 , b 3 , a b3 求 a b 的值 .【变式 2】设向量 a , b 满足 | a|=|b |=1 及 | 3a-2 b|=3 ,求 | 3a+b| 的值r r r rrr r r【例 3】已知向量 a 、 b 的夹角为 60o , |a| 3, | b |2 ,若 (3a 5b) (ma b) ,求 m 的值.rrr r r r【例 4】若向量 a1,2 , b1, 1 求 2a b 与 a b 的夹角 .【 变 式】 设 x, y R, 向 量 a x,1 ,b 1, y , c2, 4 , 且 a c,b // c, 则 a b_______()A . 5B . 10C . 2 5D . 10【例 5】已知两个非零向量r rr r rra,b 满足 a ba b ,则以下结论必然正确的选项是( )r r r rr r DA a // bB a b Ca br r r r a b a b【变式 1】设 a , b 是两个非零向量 . ()A .若 | a +b |=| a |-| b |, 则 a ⊥ bB .若 a ⊥b , 则| a +b |=| a |-| b |C .若 | a +b |=| a |-| b |, 则存在实数 λ, 使得 a =λbD .若存在实数 λ, 使得 a =λb , 则| a +b |=| a |-| b |第 4页r r r r r r【变式 2】若平面向量a, b满足 : 2a b 3 ;则 agb 的最小值是_____【例 6】设0,rcosr13 2, a,sin ,b,22r r r r (1)证明 a b a b ;(2)r r r r的值 .当 2a b a2b时求角r rr ra b)【例 7】设a、b都是非零向量 , 以下四个条件中 , 使r r成立的充足条件是(| a ||b |r r r r r r r rr r A.a b B.a // b C.a 2b D.a // b且| a | | b |【模块二】向量与平面几何【例 1】在△ ABC中, A 90o AB 1, ACuuur uuur 2 ,设P、Q满足 AP AB ,uuur1uuurRuuur uuur2 ,则AQ AC ,BQ CP=()A 1B2C4D2 333第5页AB2uuur uuur uuur uuur 【变式 1】已知△ ABC为等边三角形,设 P、Q满足AP AB AQ 1AC,,uuur uuur 3,则R BQ CP=()2A 1B12C 1 10D 3 2 2222uuur uuur【例 2】在△ ABC中 ,AB=2,AC=3,ABgBC = 1则 BC ___ .()A.3B.7C.2 2D.23uuur uuur uuur【变式 1】若向量BA2,3 , CA4,7 ,则 BC()A.2, 4B.2,4C.6,10D.6, 10【例 3 】若等边ABC 的边长为2 3 ,平面内一点M 满足CM 1CB2CA ,则63MA? MB________.第6页平面向量 (学生专用 )uuur r uuur r r r r r2 ,则【例 4】ABC 中, AB 边上的高为 CD ,若CB a,CA b, a b0,| a |1,|b | uuurAD()A.1r1rB.2r2rC.3r3rD.4r4r a b a b a b5a b 3333555uuur3【例5】在平面直角坐标系中,O (0,0), P(6,8) ,将向量 OP按逆时针旋转后 , 得向量4 uuurOQ ,则点 Q 的坐标是()A.( 7 2,2) B. (72,2)C.( 4 6, 2)D.( 46, 2)uuur uuur【例 6】在ABC中, M是 BC的中点, AM=3, BC=10,则AB AC =______________.【例 7】在平行四边形中, ∠A= 3, 边、的长分别为2、1.若、分别是边、ABCD AB AD M N BC CD上的点,且满足| BM|| CN | ,则AM AN 的取值范围是_________ .| BC || CD |,【例 8】如图 ,在矩形 ABCD 中, AB 2 ,BC2,点E为 BC 的中点,点F在边 CD uuur uuur uuur uuur上, 若AB g AF 2 ,则 AE g BF 的值是____.第7页平面向量 (学生专用 )9 】已知正方形ABCD 的边长为1, 点 E 是 AB 边上的动点uuur uuur【例, 则DE CB的值为uuur uuur________; DE DC 的最大值为________.【例 10】已知直角梯形ABCD 中,AD// BC ,ADC 900, AD2, BC 1 , P 是腰uuur uuurDC 上的动点,则PA3PB 的最小值为___________uuur uuur uuur【例 11】如图,在VABC中,AD AB , BC 3 BD ,AD 1 ,uuur uuur3.则 AC gAD【例 12】 (15)uuur uuur1uuur1uuur3uuur 在四边形 ABCD中,AB = DC =( 1,1),uuur BA uuur BC uuur BD ,BA BC BD则四边形ABCD的面积是第8页平面向量 (学生专用 ) uuur uuur【例 13】在VABC中,若AB2,3 , AC 6, 4 ,则 VABC 面积为【例 14】( 2012 年河北二模)在VABC中,AB 边上的中线CD=6 ,点 P 为 CD 上(与 C,D )uuur uuur uuur不重合的一个动点,则PA PB .PC的最小值是A 2B 0C -9D -18第9页。

高中数学平面向量辅导讲座

高中数学平面向量辅导讲座

平面向量一、向量的相关概念:1.向量的概念:我们把既有大小又有方向的量叫向量2.向量的表示方法:几何表示法:①用有向线段表示;②用字母a 、b 等表示;③用有向线段的起点与终点字母:AB ;坐标表示法:,(y x yj xi a =+=3、向量的模:向量AB 的大小――长度称为向量的模,记作|AB |.4、特殊的向量:①长度为0的向量叫零向量,记作0的方向是任意的②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.5、相反向量:6、相等的向量:7、平行向量(共线向量):方向相同或相反的向量,称为平行向量记作b a //平行向量也称为共线向量 规定零向量与任意向量平行。

8、两个非零向量夹角的概念:已知非零向量a 与b ,作OA =a ,OB =b ,则∠AOB=θ(0≤θ≤π)叫a与b 的夹角9、实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a λλ=; (Ⅱ)当0>λ时,λa的方向与a 的方向相同;当0<λ时,λa的方向与a 的方向相反;当0=λ时,0=a λ,方向是任意的10、两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ 叫做a 与b 的数量积(或内积) 规定00=⋅a二、重要定理、公式:1、平面向量基本定理:1e ,2e 是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数21,λλ,使2211e e a λλ+=(1).平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示 与.a 相等的向量的坐标也为..........,(y x 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=(2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标2、两个向量平行的充要条件向量共线定理:向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λaa∥b ⇔a=λb⇔1221=-y x y x3、两个向量垂直的充要条件设),(11y x a =,),(22y x b =,则ba⊥ ⇔a·b =O ⇔02121=+y y x x4、平面内两点间的距离公式(1)设),(y x a =,则222||y x a +=或||a =(2)如果表示向量a的有向线段的起点和终点的坐标分别为A ),(11y x、B ),(22y x ,那么||AB =平面内两点间的距离公式)5、两向量夹角的余弦(πθ≤≤0) co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=特别注意:(1)结合律不成立: c b a c b a ⋅⋅≠⋅⋅)()(;(2)消去律不成立ca ba ⋅=⋅不能cb =(3)b a ⋅ = 0不能得到a =0或b =06、线段的定比分点公式: 设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP ,则⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式) 当λ=1时,得中点公式:OP =21(1OP +2OP )或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x7、平移公式: 设点P (x ,y )按向量a =(h,k)平移后得到点P ′(x ′,y ′),则P O '=OP +a 或⎩⎨⎧+='+='.,k y y h x x曲线y =f (x )按向量a =(h,k)平移后所得的曲线的函数解析式为:y -k=f (x -h)8、正弦定理其中R 表示三角形的外接圆半径): (1)2sin sin sin a b c R ABC===余弦定理(1)2b =222cos ac ac B +-(2)1sin 2S bc A =练习题:一、平面向量的概念及其运算1、若c AC b AB==,,则BC等于( B )A .c b -B .b c -C .c b +D .c b -- 2、正六边形ABCDEF 中,=++EF CD BA ( D )A .0B .BEC .CD D .CF练习:3、在ABC ∆中,已知BD BC 3=,则AD 等于( ) A .)2(31AB AC + B .)2(31AC AB + C .)3(41AB AC + D .)2(41AB AC +4、已知:向量b a , 同向,且7,3==b a ,则=-b a 2二、平面向量的基本定理及坐标表示5、若115,3e CD e AB-===ABCD 是( C )A .是平行四边形B .菱形C .等腰梯形D .不等腰梯形 6、已知向量)4,3(--=a ,则与a 同向的单位向量是( A ) A .)54,53(--B .)54,53(C .)4,3(--D .)4,3(练习:7、若三点)9,(),4,2(),1,1(--x B A P 共线,求x8、若向量)43,3(2--==x x x a 与AB 相等地,已知)2,1(),2,1(B A -,则x 的值为( ) A .-1 B .-1或-4 C .4 D .1或4三、线段的定比分点9、已知A 、B 、C 三点在同一条直线上,且A (3,-6),B (-5,2),若点C 的横坐标为6,求点C 分AB 所成的比及点C 的纵坐标(答案:9,113--=λ)练习:10:已知三个点)3,4(),4,1(),1,2(--D B A ,点C 在AB 上,且CBAC =2,连结DC 并延长至E ,使DECE 41=,则E 点的坐标为( ) A .(0,1) B .(-8,35-) C .(0,1)或)311,2( D .(38-,311)四、平面向量的数量积11、已知,33,3,2=⋅==b a b a ,则a 与b 的夹角等于 o 3012、已知向量a 与b 的夹角为o 120,且2,4==b a , (1)求a 在b 方向上的投影 (2)求b a 43+ (3)若向量kba+与ba+5垂直,求实数k 的值(答案:(1)-2,(2)74,(3)419)练习:13、已知 )3,2(,132-==b a ,且b a ⊥ ,求a 的坐标14、已知)5,5(),0,6(-==b a,则a 与b 的夹角为五、平移15、把点A (3,4),按)2,1(=a 平移,求对应点A '的坐标),(y x '' (答案(4,6))16、一个向量把点(2,-1)平移到(-2,1),它把点(-2,1)平移到( A ) A .)1,2(- B .(-2,1) C .(6,-3) D .(-6,3)练习:17、若向量a 使点(3,-9)平移到点(1,1),则将函数21232+-=x x y 的图象,按a 平移后的解析式为( A )A .23x y =B .2)2(3-=x yC .10)2(32--=x yD .10)2(32++=x y 18、已知A (5,7)、B (2,3),将AB 按向量)1,4(=a 平移后的坐标为 (-3,-4)六、解斜三角形19、在ABC ∆中,已知22,30,45===a A C o o ,求b ( 答案:232+) 练习:20、在ABC ∆中,1,60,3===∆b A S oABC,则a的值为( )A .13B .13C .3D .9 例21、设函数)()(c b a x f +⋅=,其中向量Rx x x c x x b x x a ∈-=-=-=),sin ,cos (),cos 3,(sin ),cos ,(sin ,求函数)(x f 的最大值和最小正周期 (答案:(1)22+; (2)π。

(word完整版)高中数学竞赛讲义(免费)

(word完整版)高中数学竞赛讲义(免费)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学课比赛课件:平面向量基本定理

高中数学课比赛课件:平面向量基本定理
平面向量基本定理也可以推广到更复杂的向量运算中,如向量的三角形面积、向量的线性组合等。这些应用扩 展了我们对向量运算的理解。
练习题与总结
最后,通过练习题的方式巩固所学知识,并对平面向量基本定理进行总结和 归纳,进一步深化理解。
平面向量基本定理的概念
平面向量基本定理指出,如果两个向量的对应分量相等,则这两个向量相等。 这个定理使我们可以通过分量的方式判断向量是否相等。
用平面向量基本定理解决平面向量的基本 运算问题
通过应用平面向量基本定理,我们可以简化计算过程,解决各种平面向量的基本运算问题,如求和、差、数量 积等。
平面向量基本定理的推广应用
高中数学优质课比赛课件: 平面向量基本定理
平ห้องสมุดไป่ตู้向量定义
平面向量是带有方向和大小的箭头,在数学和物理中广泛应用。它们可以表示力、速度、位移等概念。
向量的加法和数量乘法
向量的加法是将两个向量的对应分量相加得到新的向量。数量乘法是将向量的每个分量乘以一个标量得到新的 向量。
向量的基本运算法则
向量的基本运算法则包括交换律、结合律和分配律。这些法则使得我们可以 方便地计算向量的和、差和数量积。

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

【全国百强重庆巴蜀中学】高中数学《平面向量讲义》(教师版)

【全国百强重庆巴蜀中学】高中数学《平面向量讲义》(教师版)

2.11..2..3.1123122001a b a b()12a b a b1AB CDA B C DABCDAB 0AB CD;1AC BC1()ABC DDA BCD2(1)________()a bab3AB DC A B C DABCDABa b a 0 a b b ca ca b b ca c .abAB DC A B C D ABCD|AB ||DC |AB DCAB DCa b |a ||b |a bb c|b ||c |bca ca cb 0aca c(2)ABCE F D AC AB BCEFEFEF E FAC ABEF BC 12BC DBC EFFE . EF FE BD DB DC CD . EFDB CD .(1)(2)2O ABCDEF(1)OA(2)OA(3)OA(1)OA (OB )23(2)BC AO EFOA AO OD FEBC44(3)(2)BC OA EFOD AD OA OA BC CB EF93A 100 km B50°200 kmC100 kmD(1)AB BC CD (2)|AD |.(1)AB BC CD(2)AB CD AB CD|AB ||CD |ABCDAB CDABCDABCD||||200 km.3a1.(1)B bb a (2)Ac|cc(1)b a() (2)c A).1..2...3.1(1)(2)5a bAAB a BC bACaba ba b AB BC ACa bOA a OB b O A BOA OBOACBOC a b(3) aa +00+a a2 1a b b a 2(a b )c a (bc )1(1)() (2)A B C DAB BC CDDA 0.()(3)a ba ba b()(4)AB BC CA 0A B C() (5)a b |a b ||a ||b |.() 2(1)(2)a b ca ba b c .(1)(2) (1)OOA a AB bOB a b .(2)OOA a AB b BC cOC a b c .6(1)(2)(1)(2)1OABCDEF(1)OA OC ________(2)BC FE ________(3)OA FE ________.(1)OB (2)AD (3)03(1)BC AB (2)DB CD BC(3)BC F A .(1)BC AB AB BC AC . (2)DB CD BC BC CD DB (BC CD )DB BD DB 0.(3)AB DF CDBC F A AB BC CD DF F A AC CD DF F AF A AF F A 0.(1)(2)A 1A 2A 2A 3A 3A 4A n 1A 1A 1A n .A nA 1A 1A 2A 2A 3A 3A 4A n 1A 10.2(AB PB )(BO BM )OP()A.BCB.ABC.ACD.AMD(AB PB )(BO BM )OP AB BO OP PB BM AM .420 m/min m/minABCDRt ACD|CD ||AB |||10 m/min|AD|||20 m/minCD60°120°120°1 1 h320 m/min20sin 60°103(m/min)1 h60032ABDC ADBD2.310 N W AB ACW150°BCW120°A B()CE CF A B10 N CGCE CF CG.ECG180°150°30°FCG180°120°60°.||||cos 30°53(N)||||cos 60°A5 3 N B 5 N.1..2..3.1.78a (a )0a bab a b 021a b a (b ).2a bba1a b ca b c . OOA a AB bOBabca b c .OOA a AB bOBa bCBcOCOC a b c .a b cOOA a OB bBA a b .CA cBC a b c .1OABCOA a OB b OC c .b c a .OB OCOBDCODAD OD OB OC b c AD ODOA b ca .CD OB bADAC OC OA c a AD AC CD ca b b c a .29(1)NQPQ NM MP (2)(AB CD )(AC BD )(1)0.(2)AB CD AC BD (AB AC )(DC DB )CB BC 0.2(1)()() (2)()()(1)(BA BC )(ED EC )CA CD DA .(2)(AC BO OA )(DC DO OB )AC BA DC (DO OB ) AC BA DC DB BC DC DB BC CD DB BC CB 0.3|AB |6|AD |9AB AD |||AB ||AD |||AB AD ||AB ||AD ||AD |9|AB |63|AB AD |15.AD AB |AB AD |3AD AB|AB AD |15.|AB AD |[3,15](1)ABCD AB a AD bAC a b DB a b . (2)||a ||b |||a b ||a ||b |a b|a ||b ||a ||b ||a b |ab|a b ||a ||b |. (3)||a ||b |||a b ||a ||b |ab |a ||b ||a ||b ||a b |a b|a b ||a ||b |. 3ABCD AB a AD b AC a b |a b ||a b |ABCD ()AB CDBAC a b ABCDDB a b |a b ||a b ||AC ||DB |.ABCD.11a a1)|a||||a|2)>0a a3<0a a21)(a)()a2)()a a a3)(a b)a b()a a(a)(a b)a b21a(a0)b b a2a b12 (1a±2b)1a±2b1(1)3(6a b)9a b________.9a 3(6a b)9a b18a3b9a3b9a.(2)3(x a)2(x2a)4(x a b)0x______.4b3a3x3a2x4a4x4a4b0x3a4b0x4b3a.(1)(2)101(a b)3(a b)8a.(a b)3(a b)8a(a3a)(b3b)8a2a4b8a10a4b.2a b.(1)OA2a b OB3a b OC a3b A B C(2)8a k b k a2b k(3)OM m a ON n b OP a b m n m0n0M P N(1)AB OB OA(3a b)(2a b)a2b BC OC OB(a3b)(3a b)(2a4b) 2AB AB BC B A B C.(2)8a k b k a2b8a k b(k a2b)(8)a(k2)b0.a b20±2k2±4(3)M P N O x y OP x y1OP a b a b OP xm a yn ba b xm yn y11.(1)A B C AB AC(AB)(2)A B C O x y OA xOB yOC x y1 2a(b0)2e1e2AB e12e2BC5e16e2CD7e12e2________A B DAB e12e2BD BC CD5e16e27e12e22(e12e2)2ABAB BD B A B D3e1e2k e1e2e1k e2kk e1e2e1k e2k e1e2(e1k e2)(k)e1(1)e211e1e2k010k±1.b a(a0)b a3e1e2a2e13e2b2e13e2c2e19e2d a b cd(2e13e2)(2e13e2)(22)e1(33)e2d c k d k c(22)e1(33)e22k e19k e2.e1e2222k339k2.d c2.4ABC DBD2DC AD()A.13AC B.53AB23AC C.23AC13AB D.23ACDAD AB BDAC AB(1)(2)4OADB OA a OB b13BC13CD a b OM ON MN.BM13BC16BA16(OA OB16(a b)OMOB BM16b16a. CN13CD16OD ON OC CN12OD23OD23(OA OB23(a b)MN ON OM 23(ab)16a56b12a16b.12135M N ABCAMAN ACABMABN ________AQ 13AC AM AP AQ MQ ABAQ2 35ABC A B CP P A PB PC AB ()A P ABCB PABCC PABD P ACP A PB PC PB P A PC2P APACD1..2..3.1e 1e 2a12a 1e 12e 2e1e 221OA a OB b AOB (0°180°)a b21)0°a b2)90°a b 3)180°a b141(1)OABCD ()AD AB DA CA OD OBABCDB(2)e 1e 2________()e 1e 2(R )aae 1e 2()1e 11e 22e 12e 21e 11e 2(2e 12e 2)e 1e 2001212(1)(2)abx 1a y 1b x 2a y 2bx 1x 2y 1y 2. 1e 1e 2e 1e 1e 2e 12e 2e 22e 1e 12e 24e 22e 1e 1e 2e 1e 2.______()4e 22e 12e 14e 22(e 12e 2)e 12e 24e 22e 12(1)OA a OB b C AO ADCBCa b________13OB 13OB4949a15(2)ABCD AC BD M AB a AD b a b MC MA MBAC AB AD a b BD AD AB b aMC12MA MC12a 12bMD 12b 12a MBMD1212b 3 2(2)E FCDBCACAEAFRa b 12a bAEAFa b a b2(1)(2)21D E FABCBC CA AB EB FC ()A.ADB.12ADC.12BCD.BCEB FC (EC BC )(FB BC )EC FB 12AC 12(AC AB )AD . A2AD12(AB AC )() A BD 2CD B BD CD C BD 3CD D CD 2BDAD12(AB AC )2AD AB ACAD AB AC ADBD DC|BD ||DC |BD CD B 3e 1e 2x y(2x 3y)e 1(3x 4y )e 26e 13e 2x ________y ________e1e22x3y63x4y3x15y12.15123|a||b|2a b60°a b a a b aOA a b AOB60°OA OB OACBOC a b BA OA OB a b BC OA a|a||b|2OABOAB60°ABC a b a60°|a||b|OACBOC AB COA90°60°30°a b a30°90°(1)(2)a b1a2b(12)12<0180°12>03a b c a b c0a b120°|b|2|a|a c ________OAB OAB60°|b|2|a|ABO30°OA OB a c90°90°4ABC C90°12AB AB BC()A30°B60°C120°D150°CAD BC BAD AB BC ABC C90°12ABABC60°BAD120°.161231.12x y i j3a x y a x i y j(x y) a4a(x y)5i(1,0)j(0,1)0(0,0)2.AB(x1xOy OA4AB3AOx45°OAB105°OA a AB b OABC17(1)a b(2)BA(3)B(1)AM x M OM OA·cos 45°4AM OA·sin 45°4A22) a22)AOC180°105°75°AOy45°COy30°.OC AB3ABOC(3)OB OA AB22)32323)2B1M(56)a(12)MN3a N( A )A(2,0) B(3,6) C(6,2) D(2,0)2(1)A(0,1)B(3,2)AC(43)BC( A )A(74) B(7,4) C(1,4) D(1,4)C(x y)AC(x y1)(43)x4y2C(42)BC(74)A(2)A B C(24)(0,6)(8,10)AB2BCAB(2,10)BC(8,4)AC(10,14)AB2BC(2,10)2(8,4)(18,18)(8,4)12(10,14)(8,4)(5,7)(33)2a(1,2)b(2,1)(1)2a3b(2)12a13b(1)2a3b(2,4)(6,3)(4,7)(2)12a13b121)(2313)7623)1813-1a(2,1)b(12)m a n b(98)(m n R)m n________ 3m a n b(2m m)(n2n)(2m n m2n)(98)2m n9 m2n8m2 n5m n323-2A(2,1)B(1,3)C(3,4)DD x,y ABCD AB(1,2)DC(3x,4y)AB DC D(2,2)ACDB AB(1,2)CD(x3y4)AB CD D(4,6)ACBD AC(5,3)DB(1x,3y)AC DB D(6,0) D(2,2)(4,6)(6,0)(1)(2)3A(2,4)B(4,6)BD CD________(1111 3)C(x1y1)D(x2y2)(x12y132(6,2)(9,3)x17y17(x24y243(62)(883)x24y 103CD(11113)121a(x1y1)b(x2y2)b02x1y2x2y10a b(b0)19201 (1)( )A e 1(0,0)e 2(12) B e 1(1,2)e 2(5,7) Ce 1(3,5)e 2(6,10) D e 1(23)e 2(1234) Ae 1e 1e 2Ce 12e 2e 1e 2D e 14e 2e 1e 2B (2)a (1,2)b (3,2)k k a b a 3bk a b k (1,2)(3,2)(k 3,2k 2)a 3b (1,2)3(3,2)(104)k a b a 3b(k 3)×(4)10(2k 2)013 k aa 3b )k a ba 3b12(1)ab (b 0)(2)1a cos )b (3sin )a b ________a cos )b (3sin )a b 3sin3cos2 (1)OA (k,2)OB (1,2k )OC (1k1)A B Ck ________AB OB OA (1k,2k 2)AC OC OA (12k 3)AB AC(3)×(1k )(2k 2)(12k )014k 1) (2)A (11)B (1,3)C (1,5)D (2,7)AB CDAB CDAB (2,4)CD (1,2)2×24×10AB CD AC (2,6)AB (2,4)2×4A B C AB CD AB CD(1)A (x 1y 1)B (x 2y 2)C (x 3y 3)A B C(x 2x 1)(y 3y 1)(x 3x 1)(y 2y 1)0(2)(x2x1)(y3y1)(x3x1)·(y2y1)0AB AC2A(12)B(4,8)C(5x)A B C xAB(5,10)AC(6x2)A B C AB AC5(x2)10×60 x10.3A(1,3)B(12)CC(x y)AC(x1y3)AB(25)x1y 14(25)(x1y3)1254)x 1 2y 541274C(1274)4A(0,5)D(232)M(x y)M AD x yAD(272)AM(x y5)MAD A D M AD AM2(y5)07x4y205ABC O(0,0)A(0,5)B(4,3)OC OD AD BC M M C(x C y C)O(0,0)A(0,5)B(4,3)OA(0,5)OB(4,3)OC(x C y C0C0D(232)M(x y)AM(x y5)AD2AM D AM AD2(y5)07x4y20CM xCB40C M BCM CB4y7x16y207x4y207x16y20127y2M2211a(x1y1)b(x2y2)(1)b a b(2)x1y2x2y10(3)x2y2x1xy1y2(1)(2).12311a b a b|a||b|cos a b()a b a·ba·b|a||b|cos2(1)b a|b|cos a b|a|cos(2)a·b a|a|b a|b|cos222a b(1)a b a·b0(2)a b a·b |a||b|a b|a||b|a b.(3)a·a|a|2|a(5)|a·b||a||b|31a·b b·a()2(a)·b(a·b)a·(b)()3(a b)·c a·c b·c()|a|2|b|3a b120°(1)a·b(2)(a b)·(a b)(3)(2a b)·(a3b)(2)ABC1D E AB BC DE F DE2EF AF·BC( )A 58B18C14D118(1)a·b|a||b|cos120°23(12) 3.(2)(a b)·(a b)a2a·b a·b b2a2b2|a|2|b|249 5.(3)(2a b)·(a3b)2a26a·b a·b3b22|a|25a·b3|b|224533934.(2)D E AB BC DE2EFAF·BC(AD DF)·BC·BC·BC·BC·BC BC54|BA|·|BC|cos 60|BC|54×1×1 B1ABCD AB2AD1BAD60°E CD AE·BD23AE·BD(AD·(AD AB)ADAD112×412×2×1×1232 ABC AB AC4BAC90°D BC(1)AB BD(2)BD AB[]AB BD[]AD AB AC4BAC90°ABC D BC AD BC ABD45°BD2 2.AB E AB BD DBE180°45°135°.(1)AB BD|AB|cos135°42 2.(2)BDAB|BD|cos135° 2.ABC AB AC2ABC30°D BC(1)BA CD(2)CD BA[]AD(1)D BC AB AC AD BCAB2ABC30°CD BD AB cos30BA CD ABC BA CD150°.BA CD|BA|cos150°2cos150(2)CDBA|CD|cos1503224253|a ||b |5ab|a b ||a b |a ·b |a ||b |cos 5×5×12252|a b ||ab|3|a |1|b |3|a b |2|a b ||a b |2(a b )2a 22a ·b b 2192a ·b 4a ·b 3|a b |2(a b )2a 22a ·b b 2192×316|a b |4|a b |2(a b )2a 22a ·b b 2|a b |2(a b )2a 22a ·b b 2|a b |2|a b |22a 22b 22×12×920 |a b |2 |a b |216 |a b | 4.1 4-1nm a 2mn b 2n 3m|n ||m |1mnm ·n |m||n ×1×1212|a ||2m n ||b||2n 3ma ·b(2m n )·(2n 3m )m ·n 6m 22n 12×12×72a b72[0a b2 4-2m n4|m |3|n |cos m n 13n (t m n )t ( )A 4B4 C 94D 94 cos m nm ·n |m ||n |m ·n 34|n |13m ·14||14n 2n ·(t m n )0t m ·nn 2n 2n 20t 4B4|a||b|2(a2b)·(a b)2a b(a2b)·(a b)|a|22|b|2a·b2|a||b|2a·b2a b[01.a(x1y1)b(x2y2).:,a·b x1x2y1y2:a b x1x2y1y202(1)a(x y)|a(2)A(x1y1)B(x2y2)|AB x12y1(3)a(x1y1)b(x2y2)ab cos3.:a b x1x2y1y20:a//b x1x2 - y1y204.(1)a·b|a||b|coscos(2)coscos <0180°cos>00°261 a=(1,2), b=(-3,4)1 b (2)cos< a,b > 3a b(4)(a+b)2 15(2)3 1 (4)401.a(31)b(12)a b________2.a(21)b(11)(a2b)·(a3b)(B)A10 B10C 3D 32 1.a(2,1)a·b10|a b||b|(C)A 5 B10 C 5 D25 21.a(1,2)b(24)|c(c b)·152a c_______2(3-2)(52)(-14).3,2OA 5,2OB1,4OC,OD x y AB DC AC DB AB CD.1AB DC OB OA OC OD5,23,21,4,x y2,41,4x y12x44y3,0x y.3,0D .2AC DB1,43,24,65,2x y54x26y9,4x y9,4D .3AB CD5,23,22,41,4x y2712x44y1,8x y1,8D.D3,09,41,8.3.ABCD AD BC ADC=90°AD=2BC=1P DC5DA DC x yA20B1a C0a D00P0b=2b=1a b=53a4b=53. x y R a(x,1)b(1y)c(24)a c b c|a b|()A 5 B10C2 5 D10a cbc 2x402y40x2y2a(2,1)b(12)a b(31)|a bB3 1.ba(12)180°|b|b()A(3,6) B(36) C(63) D(6,3)ba(2)(<0)|b||b223b(3,6) A2.A B C A(12)B (41)C(01)ABC28()A B C DAC(13)AB(31)AC·AB330AC AB.|AC|ABAC AB.ABCC4 a(1,2)b(1)(1)a b(2)a b(3)a ba ba·b(1,2)·(1)12(1)a b cos 0a·b012(2)a b cos <0cos 1a·b<0a ba·b<012<0<1 2a b2a b(3)a b cos >0cosa·b>0a ba·b>0>12a b22(24A B C ABC p(sin A,1)q(1cos B)p q ()A BC DABC ABA29y sin x(sin A)cos B p·q sin A cos B>0p q p qA2.51.().2.()11232123m4F s.1ABCD E F AB BC AF DE AD a AB b|a||b|a·b0302022AF·DEba 2·b a212a234a·bb2 212|a|2 12|b|2 0AF DE AF DEAF (2,1) DE (1 2)2 A(0,0) D(0,2) E(1,0) F(2,1)AF·DE (2,1)·(1 2) 2 2 0AF DE AF DE1 1. ABCA(4,1) B(7,5) C( 4,7) BCADA 25B5 25C 357 D 2535BCD 2 6 AD255 |AD| 2 5B1ABCD AB·BC 0 AB DCABCDABCD ( )AB DCABCDAB·BC 0B 90°() ABCDC2. P D)ABCDBDPFCEDCx DAyPA EF PA EF Oxy(3120221|OP|A(0,1)P2 22 2E12 2PA2 212 2EF2 212 2|PA|122 22 2122 2|EF| 2 2 1F2 20|PA| |EF| PA EFPA·EF2 22 2112 22 20PA EF. PA EF.3 ________A(1,1) M(x y)AMAMa (1,2)MAM·a (x 1 y 1)·(1,2) x 1 2y 2 x 2y 3 0. A Mx1x 2y 3 0(x 1)4.Rt ABC(1) DAB(2) E CDC 90° AC m BC n 1CD 2ABAEBC F AF( mn )(1)CA(0 m) B(n,0)CB CA D ABnm D(2 2 )xy|CD|1 2m2n2|AB|m2 n23220221 |CD| 2|AB|1 CD 2ABnmnm(2)F(x,0)D(2 2 )E(4 4 )AE (n4 34m) AF (x m) AE AFAF AE (x m) (n4 34m)n x43 m44 3n x3AF (n3 m) |AF|19n2m21 3n29m2AF1 3n29m22 (1)5 km h| 1| 52| | 10 | 2| | |cos 30° 5 3(km/h)53(2) BAB10 N (W ) F1 F2F1 F2CFWE CWECW 180° 150° 30°FCW 180° 120° 60°FCE 90°CFWE|CE| |CW|cos 30° 103 2 5 3(N)|CF||CW|cos 60°101 25(N)A5 3N B2 1.60°F6N W ________ JF33ABACW 150° BCW 120° A10 NFF1 F2 F. CCF F2 CE F1 CW F5N s100 m F s2022W F·s |F||s|cos F s6 100 cos 60° 300(J)300290°F1 F2A6F1 F2 F3(2 4 F3(B2) )C 25 F3C(F1 F2)D 27 |F3|2 (F1 F2)2 F21 F22 2F1·F2 4 16 20F1 F2 |F3| 2 5a (x1, y1),b (x2, y2 )a b (x1 x2, y1 y2 )a b (x1 x2 , y1 y2 )a ( x1, y2)A (x1, y1), B (x2, y2) AB (x2 x1, y2 y1)A (x1, y1), B (x2, y2 )( x1 x2 , y1 y2 )22a (x1, y1),b (x2, y2 )abx1 x2 y1 y234ab2022a (x1, y1),b (x2, y2) a / /bx1y2 x2 y1a b a b cos 0abb cosbaab abab cosa b cosa b x1x2 y1 y2a b 0 x1x2 y1 y2 a (x, y) | a | x2 y2 , a2 | a |2 x2 y2a (x1, y1),b (x2, y2 )cos a, b a b | a || b |x1x2 y1 y2 x12 y12 x22 y22abA x1, y1 , B x2 , y2| AB | (x1 x2)2 ( y1 y2 )2| a | cos a, ba b x1x2 y1 y2|b|x22 y22|| a | | b || | a b | | a | | b | ABCA x1, y1 , B x2, y2 ,C x3, y3PG1 3(PAPBPC)GABCPA PB PB PC PC PA P ABC( AB AC )( 0)ABC| AB | | AC || AB | PC | BC | PA | CA | PB 0 P ABCP1P2M35G x1 x2 x3 , y1 y2 y333PA PB PC 0 PBACMP MP1 MP2 1ABC P P1P2MP MP1 MP2 2PA PB PC2022ABCPA PB PC1.AAAB BAC AB DC A B C D DB ababABCD OABCDOA a OB b OC cODCA a+b +c2B a +b -c1.abC a-b +cD a-b -cBA ab a b22C ab abB ab a b22D abab a ba b c a b c 0 a b ca ba1222abcAP 4 AB OA OB OP OP 31 OA 4 OB331 OA 4 OB331 OA 4 OB331 OA 4 OB3336202244OP OA AP OA AB OAOB OA3314OA OB3331P ABCAP 1 AB 2 AC 55ABP ABCC1A51B22C52D32ABCAB 3, AC 2 AD 1 AB 3 AC24ABCADABCDDa 1, 2 ,b 4, 2 c ma b c acbA2B1C1D2=12 =42=m + = m+4 2m+2===m=2DmD1a 1 , tan ,b cos ,1a / /b cos()B321A.31B.32C.322D.32OA a OB b ,ABab 1 ab 3OABDCD37202251a cos ,sin b 2 sin , cosa / /b(5 ,13 ) 44ab 3cos( ) 28cos cos sinsin =0={ | = +2k = +2k k Z}sin =1 sin == cos+sin sin cos| |===2=cos==cos0cos=2a cos x,sin x b 3 cos x, cos x b 0f (x) 2a b 1f (x)abtan x cos 2x f (x) 1f x =2=2 sinxcosx+2cos2x 1= sin2x+cos2x=2sin 2x+=2k2x+ 2k + k zkxk+[kk+kzsinx= cosx tanx=====3820225a sin A B , cos A B 3 2 b 5 sin A B , cos A B 3 22244224ab1 tanA tanB 12 tanC5cos A+B +4cos A B =0cosAcosB=9sinAsinBtanA tanB=2tanA tanB= 0 A B ABCtanA 0 tanB 0A, B ABC=0 =39。

【高中数学讲义】平面向量

【高中数学讲义】平面向量
1、 【课本 P75-例】如图所示,点 D, E, F 分别是等边三角形 ABC 的边 AB, BC,CA 的中点, 在以 A, B,C, D, E, F 为起点或终点的向量中:
1 找出与向量 DE 相等的向量; 2 找出与向量 DF 共线的向量.
【核心特征】等边三角形边的中点和图形的对称性 【方法对策】相等向量和共线向量定义判断法
7 单位向量
8 相等向量
1向量平行与向量共线
2、向量的基本关系 2 垂直向量
3 注意事项
1、 向量的相关概念:
1 重要观念:一是在物理学中,“位移”、“速度”和“力”是矢量,物理中有矢量和标量
之分,矢量是既有大小又有方向的量,标量是只有大小的量;二是类比到数学中,去掉物理 属性,就是我们研究的向量,但应特别关注向量和矢量是两个不同概念,而且我们研究的向 量是自由向量,在平面内可自由移动,即如果不改变其大小和方向,所表示的向量为同一向 量;三是树立向量是一个重要数学工具的思想,可以很方便的解决一些相关问题,尤其在简 化运算方面功不可没.
7 单位向量:长度为 1 的向量是单位向量,记作 e, i 等,通常将向量 a0 记作与向量 a 同方
向的单位向量,即 a0 与向量 a 的方向相同且模长为 1,单位向量的方向也是任意的,但其任
意性在于如果没有画出,其方向具有不确定性,但若画出了单位向量,其方向为确定的.
8 相等向量:模相等且方向相同的两个向量称为相等向量,记作 a b ,但应特别关注向
所 以 B A B C C A a b a,b则 称 向 量 BA AC 叫 作 向 量 a,b 的 差 , 即
a b BA ,其运算法则适用于三角形法则,要求两向量首尾相接.
5 差向量的方向:由 a b BA 可知,差向量的方向由减去的向量的终点指向被减向量的

高中数学《平面向量基本定理》逐字稿

高中数学《平面向量基本定理》逐字稿

高中数学《平面向量基本定理》逐字稿在高中数学的学习过程中,平面向量基本定理是一个非常重要的知识点。

它是向量运算中的一个基础,对于理解向量的运算和性质,以及解决相关问题都有着重要的作用。

平面向量基本定理可以概括为“平面向量的加法和数乘可以用坐标运算来表达”。

简单来说,就是在平面直角坐标系中,如果已知向量的坐标式,就可以方便地进行加法和数乘运算。

一、平面向量的加法平面向量的加法可以用向量的坐标和平面直角坐标系中的坐标运算来表达。

假设已知向量 $\overrightarrow{a}=(x_1, y_1)$ 和$\overrightarrow{b}=(x_2, y_2)$,则两个向量的和为$\overrightarrow{a}+\overrightarrow{b}=(x_1+x_2,y_1+y_2)$。

例如,对于向量 $\overrightarrow{a}=(1,2)$ 和$\overrightarrow{b}=(3,-1)$,它们的和为$\overrightarrow{a}+\overrightarrow{b}=(4,1)$。

这个结果可以在平面直角坐标系中直接进行验证。

二、平面向量的数乘平面向量的数乘也可以用向量的坐标和平面直角坐标系中的坐标运算来表达。

假设已知向量 $\overrightarrow{a}=(x,y)$,则它与实数$k$ 的积为 $k\overrightarrow{a}=(kx,ky)$。

例如,对于向量 $\overrightarrow{a}=(2,-3)$,它与实数 $k=-2$ 的积为 $k\overrightarrow{a}=(-4,6)$。

同样可以在平面直角坐标系中进行验证。

三、平面向量基本定理的应用平面向量基本定理的应用非常广泛,特别是在向量组合运算和向量方程的解法中。

以解一个向量方程为例,假设要求解方程$\overrightarrow{a}+k\overrightarrow{b}=\overrightarrow{c}$ 的解集,其中 $\overrightarrow{a}$、$\overrightarrow{b}$ 和$\overrightarrow{c}$ 都为已知向量,$k$ 为实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学竞赛讲义(八)──平面向量一、基础知识定义 1 既有大小又有方向的量,称为向量。

画图时用有向线段来表示,线段的长度表示向量的模。

向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。

书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。

零向量和零不同,模为1的向量称为单位向量。

定义 2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。

定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。

加法和减法都满足交换律和结合律。

定理2 非零向量a, b共线的充要条件是存在实数0,使得a=f定理3 平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。

定义3 向量的坐标,在直角坐标系中,取与x轴,y轴方向相同的两个单位向量i, j 作为基底,任取一个向量c,由定理3可知存在唯一一组实数x, y,使得c=xi+yi,则(x, y)叫做c坐标。

定义 4 向量的数量积,若非零向量a, b的夹角为,则a, b的数量积记作a·b=|a|·|b|cos=|a|·|b|cos<a, b>,也称内积,其中|b|cos叫做b在a上的投影(注:投影可能为负值)。

定理4 平面向量的坐标运算:若a=(x1, y1), b=(x2, y2),1.a+b=(x1+x2, y1+y2), a-b=(x1-x2, y1-y2),2.λa=(λx1, λy1), a·(b+c)=a·b+a·c,3.a·b=x 1x2+y1y2, cos(a, b)=(a, b0),4. a定义5 若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。

由此可得若P1,P,P2的坐标分别为(x1, y1), (x, y), (x2, y2),则定义6 设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h, k)的方向,平移|a|=个单位得到图形,这一过程叫做平移。

设p(x, y)是F上任意一点,平移到上对应的点为,则称为平移公式。

定理5 对于任意向量a=(x1, y1), b=(x2, y2), |a·b|≤|a|·|b|,并且|a+b|≤|a|+|b|.【证明】因为|a|2·|b|2-|a·b|2=-(x1x2+y1y2)2=(x1y2-x2y1)2≥0,又|a·b|≥0, |a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。

1)对n维向量,a=(x1, x2,…,x n),b=(y1, y2, …, y n),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:(x1y1+x2y2+…+x n y n)2≥0,又|a·b|≥0, |a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。

1)对n维向量,a=(x1, x2,…,x n), b=(y1, y2, …, y n),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:(x1y1+x2y2+…+x n y n)2。

2)对于任意n个向量,a1, a2, …,a n,有| a1, a2, …,a n|≤| a1|+|a2|+…+|a n|。

二、方向与例题1.向量定义和运算法则的运用。

例1 设O是正n边形A1A2…A n的中心,求证:【证明】记,若,则将正n边形绕中心O旋转后与原正n边形重合,所以不变,这不可能,所以例2 给定△ABC,求证:G是△ABC重心的充要条件是【证明】必要性。

如图所示,设各边中点分别为D,E,F,延长AD至P,使DP=GD,则又因为BC与GP互相平分,所以BPCG为平行四边形,所以BG PC,所以所以充分性。

若,延长AG交BC于D,使GP=AG,连结CP,则因为,则,所以GB CP,所以AG平分BC。

同理BG平分CA。

所以G为重心。

例 3 在凸四边形ABCD中,P和Q分别为对角线BD和AC的中点,求证:AB2+BC2+CD2+DA2=AC2+BD2+4PQ2。

【证明】如图所示,结结BQ,QD。

因为,所以=·=①又因为同理,②,③由①,②,③可得。

得证。

2.证利用定理2证明共线。

例4 △ABC外心为O,垂心为H,重心为G。

求证:O,G,H为共线,且OG:GH=1:2。

【证明】首先=其次设BO交外接圆于另一点E,则连结CE后得CE又AH BC,所以AH求证:|a+b|=|a-b|的充要条件是a b.【证明】|a+b|=|a-b|(a+b)2=(a-b)2a2+2a·b+b2=a2-2a·b+b2a·b=0a b.例6 已知△ABC内接于⊙O,AB=AC,D为AB中点,E为△ACD重心。

求证:OE CD。

【证明】设,则,又,所以a·(b-c). (因为|a|2=|b|2=|c|2=|OH|2)又因为AB=AC,OB=OC,所以OA为BC的中垂线。

所以a·(b-c)=0. 所以OE CD。

4.向量的坐标运算。

例7 已知四边形ABCD是正方形,BE又因为,所以x2+y2=2.由①,②解得所以设,则。

由和共线得所以,即F,所以=4+,所以AF=AE。

三、基础训练题1.以下命题中正确的是__________. ①a=b的充要条件是|a|=|b|,且a3.已知a=y-x, b=2x-y, |a|=|b|=1, a·b=0,则|x|+|y|=__________.4.设s, t为非零实数,a, b为单位向量,若|sa+tb|=|ta-sb|,则a和b的夹角为__________.5.已知a, b不共线,=a+kb, =la+b,则“kl-1=0”是“M,N,P共线”的__________条件.6.在△ABC中,M是AC中点,N是AB的三等分点,且,BM与CN交于D,若,则λ=__________.7.已知不共线,点C分所成的比为2,,则__________.8.已知=b, a·b=|a-b|=2,当△AOB面积最大时,a与b的夹角为__________.9.把函数y=2x2-4x+5的图象按向量a平移后得到y=2x2的图象,c=(1, -1), 若,c·b=4,则b的坐标为__________.10.将向量a=(2, 1)绕原点按逆时针方向旋转得到向量b,则b的坐标为__________.11.在Rt△BAC中,已知BC=a,若长为2a的线段PQ以点A为中点,试问与的夹角取何值时的值最大并求出这个最大值。

12.在四边形ABCD中,,如果a·b=b·c=c·d=d·a,试判断四边形ABCD的形状。

四、高考水平训练题1.点O是平面上一定点,A,B,C是此平面上不共线的三个点,动点P满足则点P的轨迹一定通过△ABC的________心。

2.在△ABC中,,且a·b<0,则△ABC的形状是__________.3.非零向量,若点B关于所在直线对称的点为B1,则=__________.4.若O为△ABC 的内心,且,则△ABC 的形状为__________.5.设O点在△ABC 内部,且,则△AOB与△AOC的面积比为__________.6.P是△ABC所在平面上一点,若,则P是△ABC 的__________心.7.已知,则||的取值范围是__________.8.已知a=(2, 1), b=(λ, 1),若a与b的夹角为锐角,则λ的取值范围是__________.9.在△ABC中,O为中线AM上的一个动点,若AM=2,则的最小值为__________.10.已知集合M={a|a=(1, 2)+ λ(3, 4), λ∈R},集合N={a|a=(-2, -2)+ λ(4, 5), λ∈R},mj M N=__________.11.设G为△ABO的重心,过G的直线与边OA和OB分别交于P和Q,已知,△OAB与△OPQ的面积分别为S和T,(1)求y=f(x)的解析式及定义域;(2)求的取值范围。

12.已知两点M(-1,0),N(1,0),有一点P使得成公差小于零的等差数列。

(1)试问点P的轨迹是什么(2)若点P坐标为(x0, y0), 为与的夹角,求tan.五、联赛一试水平训练题1.在直角坐标系内,O为原点,点A,B坐标分别为(1,0),(0,2),当实数p, q满足时,若点C,D分别在x轴,y轴上,且,则直线CD恒过一个定点,这个定点的坐标为___________.2.p为△ABC内心,角A,B,C所对边长分别为a, b, c. O为平面内任意一点,则=___________(用a, b, c, x, y, z表示).3.已知平面上三个向量a, b, c均为单位向量,且两两的夹角均为1200,若|ka+b+c|>1(k ∈R),则k的取值范围是___________.4.平面内四点A,B,C,D满足,则的取值有___________个.5.已知A1A2A3A4A5是半径为r的⊙O内接正五边形,P为⊙O上任意一点,则取值的集合是___________.6.O为△ABC所在平面内一点,A,B,C为△ABC 的角,若sinA·+sinB·+sinC·,则点O为△ABC 的___________心.7.对于非零向量a, b, “|a|=|b|”是“(a+b)(a-b)”的___________条件.8.在△ABC 中,,又(c·b):(b·a):(a·c)=1:2:3,则△ABC 三边长之比|a|:|b|:|c|=____________.9.已知P为△ABC内一点,且,CP交AB于D,求证:10.已知△ABC的垂心为H,△HBC,△HCA,△HAB的外心分别为O1,O2,O3,令,求证:(1)2p=b+c-a;(2)H为△O1O2O3的外心。

11.设坐标平面上全部向量的集合为V,a=(a1, a2)为V中的一个单位向量,已知从V 到的变换T,由T(x)=-x+2(x·a)a(x∈V)确定,(1)对于V的任意两个向量x, y, 求证:T(x)·T(y)=x·y;(2)对于V的任意向量x,计算T[T(x)]-x;(3)设u=(1, 0);,若,求a.六、联赛二试水平训练题1.已知A,B为两条定直线AX,BY上的定点,P和R为射线AX上两点,Q和S为射线BY上的两点,为定比,M,N,T分别为线段AB,PQ,RS上的点,为另一定比,试问M,N,T三点的位置关系如何证明你的结论。

相关文档
最新文档